1
|
Chao M, Zhang H, Hu Q, Ma S, Cui X, Zhu X, Wang H, Yu X, Han B. Construction of novel π-bridged fluorescent probes for Fe 2+ monitoring in living cells and foods. Anal Bioanal Chem 2024; 416:6473-6483. [PMID: 39289203 DOI: 10.1007/s00216-024-05535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Fe2+ plays a crucial role in biological systems as an essential trace element in the body. Iron is absorbed by the body through food and Fe2+ is also an important component of living cells; therefore, quantitative testing of Fe2+ in food and in living cells is of great importance. This paper presents the development of a novel π-bridge EDOT-based N-oxide turn-on fluorescent probe, designated as FeE, for the detection of Fe2+. The probe has been shown to exhibit excellent sensitivity, a favorable linear relationship between fluorescence signal intensity and Fe2+ concentration, and an effective immunity to interference. The probe has low cytotoxicity and has been successfully used to detect Fe2+ in cells using laser confocal fluorescence microscopy. It is also possible to determine the presence of Fe2+ in animal blood, spinach, apple juice, red wine, mineral water and metal cans.
Collapse
Affiliation(s)
- Mingzhen Chao
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haitao Zhang
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
- Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Qingfei Hu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanghong Ma
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiubin Cui
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiuzhong Zhu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongyi Wang
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xin Yu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Bing Han
- Jinan Food and Drug Testing Center (Jinan Adverse Drug Reaction and Medical Device Adverse Event Monitoring Center) (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
2
|
Lamačová LJ, Trnka J. Chelating mitochondrial iron and copper: Recipes, pitfalls and promise. Mitochondrion 2024; 78:101903. [PMID: 38777220 DOI: 10.1016/j.mito.2024.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Iron and copper chelation therapy plays a crucial role in treating conditions associated with metal overload, such as hemochromatosis or Wilson's disease. However, conventional chelators face challenges in reaching the core of iron and copper metabolism - the mitochondria. Mitochondria-targeted chelators can specifically target and remove metal ions from mitochondria, showing promise in treating diseases linked to mitochondrial dysfunction, including neurodegenerative diseases and cancer. Additionally, they serve as specific mitochondrial metal sensors. However, designing these new molecules presents its own set of challenges. Depending on the chelator's intended use to prevent or to promote redox cycling of the metals, the chelating moiety must possess different donor atoms and an optimal value of the electrode potential of the chelator-metal complex. Various targeting moieties can be employed for selective delivery into the mitochondria. This review also provides an overview of the current progress in the design of mitochondria-targeted chelators and their biological activity investigation.
Collapse
Affiliation(s)
- Lucie J Lamačová
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic.
| |
Collapse
|
3
|
Nemours S, Armesto M, Arestín M, Manini C, Giustetto D, Sperga M, Pivovarcikova K, Pérez-Montiel D, Hes O, Michal M, López JI, Lawrie CH. Non-coding RNA and gene expression analyses of papillary renal neoplasm with reverse polarity (PRNRP) reveal distinct pathological mechanisms from other renal neoplasms. Pathology 2024; 56:493-503. [PMID: 38413252 DOI: 10.1016/j.pathol.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 02/29/2024]
Abstract
Papillary renal neoplasm with reversed polarity (PRNRP) is a recently described rare renal neoplasm. Traditionally, it was considered a variant of papillary renal cell carcinoma (PRCC). However, several studies reported significant differences between PRNRP and PRCC in terms of clinical, morphological, immunohistochemical and molecular features. Nonetheless, PRNRP remains a poorly understood entity. We used microarray analysis to elucidate the non-coding RNA (ncRNA) and gene expression profiles of 10 PRNRP cases and compared them with other renal neoplasms. Unsupervised cluster analysis showed that PRNRP had distinct expression profiles from either clear cell renal cell carcinoma (ccRCC) or PRCC cases at the level of ncRNA but were less distinct at the level of gene expression. An integrated omic approach determined miRNA:gene interactions that distinguished PRNRP from PRCC and we validated 10 differentially expressed miRNAs and six genes by quantitative RT-PCR. We found that levels of the miRNAs, miR-148a, miR-375 and miR-429, were up-regulated in PRNRP cases compared to ccRCC and PRCC. miRNA target genes, including KRAS and VEGFA oncogenes, and CXCL8, which regulates VEGFA, were also differentially expressed between renal neoplasms. Gene set enrichment analysis (GSEA) determined different activation of metabolic pathways between PRNRP and PRCC cases. Overall, this study is by far the largest molecular study of PRNRP cases and the first to investigate either ncRNA expression or their gene expression by microarray assays.
Collapse
MESH Headings
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/metabolism
- Middle Aged
- Female
- Male
- Aged
- RNA, Untranslated/genetics
- Gene Expression Profiling
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Gene Expression Regulation, Neoplastic
- Adult
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
Collapse
Affiliation(s)
- Stéphane Nemours
- Biogipuzkoa Health Research Institute, Oncology Area, Molecular Oncology Group, San Sebastian, Spain
| | - María Armesto
- Biogipuzkoa Health Research Institute, Oncology Area, Molecular Oncology Group, San Sebastian, Spain
| | - María Arestín
- Biogipuzkoa Health Research Institute, Oncology Area, Molecular Oncology Group, San Sebastian, Spain
| | - Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, ASL Città di Torino, Turin, Italy; Department of Sciences of Public Health and Pediatrics, University of Turin, Italy
| | - Doriana Giustetto
- Department of Pathology, Maria Victoria Hospital, ASL Città di Torino, Turin, Italy
| | - Maris Sperga
- Department of Pathology, Stradin's University, Riga, Latvia
| | - Kristyna Pivovarcikova
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Ondrej Hes
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michal Michal
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Bioptical Laboratory Ltd, Pilsen, Czech Republic
| | - José I López
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Charles H Lawrie
- Biogipuzkoa Health Research Institute, Oncology Area, Molecular Oncology Group, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Sino-Swiss Institute of Advanced Technology (SSIAT), University of Shanghai, Shanghai, China; Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Ward NP, Yoon SJ, Flynn T, Sherwood AM, Olley MA, Madej J, DeNicola GM. Mitochondrial respiratory function is preserved under cysteine starvation via glutathione catabolism in NSCLC. Nat Commun 2024; 15:4244. [PMID: 38762605 PMCID: PMC11102494 DOI: 10.1038/s41467-024-48695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Cysteine metabolism occurs across cellular compartments to support diverse biological functions and prevent the induction of ferroptosis. Though the disruption of cytosolic cysteine metabolism is implicated in this form of cell death, it is unknown whether the substantial cysteine metabolism resident within the mitochondria is similarly pertinent to ferroptosis. Here, we show that despite the rapid depletion of intracellular cysteine upon loss of extracellular cystine, cysteine-dependent synthesis of Fe-S clusters persists in the mitochondria of lung cancer cells. This promotes a retention of respiratory function and a maintenance of the mitochondrial redox state. Under these limiting conditions, we find that glutathione catabolism by CHAC1 supports the mitochondrial cysteine pool to sustain the function of the Fe-S proteins critical to oxidative metabolism. We find that disrupting Fe-S cluster synthesis under cysteine restriction protects against the induction of ferroptosis, suggesting that the preservation of mitochondrial function is antagonistic to survival under starved conditions. Overall, our findings implicate mitochondrial cysteine metabolism in the induction of ferroptosis and reveal a mechanism of mitochondrial resilience in response to nutrient stress.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Sang Jun Yoon
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tyce Flynn
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Amanda M Sherwood
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Maddison A Olley
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Juliana Madej
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Gina M DeNicola
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
5
|
Snoderly-Foster LJ, Olivas WM. Regulation of Parkinson's disease-associated genes by Pumilio proteins and microRNAs in SH-SY5Y neuronal cells. PLoS One 2022; 17:e0275235. [PMID: 36174040 PMCID: PMC9522289 DOI: 10.1371/journal.pone.0275235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease is the second most common age-related, neurodegenerative disease. A small collection of genes has been linked to Parkinson's disease including LRRK2, SAT1, and SNCA, the latter of which encodes the protein alpha-synuclein that aggregates in Lewy bodies as a hallmark of the disease. Overexpression of even wild-type versions of these genes can lead to pathogenesis, yet the regulatory mechanisms that control protein production of the genes are not fully understood. Pumilio proteins belong to the highly conserved PUF family of eukaryotic RNA-binding proteins that post-transcriptionally regulate gene expression through binding conserved motifs in the 3' untranslated region (UTR) of mRNA targets known as PUF Recognition Elements (PREs). The 3'UTRs of LRRK2, SNCA and SAT1 each contain multiple putative PREs. Knockdown (KD) of the two human Pumilio homologs (Pumilio 1 and Pumilio 2) in a neurodegenerative model cell line, SH-SY5Y, resulted in increased SNCA and LRRK2 mRNA, as well as alpha-synuclein levels, suggesting these genes are normally repressed by the Pumilio proteins. Some studies have indicated a relationship between Pumilio and microRNA activities on the same target, especially when their binding sites are close together. LRRK2, SNCA, and SAT1 each contain several putative microRNA-binding sites within the 3'UTR, some of which reside near PREs. Small RNA-seq and microRNA qPCR assays were performed in both wild type and Pumilio KD SH-SY5Y cells to analyze global and differential microRNA expression. One thousand four hundred and four microRNAs were detected across wild type and Pumilio KD cells. Twenty-one microRNAs were differentially expressed between treatments, six of which were previously established to be altered in Parkinson's disease patient samples or research models. Expression of ten miRs predicted to target LRRK2 and SNCA was verified by RT-qPCR. Collectively, our results demonstrate that Pumilios and microRNAs play a multi-faceted role in regulating Parkinson's disease-associated genes.
Collapse
Affiliation(s)
- Lisa J. Snoderly-Foster
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| | - Wendy M. Olivas
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
6
|
Yun D, Wang X, Wang W, Ren X, Li J, Wang X, Liang J, Liu J, Fan J, Ren X, Zhang H, Shang G, Sun J, Chen L, Li T, Zhang C, Yu S, Yang X. A Novel Prognostic Signature Based on Glioma Essential Ferroptosis-Related Genes Predicts Clinical Outcomes and Indicates Treatment in Glioma. Front Oncol 2022; 12:897702. [PMID: 35756689 PMCID: PMC9232254 DOI: 10.3389/fonc.2022.897702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background Ferroptosis is a form of programmed cell death (PCD) that has been implicated in cancer progression, although the specific mechanism is not known. Here, we used the latest DepMap release CRISPR data to identify the essential ferroptosis-related genes (FRGs) in glioma and their role in patient outcomes. Methods RNA-seq and clinical information on glioma cases were obtained from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA). FRGs were obtained from the FerrDb database. CRISPR-screened essential genes (CSEGs) in glioma cell lines were downloaded from the DepMap portal. A series of bioinformatic and machine learning approaches were combined to establish FRG signatures to predict overall survival (OS) in glioma patients. In addition, pathways analysis was used to identify the functional roles of FRGs. Somatic mutation, immune cell infiltration, and immune checkpoint gene expression were analyzed within the risk subgroups. Finally, compounds for reversing high-risk gene signatures were predicted using the GDSC and L1000 datasets. Results Seven FRGs (ISCU, NFS1, MTOR, EIF2S1, HSPA5, AURKA, RPL8) were included in the model and the model was found to have good prognostic value (p < 0.001) in both training and validation groups. The risk score was found to be an independent prognostic factor and the model had good efficacy. Subgroup analysis using clinical parameters demonstrated the general applicability of the model. The nomogram indicated that the model could effectively predict 12-, 36-, and 60-months OS and progression-free interval (PFI). The results showed the presence of more aggressive phenotypes (lower numbers of IDH mutations, higher numbers of EGFR and PTEN mutations, greater infiltration of immune suppressive cells, and higher expression of immune checkpoint inhibitors) in the high-risk group. The signaling pathways enriched closely related to the cell cycle and DNA damage repair. Drug predictions showed that patients with higher risk scores may benefit from treatment with RTK pathway inhibitors, including compounds that inhibit RTKs directly or indirectly by targeting downstream PI3K or MAPK pathways. Conclusion In summary, the proposed cancer essential FRG signature predicts survival and treatment response in glioma.
Collapse
Affiliation(s)
- Debo Yun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.,Department of Neurosurgery, Nanchong Central Hospital, Nanchong, China
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Wenbo Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiao Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xisen Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jianshen Liang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jie Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jikang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Guanjie Shang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jingzhang Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Lei Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Chen Zhang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.,Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Beijing, China
| |
Collapse
|
7
|
Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state. THE ISME JOURNAL 2022; 16:972-982. [PMID: 34743175 PMCID: PMC8940887 DOI: 10.1038/s41396-021-01143-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/08/2022]
Abstract
Microbial communities in oxygen minimum zones (OMZs) are known to have significant impacts on global biogeochemical cycles, but viral influence on microbial processes in these regions are much less studied. Here we provide baseline ecological patterns using microscopy and viral metagenomics from the Eastern Tropical North Pacific (ETNP) OMZ region that enhance our understanding of viruses in these climate-critical systems. While extracellular viral abundance decreased below the oxycline, viral diversity and lytic infection frequency remained high within the OMZ, demonstrating that viral influences on microbial communities were still substantial without the detectable presence of oxygen. Viral community composition was strongly related to oxygen concentration, with viral populations in low-oxygen portions of the water column being distinct from their surface layer counterparts. However, this divergence was not accompanied by the expected differences in viral-encoded auxiliary metabolic genes (AMGs) relating to nitrogen and sulfur metabolisms that are known to be performed by microbial communities in these low-oxygen and anoxic regions. Instead, several abundant AMGs were identified in the oxycline and OMZ that may modulate host responses to low-oxygen stress. We hypothesize that this is due to selection for viral-encoded genes that influence host survivability rather than modulating host metabolic reactions within the ETNP OMZ. Together, this study shows that viruses are not only diverse throughout the water column in the ETNP, including the OMZ, but their infection of microorganisms has the potential to alter host physiological state within these biogeochemically important regions of the ocean.
Collapse
|
8
|
Liang Y, Zhang Y, Li M, Meng Z, Gao Y, Yin J, Yang Y, Wang Z, Wang S. A highly effective "turn-on" camphor-based fluorescent probe for rapid and sensitive detection and its biological imaging of Fe 2. Anal Bioanal Chem 2021; 413:6267-6277. [PMID: 34355255 DOI: 10.1007/s00216-021-03581-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023]
Abstract
In this work, a novel fluorescent probe CBO was synthesized for detecting Fe2+ using the natural monoterpenketone camphor as the starting material. The probe CBO displayed turn-on fluorescence to Fe2+ accompanied by the solution change from colorless to green. As expected, there was an excellent linear relationship between the fluorescence intensity of probe CBO and the concentration of Fe2+ (0-20 μM), and the detection limit was as low as 1.56×10-8 M. In particular, CBO could selectively sense Fe2+ more than other analytes (Fe3+ included) through the N-oxide strategy, and quickly responded to Fe2+ (60 s) over a wide pH (4-14) range. Additionally, based on the rapid fluorescence response of CBO to Fe2+, a simple test strip-based detector was designed for boosting practical applicability. The probe CBO had been successfully applied to the fluorescence imaging of Fe2+ in onion cells and living zebrafish. The probe CBO was a powerful tool of detecting Fe2+ level in organisms, which was of significance to understand the role of Fe2+ in Fe2+-related physical processes and diseases.
Collapse
Affiliation(s)
- Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingxin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Gao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Jie Yin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
9
|
Sun Y, Tang X, Ye B, Ding K. DNA and RNA Sequencing Recapitulated Aberrant Tumor Metabolism in Liver Cancer Cell Lines. J Hepatocell Carcinoma 2021; 8:823-836. [PMID: 34350138 PMCID: PMC8327295 DOI: 10.2147/jhc.s318724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
AIM Metabolic reprogramming has recently attracted extensive attention for understanding cancer development. We aimed to demonstrate a genomic and transcriptomic landscape of metabolic reprogramming underlying liver cancer cell lines. METHODS We investigated metabolic aberrant at both the transcriptome and genome levels using transcriptome and whole-exome sequencing data from 12 human liver cancer cell lines (hLCCLs) and one normal liver cell line. RESULTS Three subgroups of hLCCLs characterized from transcriptome sequencing data exhibit significantly different aberrations in various metabolic processes, including amino acid, lipid, energy, and carbohydrate metabolism. Furthermore, whole-exome sequencing revealed distinct mutational signatures among different subgroups of hLCCLs and identified a total of 19 known driver genes implicated in metabolism. CONCLUSION Our findings highlighted differential metabolic mechanisms in the development of liver cancer and provided a resource for further investigating its metabolic mechanisms.
Collapse
Affiliation(s)
- Yihong Sun
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Xia Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Bo Ye
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Keyue Ding
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
- Medical Genetic Institute of Henan Province, Henan Provincial People’s Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450003, People's Republic of China
| |
Collapse
|
10
|
Sheng Y, Yang G, Casey K, Curry S, Oliver M, Han SM, Leeuwenburgh C, Xiao R. A novel role of the mitochondrial iron-sulfur cluster assembly protein ISCU-1/ISCU in longevity and stress response. GeroScience 2021; 43:691-707. [PMID: 33527323 PMCID: PMC8110660 DOI: 10.1007/s11357-021-00327-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
As an ancient cellular co-factor ubiquitously present in all domains of life, nearly all iron-sulfur ([Fe-S]) clusters are assembled in the mitochondrion. Although multiple mitochondrion-derived signalings are known to be key players in longevity regulation, whether the mitochondrial [Fe-S] cluster assembly machinery modulates lifespan is previously unknown. Here, we find that ISCU-1, the C. elegans ortholog of the evolutionarily conserved iron-sulfur cluster (ISC) assembly machinery central protein ISCU, regulates longevity and stress response. Specifically, ISCU-1 accelerates aging in the intestine. Moreover, we identify the Nrf2 transcription factor SKN-1 and a nuclear hormone receptor NHR-49 as the downstream factors of ISCU-1. Lastly, a mitochondrial outer membrane protein phosphatase PGAM-5 appears to link ISCU-1 to SKN-1 and NHR-49 in lifespan regulation. Together, we have identified a novel function of mitochondrial ISC assembly machinery in longevity modulation and stress response.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Guang Yang
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Kaitlyn Casey
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Shayla Curry
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Mason Oliver
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Sung Min Han
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA.
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Liu G, Sil D, Maio N, Tong WH, Bollinger JM, Krebs C, Rouault TA. Heme biosynthesis depends on previously unrecognized acquisition of iron-sulfur cofactors in human amino-levulinic acid dehydratase. Nat Commun 2020; 11:6310. [PMID: 33298951 PMCID: PMC7725820 DOI: 10.1038/s41467-020-20145-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Heme biosynthesis and iron-sulfur cluster (ISC) biogenesis are two major mammalian metabolic pathways that require iron. It has long been known that these two pathways interconnect, but the previously described interactions do not fully explain why heme biosynthesis depends on intact ISC biogenesis. Herein we identify a previously unrecognized connection between these two pathways through our discovery that human aminolevulinic acid dehydratase (ALAD), which catalyzes the second step of heme biosynthesis, is an Fe-S protein. We find that several highly conserved cysteines and an Ala306-Phe307-Arg308 motif of human ALAD are important for [Fe4S4] cluster acquisition and coordination. The enzymatic activity of human ALAD is greatly reduced upon loss of its Fe-S cluster, which results in reduced heme biosynthesis in human cells. As ALAD provides an early Fe-S-dependent checkpoint in the heme biosynthetic pathway, our findings help explain why heme biosynthesis depends on intact ISC biogenesis. Heme biosynthesis depends on iron-sulfur (Fe-S) cluster biogenesis but the molecular connection between these pathways is not fully understood. Here, the authors show that the heme biosynthesis enzyme ALAD contains an Fe-S cluster, disruption of which reduces ALAD activity and heme production in human cells.
Collapse
Affiliation(s)
- Gang Liu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Debangsu Sil
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nunziata Maio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Wing-Hang Tong
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - J Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Tracey Ann Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Agrò M, Díaz-Nido J. Effect of Mitochondrial and Cytosolic FXN Isoform Expression on Mitochondrial Dynamics and Metabolism. Int J Mol Sci 2020; 21:E8251. [PMID: 33158039 PMCID: PMC7662637 DOI: 10.3390/ijms21218251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by recessive mutations in the frataxin gene that lead to a deficiency of the mitochondrial frataxin (FXN) protein. Alternative forms of frataxin have been described, with different cellular localization and tissue distribution, including a cerebellum-specific cytosolic isoform called FXN II. Here, we explored the functional roles of FXN II in comparison to the mitochondrial FXN I isoform, highlighting the existence of potential cross-talk between cellular compartments. To achieve this, we transduced two human cell lines of patient and healthy subjects with lentiviral vectors overexpressing the mitochondrial or the cytosolic FXN isoforms and studied their effect on the mitochondrial network and metabolism. We confirmed the cytosolic localization of FXN isoform II in our in vitro models. Interestingly, both cytosolic and mitochondrial isoforms have an effect on mitochondrial dynamics, affecting different parameters. Accordingly, increases of mitochondrial respiration were detected after transduction with FXN I or FXN II in both cellular models. Together, these results point to the existence of a potential cross-talk mechanism between the cytosol and mitochondria, mediated by FXN isoforms. A more thorough knowledge of the mechanisms of action behind the extra-mitochondrial FXN II isoform could prove useful in unraveling FRDA physiopathology.
Collapse
Affiliation(s)
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain;
| |
Collapse
|
13
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
14
|
Nakada C, Hijiya N, Tsukamoto Y, Yano S, Kai T, Uchida T, Kimoto M, Takahashi M, Daa T, Matsuura K, Shin T, Mimata H, Moriyama M. A transgenic mouse expressing miR-210 in proximal tubule cells shows mitochondrial alteration: possible association of miR-210 with a shift in energy metabolism. J Pathol 2020; 251:12-25. [PMID: 32073141 DOI: 10.1002/path.5394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/21/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Previously we reported that the microRNA miR-210 is aberrantly upregulated in clear cell renal cell carcinoma (ccRCC) via deregulation of the VHL-HIF pathway. In the present study, to investigate the biological impact of miR-210 in ccRCC tumorigenesis, we developed a transgenic mouse line expressing miR-210 in proximal tubule cells under control of the mouse SGLT2/Slc5a2 promoter. Light microscopy revealed desquamation of the tubule cells and regeneration of the proximal tubule, suggesting that miR-210 expression led to damage of the proximal tubule cells. Electron microscopy revealed alterations to the mitochondria in proximal tubule cells, with marked reduction of the mitochondrial inner membrane, which is the main site of ATP production via oxidative phosphorylation (OxPhos). An additional in vitro study revealed that this loss of the inner membrane was associated with downregulation of Iscu and Ndufa4, the target genes of miR-210, suggesting that the miR-210-ISCU/NDUFA4 axis may affect mitochondrial energy metabolism. Furthermore, metabolome analysis revealed activation of anaerobic glycolysis in miR-210-transfected cells, and consistent with this the secretion of lactate, the final metabolite of anaerobic glycolysis, was significantly increased. Lactate concentration was higher in the kidney cortex of transgenic mice relative to wild-type mice, although the difference was not significant (p = 0.070). On the basis of these findings, we propose that miR-210 may induce a shift of energy metabolism from OxPhos to glycolysis by acting on the mitochondrial inner membrane. In addition to activation of glycolysis, we observed activation of the pentose phosphate pathway (PPP) and an increase in the total amount of amino acids in miR-210-transfected cells. This may help cells synthesize nucleotides and proteins for building new cells. These results suggest that miR-210 may be involved in the metabolic changes in the early stage of ccRCC development, helping the cancer cells to acquire growth and survival advantages. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan.,Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Shinji Yano
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tomoki Kai
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Mami Kimoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Mika Takahashi
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Keiko Matsuura
- Department of Biomedicine, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Toshitaka Shin
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Hiromitsu Mimata
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| |
Collapse
|
15
|
Hsiung KC, Liu KY, Tsai TF, Yoshina S, Mitani S, Chin-Ming Tan B, Lo SJ. Defects in CISD-1, a mitochondrial iron-sulfur protein, lower glucose level and ATP production in Caenorhabditis elegans. Biomed J 2020; 43:32-43. [PMID: 32200954 PMCID: PMC7090286 DOI: 10.1016/j.bj.2019.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Background CDGSH iron sulfur domain-containing protein 1 (CISD-1) belongs to the CISD protein family that is evolutionary conserved across different species. In mammals, CISD-1 protein has been implicated in diseases such as cancers and diabetes. As a tractable model organism to study disease-associated proteins, we employed Caenorhabditis elegans in this study with an aim to establish a model for interrogating the functional relevance of CISD-1 in human metabolic conditions. Methods We first bioinformatically identified the human Cisd-1 homologue in worms. We then employed N2 wild-type and cisd-1(tm4993) mutant to investigate the consequences of CISD-1 loss-of-function on: 1) the expression pattern of CISD-1, 2) mitochondrial morphology pattern, 3) mitochondrial function and bioenergetics, and 4) the effects of anti-diabetes drugs. Results We first identified C. elegans W02B12.15 gene as the human Cisd-1 homologous gene, and pinpointed the localization of CISD-1 to the outer membrane of mitochondria. As compared with the N2 wild-type worm, cisd-1(tm4993) mutant exhibited a higher proportion of hyperfused form of mitochondria. This structural abnormality was associated with the generation of higher levels of ROS and mitochondrial superoxide but lower ATP. These physiological changes in mutants did not result in discernable effects on animal motility and lifespan. Moreover, the amount of glucose in N2 wild-type worms treated with troglitazone and pioglitazone, derivatives of TZD, was reduced to a comparable level as in the mutant animals. Conclusions By focusing on the Cisd-1 gene, our study established a C. elegans genetic system suitable for modeling human diabetes-related diseases.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yu Liu
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Fen Tsai
- National Yang Ming University, Department of Life Science, Taipei, Taiwan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University, School of Medicine and CREST, Japan Science and Technology, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, School of Medicine and CREST, Japan Science and Technology, Tokyo, Japan
| | - Bertrand Chin-Ming Tan
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Szecheng J Lo
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Cronin SJF, Woolf CJ, Weiss G, Penninger JM. The Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Front Mol Biosci 2019; 6:116. [PMID: 31824960 PMCID: PMC6883604 DOI: 10.3389/fmolb.2019.00116] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Immunometabolism explores how the intracellular metabolic pathways in immune cells can regulate their function under different micro-environmental and (patho-)-physiological conditions (Pearce, 2010; Buck et al., 2015; O'Neill and Pearce, 2016). In the last decade great advances have been made in studying and manipulating metabolic programs in immune cells. Immunometabolism has primarily focused on glycolysis, the TCA cycle and oxidative phosphorylation (OXPHOS) as well as free fatty acid synthesis and oxidation. These pathways are important for providing the energy needs of cell growth, membrane rigidity, cytokine production and proliferation. In this review, we will however, highlight the specific role of iron metabolism at the cellular and organismal level, as well as how the bioavailability of this metal orchestrates complex metabolic programs in immune cell homeostasis and inflammation. We will also discuss how dysregulation of iron metabolism contributes to alterations in the immune system and how these novel insights into iron regulation can be targeted to metabolically manipulate immune cell function under pathophysiological conditions, providing new therapeutic opportunities for autoimmunity and cancer.
Collapse
Affiliation(s)
- Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
| | - Guenter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Alfadhel M, Nashabat M, Abu Ali Q, Hundallah K. Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease. ACTA ACUST UNITED AC 2019; 22:4-13. [PMID: 28064324 PMCID: PMC5726836 DOI: 10.17712/nsj.2017.1.20160542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Iron–sulfur clusters (ISCs) are known to play a major role in various protein functions. Located in the mitochondria, cytosol, endoplasmic reticulum and nucleus, they contribute to various core cellular functions. Until recently, only a few human diseases related to mitochondrial ISC biogenesis defects have been described. Such diseases include Friedreich ataxia, combined oxidative phosphorylation deficiency 19, infantile complex II/III deficiency defect, hereditary myopathy with lactic acidosis and mitochondrial muscle myopathy, lipoic acid biosynthesis defects, multiple mitochondrial dysfunctions syndromes and non ketotic hyperglycinemia due to glutaredoxin 5 gene defect. Disorders of mitochondrial import, export and translation, including sideroblastic anemia with ataxia, EVEN-PLUS syndrome and mitochondrial complex I deficiency due to nucleotide-binding protein-like protein gene defect, have also been implicated in ISC biogenesis defects. With advances in next generation sequencing technologies, more disorders related to ISC biogenesis defects are expected to be elucidated. In this article, we aim to shed the light on mitochondrial ISC biogenesis, related proteins and their function, pathophysiology, clinical phenotypes of related disorders, diagnostic approach, and future implications.
Collapse
Affiliation(s)
- Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
18
|
Anton L, DeVine A, Polyak E, Olarerin-George A, Brown AG, Falk MJ, Elovitz MA. HIF-1α Stabilization Increases miR-210 Eliciting First Trimester Extravillous Trophoblast Mitochondrial Dysfunction. Front Physiol 2019; 10:699. [PMID: 31263422 PMCID: PMC6590495 DOI: 10.3389/fphys.2019.00699] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 11/27/2022] Open
Abstract
Preeclampsia is associated with first trimester placental dysfunction. miR-210, a small non-coding RNA, is increased in the preeclamptic placenta. The effects of elevated miR-210 on placental function remain unclear. The objectives of this study were to identify targets of miR-210 in first trimester primary extravillous trophoblasts (EVTs) and to investigate functional pathways altered by elevated placental miR-210 during early pregnancy. EVTs isolated from first trimester placentas were exposed to cobalt chloride (CoCl2), a HIF-1α stabilizer and hypoxia mimetic, and miR-210 expression by qPCR, HIF1α protein levels by western blot and cell invasion were assessed. A custom TruSeq RNA array, including all known/predicted miR-210 targets, was run using miR-210 and miR-negative control transfected EVTs. Mitochondrial function was assessed by high resolution respirometry in transfected EVTs. EVTs exposed to CoCl2 showed a dose and time-dependent increase in miR-210 and HIF1α and reductions in cell invasion. The TruSeq array identified 49 altered genes in miR-210 transfected EVTs with 27 genes repressed and 22 enhanced. Three of the top six significantly repressed genes, NDUFA4, SDHD, and ISCU, are associated with mitochondrial function. miR-210 transfected EVTs had decreased maximal, complex II and complex I+II mitochondrial respiration. This study suggests that miR-210 alters first trimester trophoblast function. miR-210 overexpression alters EVT mitochondrial function in early pregnancy. Mitochondrial dysfunction may lead to increased reactive oxygen species, trophoblast cell damage and likely contributes to the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Lauren Anton
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Ann DeVine
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Erzsebet Polyak
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anthony Olarerin-George
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Amy G Brown
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Michal A Elovitz
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Neukranz Y, Kotter A, Beilschmidt L, Marelja Z, Helm M, Gräf R, Leimkühler S. Analysis of the Cellular Roles of MOCS3 Identifies a MOCS3-Independent Localization of NFS1 at the Tips of the Centrosome. Biochemistry 2019; 58:1786-1798. [PMID: 30817134 DOI: 10.1021/acs.biochem.8b01160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The deficiency of the molybdenum cofactor (Moco) is an autosomal recessive disease, which leads to the loss of activity of all molybdoenzymes in humans with sulfite oxidase being the essential protein. Moco deficiency generally results in death in early childhood. Moco is a sulfur-containing cofactor synthesized in the cytosol with the sulfur being provided by a sulfur relay system composed of the l-cysteine desulfurase NFS1, MOCS3, and MOCS2A. Human MOCS3 is a dual-function protein that was shown to play an important role in Moco biosynthesis and in the mcm5s2U thio modifications of nucleosides in cytosolic tRNAs for Lys, Gln, and Glu. In this study, we constructed a homozygous MOCS3 knockout in HEK293T cells using the CRISPR/Cas9 system. The effects caused by the absence of MOCS3 were analyzed in detail. We show that sulfite oxidase activity was almost completely abolished, on the basis of the absence of Moco in these cells. In addition, mcm5s2U thio-modified tRNAs were not detectable. Because the l-cysteine desulfurase NFS1 was shown to act as a sulfur donor for MOCS3 in the cytosol, we additionally investigated the impact of a MOCS3 knockout on the cellular localization of NFS1. By different methods, we identified a MOCS3-independent novel localization of NFS1 at the centrosome.
Collapse
Affiliation(s)
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry , Johannes Gutenberg-Universität Mainz , 55128 Mainz , Germany
| | | | | | - Mark Helm
- Institute of Pharmacy and Biochemistry , Johannes Gutenberg-Universität Mainz , 55128 Mainz , Germany
| | | | | |
Collapse
|
20
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
21
|
Kim KS, Maio N, Singh A, Rouault TA. Cytosolic HSC20 integrates de novo iron-sulfur cluster biogenesis with the CIAO1-mediated transfer to recipients. Hum Mol Genet 2019; 27:837-852. [PMID: 29309586 DOI: 10.1093/hmg/ddy004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/29/2017] [Indexed: 12/29/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are cofactors in hundreds of proteins involved in multiple cellular processes, including mitochondrial respiration, the maintenance of genome stability, ribosome biogenesis and translation. Fe-S cluster biogenesis is performed by multiple enzymes that are highly conserved throughout evolution, and mutations in numerous biogenesis factors are now recognized to cause a wide range of previously uncategorized rare human diseases. Recently, a complex formed of components of the cytoplasmic Fe-S cluster assembly (CIA) machinery, consisting of CIAO1, FAM96B and MMS19, was found to deliver Fe-S clusters to a subset of proteins involved in DNA metabolism, but it was unclear how this complex acquired its fully synthesized Fe-S clusters, because Fe-S clusters have been alleged to be assembled de novo solely in the mitochondrial matrix. Here, we investigated the potential role of the human cochaperone HSC20 in cytosolic Fe-S assembly and found that HSC20 assists Fe-S cluster delivery to cytosolic and nuclear Fe-S proteins. Cytosolic HSC20 (C-HSC20) mediated complex formation between components of the cytosolic Fe-S biogenesis pathway (ISC), including the primary scaffold, ISCU1, and the cysteine desulfurase, NFS1, and the CIA targeting complex, consisting of CIAO1, FAM96B and MMS19, to facilitate Fe-S cluster insertion into cytoplasmic and nuclear Fe-S recipients. Thus, C-HSC20 integrates initial Fe-S biosynthesis with the transfer activities of the CIA targeting system. Our studies demonstrate that a novel cytosolic pathway functions in parallel to the mitochondrial ISC to perform de novo Fe-S biogenesis, and to escort Fe-S clusters to cytoplasmic and nuclear proteins.
Collapse
Affiliation(s)
- Ki Soon Kim
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Anamika Singh
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Cao P, Zhang J, Huang Y, Fang Y, Lyu J, Shen Y. The age-related changes and differences in energy metabolism and glutamate-glutamine recycling in the d-gal-induced and naturally occurring senescent astrocytes in vitro. Exp Gerontol 2019; 118:9-18. [PMID: 30610899 DOI: 10.1016/j.exger.2018.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023]
Abstract
Previously, we successfully established a d-galactose (d-gal)-induced astrocyte aging model in vitro. However, whether the changes in the aged astrocytes induced by d-gal are similar to those occurred in naturally are unknown. Therefore, in current study, we simultaneously established d-gal-induced and naturally aged astrocyte aging models in vitro to explore the age-related changes and to compare the differences in these two astrocyte aging models. The Seahorse Extracellular Flux Analyzer was used to examine the mitochondrial metabolism and glycolysis activities of the young and senescent astrocytes. The results showed that the mitochondrial ATP-linked oxygen consumption rates (OCRs) were decreased markedly both in the d-gal-induced and naturally occurring senescent astrocytes. The basal glycolysis activity was increased in the naturally occurring senescent astrocytes, whereas it was decreased in the d-gal-induced senescent astrocytes. Western blot analysis showed that isocitrate dehydrogenase 3 (IDH3), succinate dehydrogenase (SDH) and malate dehydrogenase 2 (MDH2) were markedly decreased both in these two aging models, whereas the iron‑sulfur cluster assembly enzyme (ISCU) was up-regulated in the naturally occurring senescent astrocytes but was down-regulated in the d-gal-induced senescent astrocytes. The expression levels of glial glutamate transporter-1 (GLT-1), glutamine synthetase (GS) and γ-aminobutyric acid type B receptor subunit 2 (GABABR2) were also markedly decreased in these two aging models. In addition, the PI3K/AKT signaling pathway was to be inactivated both in the d-gal-induced and naturally occurring senescent astrocytes. These results indicate that the age-related changes in d-gal-induced senescent astrocytes are not fully consistent with those in naturally occurring senescent astrocytes, and it may be not suitable to use d-gal-induced senescent astrocytes to replace the naturally occurring senescent astrocytes to explore the aging mechanisms under some circumstances.
Collapse
Affiliation(s)
- Pei Cao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jingjing Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuyan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yujia Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial People's Hospital, Affliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Yao Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
23
|
Chiang S, Kalinowski DS, Jansson PJ, Richardson DR, Huang MLH. Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia. Neurochem Int 2018; 117:35-48. [PMID: 28782591 DOI: 10.1016/j.neuint.2017.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
Mitochondrial homeostasis is essential for maintaining healthy cellular function and survival. The detrimental involvement of mitochondrial dysfunction in neuro-degenerative diseases has recently been highlighted in human conditions, such as Parkinson's, Alzheimer's and Huntington's disease. Friedreich's ataxia (FA) is another neuro-degenerative, but also cardio-degenerative condition, where mitochondrial dysfunction plays a crucial role in disease progression. Deficient expression of the mitochondrial protein, frataxin, is the primary cause of FA, which leads to adverse alterations in whole cell and mitochondrial iron metabolism. Dys-regulation of iron metabolism in these compartments, results in the accumulation of inorganic iron deposits in the mitochondrial matrix that is thought to potentiate oxidative damage observed in FA. Therefore, the maintenance of mitochondrial homeostasis is crucial in the progression of neuro-degenerative conditions, particularly in FA. In this review, vital mitochondrial homeostatic processes and their roles in FA pathogenesis will be discussed. These include mitochondrial iron processing, mitochondrial dynamics (fusion and fission processes), mitophagy, mitochondrial biogenesis, mitochondrial energy production and calcium metabolism.
Collapse
Affiliation(s)
- Shannon Chiang
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Danuta S Kalinowski
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Patric J Jansson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Des R Richardson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Michael L-H Huang
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
24
|
Roy AR, Ahmed A, DiStefano PV, Chi L, Khyzha N, Galjart N, Wilson MD, Fish JE, Delgado-Olguín P. The transcriptional regulator CCCTC-binding factor limits oxidative stress in endothelial cells. J Biol Chem 2018; 293:8449-8461. [PMID: 29610276 PMCID: PMC5986204 DOI: 10.1074/jbc.m117.814699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is a versatile transcriptional regulator required for embryogenesis, but its function in vascular development or in diseases with a vascular component is poorly understood. Here, we found that endothelial Ctcf is essential for mouse vascular development and limits accumulation of reactive oxygen species (ROS). Conditional knockout of Ctcf in endothelial progenitors and their descendants affected embryonic growth, and caused lethality at embryonic day 10.5 because of defective yolk sac and placental vascular development. Analysis of global gene expression revealed Frataxin (Fxn), the gene mutated in Friedreich's ataxia (FRDA), as the most strongly down-regulated gene in Ctcf-deficient placental endothelial cells. Moreover, in vitro reporter assays showed that Ctcf activates the Fxn promoter in endothelial cells. ROS are known to accumulate in the endothelium of FRDA patients. Importantly, Ctcf deficiency induced ROS-mediated DNA damage in endothelial cells in vitro, and in placental endothelium in vivo Taken together, our findings indicate that Ctcf promotes vascular development and limits oxidative stress in endothelial cells. These results reveal a function for Ctcf in vascular development, and suggest a potential mechanism for endothelial dysfunction in FRDA.
Collapse
Affiliation(s)
- Anna R Roy
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Abdalla Ahmed
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Lijun Chi
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Genetics and Genome Biology Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| | - Paul Delgado-Olguín
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada,
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| |
Collapse
|
25
|
LdIscU is a [2Fe-2S] scaffold protein which interacts with LdIscS and its expression is modulated by Fe-S proteins in Leishmania donovani. Int J Biol Macromol 2018; 116:1128-1145. [PMID: 29782976 DOI: 10.1016/j.ijbiomac.2018.05.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/20/2022]
Abstract
The pathogenicity of protozoan parasites is frequently attributed to their ability to circumvent the deleterious effects of ROS and Fe-S clusters are among their susceptible targets with paramount importance for parasite survival. The biogenesis of Fe-S clusters is orchestrated by ISC system; the sulfur donor IscS and scaffold protein IscU being its core components. However, among protozoan parasites including Leishmania, no information is available regarding biochemical aspect of IscU, its interaction partners and regulation. Here, we show that Leishmania donovani IscU homolog, LdIscU, readily assembles [2Fe-2S] clusters and, interestingly, follows Michaelis-Menten enzyme kinetics. It is localized in the mitochondria of the parasite and interacts with LdIscS to form a stable complex. Additionally, LdIscU and Fe-S proteins activity is significantly upregulated in resistant isolates and during stationary growth stage indicating an association between them. The differential expression of LdIscU modulated by Fe-S proteins demand suggests its potential role in parasite survival and drug resistance. Thus, our study provides novel insight into the Fe-S scaffold protein of a protozoan parasite.
Collapse
|
26
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
27
|
Cardenas-Rodriguez M, Chatzi A, Tokatlidis K. Iron-sulfur clusters: from metals through mitochondria biogenesis to disease. J Biol Inorg Chem 2018; 23:509-520. [PMID: 29511832 PMCID: PMC6006200 DOI: 10.1007/s00775-018-1548-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/22/2018] [Indexed: 01/12/2023]
Abstract
Iron–sulfur clusters are ubiquitous inorganic co-factors that contribute to a wide range of cell pathways including the maintenance of DNA integrity, regulation of gene expression and protein translation, energy production, and antiviral response. Specifically, the iron–sulfur cluster biogenesis pathways include several proteins dedicated to the maturation of apoproteins in different cell compartments. Given the complexity of the biogenesis process itself, the iron–sulfur research area constitutes a very challenging and interesting field with still many unaddressed questions. Mutations or malfunctions affecting the iron–sulfur biogenesis machinery have been linked with an increasing amount of disorders such as Friedreich’s ataxia and various cardiomyopathies. This review aims to recap the recent discoveries both in the yeast and human iron–sulfur cluster arena, covering recent discoveries from chemistry to disease.
Collapse
Affiliation(s)
- Mauricio Cardenas-Rodriguez
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Afroditi Chatzi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
28
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
29
|
Boniecki MT, Freibert SA, Mühlenhoff U, Lill R, Cygler M. Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Nat Commun 2017; 8:1287. [PMID: 29097656 PMCID: PMC5668364 DOI: 10.1038/s41467-017-01497-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/21/2017] [Indexed: 01/25/2023] Open
Abstract
Iron-sulfur (Fe/S) clusters are essential protein cofactors crucial for many cellular functions including DNA maintenance, protein translation, and energy conversion. De novo Fe/S cluster synthesis occurs on the mitochondrial scaffold protein ISCU and requires cysteine desulfurase NFS1, ferredoxin, frataxin, and the small factors ISD11 and ACP (acyl carrier protein). Both the mechanism of Fe/S cluster synthesis and function of ISD11-ACP are poorly understood. Here, we present crystal structures of three different NFS1-ISD11-ACP complexes with and without ISCU, and we use SAXS analyses to define the 3D architecture of the complete mitochondrial Fe/S cluster biosynthetic complex. Our structural and biochemical studies provide mechanistic insights into Fe/S cluster synthesis at the catalytic center defined by the active-site Cys of NFS1 and conserved Cys, Asp, and His residues of ISCU. We assign specific regulatory rather than catalytic roles to ISD11-ACP that link Fe/S cluster synthesis with mitochondrial lipid synthesis and cellular energy status.
Collapse
Affiliation(s)
- Michal T Boniecki
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Sven A Freibert
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, 35032, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, 35032, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, 35032, Marburg, Germany.
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043, Marburg, Germany.
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5.
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, Canada, H3G 0B1.
| |
Collapse
|
30
|
Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood 2017; 131:342-352. [PMID: 29074498 DOI: 10.1182/blood-2017-02-768580] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
Ferritin turnover plays a major role in tissue iron homeostasis, and ferritin malfunction is associated with impaired iron homeostasis and neurodegenerative diseases. In most eukaryotes, ferritin is considered an intracellular protein that stores iron in a nontoxic and bioavailable form. In insects, ferritin is a classically secreted protein and plays a major role in systemic iron distribution. Mammalian ferritin lacks the signal peptide for classical endoplasmic reticulum-Golgi secretion but is found in serum and is secreted via a nonclassical lysosomal secretion pathway. This study applied bioinformatics and biochemical tools, alongside a protein trafficking mouse models, to characterize the mechanisms of ferritin secretion. Ferritin trafficking via the classical secretion pathway was ruled out, and a 2:1 distribution of intracellular ferritin between membrane-bound compartments and the cytosol was observed, suggesting a role for ferritin in the vesicular compartments of the cell. Focusing on nonclassical secretion, we analyzed mouse models of impaired endolysosomal trafficking and found that ferritin secretion was decreased by a BLOC-1 mutation but increased by BLOC-2, BLOC-3, and Rab27A mutations of the cellular trafficking machinery, suggesting multiple export routes. A 13-amino-acid motif unique to ferritins that lack the secretion signal peptide was identified on the BC-loop of both subunits and plays a role in the regulation of ferritin secretion. Finally, we provide evidence that secretion of iron-rich ferritin was mediated via the multivesicular body-exosome pathway. These results enhance our understanding of the mechanism of ferritin secretion, which is an important piece in the puzzle of tissue iron homeostasis.
Collapse
|
31
|
|
32
|
Gakh O, Ranatunga W, Galeano BK, Smith DS, Thompson JR, Isaya G. Defining the Architecture of the Core Machinery for the Assembly of Fe-S Clusters in Human Mitochondria. Methods Enzymol 2017; 595:107-160. [PMID: 28882199 DOI: 10.1016/bs.mie.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although Fe-S clusters may assemble spontaneously from elemental iron and sulfur in protein-free systems, the potential toxicity of free Fe2+, Fe3+, and S2- ions in aerobic environments underscores the requirement for specialized proteins to oversee the safe assembly of Fe-S clusters in living cells. Prokaryotes first developed multiprotein systems for Fe-S cluster assembly, from which mitochondria later derived their own system and became the main Fe-S cluster suppliers for eukaryotic cells. Early studies in yeast and human mitochondria indicated that Fe-S cluster assembly in eukaryotes is centered around highly conserved Fe-S proteins (human ISCU) that serve as scaffolds upon which new Fe-S clusters are assembled from (i) elemental sulfur, provided by a pyridoxal phosphate-dependent cysteine desulfurase (human NFS1) and its stabilizing-binding partner (human ISD11), and (ii) elemental iron, provided by an iron-binding protein of the frataxin family (human FXN). Further studies revealed that all of these proteins could form stable complexes that could reach molecular masses of megadaltons. However, the protein-protein interaction surfaces, catalytic mechanisms, and overall architecture of these macromolecular machines remained undefined for quite some time. The delay was due to difficulties inherent in reconstituting these very large multiprotein complexes in vitro or isolating them from cells in sufficient quantities to enable biochemical and structural studies. Here, we describe approaches we developed to reconstitute the human Fe-S cluster assembly machinery in Escherichia coli and to define its remarkable architecture.
Collapse
Affiliation(s)
| | | | - Belinda K Galeano
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | | | | | - Grazia Isaya
- Mayo Clinic, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States; Mayo Clinic Children's Research Center, Rochester, MN, United States.
| |
Collapse
|
33
|
Rouault TA, Maio N. Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J Biol Chem 2017; 292:12744-12753. [PMID: 28615439 PMCID: PMC5546015 DOI: 10.1074/jbc.r117.789537] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fe-S cofactors are composed of iron and inorganic sulfur in various stoichiometries. A complex assembly pathway conducts their initial synthesis and subsequent binding to recipient proteins. In this minireview, we discuss how discovery of the role of the mammalian cytosolic aconitase, known as iron regulatory protein 1 (IRP1), led to the characterization of the function of its Fe-S cluster in sensing and regulating cellular iron homeostasis. Moreover, we present an overview of recent studies that have provided insights into the mechanism of Fe-S cluster transfer to recipient Fe-S proteins.
Collapse
Affiliation(s)
- Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892.
| | - Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
34
|
Holmes-Hampton GP, Crooks DR, Haller RG, Guo S, Freier SM, Monia BP, Rouault TA. Use of antisense oligonucleotides to correct the splicing error in ISCU myopathy patient cell lines. Hum Mol Genet 2017; 25:5178-5187. [PMID: 28007899 DOI: 10.1093/hmg/ddw338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/30/2016] [Indexed: 11/12/2022] Open
Abstract
ISCU myopathy is an inherited disease that primarily affects individuals of northern Swedish descent who share a single point mutation in the fourth intron of the ISCU gene. The current study shows correction of specific phenotypes associated with disease following treatment with an antisense oligonucleotide (ASO) targeted to the site of the mutation. We have shown that ASO treatment diminished aberrant splicing and increased ISCU protein levels in both patient fibroblasts and patient myotubes in a concentration dependent fashion. Upon ASO treatment, levels of SDHB in patient myotubular cell lines increased to levels observed in control myotubular cell lines. Additionally, we have shown that both patient fibroblast and myotubular cell lines displayed an increase in complex II activity with a concomitant decrease in succinate levels in patient myotubular cell lines after ASO treatment. Mitochondrial and cytosolic aconitase activities increased significantly following ASO treatment in patient myotubes. The current study suggests that ASO treatment may serve as a viable approach to correcting ISCU myopathy in patients.
Collapse
Affiliation(s)
- Gregory P Holmes-Hampton
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ronald G Haller
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA, Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX 75231, USA
| | - Shuling Guo
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Susan M Freier
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Brett P Monia
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
35
|
Insights into the post-transcriptional regulation of the mitochondrial electron transport chain. Biochem Soc Trans 2017; 44:1491-1498. [PMID: 27911731 PMCID: PMC5095899 DOI: 10.1042/bst20160100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
The regulation of the mitochondrial electron transport chain is central to the control of cellular homeostasis. There are significant gaps in our understanding of how the expression of the mitochondrial and nuclear genome-encoded components of the electron transport chain are co-ordinated, and how the assembly of the protein complexes that constitute the electron transport chain are regulated. Furthermore, the role post-transcriptional gene regulation may play in modulating these processes needs to be clarified. This review summarizes the current knowledge regarding the post-transcriptional gene regulation of the electron transport chain and highlights how noncoding RNAs may contribute significantly both to complex electron transport chain regulatory networks and to mitochondrial dysfunction.
Collapse
|
36
|
Benfeitas R, Uhlen M, Nielsen J, Mardinoglu A. New Challenges to Study Heterogeneity in Cancer Redox Metabolism. Front Cell Dev Biol 2017; 5:65. [PMID: 28744456 PMCID: PMC5504267 DOI: 10.3389/fcell.2017.00065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are important pathophysiological molecules involved in vital cellular processes. They are extremely harmful at high concentrations because they promote the generation of radicals and the oxidation of lipids, proteins, and nucleic acids, which can result in apoptosis. An imbalance of ROS and a disturbance of redox homeostasis are now recognized as a hallmark of complex diseases. Considering that ROS levels are significantly increased in cancer cells due to mitochondrial dysfunction, ROS metabolism has been targeted for the development of efficient treatment strategies, and antioxidants are used as potential chemotherapeutic drugs. However, initial ROS-focused clinical trials in which antioxidants were supplemented to patients provided inconsistent results, i.e., improved treatment or increased malignancy. These different outcomes may result from the highly heterogeneous redox responses of tumors in different patients. Hence, population-based treatment strategies are unsuitable and patient-tailored therapeutic approaches are required for the effective treatment of patients. Moreover, due to the crosstalk between ROS, reducing equivalents [e.g., NAD(P)H] and central metabolism, which is heterogeneous in cancer, finding the best therapeutic target requires the consideration of system-wide approaches that are capable of capturing the complex alterations observed in all of the associated pathways. Systems biology and engineering approaches may be employed to overcome these challenges, together with tools developed in personalized medicine. However, ROS- and redox-based therapies have yet to be addressed by these methodologies in the context of disease treatment. Here, we review the role of ROS and their coupled redox partners in tumorigenesis. Specifically, we highlight some of the challenges in understanding the role of hydrogen peroxide (H2O2), one of the most important ROS in pathophysiology in the progression of cancer. We also discuss its interplay with antioxidant defenses, such as the coupled peroxiredoxin/thioredoxin and glutathione/glutathione peroxidase systems, and its reducing equivalent metabolism. Finally, we highlight the need for system-level and patient-tailored approaches to clarify the roles of these systems and identify therapeutic targets through the use of the tools developed in personalized medicine.
Collapse
Affiliation(s)
- Rui Benfeitas
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Jens Nielsen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| |
Collapse
|
37
|
Baradan R, Hollander JM, Das S. Mitochondrial miRNAs in diabetes: just the tip of the iceberg. Can J Physiol Pharmacol 2017; 95:1156-1162. [PMID: 28467860 DOI: 10.1139/cjpp-2016-0580] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 2 decades, mi(cro)RNAs have emerged as one of the key regulators of metabolic homeostasis. Most of the studies have highlighted that, in the cytoplasm, miRNAs directly bind to the 3'-UTR (untranslated region) of a mRNA. Conventional RNA-induced silencing complex (RISC) formation results in the post-transcriptional inhibition. This process is known to contribute to the development of metabolic diseases, including diabetes mellitus. Recent advancements with small RNA detection technologies have enabled us to identify miRNAs in the mitochondrial compartment of the cells. We have termed these miRNAs, which translocate into the mitochondria as mitochondrial miRNA, MitomiR. It has been demonstrated that MitomiRs can regulate gene expression, with some evidence even suggesting that, after translocation, MitomiRs can bind to the 3'-end of a mitochondrial gene, altering its regulation. Our main focus in this review is to highlight the potential role of MitomiR in the pathogenesis of metabolic disorders such as diabetes mellitus.
Collapse
Affiliation(s)
- Rohini Baradan
- a Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA.,b School of Life Sciences, B.S. Abdur Rahman University, Tamilnadu, India
| | - John M Hollander
- c Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Samarjit Das
- a Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Novel NFU1 Variants Induced MMDS Behaved as Special Leukodystrophy in Chinese Sufferers. J Mol Neurosci 2017; 62:255-261. [DOI: 10.1007/s12031-017-0927-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
39
|
Geiger J, Dalgaard LT. Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 2017; 74:631-646. [PMID: 27563705 PMCID: PMC11107739 DOI: 10.1007/s00018-016-2342-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are important organelles in cellular metabolism. Several crucial metabolic pathways such as the energy producing electron transport chain or the tricarboxylic acid cycle are hosted inside the mitochondria. The proper function of mitochondria depends on the import of proteins, which are encoded in the nucleus and synthesized in the cytosol. Micro-ribonucleic acids (miRNAs) are short non-coding ribonucleic acid (RNA) molecules with the ability to prevent messenger RNA (mRNA)-translation or to induce the degradation of mRNA-transcripts. Although miRNAs are mainly located in the cytosol or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their mRNA-targets. The focus of this review is on miRNAs and mitomiRs with influence on mitochondrial metabolism and their possible pathophysiological impact.
Collapse
Affiliation(s)
- Julian Geiger
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark.
| |
Collapse
|
40
|
Stiban J, So M, Kaguni LS. Iron-Sulfur Clusters in Mitochondrial Metabolism: Multifaceted Roles of a Simple Cofactor. BIOCHEMISTRY (MOSCOW) 2017; 81:1066-1080. [PMID: 27908232 DOI: 10.1134/s0006297916100059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron-sulfur metabolism is essential for cellular function and is a key process in mitochondria. In this review, we focus on the structure and assembly of mitochondrial iron-sulfur clusters and their roles in various metabolic processes that occur in mitochondria. Iron-sulfur clusters are crucial in mitochondrial respiration, in which they are required for the assembly, stability, and function of respiratory complexes I, II, and III. They also serve important functions in the citric acid cycle, DNA metabolism, and apoptosis. Whereas the identification of iron-sulfur containing proteins and their roles in numerous aspects of cellular function has been a long-standing research area, that in mitochondria is comparatively recent, and it is likely that their roles within mitochondria have been only partially revealed. We review the status of the field and provide examples of other cellular iron-sulfur proteins to highlight their multifarious roles.
Collapse
Affiliation(s)
- Johnny Stiban
- Birzeit University, Department of Biology and Biochemistry, West Bank Birzeit, 627, Palestine.
| | | | | |
Collapse
|
41
|
Das S, Vasanthi HR, Parjapath R. MitomiRs Keep the Heart Beating. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:431-450. [PMID: 28551801 DOI: 10.1007/978-3-319-55330-6_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter, we focus on the microRNAs (miRNAs or miRs) that have been found in the mitochondrial compartment, and target either mitochondrial or nuclear encoded genes present in mitochondria, leading to an alteration of mitochondrial function. We term this subset of miRNAs as "MitomiRs".
Collapse
Affiliation(s)
- Samarjit Das
- Department of Pathology, Cardiovascular Division, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Hannah R Vasanthi
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Ramesh Parjapath
- Department of Biotechnology, Pondicherry University, Puducherry, India
| |
Collapse
|
42
|
Gakh O, Ranatunga W, Smith DY, Ahlgren EC, Al-Karadaghi S, Thompson JR, Isaya G. Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery. J Biol Chem 2016; 291:21296-21321. [PMID: 27519411 PMCID: PMC5076535 DOI: 10.1074/jbc.m116.738542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/10/2016] [Indexed: 11/06/2022] Open
Abstract
Fe-S clusters, essential cofactors needed for the activity of many different enzymes, are assembled by conserved protein machineries inside bacteria and mitochondria. As the architecture of the human machinery remains undefined, we co-expressed in Escherichia coli the following four proteins involved in the initial step of Fe-S cluster synthesis: FXN42-210 (iron donor); [NFS1]·[ISD11] (sulfur donor); and ISCU (scaffold upon which new clusters are assembled). We purified a stable, active complex consisting of all four proteins with 1:1:1:1 stoichiometry. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional model of the complex with ∼14 Å resolution. Molecular dynamics flexible fitting of protein structures docked into the EM map of the model revealed a [FXN42-210]24·[NFS1]24·[ISD11]24·[ISCU]24 complex, consistent with the measured 1:1:1:1 stoichiometry of its four components. The complex structure fulfills distance constraints obtained from chemical cross-linking of the complex at multiple recurring interfaces, involving hydrogen bonds, salt bridges, or hydrophobic interactions between conserved residues. The complex consists of a central roughly cubic [FXN42-210]24·[ISCU]24 sub-complex with one symmetric ISCU trimer bound on top of one symmetric FXN42-210 trimer at each of its eight vertices. Binding of 12 [NFS1]2·[ISD11]2 sub-complexes to the surface results in a globular macromolecule with a diameter of ∼15 nm and creates 24 Fe-S cluster assembly centers. The organization of each center recapitulates a previously proposed conserved mechanism for sulfur donation from NFS1 to ISCU and reveals, for the first time, a path for iron donation from FXN42-210 to ISCU.
Collapse
Affiliation(s)
- Oleksandr Gakh
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| | - Wasantha Ranatunga
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| | - Douglas Y Smith
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| | - Eva-Christina Ahlgren
- the Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Salam Al-Karadaghi
- the Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - James R Thompson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Grazia Isaya
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| |
Collapse
|
43
|
Chiang S, Kovacevic Z, Sahni S, Lane DJR, Merlot AM, Kalinowski DS, Huang MLH, Richardson DR. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clin Sci (Lond) 2016; 130:853-70. [PMID: 27129098 DOI: 10.1042/cs20160072] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
The mitochondrion is a major site for the metabolism of the transition metal, iron, which is necessary for metabolic processes critical for cell vitality. The enigmatic mitochondrial protein, frataxin, is known to play a significant role in both cellular and mitochondrial iron metabolism due to its iron-binding properties and its involvement in iron-sulfur cluster (ISC) and heme synthesis. The inherited neuro- and cardio-degenerative disease, Friedreich's ataxia (FA), is caused by the deficient expression of frataxin that leads to deleterious alterations in iron metabolism. These changes lead to the accumulation of inorganic iron aggregates in the mitochondrial matrix that are presumed to play a key role in the oxidative damage and subsequent degenerative features of this disease. Furthermore, the concurrent dys-regulation of cellular antioxidant defense, which coincides with frataxin deficiency, exacerbates oxidative stress. Hence, the pathogenesis of FA underscores the importance of the integrated homeostasis of cellular iron metabolism and the cytoplasmic and mitochondrial redox environments. This review focuses on describing the pathogenesis of the disease, the molecular mechanisms involved in mitochondrial iron-loading and the dys-regulation of cellular antioxidant defense due to frataxin deficiency. In turn, current and emerging therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia )
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia )
| |
Collapse
|
44
|
Regulation of iron homeostasis by the p53-ISCU pathway. Sci Rep 2015; 5:16497. [PMID: 26560363 PMCID: PMC4642350 DOI: 10.1038/srep16497] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/15/2015] [Indexed: 11/09/2022] Open
Abstract
Accumulation of iron in tissues increases the risk of cancer, but iron regulatory mechanisms in cancer tissues are largely unknown. Here, we report that p53 regulates iron metabolism through the transcriptional regulation of ISCU (iron-sulfur cluster assembly enzyme), which encodes a scaffold protein that plays a critical role in Fe-S cluster biogenesis. p53 activation induced ISCU expression through binding to an intronic p53-binding site. Knockdown of ISCU enhanced the binding of iron regulatory protein 1 (IRP1), a cytosolic Fe-S protein, to an iron-responsive element in the 5′ UTR of ferritin heavy polypeptide 1 (FTH1) mRNA and subsequently reduced the translation of FTH1, a major iron storage protein. In addition, in response to DNA damage, p53 induced FTH1 and suppressed transferrin receptor, which regulates iron entry into cells. HCT116 p53+/+ cells were resistant to iron accumulation, but HCT116 p53−/− cells accumulated intracellular iron after DNA damage. Moreover, excess dietary iron caused significant elevation of serum iron levels in p53−/− mice. ISCU expression was decreased in the majority of human liver cancer tissues, and its reduced expression was significantly associated with p53 mutation. Our finding revealed a novel role of the p53-ISCU pathway in the maintenance of iron homeostasis in hepatocellular carcinogenesis.
Collapse
|
45
|
White K, Lu Y, Annis S, Hale AE, Chau BN, Dahlman JE, Hemann C, Opotowsky AR, Vargas SO, Rosas I, Perrella MA, Osorio JC, Haley KJ, Graham BB, Kumar R, Saggar R, Saggar R, Wallace WD, Ross DJ, Khan OF, Bader A, Gochuico BR, Matar M, Polach K, Johannessen NM, Prosser HM, Anderson DG, Langer R, Zweier JL, Bindoff LA, Systrom D, Waxman AB, Jin RC, Chan SY. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol Med 2015; 7:695-713. [PMID: 25825391 PMCID: PMC4459813 DOI: 10.15252/emmm.201404511] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/03/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.
Collapse
Affiliation(s)
- Kevin White
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Lu
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sofia Annis
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew E Hale
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - James E Dahlman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Craig Hemann
- The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alexander R Opotowsky
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan Rosas
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan C Osorio
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kathleen J Haley
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian B Graham
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO, USA
| | - Rahul Kumar
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO, USA
| | - Rajan Saggar
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rajeev Saggar
- Department of Cardiothoracic Surgery, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - W Dean Wallace
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David J Ross
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Omar F Khan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Bader
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Daniel G Anderson
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jay L Zweier
- The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - David Systrom
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aaron B Waxman
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard C Jin
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Y Chan
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Hielscher A, Gerecht S. Hypoxia and free radicals: role in tumor progression and the use of engineering-based platforms to address these relationships. Free Radic Biol Med 2015; 79:281-91. [PMID: 25257256 PMCID: PMC4339408 DOI: 10.1016/j.freeradbiomed.2014.09.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 12/23/2022]
Abstract
Hypoxia is a feature of all solid tumors, contributing to tumor progression and therapy resistance. Through stabilization of the hypoxia-inducible factor 1 alpha (HIF-1α), hypoxia activates the transcription of a number of genes that sustain tumor progression. Since the seminal discovery of HIF-1α as a hypoxia-responsive master regulator of numerous genes and transcription factors, several groups have reported a novel mechanism whereby hypoxia mediates stabilization of HIF-1α. This process occurs as a result of hypoxia-generated reactive oxygen species (ROS), which, in turn, stabilize the expression of HIF-1α. As a result, a number of genes regulating tumor growth are expressed, fueling ongoing tumor progression. In this review, we outline a role for hypoxia in generating ROS and additionally define the mechanisms contributing to ROS-induced stabilization of HIF-1α.We further explore how ROS-induced HIF-1α stabilization contributes to tumor growth, angiogenesis, metastasis, and therapy response. We discuss a future outlook, describing novel therapeutic approaches for attenuating ROS production while considering how these strategies should be carefully selected when combining with chemotherapeutic agents. As engineering-based approaches have been more frequently utilized to address biological questions, we discuss opportunities whereby engineering techniques may be employed to better understand the physical and biochemical factors controlling ROS expression. It is anticipated that an improved understanding of the mechanisms responsible for the hypoxia/ROS/HIF-1α axis in tumor progression will yield the development of better targeted therapies.
Collapse
Affiliation(s)
- Abigail Hielscher
- Department of Biomedical Sciences, Georgia Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA; Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Sharon Gerecht
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
47
|
Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat Rev Mol Cell Biol 2014; 16:45-55. [PMID: 25425402 DOI: 10.1038/nrm3909] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Iron-sulphur (Fe-S) clusters are inorganic cofactors that are found in nearly all species and are composed of various combinations of iron and sulphur atoms. Fe-S clusters can accept or donate single electrons to carry out oxidation and reduction reactions and to facilitate electron transport. Many details of how these complex modular structures are assembled and ligated to cellular proteins in the mitochondrial, nuclear and cytosolic compartments of mammalian cells remain unclear. Recent evidence indicates that a Leu-Tyr-Arg (LYR) tripeptide motif found in some Fe-S recipient proteins may facilitate the direct and shielded transfer of Fe-S clusters from a scaffold to client proteins. Fe-S clusters are probably an unrecognized and elusive cofactor of many known proteins.
Collapse
|
48
|
Maio N, Rouault TA. Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1493-512. [PMID: 25245479 DOI: 10.1016/j.bbamcr.2014.09.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/07/2014] [Indexed: 01/19/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i.e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein-protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892 Bethesda, MD, USA
| | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892 Bethesda, MD, USA.
| |
Collapse
|
49
|
Cammack R, Balk J. Iron-sulfur Clusters. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Iron-sulfur clusters are universally distributed groups occurring in iron-sulfur proteins. They have a wide range of cellular functions which reflect the chemistry of the clusters. Some clusters are involved in electron transport and energy transduction in photosynthesis and respiration. Others can bind substrates and participate in enzyme catalysis. Regulatory functions have also been documented for clusters that respond to oxygen partial pressure and iron availability. Finally, there are some for which no function has been defined; they may act as stabilizing structures, for example, in enzymes involved in nucleic acid metabolism. The clusters are constructed intracellularly and inserted into proteins, which can then be transported to intracellular targets, in some cases, across membranes. Three different types of iron-sulfur cluster assembly machinery have evolved in prokaryotes: NIF, ISC and SUF. Each system involves a scaffold protein on which the cluster is constructed (encoded by genes nifU, iscU, sufU or sufB) and a cysteine desulfurase (encoded by nifS, iscS or sufS) which provides the sulfide sulfur. In eukaryotic cells, clusters are formed in the mitochondria for the many iron-sulfur proteins in this organelle. The mitochondrial biosynthesis pathway is linked to the cytoplasmic iron-sulfur assembly system (CIA) for the maturation of cytoplasmic and nuclear iron-sulfur proteins. In plant cells, a SUF-type system is used for cluster assembly in the plastids. Many accessory proteins are involved in cluster transfer before insertion into the appropriate sites in Fe-S proteins.
Collapse
Affiliation(s)
- Richard Cammack
- King's College London, Department of Biochemistry, 150 Stamford Street London SE1 9NH UK
| | - Janneke Balk
- John Innes Centre and University of East Anglia Norwich Research Park, Colney Lane Norwich NR4 7UH UK
| |
Collapse
|
50
|
Anzovino A, Lane DJR, Huang MLH, Richardson DR. Fixing frataxin: 'ironing out' the metabolic defect in Friedreich's ataxia. Br J Pharmacol 2014; 171:2174-90. [PMID: 24138602 PMCID: PMC3976629 DOI: 10.1111/bph.12470] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The metabolically active and redox-active mitochondrion appears to play a major role in the cellular metabolism of the transition metal, iron. Frataxin, a mitochondrial matrix protein, has been identified as playing a key role in the iron metabolism of this organelle due to its iron-binding properties and is known to be essential for iron-sulphur cluster formation. However, the precise function of frataxin remains elusive. The decrease in frataxin expression, as seen in the inherited disorder Friedreich's ataxia, markedly alters cellular and mitochondrial iron metabolism in both the mitochondrion and the cell. The resulting dysregulation of iron trafficking damages affects tissues leading to neuro- and cardiodegeneration. This disease underscores the importance of iron homeostasis in the redox-active environment of the mitochondrion and the molecular players involved. Unravelling the mechanisms of altered iron metabolism in Friedreich's ataxia will help elucidate a biochemical function for frataxin. Consequently, this will enable the development of more effective and rationally designed treatments. This review will focus on the emerging function of frataxin in relation to the observed alterations in mitochondrial iron metabolism in Friedreich's ataxia. Tissue-specific alterations due to frataxin loss will also be discussed, as well as current and emerging therapeutic strategies.
Collapse
Affiliation(s)
- A Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | - D J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | | | - D R Richardson
- Correspondence Professor D R Richardson, Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia. E-mail:
| |
Collapse
|