1
|
Roth C, Paulini L, Hoffmann ME, Mosler T, Dikic I, Brunschweiger A, Körschgen H, Behl C, Linder B, Kögel D. BAG3 regulates cilia homeostasis of glioblastoma via its WW domain. Biofactors 2024. [PMID: 38655699 DOI: 10.1002/biof.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
The multidomain protein BAG3 exerts pleiotropic oncogenic functions in many tumor entities including glioblastoma (GBM). Here, we compared BAG3 protein-protein interactions in either adherently cultured or stem-like cultured U251 GBM cells. In line with BAG3's putative role in regulating stem-like properties, identified interactors in sphere-cultured cells included different stem cell markers (SOX2, OLIG2, and NES), while interactomes of adherent BAG3-proficient cells indicated a shift toward involvement of BAG3 in regulation of cilium assembly (ACTR3 and ARL3). Applying a set of BAG3 deletion constructs we could demonstrate that none of the domains except the WW domain are required for suppression of cilia formation by full-length BAG3 in U251 and U343 cells. In line with the established regulation of the Hippo pathway by this domain, we could show that the WW mutant fails to rescue YAP1 nuclear translocation. BAG3 depletion reduced activation of a YAP1/AURKA signaling pathway and induction of PLK1. Collectively, our findings point to a complex interaction network of BAG3 with several pathways regulating cilia homeostasis, involving processes related to ciliogenesis and cilium degradation.
Collapse
Affiliation(s)
- Caterina Roth
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Lara Paulini
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Marina E Hoffmann
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Thorsten Mosler
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Andreas Brunschweiger
- Institute of Pharmacy and Food Chemistry, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität, Würzburg, Germany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Benedikt Linder
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Donat Kögel
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, Heidelberg, Germany
| |
Collapse
|
2
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
3
|
Treeza M M, Augustine S, Mathew AA, Kanthlal S, Panonummal R. Targeting Viral ORF3a Protein: A New Approach to Mitigate COVID-19 Induced Immune Cell Apoptosis and Associated Respiratory Complications. Adv Pharm Bull 2023; 13:678-687. [PMID: 38022818 PMCID: PMC10676557 DOI: 10.34172/apb.2023.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 12/01/2023] Open
Abstract
Infection with SARS-CoV-2 is a growing concern to the global well-being of the public at present. Different amino acid mutations alter the biological and epidemiological characteristics, as well as immune resistance of SARS-CoV-2. The virus-induced pulmonary impairment and inflammatory cytokine storm are directly related to its clinical manifestations. But, the fundamental mechanisms of inflammatory responses are found to be the reason for the death of immune cells which render the host immune system failure. Apoptosis of immune cells is one of the most common forms of programmed cell death induced by the virus for its survival and virulence property. ORF3a, a SARS-CoV-2 accessory viral protein, induces apoptosis in host cells and suppress the defense mechanism. This suggests, inhibiting SARS-CoV-2 ORF3a protein is a good therapeutic strategy for the treatment in COVID-19 infection by promoting the host immune defense mechanism.
Collapse
Affiliation(s)
- Minu Treeza M
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | - Sanu Augustine
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | | | - S.K. Kanthlal
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | - Rajitha Panonummal
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| |
Collapse
|
4
|
Reichlmeir M, Canet-Pons J, Koepf G, Nurieva W, Duecker RP, Doering C, Abell K, Key J, Stokes MP, Zielen S, Schubert R, Ivics Z, Auburger G. In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA. Cells 2023; 12:2399. [PMID: 37830614 PMCID: PMC10572167 DOI: 10.3390/cells12192399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
The autosomal recessive disorder Ataxia-Telangiectasia is caused by a dysfunction of the stress response protein, ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and coordinates their repair. This role explains T-cell dysfunction and tumour risk. However, it remains unclear whether this function is relevant for postmitotic neurons and underlies cerebellar atrophy, since ATM is cytoplasmic in postmitotic neurons. Here, we used ATM-null mice that survived early immune deficits via bone-marrow transplantation, and that reached initial neurodegeneration stages at 12 months of age. Global cerebellar transcriptomics demonstrated that ATM depletion triggered upregulations in most neurotransmission and neuropeptide systems. Downregulated transcripts were found for the ATM interactome component Usp2, many non-coding RNAs, ataxia genes Itpr1, Grid2, immediate early genes and immunity factors. Allelic splice changes affected prominently the neuropeptide machinery, e.g., Oprm1. Validation experiments with stressors were performed in human neuroblastoma cells, where ATM was localised only to cytoplasm, similar to the brain. Effect confirmation in SH-SY5Y cells occurred after ATM depletion and osmotic stress better than nutrient/oxidative stress, but not after ATM kinase inhibition or DNA stressor bleomycin. Overall, we provide pioneer observations from a faithful A-T mouse model, which suggest general changes in synaptic and dense-core vesicle stress adaptation.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Júlia Canet-Pons
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Wasifa Nurieva
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Ruth Pia Duecker
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Claudia Doering
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Kathryn Abell
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Matthew P. Stokes
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Stefan Zielen
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany
| | - Ralf Schubert
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Zoltán Ivics
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| |
Collapse
|
5
|
Jayathirtha M, Jayaweera T, Whitham D, Petre BA, Neagu AN, Darie CC. Two-Dimensional Polyacrylamide Gel Electrophoresis Coupled with Nanoliquid Chromatography-Tandem Mass Spectrometry-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in the MCF7 Breast Cancer Cell Line Transfected for Jumping Translocation Breakpoint Protein Overexpression. Int J Mol Sci 2023; 24:14714. [PMID: 37834160 PMCID: PMC10572688 DOI: 10.3390/ijms241914714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The identification of new genes/proteins involved in breast cancer (BC) occurrence is widely used to discover novel biomarkers and understand the molecular mechanisms of BC initiation and progression. The jumping translocation breakpoint (JTB) gene may act both as a tumor suppressor or oncogene in various types of tumors, including BC. Thus, the JTB protein could have the potential to be used as a biomarker in BC, but its neoplastic mechanisms still remain unknown or controversial. We previously analyzed the interacting partners of JTBhigh protein extracted from transfected MCF7 BC cell line using SDS-PAGE complemented with in-solution digestion, respectively. The previous results suggested the JTB contributed to the development of a more aggressive phenotype and behavior for the MCF7 BC cell line through synergistic upregulation of epithelial-mesenchymal transition (EMT), mitotic spindle, and fatty acid metabolism-related pathways. In this work, we aim to complement the previously reported JTB proteomics-based experiments by investigating differentially expressed proteins (DEPs) and tumorigenic pathways associated with JTB overexpression using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Statistically different gel spots were picked for protein digestion, followed by nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. We identified six DEPs related to the JTBhigh condition vs. control that emphasize a pro-tumorigenic (PT) role. Twenty-one proteins, which are known to be usually overexpressed in cancer cells, emphasize an anti-tumorigenic (AT) role when low expression occurs. According to our previous results, proteins that have a PT role are mainly involved in the activation of the EMT process. Interestingly, JTB overexpression has been correlated here with a plethora of significant upregulated and downregulated proteins that sustain JTB tumor suppressive functions. Our present and previous results sustain the necessity of the complementary use of different proteomics-based methods (SDS-PAGE, 2D-PAGE, and in-solution digestion) followed by tandem mass spectrometry to avoid their limitations, with each method leading to the delineation of specific clusters of DEPs that may be merged for a better understanding of molecular pathways and neoplastic mechanisms related to the JTB's role in BC initiation and progression.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 20A, 700505 Iasi, Romania;
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| |
Collapse
|
6
|
Peruch M, Giacomello E, Radaelli D, Concato M, Addobbati R, Fluca AL, Aleksova A, D’Errico S. Subcellular Effectors of Cocaine Cardiotoxicity: All Roads Lead to Mitochondria-A Systematic Review of the Literature. Int J Mol Sci 2023; 24:14517. [PMID: 37833964 PMCID: PMC10573028 DOI: 10.3390/ijms241914517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cocaine abuse is a serious public health problem as this drug exerts a plethora of functional and histopathological changes that potentially lead to death. Cocaine causes complex multiorgan toxicity, including in the heart where the blockade of the sodium channels causes increased catecholamine levels and alteration in calcium homeostasis, thus inducing an increased oxygen demand. Moreover, there is evidence to suggest that mitochondria alterations play a crucial role in the development of cocaine cardiotoxicity. We performed a systematic review according to the Preferred Reporting Items for Systemic Reviews and Meta-Analysis (PRISMA) scheme to evaluate the mitochondrial mechanisms determining cocaine cardiotoxicity. Among the initial 106 articles from the Pubmed database and the 17 articles identified through citation searching, 14 final relevant studies were extensively reviewed. Thirteen articles included animal models and reported the alteration of specific mitochondria-dependent mechanisms such as reduced energy production, imbalance of membrane potential, increased oxidative stress, and promotion of apoptosis. However, only one study evaluated human cocaine overdose samples and observed the role of cocaine in oxidative stress and the induction of apoptosis though mitochondria. Understanding the complex processes mediated by mitochondria through forensic analysis and experimental models is crucial for identifying potential therapeutic targets to mitigate or reverse cocaine cardiotoxicity in humans.
Collapse
Affiliation(s)
- Michela Peruch
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
| | - Emiliana Giacomello
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
| | - Davide Radaelli
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
| | - Monica Concato
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
| | - Riccardo Addobbati
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Alessandra Lucia Fluca
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34149 Trieste, Italy
| | - Aneta Aleksova
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34149 Trieste, Italy
| | - Stefano D’Errico
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
| |
Collapse
|
7
|
Funasaki S, Hatano A, Nakatsumi H, Koga D, Sugahara O, Yumimoto K, Baba M, Matsumoto M, Nakayama KI. A stepwise and digital pattern of RSK phosphorylation determines the outcome of thymic selection. iScience 2023; 26:107552. [PMID: 37646020 PMCID: PMC10460994 DOI: 10.1016/j.isci.2023.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/02/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Developing CD4+CD8+ double-positive (DP) thymocytes with randomly generated T cell receptors (TCRs) undergo positive (maturation) or negative (apoptosis) selection on the basis of the strength of TCR stimulation. Selection fate is determined by engagement of TCR ligands with a subtle difference in affinity, but the molecular details of TCR signaling leading to the different selection outcomes have remained unclear. We performed phosphoproteome analysis of DP thymocytes and found that p90 ribosomal protein kinase (RSK) phosphorylation at Thr562 was induced specifically by high-affinity peptide ligands. Such phosphorylation of RSK triggered its translocation to the nucleus, where it phosphorylated the nuclear receptor Nur77 and thereby promoted its mitochondrial translocation for apoptosis induction. Inhibition of RSK activity protected DP thymocytes from antigen-induced cell death. We propose that RSK phosphorylation constitutes a mechanism by which DP thymocytes generate a stepwise and binary signal in response to exposure to TCR ligands with a graded affinity.
Collapse
Affiliation(s)
- Shintaro Funasaki
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Daisuke Koga
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Osamu Sugahara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaya Baba
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
8
|
Frigo E, Tommasin L, Lippe G, Carraro M, Bernardi P. The Haves and Have-Nots: The Mitochondrial Permeability Transition Pore across Species. Cells 2023; 12:1409. [PMID: 37408243 PMCID: PMC10216546 DOI: 10.3390/cells12101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
The demonstration that F1FO (F)-ATP synthase and adenine nucleotide translocase (ANT) can form Ca2+-activated, high-conductance channels in the inner membrane of mitochondria from a variety of eukaryotes led to renewed interest in the permeability transition (PT), a permeability increase mediated by the PT pore (PTP). The PT is a Ca2+-dependent permeability increase in the inner mitochondrial membrane whose function and underlying molecular mechanisms have challenged scientists for the last 70 years. Although most of our knowledge about the PTP comes from studies in mammals, recent data obtained in other species highlighted substantial differences that could be perhaps attributed to specific features of F-ATP synthase and/or ANT. Strikingly, the anoxia and salt-tolerant brine shrimp Artemia franciscana does not undergo a PT in spite of its ability to take up and store Ca2+ in mitochondria, and the anoxia-resistant Drosophila melanogaster displays a low-conductance, selective Ca2+-induced Ca2+ release channel rather than a PTP. In mammals, the PT provides a mechanism for the release of cytochrome c and other proapoptotic proteins and mediates various forms of cell death. In this review, we cover the features of the PT (or lack thereof) in mammals, yeast, Drosophila melanogaster, Artemia franciscana and Caenorhabditis elegans, and we discuss the presence of the intrinsic pathway of apoptosis and of other forms of cell death. We hope that this exercise may help elucidate the function(s) of the PT and its possible role in evolution and inspire further tests to define its molecular nature.
Collapse
Affiliation(s)
- Elena Frigo
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| | - Ludovica Tommasin
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| | - Giovanna Lippe
- Department of Medicine, University of Udine, Piazzale Kolbe 4, I-33100 Udine, Italy;
| | - Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| |
Collapse
|
9
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
10
|
Rouchidane Eyitayo A, Giraud MF, Daury L, Lambert O, Gonzalez C, Manon S. Cell-free synthesis and reconstitution of Bax in nanodiscs: Comparison between wild-type Bax and a constitutively active mutant. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184075. [PMID: 36273540 DOI: 10.1016/j.bbamem.2022.184075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Bax is a major player in the mitochondrial pathway of apoptosis, by making the Outer Mitochondrial Membrane (OMM) permeable to various apoptogenic factors, including cytochrome c. In order to get further insight into the structure and function of Bax when it is inserted in the OMM, we attempted to reconstitute Bax in nanodiscs. Cell-free protein synthesis in the presence of nanodiscs did not yield Bax-containing nanodiscs, but it provided a simple way to purify full-length Bax without any tag. Purified wild-type Bax (BaxWT) and a constitutively active mutant (BaxP168A) displayed biochemical properties that were in line with previous characterizations following their expression in yeast and human cells followed by their reconstitution into liposomes. Both Bax variants were then reconstituted in nanodiscs. Size exclusion chromatography, dynamic light scattering and transmission electron microscopy showed that nanodiscs formed with BaxP168A were larger than nanodiscs formed with BaxWT. This was consistent with the hypothesis that BaxP168A was reconstituted in nanodiscs as an active oligomer.
Collapse
Affiliation(s)
| | - Marie-France Giraud
- IBGC, UMR5095, CNRS, Université de Bordeaux, France; CBMN, UMR5248, CNRS, Université de Bordeaux, France
| | | | | | | | - Stéphen Manon
- IBGC, UMR5095, CNRS, Université de Bordeaux, France.
| |
Collapse
|
11
|
Treponema denticola Induces Neuronal Apoptosis by Promoting Amyloid-β Accumulation in Mice. Pathogens 2022; 11:pathogens11101150. [PMID: 36297207 PMCID: PMC9610539 DOI: 10.3390/pathogens11101150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Neuronal apoptosis is a major contributor to Alzheimer's disease (AD). Periodontitis is a significant risk factor for AD. The periodontal pathogens Porphyromonas gingivalis and Treponema denticola have been shown to initiate the hallmark pathologies and behavioral symptoms of AD. Studies have found that T. denticola infection induced Tau hyperphosphorylation and amyloid β accumulation in the hippocampi of mice. Aβ accumulation is closely associated with neuronal apoptosis. However, the roles of T. denticola in neuronal apoptosis remain unclear and its roles in AD pathology need further study. Objective: This study aimed to investigate whether oral infection with T. denticola induced alveolar bone loss and neuronal apoptosis in mice. Methods: C57BL/6 mice were orally administered with T. denticola, Micro-CT was employed to assess the alveolar bone resorption. Western blotting, quantitative PCR, and TUNEL staining were utilized to detect the apoptosis-associated changes in mouse hippocampi. N2a were co-cultured with T. denticola to verify in vivo results. Results: Mice infected with T. denticola exhibited more alveolar bone loss compared with the control mice. T. denticola oral infection induced neuronal apoptosis in hippocampi of mice. Consistent results of the apoptosis-associated protein expression were observed in N2a cells treated with T. denticola and Aβ1-42 in vitro. However, the Aβ inhibitor reversed these results, suggesting that Aβ1-42 mediates T. denticola infection-induced neuronal apoptosis. Conclusions: This study found that oral infected T. denticola caused alveolar bone loss, and induced neuronal apoptosis by promoting Aβ accumulation in mice, providing evidence for the link between periodontitis and AD.
Collapse
|
12
|
Abodo Onambele L, Hoffmann N, Kater L, Hemmersbach L, Neudörfl JM, Sitnikov N, Kater B, Frias C, Schmalz HG, Prokop A. An organometallic analogue of combretastatin A-4 and its apoptosis-inducing effects on lymphoma, leukemia and other tumor cells in vitro. RSC Med Chem 2022; 13:1044-1051. [PMID: 36320328 PMCID: PMC9491352 DOI: 10.1039/d2md00144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 09/19/2023] Open
Abstract
Hexacarbonyl[1,3-dimethoxy-5-((4'-methoxyphenyl)ethynyl)benzene]dicobalt (NAHO27), an organometallic analogue of combretastatin A-4, has been synthesized and its activity against lymphoma, leukemia, breast cancer and melanoma cells has been investigated. It was shown that NAHO27 specifically induces apoptosis in BJAB lymphoma and Nalm-6 leukemia cells at low micromolar concentration and does not affect normal leukocytes in vitro. It also proved to be active against vincristine and daunorubicin resistant leukemia cell lines with p-glycoprotein-caused multidrug resistance and showed a pronounced (550%) synergistic effect when co-applied with vincristine at very low concentrations. Mechanistic investigations revealed NAHO27 to induce apoptosis via the mitochondrial (intrinsic) pathway as reflected by the processing of caspases 3 and 9, the involvement of Bcl-2 and smac/DIABLO, and the reduction of mitochondrial membrane potential. Gene expression analysis and protein expression analysis via western blot showed an upregulation of the proapoptotic protein harakiri by 9%.
Collapse
Affiliation(s)
- Liliane Abodo Onambele
- Department of Pediatric Oncology/Hematology, Children's Hospital of the City of Cologne Amsterdamer Str. 59 50735 Cologne Germany
- Department of Pediatric Oncology/Hematology, University Medical Center Charité Campus Virchow, Augustenburger Pl. 1 13353 Berlin Germany
| | - Natalie Hoffmann
- Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Lisa Kater
- Department of Pediatric Oncology/Hematology, University Medical Center Charité Campus Virchow, Augustenburger Pl. 1 13353 Berlin Germany
| | - Lars Hemmersbach
- Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Nikolay Sitnikov
- Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Benjamin Kater
- Department of Pediatric Oncology/Hematology, University Medical Center Charité Campus Virchow, Augustenburger Pl. 1 13353 Berlin Germany
| | - Corazon Frias
- Department of Pediatric Oncology/Hematology, University Medical Center Charité Campus Virchow, Augustenburger Pl. 1 13353 Berlin Germany
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin 19055 Schwerin Germany
- MSH Medical School Hamburg Am Kaiserkai 1 20457 Hamburg Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Aram Prokop
- Department of Pediatric Oncology/Hematology, Children's Hospital of the City of Cologne Amsterdamer Str. 59 50735 Cologne Germany
- Department of Pediatric Oncology/Hematology, University Medical Center Charité Campus Virchow, Augustenburger Pl. 1 13353 Berlin Germany
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin 19055 Schwerin Germany
- MSH Medical School Hamburg Am Kaiserkai 1 20457 Hamburg Germany
| |
Collapse
|
13
|
In Silico Pharmacokinetic Profiling of the Identified Bioactive Metabolites of Pergularia tomentosa L. Latex Extract and In Vitro Cytotoxic Activity via the Induction of Caspase-Dependent Apoptosis with S-Phase Arrest. Pharmaceuticals (Basel) 2022; 15:ph15091132. [PMID: 36145353 PMCID: PMC9501251 DOI: 10.3390/ph15091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The in vitro cytotoxic efficacy of plant latex from Pergularia tomentosa L. was studied using five human cancer cell lines: HeLa cells (cervical carcinoma cells), A-549 (lung carcinoma), Panc-1 (pancreatic carcinoma cells), MDA-MB-231 (metastatic mammary adenocarcinoma), and MRC-5 (lung fibroblast cell line) cells. The phytonutrient content of plant latex was identified using the liquid chromatography/mass spectra-quadrupole time of flight (LC/MS-QTOF) technique. In silico studies of polyphenols were carried out to clarify the potential mode of action of the plant latex’s constituents. The treatment of different tumor cell lines with different concentrations of plant latex revealed a potent efficacy on the human lung carcinoma cell line (A-549) (IC50 = 3.89 µg/mL) compared with that with vinblastine as a positive control (IC50 = 7.12 µg/mL). The effect of the potent concentration of plant latex on the A-549 cell line induced cell arrest, upregulated the expression of pre-apoptotic markers, and downregulated the expression of antiapoptotic markers. Seven identified polyphenols were selected for the in silico study. A docking assessment using the epidermal growth factor receptor kinase (EGFRk) and eltronib as a positive control showed a higher affinity for the enzyme receptor of the selected polyphenols, except for methyl orsellinate and ginkgotoxin. The ADMET assessment demonstrated the inhibitory effect of the polyphenols on CYP450, except for ouabagenin and xanthyletine. The selected polyphenols obey Lipinski’s drug-likeness with no significant toxicity effect. In conclusion, the plant latex of P. tomentosa L. showed cytotoxic activity on the A-549 cell line, and the selected polyphenols showed a promising prodrug agent with a low profile of toxicity in the study.
Collapse
|
14
|
Loren P, Lugones Y, Saavedra N, Saavedra K, Páez I, Rodriguez N, Moriel P, Salazar LA. MicroRNAs Involved in Intrinsic Apoptotic Pathway during Cisplatin-Induced Nephrotoxicity: Potential Use of Natural Products against DDP-Induced Apoptosis. Biomolecules 2022; 12:biom12091206. [PMID: 36139046 PMCID: PMC9496062 DOI: 10.3390/biom12091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum (II), DDP) is an antineoplastic agent widely used in the treatment of solid tumors because of its extensive cytotoxic activity. However, the main limiting side effect of DDP use is nephrotoxicity, a rapid deterioration in kidney function due to toxic chemicals. Several studies have shown that epigenetic processes are involved in DDP-induced nephrotoxicity. Noncoding RNAs (ncRNAs), a class of epigenetic processes, are molecules that regulate gene expression under physiological and pathological conditions. MicroRNAs (miRNAs) are the most characterized class of ncRNAs and are engaged in many cellular processes. In this review, we describe how different miRNAs regulate some pathways leading to cell death by apoptosis, specifically the intrinsic apoptosis pathway. Accordingly, many classes of natural products have been tested for their ability to prevent DDP-induced apoptosis. The study of epigenetic regulation for underlying cell death is still being studied, which will allow new strategies for the diagnosis and therapy of this unwanted disease, which is presented as a side effect of antineoplastic treatment.
Collapse
Affiliation(s)
- Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Yuliannis Lugones
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Doctoral Programme in Sciences with major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Isis Páez
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Doctoral Programme in Sciences with major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nelia Rodriguez
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Doctoral Programme in Sciences with major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083970, SP, Brazil
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: ; Tel.: +56-452-596-724
| |
Collapse
|
15
|
Cell death in skin function, inflammation, and disease. Biochem J 2022; 479:1621-1651. [PMID: 35929827 PMCID: PMC9444075 DOI: 10.1042/bcj20210606] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Cell death is an essential process that plays a vital role in restoring and maintaining skin homeostasis. It supports recovery from acute injury and infection and regulates barrier function and immunity. Cell death can also provoke inflammatory responses. Loss of cell membrane integrity with lytic forms of cell death can incite inflammation due to the uncontrolled release of cell contents. Excessive or poorly regulated cell death is increasingly recognised as contributing to cutaneous inflammation. Therefore, drugs that inhibit cell death could be used therapeutically to treat certain inflammatory skin diseases. Programmes to develop such inhibitors are already underway. In this review, we outline the mechanisms of skin-associated cell death programmes; apoptosis, necroptosis, pyroptosis, NETosis, and the epidermal terminal differentiation programme, cornification. We discuss the evidence for their role in skin inflammation and disease and discuss therapeutic opportunities for targeting the cell death machinery.
Collapse
|
16
|
Ramon-Luing LA, Olvera Y, Flores-Gonzalez J, Palacios Y, Carranza C, Aguilar-Duran Y, Vargas MA, Gutierrez N, Medina-Quero K, Chavez-Galan L. Diverse Cell Death Mechanisms Are Simultaneously Activated in Macrophages Infected by Virulent Mycobacterium tuberculosis. Pathogens 2022; 11:pathogens11050492. [PMID: 35631013 PMCID: PMC9147088 DOI: 10.3390/pathogens11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are necessary to eliminate pathogens. However, some pathogens have developed mechanisms to avoid the immune response. One of them is modulating the cell death mechanism to favor pathogen survival. In this study, we evaluated if virulent Mycobacterium tuberculosis (M. tb) can simultaneously activate more than one cell death mechanism. We infected human monocyte-derived macrophages (MDM) in vitro with avirulent (H37Ra) and virulent (H37Rv) strains, and then we measured molecules involved in apoptosis, necroptosis, and pyroptosis. Our data showed that H37Rv infection increased the BCL-2 transcript and protein, decreased the BAX transcript, and increased phosphorylated BCL-2 at the protein level. Moreover, H37Rv infection increased the expression of the molecules involved in the necroptotic pathway, such as ASK1, p-38, RIPK1, RIPK3, and caspase-8, while H37Ra increased caspase-8 and decreased RIPK3 at the transcriptional level. In addition, NLRP3 and CASP1 expression was increased at low MOI in both strains, while IL-1β was independent of virulence but dependent on infection MOI, suggesting the activation of pyroptosis. These findings suggest that virulent M. tb inhibits the apoptosis mediated by BCL-2 family molecules but, at the same time, increases the expression of molecules involved in apoptosis, necroptosis, and pyroptosis at the transcriptional and protein levels, probably as a mechanism to avoid the immune response and guarantee its survival.
Collapse
Affiliation(s)
- Lucero A. Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (J.F.-G.); (Y.P.); (Y.A.-D.)
| | - Yessica Olvera
- Research Department, Military School of Graduate of Health, SEDENA, Mexico City 11200, Mexico; (Y.O.); (M.A.V.); (N.G.); (K.M.-Q.)
| | - Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (J.F.-G.); (Y.P.); (Y.A.-D.)
| | - Yadira Palacios
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (J.F.-G.); (Y.P.); (Y.A.-D.)
| | - Claudia Carranza
- Laboratory of Tuberculosis Immunobiology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico;
| | - Yerany Aguilar-Duran
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (J.F.-G.); (Y.P.); (Y.A.-D.)
| | - Marco Antonio Vargas
- Research Department, Military School of Graduate of Health, SEDENA, Mexico City 11200, Mexico; (Y.O.); (M.A.V.); (N.G.); (K.M.-Q.)
| | - Neptali Gutierrez
- Research Department, Military School of Graduate of Health, SEDENA, Mexico City 11200, Mexico; (Y.O.); (M.A.V.); (N.G.); (K.M.-Q.)
| | - Karen Medina-Quero
- Research Department, Military School of Graduate of Health, SEDENA, Mexico City 11200, Mexico; (Y.O.); (M.A.V.); (N.G.); (K.M.-Q.)
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (J.F.-G.); (Y.P.); (Y.A.-D.)
- Correspondence: or ; Tel.: +52-5554871700 (ext. 5270)
| |
Collapse
|
17
|
Yayuan Y, Ling H, Qunli Y, Yongfang G, Hongmei S. Effects of caspase activity of yak meat and internal environment changing during aging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1362-1371. [PMID: 35250061 PMCID: PMC8882741 DOI: 10.1007/s13197-021-05145-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/07/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
The objective of this study was to investigate the protease family caspases in skeletal muscle and their potential contribution to postmortem proteolysis and meat tenderization. Nine yaks were slaughtered, and samples of Longissimus dorsal were injected with AC-DEVD-CHO at a ratio of 1:1 (w/v) and then stored at 4 °C for 2, 6, 12, 24, 72, and 120 h. Results indicate that the morphological changes of the muscle fibers are significantly obstructed, which is not conducive to the subsequent degradation of proteins. After inhibiting the activity of Caspase- 3, the activity of Caspase-8 and 9 and the energy metabolism was affected. In the case of without inhibition of caspase, the pH value decreased and then increased. The meat color and the water retention are better, the muscle fiber skeleton protein degradation is remarkable, the tenderness is improved. Furthermore, yak meat tenderness was improved by apoptotic pathway during aging.
Collapse
Affiliation(s)
- Yang Yayuan
- College of Food Science and Engineering, Gansu Agricultural University, 1, Yingmen Village, Anning, Lanzhou, 730070 Gansu People's Republic of China
| | - Han Ling
- College of Food Science and Engineering, Gansu Agricultural University, 1, Yingmen Village, Anning, Lanzhou, 730070 Gansu People's Republic of China
| | - Yu Qunli
- College of Food Science and Engineering, Gansu Agricultural University, 1, Yingmen Village, Anning, Lanzhou, 730070 Gansu People's Republic of China
| | - Gao Yongfang
- College of Food Science and Engineering, Gansu Agricultural University, 1, Yingmen Village, Anning, Lanzhou, 730070 Gansu People's Republic of China
| | - Shi Hongmei
- Gannan Tibetan Autonomous Prefecture Institute of Animal Science, No. 43, People East Street, Hezuo, 747000 Gannan Tibetan Autonomous Prefecture People's Republic of China
| |
Collapse
|
18
|
Guo Z, Li Y, Chen M, Gu Y, Chen Y, Zhao Y, Tang P. Semaphorin3A regulates mitochondrial apoptosis in RAW264.7 cells in vitro. Tissue Cell 2022; 75:101711. [DOI: 10.1016/j.tice.2021.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
|
19
|
Nguyen LN, Kanneganti TD. PANoptosis in Viral Infection: The Missing Puzzle Piece in the Cell Death Field. J Mol Biol 2022; 434:167249. [PMID: 34537233 PMCID: PMC8444475 DOI: 10.1016/j.jmb.2021.167249] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
In the past decade, emerging viral outbreaks like SARS-CoV-2, Zika and Ebola have presented major challenges to the global health system. Viruses are unique pathogens in that they fully rely on the host cell to complete their lifecycle and potentiate disease. Therefore, programmed cell death (PCD), a key component of the host innate immune response, is an effective strategy for the host cell to curb viral spread. The most well-established PCD pathways, pyroptosis, apoptosis and necroptosis, can be activated in response to viruses. Recently, extensive crosstalk between PCD pathways has been identified, and there is evidence that molecules from all three PCD pathways can be activated during virus infection. These findings have led to the emergence of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these three PCD pathways alone. While PCD is important to eliminate infected cells, many viruses are equipped to hijack host PCD pathways to benefit their own propagation and subvert host defense, and PCD can also lead to the production of inflammatory cytokines and inflammation. Therefore, PANoptosis induced by viral infection contributes to either host defense or viral pathogenesis in context-specific ways. In this review, we will discuss the multi-faceted roles of PCD pathways in controlling viral infections.
Collapse
Affiliation(s)
- Lam Nhat Nguyen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. https://twitter.com/LamNguy81889610
| | | |
Collapse
|
20
|
Choi HS, Baek KH. Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes. Cell Mol Life Sci 2022; 79:117. [PMID: 35118522 PMCID: PMC11071826 DOI: 10.1007/s00018-022-04132-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Although damaged cells can be repaired, cells that are considered unlikely to be repaired are eliminated through apoptosis, a type of predicted cell death found in multicellular organisms. Apoptosis is a structured cell death involving alterations to the cell morphology and internal biochemical changes. This process involves the expansion and cracking of cells, changes in cell membranes, nuclear fragmentation, chromatin condensation, and chromosome cleavage, culminating in the damaged cells being eaten and processed by other cells. The ubiquitin-proteasome system (UPS) is a major cellular pathway that regulates the protein levels through proteasomal degradation. This review proposes that apoptotic proteins are regulated through the UPS and describes a unique direction for cancer treatment by controlling proteasomal degradation of apoptotic proteins, and small molecules targeted to enzymes associated with UPS.
Collapse
Affiliation(s)
- Hae-Seul Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
21
|
Remy J, Linder B, Weirauch U, Day BW, Stringer BW, Herold-Mende C, Aigner A, Krohn K, Kögel D. STAT3 Enhances Sensitivity of Glioblastoma to Drug-Induced Autophagy-Dependent Cell Death. Cancers (Basel) 2022; 14:cancers14020339. [PMID: 35053502 PMCID: PMC8773829 DOI: 10.3390/cancers14020339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Glioblastoma is the most common primary brain cancer in adults. One reason for the development and malignancy of this tumor is the misregulation of certain cellular proteins. The oncoprotein STAT3 that is frequently overactive in glioblastoma cells is associated with more aggressive disease and decreased patient survival. Autophagy is a form of cellular self digestion that normally maintains cell integrity and provides nutrients and basic building blocks required for growth. While glioblastoma is known to be particularly resistant to conventional therapies, recent research has suggested that these tumors are more sensitive to excessive overactivation of autophagy, leading to autophagy-dependent tumor cell death. Here, we show a hitherto unknown role of STAT3 in sensitizing glioblastoma cells to excessive autophagy induced with the repurposed drug pimozide. These findings provide the basis for future research aimed at determining whether STAT3 can serve as a predictor for autophagy-proficient tumors and further support the notion of overactivating autophagy for cancer therapy. Abstract Glioblastoma (GBM) is a devastating disease and the most common primary brain malignancy of adults with a median survival barely exceeding one year. Recent findings suggest that the antipsychotic drug pimozide triggers an autophagy-dependent, lysosomal type of cell death in GBM cells with possible implications for GBM therapy. One oncoprotein that is often overactivated in these tumors and associated with a particularly dismal prognosis is Signal Transducer and Activator of Transcription 3 (STAT3). Here, we used isogenic human and murine GBM knockout cell lines, advanced fluorescence microscopy, transcriptomic analysis and FACS-based assessment of cell viability to show that STAT3 has an underappreciated, context-dependent role in drug-induced cell death. Specifically, we demonstrate that depletion of STAT3 significantly enhances cell survival after treatment with Pimozide, suggesting that STAT3 confers a particular vulnerability to GBM. Furthermore, we show that active STAT3 has no major influence on the early steps of the autophagy pathway, but exacerbates drug-induced lysosomal membrane permeabilization (LMP) and release of cathepsins into the cytosol. Collectively, our findings support the concept of exploiting the pro-death functions of autophagy and LMP for GBM therapy and to further determine whether STAT3 can be employed as a treatment predictor for highly apoptosis-resistant, but autophagy-proficient cancers.
Collapse
Affiliation(s)
- Janina Remy
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (J.R.); (B.L.)
| | - Benedikt Linder
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (J.R.); (B.L.)
| | - Ulrike Weirauch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04103 Leipzig, Germany; (U.W.); (A.A.)
| | - Bryan W. Day
- Sid Faithful Brain Cancer Laboratory, QIMR Berghofer, Herston, QLD 4006, Australia;
| | - Brett W. Stringer
- College of Medicine and Public Health, Flinders University, Sturt Rd., Bedford Park, SA 5042, Australia;
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany;
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04103 Leipzig, Germany; (U.W.); (A.A.)
| | - Knut Krohn
- Core Unit DNA-Technologies, IZKF, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Donat Kögel
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (J.R.); (B.L.)
- German Cancer Consortium DKTK Partner Site Frankfurt/Main, 60590 Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-69-6301-6923
| |
Collapse
|
22
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
23
|
Kulbay M, Paimboeuf A, Ozdemir D, Bernier J. Review of cancer cell resistance mechanisms to apoptosis and actual targeted therapies. J Cell Biochem 2021; 123:1736-1761. [PMID: 34791699 DOI: 10.1002/jcb.30173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 11/11/2022]
Abstract
The apoptosis pathway is a programmed cell death mechanism that is crucial for cellular and tissue homeostasis and organ development. There are three major caspase-dependent pathways of apoptosis that ultimately lead to DNA fragmentation. Cancerous cells are known to highly regulate the apoptotic pathway and its role in cancer hallmark acquisition has been discussed over the past decades. Numerous mutations in cancer cell types have been reported to be implicated in chemoresistance and treatment outcome. In this review, we summarize the mutations of the caspase-dependant apoptotic pathways that are the source of cancer development and the targeted therapies currently available or in trial.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada.,Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Adeline Paimboeuf
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Derman Ozdemir
- Department of Medicine, One Brooklyn Health-Brookdale Hospital Medical Center, Brooklyn, New York, USA
| | - Jacques Bernier
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
24
|
Meyer N, Henkel L, Linder B, Zielke S, Tascher G, Trautmann S, Geisslinger G, Münch C, Fulda S, Tegeder I, Kögel D. Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death. Autophagy 2021; 17:3424-3443. [PMID: 33461384 PMCID: PMC8632287 DOI: 10.1080/15548627.2021.1874208] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that induction of lethal macroautophagy/autophagy carries potential significance for the treatment of glioblastoma (GBM). In continuation of previous work, we demonstrate that pimozide and loperamide trigger an ATG5- and ATG7 (autophagy related 5 and 7)-dependent type of cell death that is significantly reduced with cathepsin inhibitors and the lipid reactive oxygen species (ROS) scavenger α-tocopherol in MZ-54 GBM cells. Global proteomic analysis after treatment with both drugs also revealed an increase of proteins related to lipid and cholesterol metabolic processes. These changes were accompanied by a massive accumulation of cholesterol and other lipids in the lysosomal compartment, indicative of impaired lipid transport/degradation. In line with these observations, pimozide and loperamide treatment were associated with a pronounced increase of bioactive sphingolipids including ceramides, glucosylceramides and sphingoid bases measured by targeted lipidomic analysis. Furthermore, pimozide and loperamide inhibited the activity of SMPD1/ASM (sphingomyelin phosphodiesterase 1) and promoted induction of lysosomal membrane permeabilization (LMP), as well as release of CTSB (cathepsin B) into the cytosol in MZ-54 wild-type (WT) cells. Whereas LMP and cell death were significantly attenuated in ATG5 and ATG7 knockout (KO) cells, both events were enhanced by depletion of the lysophagy receptor VCP (valosin containing protein), supporting a pro-survival function of lysophagy under these conditions. Collectively, our data suggest that pimozide and loperamide-driven autophagy and lipotoxicity synergize to induce LMP and cell death. The results also support the notion that simultaneous overactivation of autophagy and induction of LMP represents a promising approach for the treatment of GBM.Abbreviations: ACD: autophagic cell death; AKT1: AKT serine/threonine kinase 1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG14: autophagy related 14; CERS1: ceramide synthase 1; CTSB: cathepsin B; CYBB/NOX2: cytochrome b-245 beta chain; ER: endoplasmatic reticulum; FBS: fetal bovine serum; GBM: glioblastoma; GO: gene ontology; HTR7/5-HT7: 5-hydroxytryptamine receptor 7; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAP: LC3-associated phagocytosis; LMP: lysosomal membrane permeabilization; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; RB1CC1: RB1 inducible coiled-coil 1; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SMPD1/ASM: sphingomyelin phosphodiesterase 1; VCP/p97: valosin containing protein; WT: wild-type.
Collapse
Affiliation(s)
- Nina Meyer
- Experimental Neurosurgery, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Lisa Henkel
- Experimental Neurosurgery, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Svenja Zielke
- Experimental Cancer Research in Pediatrics, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Simone Fulda
- Experimental Cancer Research in Pediatrics, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Hospital Frankfurt/Main, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
25
|
Quijia CR, Chorilli M. Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytother Res 2021; 36:147-163. [PMID: 34559416 DOI: 10.1002/ptr.7291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Piperine (PIP) is an alkaloid found primarily in Piper longum, and this natural compound has been shown to exert effects on proliferation and survival against various types of cancer. In particular, PIP has potent inhibitory effects on breast cancer (BC), the most prevalent type of cancer in women worldwide. PIP targets numerous signaling pathways associated with the therapy of BC cells through the following mechanisms: (a) induction of arrest of the cell cycle and apoptosis; (b) alteration of the signaling protein expression; (c) reduction in transcription factors; and (d) inhibition of tumor growth. BC cells have the ability to resist conventional drugs, so one of the strategies is the combination of PIP with other phytochemicals such as paclitaxel, thymoquinone, hesperidin, bee venom, tamoxifen, mitoxantrone, piperlongumin, and curcumin. Nanotechnology-based drug encapsulation systems are currently used to enhance the release of PIP. This includes polymer nanoparticles, carbon nanotubes, and liposomes. In the present review, the chemistry and bioavailability of PIP, its molecular targets in BC, and nanotechnological strategies are discussed. Future research directions are also discussed to further understand this promising natural product.
Collapse
Affiliation(s)
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
26
|
Cytotoxic Efficacy and Resistance Mechanism of a TRAIL and VEGFA-Peptide Fusion Protein in Colorectal Cancer Models. Int J Mol Sci 2021; 22:ijms22063160. [PMID: 33808900 PMCID: PMC8003782 DOI: 10.3390/ijms22063160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein capable of selectively inducing apoptosis in cancer cells by binding to its cognate receptors. Here, we examined the anticancer efficacy of a recently developed chimeric AD-O51.4 protein, a TRAIL fused to the VEGFA-originating peptide. We tested AD-O51.4 protein activity against human colorectal cancer (CRC) models and investigated the resistance mechanism in the non-responsive CRC models. The quantitative comparison of apoptotic activity between AD-O51.4 and the native TRAIL in nine human colorectal cancer cell lines revealed dose-dependent toxicity in seven of them; the immunofluorescence-captured receptor abundance correlated with the extent of apoptosis. AD-O51.4 reduced the growth of CRC patient-derived xenografts (PDXs) with good efficacy. Cell lines that acquired AD-O51.4 resistance showed a significant decrease in surface TRAIL receptor expression and apoptosis-related proteins, including Caspase-8, HSP60, and p53. These results demonstrate the effectiveness of AD-O51.4 protein in CRC preclinical models and identify the potential mechanism underlying acquired resistance. Progression of AD-O51.4 to clinical trials is expected.
Collapse
|
27
|
McCann C, Matveeva A, McAllister K, Van Schaeybroeck S, Sessler T, Fichtner M, Carberry S, Rehm M, Prehn JHM, Longley DB. Development of a protein signature to enable clinical positioning of IAP inhibitors in colorectal cancer. FEBS J 2021; 288:5374-5388. [PMID: 33660894 DOI: 10.1111/febs.15801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Resistance to chemotherapy-induced cell death is a major barrier to effective treatment of solid tumours such as colorectal cancer, CRC. Herein, we present a study aimed at developing a proteomics-based predictor of response to standard-of-care (SoC) chemotherapy in combination with antagonists of IAPs (inhibitors of apoptosis proteins), which have been implicated as mediators of drug resistance in CRC. We quantified the absolute expression of 19 key apoptotic proteins at baseline in a panel of 12 CRC cell lines representative of the genetic diversity seen in this disease to identify which proteins promote resistance or sensitivity to a model IAP antagonist [birinapant (Bir)] alone and in combination with SoC chemotherapy (5FU plus oxaliplatin). Quantitative western blotting demonstrated heterogeneous expression of IAP interactome proteins across the CRC cell line panel, and cell death analyses revealed a widely varied response to Bir/chemotherapy combinations. Baseline protein expression of cIAP1, caspase-8 and RIPK1 expression robustly correlated with response to Bir/chemotherapy combinations. Classifying cell lines into 'responsive', 'intermediate' and 'resistant' groups and using linear discriminant analysis (LDA) enabled the identification of a 12-protein signature that separated responders to Bir/chemotherapy combinations in the CRC cell line panel with 100% accuracy. Moreover, the LDA model was able to predict response accurately when cells were cocultured with Tumour necrosis factor-alpha to mimic a pro-inflammatory tumour microenvironment. Thus, our study provides the starting point for a proteomics-based companion diagnostic that predicts response to IAP antagonist/SoC chemotherapy combinations in CRC.
Collapse
Affiliation(s)
- Christopher McCann
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Anna Matveeva
- Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | - Tamas Sessler
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Michael Fichtner
- Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Steven Carberry
- Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Daniel B Longley
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| |
Collapse
|
28
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
29
|
Cancer cell death strategies by targeting Bcl-2's BH4 domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118983. [PMID: 33549704 DOI: 10.1016/j.bbamcr.2021.118983] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
The Bcl-2-family proteins have long been known for their role as key regulators of apoptosis. Overexpression of various members of the family is associated with oncogenesis. Its founding member, anti-apoptotic Bcl-2 regulates cell death at different levels, whereby Bcl-2 emerged as a major drug target to eradicate cancers through cell death. This resulted in the development of venetoclax, a Bcl-2 antagonist that acts as a BH3 mimetic. Venetoclax already entered the clinic to treat relapse chronic lymphocytic leukemia patients. Here, we discuss the role of Bcl-2 as a decision-maker in cell death with focus on the recent advances in anti-cancer therapeutics that target the BH4 domain of Bcl-2, thereby interfering with non-canonical functions of Bcl-2 in Ca2+-signaling modulation. In particular, we critically discuss previously developed tools, including the peptide BIRD-2 (Bcl-2/IP3R-disrupter-2) and the small molecule BDA-366. In addition, we present a preliminary analysis of two recently identified molecules that emerged from a molecular modeling approach to target Bcl-2's BH4 domain, which however failed to induce cell death in two Bcl-2-dependent diffuse large B-cell lymphoma cell models. Overall, antagonizing the non-canonical functions of Bcl-2 by interfering with its BH4-domain biology holds promise to elicit cell death in cancer, though improved tools and on-target antagonizing small molecules remain necessary and ought to be designed.
Collapse
|
30
|
Protective Effect of Ferulic Acid against Hydrogen Peroxide Induced Apoptosis in PC12 Cells. Molecules 2020; 26:molecules26010090. [PMID: 33379243 PMCID: PMC7795901 DOI: 10.3390/molecules26010090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023] Open
Abstract
Ferulic Acid (FA) is a highly abundant phenolic phytochemical which is present in plant tissues. FA has biological effects on physiological and pathological processes due to its anti-apoptotic and anti-oxidative properties, however, the detailed mechanism(s) of function is poorly understood. We have identified FA as a molecule that inhibits apoptosis induced by hydrogen peroxide (H2O2) or actinomycin D (ActD) in rat pheochromocytoma, PC12 cell. We also found that FA reduces H2O2-induced reactive oxygen species (ROS) production in PC12 cell, thereby acting as an anti-oxidant. Then, we analyzed FA-mediated signaling responses in rat pheochromocytoma, PC12 cells using antibody arrays for phosphokinase and apoptosis related proteins. This FA signaling pathway in PC12 cells includes inactivation of pro-apoptotic proteins, SMAC/Diablo and Bad. In addition, FA attenuates the cell injury by H2O2 through the inhibition of phosphorylation of the extracellular signal-regulated kinase (ERK). Importantly, we find that FA restores expression levels of brain-derived neurotrophic factor (BDNF), a key neuroprotective effector, in H2O2-treated PC12 cells. As a possible mechanism, FA increases BDNF by regulating microRNA-10b expression following H2O2 stimulation. Taken together, FA has broad biological effects as a neuroprotective modulator to regulate the expression of phosphokinases, apoptosis-related proteins and microRNAs against oxidative stress in PC12 cells.
Collapse
|
31
|
Binvignat O, Olloquequi J. Excitotoxicity as a Target Against Neurodegenerative Processes. Curr Pharm Des 2020; 26:1251-1262. [PMID: 31931694 DOI: 10.2174/1381612826666200113162641] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
The global burden of neurodegenerative diseases is alarmingly increasing in parallel to the aging of population. Although the molecular mechanisms leading to neurodegeneration are not completely understood, excitotoxicity, defined as the injury and death of neurons due to excessive or prolonged exposure to excitatory amino acids, has been shown to play a pivotal role. The increased release and/or decreased uptake of glutamate results in dysregulation of neuronal calcium homeostasis, leading to oxidative stress, mitochondrial dysfunctions, disturbances in protein turn-over and neuroinflammation. Despite the anti-excitotoxic drug memantine has shown modest beneficial effects in some patients with dementia, to date, there is no effective treatment capable of halting or curing neurodegenerative diseases such as Alzheimer's disease, Parkinson disease, Huntington's disease or amyotrophic lateral sclerosis. This has led to a growing body of research focusing on understanding the mechanisms associated with the excitotoxic insult and on uncovering potential therapeutic strategies targeting these mechanisms. In the present review, we examine the molecular mechanisms related to excitotoxic cell death. Moreover, we provide a comprehensive and updated state of the art of preclinical and clinical investigations targeting excitotoxic- related mechanisms in order to provide an effective treatment against neurodegeneration.
Collapse
Affiliation(s)
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Talca, Chile
| |
Collapse
|
32
|
Wanandi SI, Limanto A, Yunita E, Syahrani RA, Louisa M, Wibowo AE, Arumsari S. In silico and in vitro studies on the anti-cancer activity of andrographolide targeting survivin in human breast cancer stem cells. PLoS One 2020; 15:e0240020. [PMID: 33211707 PMCID: PMC7676700 DOI: 10.1371/journal.pone.0240020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023] Open
Abstract
Breast cancer stem cells (BCSCs) express high levels of the anti-apoptotic protein, survivin. This study aimed to discover a natural active compound with anti-cancer properties that targeted survivin in human breast cancer stem cells. From the seven examined compounds, andrographolide was selected as a lead compound through in silico molecular docking with survivin, caspase-9, and caspase-3. We found that the affinity between andrographolide and survivin is higher than that with caspase-9 and caspase-3. Human CD24-/CD44+ BCSCs were treated with andrographolide in vitro for 24 hours. The cytotoxic effect of andrographolide on BCSCs was compared to that on human mesenchymal stem cells (MSCs). The expression of survivin, caspase-9, and caspase-3 mRNA was analyzed using qRT-PCR, while Thr34-phosphorylated survivin and total survivin levels were determined using ELISA and Immunoblotting assay. Annexin-V/PI flow cytometry assays were performed to evaluate the apoptotic activity of andrographolide. Our results demonstrate that the CC50 of andrographolide in BCSCs was 0.32mM, whereas there was no cytotoxic effect in MSCs. Moreover, andrographolide decreased survivin and Thr34-phosphorylated survivin, thus inhibiting survivin activation and increasing survivin mRNA in BCSCs. The apoptotic activity of andrographolide was revealed by the increase of caspase-3 mRNA and protein, as well as the increase in both the early and late phases of apoptosis. In conclusion, andrographolide can be considered an anti-cancer compound that targets BCSCs due to its molecular interactions with survivin, caspase-9, and caspase-3, which induce apoptosis. We suggest that the binding of andrographolide to survivin is a critical aspect of the effect of andrographolide.
Collapse
Affiliation(s)
- Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Center for Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Agus Limanto
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Elvira Yunita
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Resda Akhra Syahrani
- Molecular Biology and Proteomic Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Agung Eru Wibowo
- Laboratory for Development of Industrial Agro and Biomedical Technology (LAPTIAB), Agency for the Assessment and Application of Technology (BPPT), Serpong, Tangerang Selatan, Indonesia
| | - Sekar Arumsari
- Molecular Biology and Proteomic Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
33
|
Xiao J, Wu C, He Y, Guo M, Peng Z, Liu Y, Liu L, Dong L, Guo Z, Zhang R, Zhang M. Rice Bran Phenolic Extract Confers Protective Effects against Alcoholic Liver Disease in Mice by Alleviating Mitochondrial Dysfunction via the PGC-1α-TFAM Pathway Mediated by microRNA-494-3p. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12284-12294. [PMID: 33094608 DOI: 10.1021/acs.jafc.0c04539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The initiation and development of alcoholic liver disease (ALD) is mediated, at least partly, by mitochondria dysfunction, which is regulated by PPARγ coactivator-1α (PGC-1α) via mitochondria transcription factor A (TFAM). Then, PGC-1α expression was regulated by several microRNAs. This research investigated the hepatoprotective effects of the rice bran phenolic extract (RBPE) on mice fed with an ethanol-containing diet via the microRNAs-PGC-1α-TFAM signal pathway. RBPE treatment protected against alcoholic liver injury, as indicated by decreased serum aminotransferase activities and hepatic triglyceride accumulation, together with alleviated oxidative stress in serum and the liver. RBPE treatment alleviated ethanol-induced mitochondrial dysfunction through altering the membrane potential, mtDNA content, and respiratory chain complex enzyme activities in mitochondria, resulting in increased hepatic ATP production. Decreased cytoplasmic cytochrome c contents, caspase-3 activity, and Bax/Bcl-2 ratio were detected in the liver of RBPE-treated mice, indicating that the RBPE might inhibit ethanol-induced hepatocellular apoptosis. Furthermore, ethanol-induced decreases in the mRNA and protein expression of PGC-1α and TFAM were remarkably alleviated in RBPE-treated mice. RBPE treatment to ethanol-fed mice could also downregulate the expression of microRNA-494-3p, which regulates PGC-1α expression directly. Therefore, the RBPE might exert protection against ALD by alleviating mitochondrial dysfunction and the resulting hepatocyte apoptosis via the PGC-1α-TFAM signal pathway mediated by microRNA-494-3p.
Collapse
Affiliation(s)
- Juan Xiao
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Chengjunhong Wu
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Yangeng He
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Mengyun Guo
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Ziting Peng
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Yuxin Liu
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Lei Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhiqiang Guo
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
34
|
Craig JE, Miller JN, Rayavarapu RR, Hong Z, Bulut GB, Zhuang W, Sakurada SM, Temirov J, Low JA, Chen T, Pruett-Miller SM, Huang LJS, Potts MB. MEKK3-MEK5-ERK5 signaling promotes mitochondrial degradation. Cell Death Discov 2020; 6:107. [PMID: 33101709 PMCID: PMC7576125 DOI: 10.1038/s41420-020-00342-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are vital organelles that coordinate cellular energy homeostasis and have important roles in cell death. Therefore, the removal of damaged or excessive mitochondria is critical for maintaining proper cellular function. The PINK1-Parkin pathway removes acutely damaged mitochondria through a well-characterized mitophagy pathway, but basal mitochondrial turnover occurs via distinct and less well-understood mechanisms. Here we report that the MEKK3-MEK5-ERK5 kinase cascade is required for mitochondrial degradation in the absence of exogenous damage. We demonstrate that genetic or pharmacological inhibition of the MEKK3-MEK5-ERK5 pathway increases mitochondrial content by reducing lysosome-mediated degradation of mitochondria under basal conditions. We show that the MEKK3-MEK5-ERK5 pathway plays a selective role in basal mitochondrial degradation but is not required for non-selective bulk autophagy, damage-induced mitophagy, or restraint of mitochondrial biogenesis. This illuminates the MEKK3-MEK5-ERK5 pathway as a positive regulator of mitochondrial degradation that acts independently of exogenous mitochondrial stressors.
Collapse
Affiliation(s)
- Jane E Craig
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163 USA
| | - Joseph N Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163 USA
| | - Raju R Rayavarapu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Zhenya Hong
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 USA.,Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gamze B Bulut
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 USA
| | - Wei Zhuang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Jonathan A Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Lily Jun-Shen Huang
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 USA
| | - Malia B Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| |
Collapse
|
35
|
Peptidyl Fluoromethyl Ketones and Their Applications in Medicinal Chemistry. Molecules 2020; 25:molecules25174031. [PMID: 32899354 PMCID: PMC7504820 DOI: 10.3390/molecules25174031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Peptidyl fluoromethyl ketones occupy a pivotal role in the current scenario of synthetic chemistry, thanks to their numerous applications as inhibitors of hydrolytic enzymes. The insertion of one or more fluorine atoms adjacent to a C-terminal ketone moiety greatly modifies the physicochemical properties of the overall substrate, especially by increasing the reactivity of this functionalized carbonyl group toward nucleophiles. The main application of these peptidyl α-fluorinated ketones in medicinal chemistry relies in their ability to strongly and selectively inhibit serine and cysteine proteases. These compounds can be used as probes to study the proteolytic activity of the aforementioned proteases and to elucidate their role in the insurgence and progress on several diseases. Likewise, if the fluorinated methyl ketone moiety is suitably connected to a peptidic backbone, it may confer to the resulting structure an excellent substrate peculiarity and the possibility of being recognized by a specific subclass of human or pathogenic proteases. Therefore, peptidyl fluoromethyl ketones are also currently highly exploited for the target-based design of compounds for the treatment of topical diseases such as various types of cancer and viral infections.
Collapse
|
36
|
Nader M, Khalil B, Kattuah W, Dzimiri N, Bakheet D. Striatin translocates to the cytosol of apoptotic cells and is proteolytically cleaved in a caspase 3-dependent manner. Heliyon 2020; 6:e04990. [PMID: 33005798 PMCID: PMC7509466 DOI: 10.1016/j.heliyon.2020.e04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/11/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022] Open
Abstract
Striatin (STRN) is a multivalent protein holding great therapeutic potentials in view of its interaction with dynamic partners implicated in apoptosis. Although striatin-3 and striatin-4, that share high structural similarities with STRN, have been linked to apoptosis, the dynamics of STRN in apoptotic cells remain unclear. Herein, we report that the amount of STRN (110 kDa) is reduced in apoptotic cells, in response to various chemotherapeutic agents, thereby yielding a major polypeptide fragment at ~65 kDa, and three minor products at lower molecular weights. While STRN siRNA reduced the 65 kDa derivative fragment, the overexpression of a Myc-tagged STRN precipitated a novel fragment that was detected slightly higher than 65 kDa (due to the Myc-DDK tag on the cleaved fragment), confirming the cleavage of STRN during apoptosis. Interestingly, STRN cleavage was abrogated by the general caspase inhibitor Z-VAD.fmk. Cell fractionation revealed that the STRN pool, mainly distributed in the non-cytosolic fragment of naïve cells, translocates to the cytosol where it is proteolytically cleaved during apoptosis. Interestingly, the ectopic expression of caspase 3 in MCF-7 cells (deprived of caspase 3) induced STRN cleavage under apoptotic conditions. Inhibition of caspase 3 (Ac-DEVD-CHO) conferred a dose-dependent protection against the proteolytic cleavage of STRN. Collectively, our data provide cogent proofs that STRN translocates to the cytosol where it undergoes proteolytic cleavage in a caspase 3-dependent manner during apoptosis. Thus, this study projects the cleavage of STRN as a novel marker for apoptosis to serve pharmacological strategies targeting this particular form of cell death.
Collapse
Affiliation(s)
- Moni Nader
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bariaa Khalil
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Wejdan Kattuah
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nduna Dzimiri
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dana Bakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Kochen MA, Lopez CF. A Probabilistic Approach to Explore Signal Execution Mechanisms With Limited Experimental Data. Front Genet 2020; 11:686. [PMID: 32754196 PMCID: PMC7381302 DOI: 10.3389/fgene.2020.00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022] Open
Abstract
Mathematical models of biochemical reaction networks are central to the study of dynamic cellular processes and hypothesis generation that informs experimentation and validation. Unfortunately, model parameters are often not available and sparse experimental data leads to challenges in model calibration and parameter estimation. This can in turn lead to unreliable mechanistic interpretations of experimental data and the generation of poorly conceived hypotheses for experimental validation. To address this challenge, we evaluate whether a Bayesian-inspired probability-based approach, that relies on expected values for quantities of interest calculated from available information regarding the reaction network topology and parameters can be used to qualitatively explore hypothetical biochemical network execution mechanisms in the context of limited available data. We test our approach on a model of extrinsic apoptosis execution to identify preferred signal execution modes across varying conditions. Apoptosis signal processing can take place either through a mitochondria independent (Type I) mode or a mitochondria dependent (Type II) mode. We first show that in silico knockouts, represented by model subnetworks, successfully identify the most likely execution mode for specific concentrations of key molecular regulators. We then show that changes in molecular regulator concentrations alter the overall reaction flux through the network by shifting the primary route of signal flow between the direct caspase and mitochondrial pathways. Our work thus demonstrates that probabilistic approaches can be used to explore the qualitative dynamic behavior of model biochemical systems even with missing or sparse data.
Collapse
Affiliation(s)
- Michael A Kochen
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, United States
| | - Carlos F Lopez
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, United States.,Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
38
|
Isolation, characterization and cytoprotective effects against UV radiation of exopolysaccharide produced from Paenibacillus polymyxa PYQ1. J Biosci Bioeng 2020; 130:283-289. [PMID: 32507385 DOI: 10.1016/j.jbiosc.2020.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
A novel exopolysaccharide (EPS) from Paenibacillus polymyxa PYQ1 was extracted, well purified and characterized. This EPS was homogeneous glucomannan-type polysaccharide with the average molecular weight of 4.38 × 106 Da. Structural characterization indicated that the monosaccharides of EPS were pyranoses connected by β-glycosidic linkages. Furthermore, our results showed the protective benefits of EPS against UVC induced cytotoxicity in HaCaT cells through scavenging excessive reactive oxygen species, mitigating the decrease of mitochondrial membrane potential, improving catalase activity and maintaining membrane integrity. Taken together, this study qualified EPS from P. polymyxa PYQ1 was a promising natural polymer which worth further investigation as a skin-care agent.
Collapse
|
39
|
Jozkowiak M, Skupin-Mrugalska P, Nowicki A, Borys-Wojcik S, Wierzchowski M, Kaczmarek M, Ramlau P, Jodynis-Liebert J, Piotrowska-Kempisty H. The Effect of 4'-hydroxy-3,4,5-trimetoxystilbene, the Metabolite of Resveratrol Analogue DMU-212, on Growth, Cell Cycle and Apoptosis in DLD-1 and LOVO Colon Cancer Cell Lines. Nutrients 2020; 12:nu12051327. [PMID: 32392733 PMCID: PMC7285027 DOI: 10.3390/nu12051327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Resveratrol is a phytoalexin that naturally occurs in grapes, blueberries, cranberries, peanuts and many other plants. Although resveratrol inhibits carcinogenesis in all three stages, its clinical application is restricted due to poor pharmacokinetics. The methylated analogues of resveratrol have been found to have higher bioavailability and cytotoxic activity than that of the prototupe compound. Among the various methoxy derivatives of resveratrol, 3,4,5,4′-tetrametoxystilbene (DMU-212) is suggested to be one of the strongest activators of cytotoxicity and apoptosis. DMU-212 has been shown to exert anti-tumor activity in DLD-1 and LOVO colon cancer cells. Since colorectal cancer is the third most common cause of cancer-related deaths worldwide, the development of new anticancer agents is nowadays of high significance. The aim of the present study was to assess the anticancer activity of 4′-hydroxy-3,4,5-trimetoxystilbene (DMU-281), the metabolite of DMU-212, in DLD-1 and LOVO cell lines. We showed for the first time the cytotoxic activity of DMU-281 triggered via cell cycle arrest at G2/M phase and apoptosis induction accompanied by the activation of caspases-9, -8, -3/7. Furthermore, DMU-281 has been found to change the expression pattern of genes and proteins related to intrinsic as well as extrinsic apoptosis. Since the activation of these pathways of apoptosis is still the most desired strategy in anticancer research, DMU-281 seems to provide a promising approach to the treatment of colon cancer.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Andrzej Nowicki
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Sylwia Borys-Wojcik
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland;
| | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 St., PL-60-780 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 St., PL-61-866 Poznan, Poland;
- Gene Therapy Unit, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary 15 St., PL-61-866 Poznan, Poland
| | - Piotr Ramlau
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
- Correspondence: ; Tel.: +48-61847-07-21
| |
Collapse
|
40
|
Douglas T, Saleh M. Cross-regulation between LUBAC and caspase-1 modulates cell death and inflammation. J Biol Chem 2020; 295:5216-5228. [PMID: 32122970 PMCID: PMC7170516 DOI: 10.1074/jbc.ra119.011622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/12/2020] [Indexed: 11/06/2022] Open
Abstract
The linear ubiquitin assembly complex (LUBAC) is an essential component of the innate and adaptive immune system. Modification of cellular substrates with linear polyubiquitin chains is a key regulatory step in signal transduction that impacts cell death and inflammatory signaling downstream of various innate immunity receptors. Loss-of-function mutations in the LUBAC components HOIP and HOIL-1 yield a systemic autoinflammatory disease in humans, whereas their genetic ablation is embryonically lethal in mice. Deficiency of the LUBAC adaptor protein Sharpin results in a multi-organ inflammatory disease in mice characterized by chronic proliferative dermatitis (cpdm), which is propagated by TNFR1-induced and RIPK1-mediated keratinocyte cell death. We have previously shown that caspase-1 and -11 promoted the dermatitis pathology of cpdm mice and mediated cell death in the skin. Here, we describe a reciprocal regulation of caspase-1 and LUBAC activities in keratinocytes. We show that LUBAC interacted with caspase-1 via HOIP and modified its CARD domain with linear polyubiquitin and that depletion of HOIP or Sharpin resulted in heightened caspase-1 activation and cell death in response to inflammasome activation, unlike what is observed in macrophages. Reciprocally, caspase-1, as well as caspase-8, regulated LUBAC activity by proteolytically processing HOIP at Asp-348 and Asp-387 during the execution of cell death. HOIP processing impeded substrate ubiquitination in the NF-κB pathway and resulted in enhanced apoptosis. These results highlight a regulatory mechanism underlying efficient apoptosis in keratinocytes and provide further evidence of a cross-talk between inflammatory and cell death pathways.
Collapse
Affiliation(s)
- Todd Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Maya Saleh
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3G 0B1, Canada; Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
41
|
Abbas R, Larisch S. Targeting XIAP for Promoting Cancer Cell Death-The Story of ARTS and SMAC. Cells 2020; 9:E663. [PMID: 32182843 PMCID: PMC7140716 DOI: 10.3390/cells9030663] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Inhibitors of apoptosis (IAPs) are a family of proteins that regulate cell death and inflammation. XIAP (X-linked IAP) is the only family member that suppresses apoptosis by directly binding to and inhibiting caspases. On the other hand, cIAPs suppress the activation of the extrinsic apoptotic pathway by preventing the formation of pro-apoptotic signaling complexes. IAPs are negatively regulated by IAP-antagonist proteins such as Smac/Diablo and ARTS. ARTS can promote apoptosis by binding and degrading XIAP via the ubiquitin proteasome-system (UPS). Smac can induce the degradation of cIAPs but not XIAP. Many types of cancer overexpress IAPs, thus enabling tumor cells to evade apoptosis. Therefore, IAPs, and in particular XIAP, have become attractive targets for cancer therapy. In this review, we describe the differences in the mechanisms of action between Smac and ARTS, and we summarize efforts to develop cancer therapies based on mimicking Smac and ARTS. Several Smac-mimetic small molecules are currently under evaluation in clinical trials. Initial efforts to develop ARTS-mimetics resulted in a novel class of compounds, which bind and degrade XIAP but not cIAPs. Smac-mimetics can target tumors with high levels of cIAPs, whereas ARTS-mimetics are expected to be effective for cancers with high levels of XIAP.
Collapse
Affiliation(s)
| | - Sarit Larisch
- Laboratory of Cell Death and Cancer Research, Biology& Human Biology Departments, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel;
| |
Collapse
|
42
|
Future Therapeutic Directions for Smac-Mimetics. Cells 2020; 9:cells9020406. [PMID: 32053868 PMCID: PMC7072318 DOI: 10.3390/cells9020406] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy.
Collapse
|
43
|
Yu H, Yu Y, Zhao Z, Cui L, Hou J, Shi H. Prdx6 is required to protect human corneal epithelial cells against ultraviolet B injury. Eur J Ophthalmol 2019; 31:367-378. [PMID: 31875691 DOI: 10.1177/1120672119896426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The protective role of Prdx6 on rat corneal tissue against ultraviolet B injury in vivo has been confirmed previously. We further investigated the function and molecular mechanism of Prdx6 in human corneal epithelial cells under ultraviolet B radiation. METHODS The experimental groups were designed as follows: (1) Prdx6 RNAi, (2) Prdx6 RNAi + ultraviolet B radiation, (3) normal human corneal epithelial cells, (4) normal human corneal epithelial cells + ultraviolet B radiation, (5) wild-type Prdx6 overexpression, (6) wild-type Prdx6 overexpression + ultraviolet B radiation, (7) mutant-type Prdx6 overexpression, and (8) mutant-type Prdx6 overexpression + ultraviolet B radiation. The cell survival rate was detected by a Thiazolyl Blue Tetrazolium Bromide assay. Apoptosis, reactive oxygen species, and malondialdehyde were detected with a commercial kit. Gene expression was detected by real-time polymerase chain reaction. RESULTS We found the following results. (1) Compared to normal cells, the survival rates were 32%, 87%, and 58% under ultraviolet B radiation in the Prdx6 interference, wild-type overexpression, and mutant-type overexpression groups, respectively. The survival rates were decreased to 50% at 24 h and 31% at 48 h when the phospholipase A2 activity of Prdx6 was inhibited after ultraviolet B radiation. (2) Apoptosis, reactive oxygen species content, and malondialdehyde levels were increased when Prdx6 was downregulated. This phenomenon became more severe under ultraviolet B radiation. (3) The expression levels of apoptosis-related and antioxidant genes all changed along with the changes in expression of Prdx6. CONCLUSION (1) Both peroxidase and phospholipase A2 activities of Prdx6 are crucial for its protective role in corneal tissue. (2) Downregulated expression of Prdx6 resulted in high endoplasmic reticulum stress. (3) Apoptosis in human corneal epithelial cells with downregulated Prdx6 coupled with ultraviolet B radiation was related to the pathways of DNA damage and the death receptor. (4) Low levels of antioxidants are sufficient for maintaining homeostasis in human corneal epithelial cells without external stimuli. Under the condition that Prdx6 was downregulated, human corneal epithelial cells were more sensitive to ultraviolet B radiation.
Collapse
Affiliation(s)
- Huajun Yu
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, P.R. China
| | - Yonghong Yu
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, P.R. China
| | - Zhenjun Zhao
- College of Life Science, Yantai University, Yantai, P.R. China
| | - Longbo Cui
- College of Life Science, Yantai University, Yantai, P.R. China
| | - Jianhai Hou
- College of Life Science, Yantai University, Yantai, P.R. China
| | - Hui Shi
- College of Life Science, Yantai University, Yantai, P.R. China
| |
Collapse
|
44
|
Huang YH, Yeh CT. Functional Compartmentalization of HSP60-Survivin Interaction between Mitochondria and Cytosol in Cancer Cells. Cells 2019; 9:cells9010023. [PMID: 31861751 PMCID: PMC7016642 DOI: 10.3390/cells9010023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Heat shock protein 60 (HSP60) and survivin reside in both the cytosolic and mitochondrial compartments under physiological conditions. They can form HSP60-survivin complexes through protein–protein interactions. Their expression levels in cancer tissues are positively correlated and higher expression of either protein is associated with poor clinical prognosis. The subcellular location of HSP60-survivin complex in either the cytosol or mitochondria is cell type-dependent, while the biological significance of HSP60-survivin interaction remains elusive. Current knowledge indicates that the function of HSP60 partly rests on where HSP60-survivin interaction takes place. HSP60 has a pro-survival function when binding to survivin in the mitochondria through interacting with other factors such as CCAR2 and p53. In response to cell death signals, mitochondrial survivin functions through preventing procaspase activation. Degradation of cytosolic survivin leads to the loss of mitochondrial membrane potential and aberrant mitosis processes. On the other hand, HSP60 release from mitochondria to cytosol upon death stimuli might exert a pro-death function, either through stabilizing Bax, enhancing procaspase-3 activation, or increasing protein ubiquitination. Combining the knowledge of mitochondrial HSP60-survivin complex function, cytosolic survivin degradation effect, and pro-death function upon mitochondria release of HSP60, a hypothetical scenario for HSP60-survivin shuttling upon death stimuli is proposed.
Collapse
|
45
|
Rogers C, Alnemri ES. Gasdermins in Apoptosis: New players in an Old Game. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:603-617. [PMID: 31866776 PMCID: PMC6913812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apoptosis is a form of programmed cell death (PCD) that plays critical physiological roles in removing superfluous or dangerous cell populations that are unneeded or threatening to the health of the host organism. Although the molecular pathways leading to activation of the apoptotic program have been extensively studied and characterized starting in the 1970s, new evidence suggests that members of the gasdermin superfamily are novel pore-forming proteins that augment apoptosis by permeabilizing the mitochondria and participate in the final stages of the apoptotic program by inducing secondary necrosis/pyroptosis. These findings may explain outstanding questions in the field such as why certain gasdermin members sensitize cells to apoptosis, and why some apoptotic cells also show morphological features of necrosis. Furthermore, the interplay between the gasdermins and apoptosis may also explain why genetic and epigenetic alterations in these genes cause diseases and disorders like cancer and hearing loss. This review focuses on our current understanding of the function of several gasdermin superfamily members, their role in apoptosis, and how they may contribute to pathophysiological conditions.
Collapse
Affiliation(s)
- Corey Rogers
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Emad S. Alnemri
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
46
|
|
47
|
Bae Y, Lee YH, Ko KS, Han J, Choi JS. Smac Gene Delivery by the Glycol Chitosan with Low Molecular Weight Polyethylenimine Induces Apoptosis of Cancer Cells for Combination Therapy with Etoposide. Macromol Res 2019. [DOI: 10.1007/s13233-019-7130-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Agarwal RG, Sharma P, Nyati KK. microRNAs in Mycobacterial Infection: Modulation of Host Immune Response and Apoptotic Pathways. Immune Netw 2019; 19:e30. [PMID: 31720041 PMCID: PMC6829074 DOI: 10.4110/in.2019.19.e30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023] Open
Abstract
Our current knowledge of mycobacterial infections in humans has progressively increased over the past few decades. The infection of Mycobacterium tuberculosis causes tuberculosis (TB) disease, which has reasoned for excessive morbidity and mortality worldwide, and has become a foremost issue of health problem globally. Mycobacterium leprae, another member of the family Mycobacteriaceae, is responsible for causing a chronic disease known as leprosy that mainly affects mucosa of the upper respiratory tract, skin, peripheral nerves, and eyes. Ample amount of existing data suggests that pathogenic mycobacteria have skilled in utilizing different mechanisms to escape or offset the host immune responses. They hijack the machinery of immune cells through the modulation of microRNAs (miRs), which regulate gene expression and immune responses of the host. Evidence shows that miRs have now gained considerable attention in the research, owing to their involvement in a broad range of inflammatory processes that are further implicated in the pathogenesis of several diseases. However, the knowledge of functions of miRs during mycobacterial infections remains limited. This review summarises recent findings of differential expression of miRs, which are used to good advantage by mycobacteria in offsetting host immune responses generated against them.
Collapse
Affiliation(s)
- Riddhi Girdhar Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Kishan Kumar Nyati
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| |
Collapse
|
49
|
Vringer E, Tait SWG. Mitochondria and Inflammation: Cell Death Heats Up. Front Cell Dev Biol 2019; 7:100. [PMID: 31316979 PMCID: PMC6610339 DOI: 10.3389/fcell.2019.00100] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/23/2019] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is essential to initiate mitochondrial apoptosis. Due to the disruption of mitochondrial outer membrane integrity, intermembrane space proteins, notably cytochrome c, are released into the cytosol whereupon they activate caspase proteases and apoptosis. Beyond its well-established apoptotic role, MOMP has recently been shown to display potent pro-inflammatory effects. These include mitochondrial DNA dependent activation of cGAS-STING signaling leading to a type I interferon response. Secondly, via an IAP-regulated mechanism, MOMP can engage pro-inflammatory NF-κB signaling. During cell death, apoptotic caspase activity inhibits mitochondrial dependent inflammation. Importantly, by engaging an immunogenic form of cell death, inhibiting caspase function can effectively inhibit tumorigenesis. Unexpectedly, these studies reveal mitochondria as inflammatory signaling hubs during cell death and demonstrate its potential for therapeutic exploitation.
Collapse
Affiliation(s)
- Esmee Vringer
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stephen W G Tait
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
50
|
Alexandrou S, George SM, Ormandy CJ, Lim E, Oakes SR, Caldon CE. The Proliferative and Apoptotic Landscape of Basal-like Breast Cancer. Int J Mol Sci 2019; 20:ijms20030667. [PMID: 30720718 PMCID: PMC6387372 DOI: 10.3390/ijms20030667] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Basal-like breast cancer (BLBC) is an aggressive molecular subtype that represents up to 15% of breast cancers. It occurs in younger patients, and typically shows rapid development of locoregional and distant metastasis, resulting in a relatively high mortality rate. Its defining features are that it is positive for basal cytokeratins and, epidermal growth factor receptor and/or c-Kit. Problematically, it is typically negative for the estrogen receptor and human epidermal growth factor receptor 2 (HER2), which means that it is unsuitable for either hormone therapy or targeted HER2 therapy. As a result, there are few therapeutic options for BLBC, and a major priority is to define molecular subgroups of BLBC that could be targeted therapeutically. In this review, we focus on the highly proliferative and anti-apoptotic phenotype of BLBC with the goal of defining potential therapeutic avenues, which could take advantage of these aspects of tumor development.
Collapse
Affiliation(s)
- Sarah Alexandrou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
| | - Sandra Marie George
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
| | - Christopher John Ormandy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| | - Elgene Lim
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| | - Samantha Richelle Oakes
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| | - C Elizabeth Caldon
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, 2052 Sydney, Australia.
| |
Collapse
|