1
|
Didaran F, Kordrostami M, Ghasemi-Soloklui AA, Pashkovskiy P, Kreslavski V, Kuznetsov V, Allakhverdiev SI. The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113004. [PMID: 39137703 DOI: 10.1016/j.jphotobiol.2024.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO2 fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.
Collapse
Affiliation(s)
- Fardad Didaran
- Department of Horticulture, Aburaihan Campus, University of Tehran, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Pavel Pashkovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir Kuznetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Suleyman I Allakhverdiev
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| |
Collapse
|
2
|
Hoh D, Froehlich JE, Kramer DM. Redox regulation in chloroplast thylakoid lumen: The pmf changes everything, again. PLANT, CELL & ENVIRONMENT 2024; 47:2749-2765. [PMID: 38111217 DOI: 10.1111/pce.14789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Photosynthesis is the foundation of life on Earth. However, if not well regulated, it can also generate excessive reactive oxygen species (ROS), which can cause photodamage. Regulation of photosynthesis is highly dynamic, responding to both environmental and metabolic cues, and occurs at many levels, from light capture to energy storage and metabolic processes. One general mechanism of regulation involves the reversible oxidation and reduction of protein thiol groups, which can affect the activity of enzymes and the stability of proteins. Such redox regulation has been well studied in stromal enzymes, but more recently, evidence has emerged of redox control of thylakoid lumenal enzymes. This review/hypothesis paper summarizes the latest research and discusses several open questions and challenges to achieving effective redox control in the lumen, focusing on the distinct environments and regulatory components of the thylakoid lumen, including the need to transport electrons across the thylakoid membrane, the effects of pH changes by the proton motive force (pmf) in the stromal and lumenal compartments, and the observed differences in redox states. These constraints suggest that activated oxygen species are likely to be major regulatory contributors to lumenal thiol redox regulation, with key components and processes yet to be discovered.
Collapse
Affiliation(s)
- Donghee Hoh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - John E Froehlich
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Li A, You T, Pang X, Wang Y, Tian L, Li X, Liu Z. Structural basis for an early stage of the photosystem II repair cycle in Chlamydomonas reinhardtii. Nat Commun 2024; 15:5211. [PMID: 38890314 PMCID: PMC11189392 DOI: 10.1038/s41467-024-49532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive. Here, we report biochemical and structural features of a PSII-repair intermediate complex, likely arrested at an early stage of the PSII repair process in the green alga Chlamydomonas reinhardtii. The complex contains three protein factors associated with a damaged PSII core, namely Thylakoid Enriched Factor 14 (TEF14), Photosystem II Repair Factor 1 (PRF1), and Photosystem II Repair Factor 2 (PRF2). TEF14, PRF1 and PRF2 may facilitate the release of the manganese-stabilizing protein PsbO, disassembly of peripheral light-harvesting complexes from PSII and blockage of the QB site, respectively. Moreover, an α-tocopherol quinone molecule is located adjacent to the heme group of cytochrome b559, potentially fulfilling a photoprotective role by preventing the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Anjie Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tingting You
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Xiaojie Pang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yidi Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lijin Tian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Zhenfeng Liu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
4
|
Mehra HS, Wang X, Russell BP, Kulkarni N, Ferrari N, Larson B, Vinyard DJ. Assembly and Repair of Photosystem II in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:811. [PMID: 38592843 PMCID: PMC10975043 DOI: 10.3390/plants13060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Oxygenic photosynthetic organisms use Photosystem II (PSII) to oxidize water and reduce plastoquinone. Here, we review the mechanisms by which PSII is assembled and turned over in the model green alga Chlamydomonas reinhardtii. This species has been used to make key discoveries in PSII research due to its metabolic flexibility and amenability to genetic approaches. PSII subunits originate from both nuclear and chloroplastic gene products in Chlamydomonas. Nuclear-encoded PSII subunits are transported into the chloroplast and chloroplast-encoded PSII subunits are translated by a coordinated mechanism. Active PSII dimers are built from discrete reaction center complexes in a process facilitated by assembly factors. The phosphorylation of core subunits affects supercomplex formation and localization within the thylakoid network. Proteolysis primarily targets the D1 subunit, which when replaced, allows PSII to be reactivated and completes a repair cycle. While PSII has been extensively studied using Chlamydomonas as a model species, important questions remain about its assembly and repair which are presented here.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David J. Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (H.S.M.); (X.W.); (B.P.R.); (N.K.); (N.F.); (B.L.)
| |
Collapse
|
5
|
Wang Y, Coyne KJ. Molecular Insights into the Synergistic Effects of Putrescine and Ammonium on Dinoflagellates. Int J Mol Sci 2024; 25:1306. [PMID: 38279308 PMCID: PMC10816187 DOI: 10.3390/ijms25021306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Ammonium and polyamines are essential nitrogen metabolites in all living organisms. Crosstalk between ammonium and polyamines through their metabolic pathways has been demonstrated in plants and animals, while no research has been directed to explore this relationship in algae or to investigate the underlying molecular mechanisms. Previous research demonstrated that high concentrations of ammonium and putrescine were among the active substances in bacteria-derived algicide targeting dinoflagellates, suggesting that the biochemical inter-connection and/or interaction of these nitrogen compounds play an essential role in controlling these ecologically important algal species. In this research, putrescine, ammonium, or a combination of putrescine and ammonium was added to cultures of three dinoflagellate species to explore their effects. The results demonstrated the dose-dependent and species-specific synergistic effects of putrescine and ammonium on these species. To further explore the molecular mechanisms behind the synergistic effects, transcriptome analysis was conducted on dinoflagellate Karlodinium veneficum treated with putrescine or ammonium vs. a combination of putrescine and ammonium. The results suggested that the synergistic effects of putrescine and ammonium disrupted polyamine homeostasis and reduced ammonium tolerance, which may have contributed to the cell death of K. veneficum. There was also transcriptomic evidence of damage to chloroplasts and impaired photosynthesis of K. veneficum. This research illustrates the molecular mechanisms underlying the synergistic effects of the major nitrogen metabolites, ammonium and putrescine, in dinoflagellates and provides direction for future studies on polyamine biology in algal species.
Collapse
Affiliation(s)
| | - Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE 19958, USA;
| |
Collapse
|
6
|
Su J, Jiao Q, Jia T, Hu X. The photosystem-II repair cycle: updates and open questions. PLANTA 2023; 259:20. [PMID: 38091081 DOI: 10.1007/s00425-023-04295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION The photosystem-II (PSII) repair cycle is essential for the maintenance of photosynthesis in plants. A number of novel findings have illuminated the regulatory mechanisms of the PSII repair cycle. Photosystem II (PSII) is a large pigment-protein complex embedded in the thylakoid membrane. It plays a vital role in photosynthesis by absorbing light energy, splitting water, releasing molecular oxygen, and transferring electrons for plastoquinone reduction. However, PSII, especially the PsbA (D1) core subunit, is highly susceptible to oxidative damage. To prevent irreversible damage, plants have developed a repair cycle. The main objective of the PSII repair cycle is the degradation of photodamaged D1 and insertion of newly synthesized D1 into the PSII complex. While many factors are known to be involved in PSII repair, the exact mechanism is still under investigation. In this review, we discuss the primary steps of PSII repair, focusing on the proteolytic degradation of photodamaged D1 and the factors involved.
Collapse
Affiliation(s)
- Jinling Su
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Liu F, Li G, Li H. Downregulated expression of TaDeg7 inhibits photosynthetic activity in bread wheat ( Triticum aestivum L.). PHOTOSYNTHETICA 2023; 61:97-107. [PMID: 39650130 PMCID: PMC11515814 DOI: 10.32615/ps.2023.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/14/2023] [Indexed: 12/11/2024]
Abstract
Deg proteases play critical roles in photoprotection and PSII-repair circle, which remains elusive in cereal crops including wheat. Here, a Deg7-encoding gene TaDeg7 was silenced in wheat via a Barley stripe mosaic virus-induced gene-silencing system (BSMV-VIGS). When the expression level of TaDeg7 was downregulated, the photosynthetic activity including CO2 assimilation rate, actual photochemical efficiency of PSII, and electron transport rate declined while the nonphotochemical quenching increased significantly. When grown in high light, the BSMV:TaDeg7 plants accumulated more soluble sugar, malondialdehyde, and superoxide anion but had lower superoxide dismutase activity and less ascorbic acid. Additionally, the expression levels of TaPsbA and TarbcS were repressed in the BSMV:TaDeg7 plants in high light. The BSMV:TaDeg7 plants also were more sensitive to high-light stress. Collectively, it appeared that TaDeg7 may be a potential target for wheat radiation-use efficiency improvement against high light stress.
Collapse
Affiliation(s)
- F.F. Liu
- College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - G.P. Li
- College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - H.W. Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
8
|
Calderon RH, de Vitry C, Wollman FA, Niyogi KK. Rubredoxin 1 promotes the proper folding of D1 and is not required for heme b 559 assembly in Chlamydomonas photosystem II. J Biol Chem 2023; 299:102968. [PMID: 36736898 PMCID: PMC9986647 DOI: 10.1016/j.jbc.2023.102968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Photosystem II (PSII), the water:plastoquinone oxidoreductase of oxygenic photosynthesis, contains a heme b559 iron whose axial ligands are provided by histidine residues from the α (PsbE) and β (PsbF) subunits. PSII assembly depends on accessory proteins that facilitate the step-wise association of its protein and pigment components into a functional complex, a process that is challenging to study due to the low accumulation of assembly intermediates. Here, we examined the putative role of the iron[1Fe-0S]-containing protein rubredoxin 1 (RBD1) as an assembly factor for cytochrome b559, using the RBD1-lacking 2pac mutant from Chlamydomonas reinhardtii, in which the accumulation of PSII was rescued by the inactivation of the thylakoid membrane FtsH protease. To this end, we constructed the double mutant 2pac ftsh1-1, which harbored PSII dimers that sustained its photoautotrophic growth. We purified PSII from the 2pac ftsh1-1 background and found that α and β cytochrome b559 subunits are still present and coordinate heme b559 as in the WT. Interestingly, immunoblot analysis of dark- and low light-grown 2pac ftsh1-1 showed the accumulation of a 23-kDa fragment of the D1 protein, a marker typically associated with structural changes resulting from photodamage of PSII. Its cleavage occurs in the vicinity of a nonheme iron which binds to PSII on its electron acceptor side. Altogether, our findings demonstrate that RBD1 is not required for heme b559 assembly and point to a role for RBD1 in promoting the proper folding of D1, possibly via delivery or reduction of the nonheme iron during PSII assembly.
Collapse
Affiliation(s)
- Robert H Calderon
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| |
Collapse
|
9
|
Sakuraba Y. Molecular basis of nitrogen starvation-induced leaf senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:1013304. [PMID: 36212285 PMCID: PMC9538721 DOI: 10.3389/fpls.2022.1013304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N), a macronutrient, is often a limiting factor in plant growth, development, and productivity. To adapt to N-deficient environments, plants have developed elaborate N starvation responses. Under N-deficient conditions, older leaves exhibit yellowing, owing to the degradation of proteins and chlorophyll pigments in chloroplasts and subsequent N remobilization from older leaves to younger leaves and developing organs to sustain plant growth and productivity. In recent years, numerous studies have been conducted on N starvation-induced leaf senescence as one of the representative plant responses to N deficiency, revealing that leaf senescence induced by N deficiency is highly complex and intricately regulated at different levels, including transcriptional, post-transcriptional, post-translational and metabolic levels, by multiple genes and proteins. This review summarizes the current knowledge of the molecular mechanisms associated with N starvation-induced leaf senescence.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Poór P, Nawaz K, Gupta R, Ashfaque F, Khan MIR. Ethylene involvement in the regulation of heat stress tolerance in plants. PLANT CELL REPORTS 2022; 41:675-698. [PMID: 33713206 DOI: 10.1007/s00299-021-02675-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/14/2021] [Indexed: 05/12/2023]
Abstract
Because of the rise in global temperature, heat stress has become a major concern for crop production. Heat stress deteriorates plant productivity and alters phenological and physiological responses that aid in precise monitoring and sensing of mild-to-severe transient heat stress. Plants have evolved several sophisticated mechanisms including hormone-signaling pathways to sense heat stimuli and acquire heat stress tolerance. In response to heat stress, ethylene, a gaseous hormone, is produced which is indispensable for plant growth and development and tolerance to various abiotic stresses including heat stress. The manipulation of ethylene in developing heat stress tolerance targeting ethylene biosynthesis and signaling pathways has brought promising out comes. Conversely increased ethylene biosynthesis and signaling seem to exhibit inhibitory effects in plant growth responses from primitive to maturity stages. This review mainly focuses on the recent studies of ethylene involvement in plant responses to heat stress and its functional regulation, and molecular mechanism underlying the plant responses in the mitigation of heat-induced damages. Furthermore, this review also describes the crosstalk between ethylene and other signaling molecules under heat stress and approaches to improve heat stress tolerance in plants.
Collapse
Affiliation(s)
- Peter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Kashif Nawaz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Farha Ashfaque
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
11
|
Jagodzik P, Jackowski G. Chloroplast protease/chaperone AtDeg2 holds γ 1 subunit of ATP synthase in an unaggregated state under high irradiance conditions in Arabidopsis thaliana. PHOTOSYNTHETICA 2022; 60:212-218. [PMID: 39650758 PMCID: PMC11558513 DOI: 10.32615/ps.2022.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2024]
Abstract
Little data on the role played in vivo by chloroplast protein AtDeg2 as a chaperone is available. Therefore, we sought for chloroplast proteins protected from high irradiance-induced interprotein aggregation via disulphide bridges by AtDeg2 acting as a holdase. To reach this goal, we performed analyses which involved comparative diagonal electrophoreses of lysates of chloroplasts isolated from wild type (WT) plants and transgenic plants 35S:AtDEG2ΔPDZ1-GFP which expressed AtDeg2 lacking its chaperone activity but retaining the protease activity. The results of the analyses indicate that AtDeg2 acting as a holdase prevents a single chloroplast protein, i.e., the γ1 subunit of ATP synthase from long-term high irradiance-induced homodimerization mediated by disuplhide bridges and this allows us to better understand a complexity of physiological significance of AtDeg2 - the chloroplast protein of dual protease/chaperone activity.
Collapse
Affiliation(s)
- P. Jagodzik
- Department of Plant Physiology, Institute of Experimental Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - G. Jackowski
- Department of Plant Physiology, Institute of Experimental Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
12
|
Lande NV, Barua P, Gayen D, Wardhan V, Jeevaraj T, Kumar S, Chakraborty S, Chakraborty N. Dehydration-responsive chickpea chloroplast protein, CaPDZ1, confers dehydration tolerance by improving photosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13613. [PMID: 35199362 DOI: 10.1111/ppl.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 05/27/2023]
Abstract
The screening of a dehydration-responsive chloroplast proteome of chickpea led us to identify and investigate the functional importance of an uncharacterized protein, designated CaPDZ1. In all, we identified 14 CaPDZs, and phylogenetic analysis revealed that these belong to photosynthetic eukaryotes. Sequence analyses of CaPDZs indicated that CaPDZ1 is a unique member, which harbours a TPR domain besides a PDZ domain. The global expression analysis showed that CaPDZs are intimately associated with various stresses such as dehydration and oxidative stress along with certain phytohormone responses. The CaPDZ1-overexpressing chickpea seedlings exhibited distinct phenotypic and molecular responses, particularly increased photosystem (PS) efficiency, ETR and qP that validated its participation in PSII complex assembly and/or repair. The investigation of CaPDZ1 interacting proteins through Y2H library screening and co-IP analysis revealed the interacting partners to be PSII associated CP43, CP47, D1, D2 and STN8. These findings supported the earlier hypothesis regarding the role of direct or indirect involvement of PDZ proteins in PS assembly or repair. Moreover, the GUS-promoter analysis demonstrated the preferential expression of CaPDZ1 specifically in photosynthetic tissues. We classified CaPDZ1 as a dehydration-responsive chloroplast intrinsic protein with multi-fold abundance under dehydration stress, which may participate synergistically with other chloroplast proteins in the maintenance of the photosystem.
Collapse
Affiliation(s)
- Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Vijay Wardhan
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Theboral Jeevaraj
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| |
Collapse
|
13
|
Wen X, Yang Z, Ding S, Yang H, Zhang L, Lu C, Lu Q. Analysis of the changes of electron transfer and heterogeneity of photosystem II in Deg1-reduced Arabidopsis plants. PHOTOSYNTHESIS RESEARCH 2021; 150:159-177. [PMID: 33993381 DOI: 10.1007/s11120-021-00842-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/04/2021] [Indexed: 05/07/2023]
Abstract
Deg1 protease functions in protease and chaperone of PSII complex components, but few works were performed to study the effects of Deg1 on electron transport activities on the donor and acceptor side of PSII and its correlation with the photoprotection of PSII during photoinhibition. Therefore, we performed systematic and comprehensive investigations of electron transfers on the donor and acceptor sides of photosystem II (PSII) in the Deg1-reduced transgenic lines deg1-2 and deg1-4. Both the maximal quantum efficiency of PSII photochemistry (Fv/Fm) and the actual PSII efficiency (ΦPSII) decreased significantly in the transgenic plants. Increases in nonphotochemical quenching (NPQ) and the dissipated energy flux per reaction center (DI0/RC) were also shown in the transgenic plants. Along with the decreased D1, CP47, and CP43 content, these results suggested photoinhibition under growth light conditions in transgenic plants. Decreased Deg1 caused inhibition of electron transfer on the PSII reducing side, leading to a decline in the number of QB-reducing centers and accumulation of QB-nonreducing centers. The Tm of the Q band shifted from 5.7 °C in the wild-type plant to 10.4 °C and 14.2 °C in the deg1-2 and deg1-4 plants, respectively, indicating an increase in the stability of S2QA¯ in transgenic plants. PSIIα in the transgenic plants largely reduced, while PSIIβ and PSIIγ increased with the decline in the Deg1 levels in transgenic plants suggesting PSIIα centers gradually converted into PSIIβ and PSIIγ centers in the transgenic plants. Besides, the connectivity of PSIIα and PSIIβ was downregulated in transgenic plants. Our results reveal that downregulation of Deg1 protein levels induced photoinhibition in transgenic plants, leading to loss of PSII activities on both the donor and acceptor sides in transgenic plants. These results give a new insight into the regulation role of Deg1 in PSII electron transport.
Collapse
Affiliation(s)
- Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhipan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shunhua Ding
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
14
|
Sharma P, Gayen D. Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance. PLANT CELL REPORTS 2021; 40:2081-2095. [PMID: 34173047 DOI: 10.1007/s00299-021-02739-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Proteases are ubiquitous in prokaryotes and eukaryotes. Plant proteases are key regulators of various physiological processes, including protein homeostasis, organelle development, senescence, seed germination, protein processing, environmental stress response, and programmed cell death. Proteases are involved in the breakdown of peptide bonds resulting in irreversible posttranslational modification of the protein. Proteases act as signaling molecules that specifically regulate cellular function by cleaving and triggering receptor molecules. Peptides derived from proteolysis regulate ROS signaling under oxidative stress in the plant. It degrades misfolded and abnormal proteins into amino acids to repair the cell damage and regulates the biological process in response to environmental stress. Proteases modulate the biogenesis of phytohormones which control plant growth, development, and environmental stresses. Protein homeostasis, the overall balance between protein synthesis and proteolysis, is required for plant growth and development. Abiotic and biotic stresses are major factors that negatively impact cellular survivability, biomass production, and reduced crop yield potentials. Therefore, the identification of various stress-responsive proteases and their molecular functions may elucidate valuable information for the development of stress-resilient crops with higher yield potentials. However, the understanding of molecular mechanisms of plant protease remains unexplored. This review provides an overview of proteases related to development, signaling, and growth regulation to acclimatize environmental stress in plants.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Dipak Gayen
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
15
|
Zavafer A, Mancilla C. Concepts of photochemical damage of Photosystem II and the role of excessive excitation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Huang S, Zuo T, Ni W. Important roles of glycinebetaine in stabilizing the structure and function of the photosystem II complex under abiotic stresses. PLANTA 2020; 251:36. [PMID: 31903497 DOI: 10.1007/s00425-019-03330-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/14/2019] [Indexed: 05/08/2023]
Abstract
The molecular and physiological mechanisms of glycinebetaine stabilizing photosystem II complex under abiotic stresses are discussed, helping to address food shortage problems threatening the survival of growing population. In the backdrop of climate change, the frequency, dimensions and duration of extreme events have increased sharply, which may have unintended consequences for agricultural. The acclimation of plants to a constantly changing environment involves the accumulation of compatible solutes. Various compatible solutes enable plants to tolerate abiotic stresses, and glycinebetaine (GB) is one of the most-studied. The biosynthesis and accumulation of GB appear in numerous plant species, especially under environmental stresses. The exogenous application of GB and GB-accumulating transgenic plants have been proven to further promote plant development under stresses. Early research on GB focused on the maintenance of osmotic potential in plants. Subsequent experimental evidence demonstrated that it also protects proteins including the photosystem II complex (PSII) from denaturation and deactivation. As reviewed here, multiple experimental evidences have indicated considerable progress in the roles of GB in stabilizing PSII under abiotic stresses. Based on these advances, we've concluded two effects of GB on PSII: (1) it stabilizes the structure of PSII by protecting extrinsic proteins from dissociation or by promoting protein synthesize; (2) it enhances the oxygen-evolving activity of PSII or promotes the repair of the photosynthetic damage of PSII.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Ting Zuo
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Degp degrades a wide range of substrate proteins in Escherichia coli under stress conditions. Biochem J 2019; 476:3549-3564. [DOI: 10.1042/bcj20190446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 11/17/2022]
Abstract
DegP, a periplasmic dual-functional protease and chaperone in Gram-negative bacteria, is critical for bacterial stress resistance, but the precise underlying mechanisms are not fully understood. Here, we show that the protease function of DegP is critical for Escherichia coli cells to maintain membrane integrity, particularly under heat shock conditions (42°C). Site-directed photo-cross-linking, mass spectrometry and immunoblotting analyses reveal that both periplasmic proteins (e.g. OppA and MalE) and β-barrel outer membrane proteins (OMPs) are DegP-interacting proteins and that OppA is degraded by DegP in vitro and in vivo at 42°C. In addition, OmpA and BamA, chimeric β-barrel OMPs containing a soluble periplasmic domain, are bound to DegP in both unfolded and folded forms, whereas only the unfolded forms are degradable by DegP. The presence of folded OmpA as a substrate of DegP is attributed to its periplasmic domain, which is resistant to DegP degradation and even generally protects pure β-barrel OMPs from degradation in an intra-molecular way. Furthermore, a pair of residues (R262 and V328) in the PDZ domain-1 of DegP play important roles for binding unfolded and folded β-barrel OMPs, with R262 being critical. Our study, together with earlier reports, indicates that DegP plays a critical role in protein quality control in the bacterial periplasm by degrading both periplasmic proteins and β-barrel OMPs under stress conditions and likely also by participating in the folding of chimeric β-barrel OMPs. A working model is proposed to illustrate the finely tuned functions of DegP with respect to different substrate proteins.
Collapse
|
18
|
Theis J, Lang J, Spaniol B, Ferté S, Niemeyer J, Sommer F, Zimmer D, Venn B, Mehr SF, Mühlhaus T, Wollman FA, Schroda M. The Chlamydomonas deg1c Mutant Accumulates Proteins Involved in High Light Acclimation. PLANT PHYSIOLOGY 2019; 181:1480-1497. [PMID: 31604811 PMCID: PMC6878023 DOI: 10.1104/pp.19.01052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/27/2019] [Indexed: 05/18/2023]
Abstract
Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent Ser endopeptidases that perform key aspects of protein quality control in all domains of life. Here, we characterized Chlamydomonas reinhardtii DEG1C, which together with DEG1A and DEG1B is orthologous to Arabidopsis (Arabidopsis thaliana) Deg1 in the thylakoid lumen. We show that DEG1C is localized to the stroma and the periphery of thylakoid membranes. Purified DEG1C exhibited high proteolytic activity against unfolded model substrates and its activity increased with temperature and pH. DEG1C forms monomers, trimers, and hexamers that are in dynamic equilibrium. DEG1C protein levels increased upon nitrogen, sulfur, and phosphorus starvation; under heat, oxidative, and high light stress; and when Sec-mediated protein translocation was impaired. DEG1C depletion was not associated with any obvious aberrant phenotypes under nonstress conditions, high light exposure, or heat stress. However, quantitative shotgun proteomics revealed differences in the abundance of 307 proteins between a deg1c knock-out mutant and the wild type under nonstress conditions. Among the 115 upregulated proteins are PSII biogenesis factors, FtsH proteases, and proteins normally involved in high light responses, including the carbon dioxide concentrating mechanism, photorespiration, antioxidant defense, and photoprotection. We propose that the lack of DEG1C activity leads to a physiological state of the cells resembling that induced by high light intensities and therefore triggers high light protection responses.
Collapse
Affiliation(s)
- Jasmine Theis
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Julia Lang
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Benjamin Spaniol
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Suzanne Ferté
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Justus Niemeyer
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - David Zimmer
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Benedikt Venn
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Shima Farazandeh Mehr
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| | - Francis-André Wollman
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, Technische Universität Kaiserslautern, Paul-Ehrlich D-67663 Kaiserslautern, Germany
| |
Collapse
|
19
|
Dogra V, Duan J, Lee KP, Kim C. Impaired PSII proteostasis triggers a UPR-like response in the var2 mutant of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3075-3088. [PMID: 30989223 PMCID: PMC6598079 DOI: 10.1093/jxb/erz151] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2019] [Indexed: 05/18/2023]
Abstract
Cellular protein homeostasis (proteostasis) is maintained through the balance between de novo synthesis and proteolysis. The unfolded/misfolded protein response (UPR) that is triggered by stressed endoplasmic reticulum (ER) also plays an important role in proteostasis in both plants and animals. Although ER-triggered UPR has been extensively studied in plants, the molecular mechanisms underlying mitochondrial and chloroplastic UPRs are largely uncharacterized despite the fact that these organelles are sites of production of harmful reactive oxygen species (ROS), which damage proteins. In this study, we demonstrate that chloroplasts of the Arabidopsis yellow leaf variegation 2 (var2) mutant, which lacks the metalloprotease FtsH2, accumulate damaged chloroplast proteins and trigger a UPR-like response, namely the accumulation of a suite of chloroplast proteins involved in protein quality control (PQC). These PQC proteins include heat-shock proteins, chaperones, proteases, and ROS detoxifiers. Given that FtsH2 functions primarily in photosystem II proteostasis, the accumulation of PQC-related proteins may balance the FtsH2 deficiency. Moreover, the apparent up-regulation of the cognate transcripts indicates that the accumulation of PQC-related proteins in var2 is probably mediated by retrograde signaling, indicating the occurrence of a UPR-like response in var2.
Collapse
Affiliation(s)
- Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianli Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Correspondence:
| |
Collapse
|
20
|
Protein Changes in Response to Lead Stress of Lead-Tolerant and Lead-Sensitive Industrial Hemp Using SWATH Technology. Genes (Basel) 2019; 10:genes10050396. [PMID: 31121980 PMCID: PMC6562531 DOI: 10.3390/genes10050396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 11/17/2022] Open
Abstract
Hemp is a Pb-tolerant and Pb-accumulating plant and the study of its tolerance mechanisms could facilitate the breeding of hemp with enhanced Pb tolerance and accumulation. In the present study, we took advantage of sequential window acquisition of all theoretical mass spectra (SWATH) technology to study the difference in proteomics between the leaves of Pb-tolerant seed-type hemp variety Bamahuoma (BM) and the Pb-sensitive fiber-type hemp variety Yunma 1 (Y1) under Pb stress (3 g/kg soil). A total of 63 and 372 proteins differentially expressed under Pb stress relative to control conditions were identified with liquid chromatography electro spray ionization tandem mass spectrometry in BM and Y1, respectively; with each of these proteins being classified into 14 categories. Hemp adapted to Pb stress by: accelerating adenosine triphosphate (ATP) metabolism; enhancing respiration, light absorption and light energy transfer; promoting assimilation of intercellular nitrogen (N) and carbon (C); eliminating reactive oxygen species; regulating stomatal development and closure; improving exchange of water and CO2 in leaves; promoting intercellular transport; preventing aggregation of unfolded proteins; degrading misfolded proteins; and increasing the transmembrane transport of ATP in chloroplasts. Our results provide an important reference protein and gene information for future molecular studies into the resistance and accumulation of Pb in hemp.
Collapse
|
21
|
Liu J, Lu Y, Hua W, Last RL. A New Light on Photosystem II Maintenance in Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:975. [PMID: 31417592 PMCID: PMC6685048 DOI: 10.3389/fpls.2019.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
Life on earth is sustained by oxygenic photosynthesis, a process that converts solar energy, carbon dioxide, and water into chemical energy and biomass. Sunlight is essential for growth and productivity of photosynthetic organisms. However, exposure to an excessive amount of light adversely affects fitness due to photooxidative damage to the photosynthetic machinery, primarily to the reaction center of the oxygen-evolving photosystem II (PSII). Photosynthetic organisms have evolved diverse photoprotective and adaptive strategies to avoid, alleviate, and repair PSII damage caused by high-irradiance or fluctuating light. Rapid and harmless dissipation of excess absorbed light within antenna as heat, which is measured by chlorophyll fluorescence as non-photochemical quenching (NPQ), constitutes one of the most efficient protective strategies. In parallel, an elaborate repair system represents another efficient strategy to maintain PSII reaction centers in active states. This article reviews both the reaction center-based strategy for robust repair of photodamaged PSII and the antenna-based strategy for swift control of PSII light-harvesting (NPQ). We discuss evolutionarily and mechanistically diverse strategies used by photosynthetic organisms to maintain PSII function for growth and productivity under static high-irradiance light or fluctuating light environments. Knowledge of mechanisms underlying PSII maintenance would facilitate bioengineering photosynthesis to enhance agricultural productivity and sustainability to feed a growing world population amidst climate change.
Collapse
Affiliation(s)
- Jun Liu
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Jun Liu,
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Wei Hua
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Wei Hua
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
Butenko Y, Lin A, Naveh L, Kupervaser M, Levin Y, Reich Z, Adam Z. Differential Roles of the Thylakoid Lumenal Deg Protease Homologs in Chloroplast Proteostasis. PLANT PHYSIOLOGY 2018; 178:1065-1080. [PMID: 30237207 PMCID: PMC6236614 DOI: 10.1104/pp.18.00912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/12/2018] [Indexed: 05/18/2023]
Abstract
Deg proteases are involved in protein quality control in prokaryotes. Of the three Arabidopsis (Arabidopsis thaliana) homologs, Deg1, Deg5, and Deg8, located in the thylakoid lumen, Deg1 forms a homohexamer, whereas Deg5 and Deg8 form a heterocomplex. Both Deg1 and Deg5-Deg8 were shown separately to degrade photosynthetic proteins during photoinhibition. To investigate whether Deg1 and Deg5-Deg8 are redundant, a full set of Arabidopsis Deg knockout mutants were generated and their phenotypes were compared. Under all conditions tested, deg1 mutants were affected more than the wild type and deg5 and deg8 mutants. Moreover, overexpression of Deg5-Deg8 could only partially compensate for the loss of Deg1. Comparative proteomics of deg1 mutants revealed moderate up-regulation of thylakoid proteins involved in photoprotection, assembly, repair, and housekeeping and down-regulation of those that form photosynthetic complexes. Quantification of protein levels in the wild type revealed that Deg1 was 2-fold more abundant than Deg5-Deg8. Moreover, recombinant Deg1 displayed higher in vitro proteolytic activity. Affinity enrichment assays revealed that Deg1 was precipitated with very few interacting proteins, whereas Deg5-Deg8 was associated with a number of thylakoid proteins, including D1, OECs, LHCBs, Cyt b 6 f, and NDH subunits, thus implying that Deg5-Deg8 is capable of binding substrates but is unable to degrade them efficiently. This work suggests that differences in protein abundance and proteolytic activity underlie the differential importance of Deg1 and Deg5-Deg8 protease complexes observed in vivo.
Collapse
Affiliation(s)
- Yana Butenko
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| | - Albina Lin
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| | - Leah Naveh
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| | - Meital Kupervaser
- de Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zach Adam
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| |
Collapse
|
23
|
Fu X, Wang Y, Shao H, Ma J, Song X, Zhang M, Chang Z. DegP functions as a critical protease for bacterial acid resistance. FEBS J 2018; 285:3525-3538. [DOI: 10.1111/febs.14627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 06/03/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Sciences Fujian Normal University Fuzhou City Fujian Province China
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
- Engineering Research Center of Industrial Microbiology of Ministry of Education College of Life Sciences Fujian Normal University Fuzhou City Fujian Province China
| | - Yan Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Sciences Fujian Normal University Fuzhou City Fujian Province China
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
- Engineering Research Center of Industrial Microbiology of Ministry of Education College of Life Sciences Fujian Normal University Fuzhou City Fujian Province China
| | - Heqi Shao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Sciences Fujian Normal University Fuzhou City Fujian Province China
| | - Jing Ma
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| | - Xinwen Song
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| | - Meng Zhang
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| | - Zengyi Chang
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| |
Collapse
|
24
|
Havé M, Balliau T, Cottyn-Boitte B, Dérond E, Cueff G, Soulay F, Lornac A, Reichman P, Dissmeyer N, Avice JC, Gallois P, Rajjou L, Zivy M, Masclaux-Daubresse C. Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1369-1385. [PMID: 29281085 PMCID: PMC6037082 DOI: 10.1093/jxb/erx482] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.
Collapse
Affiliation(s)
- Marien Havé
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | | - Emeline Dérond
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Gwendal Cueff
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | | | - Aurélia Lornac
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Pavel Reichman
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Jean-Christophe Avice
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Patrick Gallois
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Loïc Rajjou
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | |
Collapse
|
25
|
Otegui MS. Vacuolar degradation of chloroplast components: autophagy and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:741-750. [PMID: 28992297 DOI: 10.1093/jxb/erx234] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/10/2017] [Indexed: 05/21/2023]
Abstract
Chloroplast degradation during natural or stress-induced senescence requires the participation of both plastidic and extraplastidic degradative pathways. As part of the extraplastidic pathways, chloroplasts export stroma, envelope, and thylakoid proteins in membrane-bound organelles that are ultimately degraded in vacuoles. Some of these pathways, such as the formation of senescence-associated vacuoles (SAVs) and CV-containing vesicles (CCVs), do not depend on autophagy, whereas delivery of Rubisco-containing bodies (RCBs), ATI1-PS (ATG8-interacting Protein 1) bodies, and small starch-like granule (SSLG) bodies is autophagy dependent. In addition, autophagy of entire chloroplasts delivers damaged chloroplasts into the vacuolar lumen for degradation. This review summarizes the autophagy-dependent and independent trafficking mechanisms by which plant cells degrade chloroplast components in vacuoles.
Collapse
Affiliation(s)
- Marisa S Otegui
- Laboratory of Cell and Molecular Biology and Departments of Botany and Genetics, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
26
|
Kato Y, Sakamoto W. FtsH Protease in the Thylakoid Membrane: Physiological Functions and the Regulation of Protease Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:855. [PMID: 29973948 PMCID: PMC6019477 DOI: 10.3389/fpls.2018.00855] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 05/18/2023]
Abstract
Protein homeostasis in the thylakoid membranes is dependent on protein quality control mechanisms, which are necessary to remove photodamaged and misfolded proteins. An ATP-dependent zinc metalloprotease, FtsH, is the major thylakoid membrane protease. FtsH proteases in the thylakoid membranes of Arabidopsis thaliana form a hetero-hexameric complex consisting of four FtsH subunits, which are divided into two types: type A (FtsH1 and FtsH5) and type B (FtsH2 and FtsH8). An increasing number of studies have identified the critical roles of FtsH in the biogenesis of thylakoid membranes and quality control in the photosystem II repair cycle. Furthermore, the involvement of FtsH proteolysis in a singlet oxygen- and EXECUTER1-dependent retrograde signaling mechanism has been suggested recently. FtsH is also involved in the degradation and assembly of several protein complexes in the photosynthetic electron-transport pathways. In this minireview, we provide an update on the functions of FtsH in thylakoid biogenesis and describe our current understanding of the D1 degradation processes in the photosystem II repair cycle. We also discuss the regulation mechanisms of FtsH protease activity, which suggest the flexible oligomerization capability of FtsH in the chloroplasts of seed plants.
Collapse
|
27
|
Fristedt R, Trotta A, Suorsa M, Nilsson AK, Croce R, Aro EM, Lundin B. PSB33 sustains photosystem II D1 protein under fluctuating light conditions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4281-4293. [PMID: 28922769 PMCID: PMC5853261 DOI: 10.1093/jxb/erx218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/05/2017] [Indexed: 05/24/2023]
Abstract
On Earth, solar irradiance varies as the sun rises and sets over the horizon, and sunlight is thus in constant fluctuation, following a slow dark-low-high-low-dark curve. Optimal plant growth and development are dependent on the capacity of plants to acclimate and regulate photosynthesis in response to these changes of light. Little is known of regulative processes for photosynthesis during nocturnal events. The nucleus-encoded plant lineage-specific protein PSB33 has been described as stabilizing the photosystem II complex, especially under light stress conditions, and plants lacking PSB33 have a dysfunctional state transition. To clarify the localization and function of this protein, we used phenomic, biochemical and proteomics approaches in the model plant Arabidopsis. We report that PSB33 is predominantly located in non-appressed thylakoid regions and dynamically associates with a thylakoid protein complex in a light-dependent manner. Moreover, plants lacking PSB33 show an accelerated D1 protein degradation in nocturnal periods, and show severely stunted growth when challenged with fluctuating light. We further show that the function of PSB33 precedes the STN7 kinase to regulate or balance the excitation energy of photosystems I and II in fluctuating light conditions.
Collapse
Affiliation(s)
- Rikard Fristedt
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Finland
| | - Marjaana Suorsa
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Finland
| | - Anders K Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Finland
| | - Björn Lundin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Salinity Response in Chloroplasts: Insights from Gene Characterization. Int J Mol Sci 2017; 18:ijms18051011. [PMID: 28481319 PMCID: PMC5454924 DOI: 10.3390/ijms18051011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
Salinity is a severe abiotic stress limiting agricultural yield and productivity. Plants have evolved various strategies to cope with salt stress. Chloroplasts are important photosynthesis organelles, which are sensitive to salinity. An understanding of molecular mechanisms in chloroplast tolerance to salinity is of great importance for genetic modification and plant breeding. Previous studies have characterized more than 53 salt-responsive genes encoding important chloroplast-localized proteins, which imply multiple vital pathways in chloroplasts in response to salt stress, such as thylakoid membrane organization, the modulation of photosystem II (PS II) activity, carbon dioxide (CO2) assimilation, photorespiration, reactive oxygen species (ROS) scavenging, osmotic and ion homeostasis, abscisic acid (ABA) biosynthesis and signaling, and gene expression regulation, as well as protein synthesis and turnover. This review presents an overview of salt response in chloroplasts revealed by gene characterization efforts.
Collapse
|
29
|
Pulido P, Llamas E, Rodriguez-Concepcion M. Both Hsp70 chaperone and Clp protease plastidial systems are required for protection against oxidative stress. PLANT SIGNALING & BEHAVIOR 2017; 12:e1290039. [PMID: 28277974 PMCID: PMC5399908 DOI: 10.1080/15592324.2017.1290039] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 05/25/2023]
Abstract
Environmental stress conditions such as high light, extreme temperatures, salinity or drought trigger oxidative stress and eventually protein misfolding in plants. In chloroplasts, chaperone systems refold proteins after stress, while proteases degrade misfolded and aggregated proteins that cannot be refolded. We observed that reduced activity of chloroplast Hsp70 chaperone or Clp protease systems both prevented growth of Arabidopsis thaliana seedlings after treatment with the oxidative agent methyl viologen. Besides showing a role for these particular protein quality control components on the protection against oxidative stress, we provide evidence supporting the existence of a yet undiscovered pathway for Clp-mediated degradation of the damaged proteins.
Collapse
Affiliation(s)
- Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| |
Collapse
|
30
|
Chen Y, Fu X, Mei X, Zhou Y, Cheng S, Zeng L, Dong F, Yang Z. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea ( Camellia sinensis ) leaves. J Proteomics 2017; 157:10-17. [DOI: 10.1016/j.jprot.2017.01.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 01/09/2023]
|
31
|
Nishimura K, Kato Y, Sakamoto W. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments. PLANT PHYSIOLOGY 2016; 171:2280-93. [PMID: 27288365 PMCID: PMC4972267 DOI: 10.1104/pp.16.00330] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 05/08/2023]
Abstract
Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed.
Collapse
Affiliation(s)
- Kenji Nishimura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
32
|
DEG9, a serine protease, modulates cytokinin and light signaling by regulating the level of ARABIDOPSIS RESPONSE REGULATOR 4. Proc Natl Acad Sci U S A 2016; 113:E3568-76. [PMID: 27274065 DOI: 10.1073/pnas.1601724113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytokinin is an essential phytohormone that controls various biological processes in plants. A number of response regulators are known to be important for cytokinin signal transduction. ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4) mediates the cross-talk between light and cytokinin signaling through modulation of the activity of phytochrome B. However, the mechanism that regulates the activity and stability of ARR4 is unknown. Here we identify an ATP-independent serine protease, degradation of periplasmic proteins 9 (DEG9), which localizes to the nucleus and regulates the stability of ARR4. Biochemical evidence shows that DEG9 interacts with ARR4, thereby targeting ARR4 for degradation, which suggests that DEG9 regulates the stability of ARR4. Moreover, genetic evidence shows that DEG9 acts upstream of ARR4 and regulates the activity of ARR4 in cytokinin and light-signaling pathways. This study thus identifies a role for a ubiquitin-independent selective protein proteolysis in the regulation of the stability of plant signaling components.
Collapse
|
33
|
Yoshioka-Nishimura M. Close Relationships Between the PSII Repair Cycle and Thylakoid Membrane Dynamics. PLANT & CELL PHYSIOLOGY 2016; 57:1115-22. [PMID: 27017619 DOI: 10.1093/pcp/pcw050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/26/2016] [Indexed: 05/10/2023]
Abstract
In chloroplasts, a three-dimensional network of thylakoid membranes is formed by stacked grana and interconnecting stroma thylakoids. The grana are crowded with photosynthetic proteins, where PSII-light harvesting complex II (LHCII) supercomplexes often show semi-crystalline arrays for efficient energy trapping, transfer and use. Although light is essential for photosynthesis, PSII is damaged by reactive oxygen species that are generated from primary photochemical reactions when plants are exposed to excess light. Because PSII complexes are embedded in the lipid bilayers of thylakoid membranes, their functions are affected by the conditions of the lipids. Electron paramagnetic resonance (EPR) spin trapping measurements showed that singlet oxygen was formed through peroxidation of thylakoid lipids, suggesting that lipid peroxidation can damage proteins, including the D1 protein. After photodamage, PSII is restored by a specific repair system in thylakoid membranes. In the PSII repair cycle, phosphorylation and dephosphorylation of the PSII proteins control the timing of PSII disassembly and subsequent degradation of the D1 protein. Under light stress, stacked grana turn into unstacked thylakoids with bent grana margins. These structural changes may be closely linked to the mechanisms of the PSII repair cycle because PSII can move more easily from the grana core to the stroma thylakoids through an expanded stromal gap between each thylakoid. Thus, plants modulate the structure of thylakoid membranes under high light to carry out efficient PSII repair. This review focuses on the behavior of the PSII complex and the active role of structural changes to thylakoid membranes under light stress.
Collapse
Affiliation(s)
- Miho Yoshioka-Nishimura
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
34
|
Muranaka LS, Rütgers M, Bujaldon S, Heublein A, Geimer S, Wollman FA, Schroda M. TEF30 Interacts with Photosystem II Monomers and Is Involved in the Repair of Photodamaged Photosystem II in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2016; 170:821-40. [PMID: 26644506 PMCID: PMC4734564 DOI: 10.1104/pp.15.01458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 05/03/2023]
Abstract
The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.
Collapse
Affiliation(s)
- Ligia Segatto Muranaka
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Mark Rütgers
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Sandrine Bujaldon
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Anja Heublein
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Stefan Geimer
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Francis-André Wollman
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Michael Schroda
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| |
Collapse
|
35
|
Pulido P, Llamas E, Llorente B, Ventura S, Wright LP, Rodríguez-Concepción M. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis. PLoS Genet 2016; 12:e1005824. [PMID: 26815787 PMCID: PMC4729485 DOI: 10.1371/journal.pgen.1005824] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023] Open
Abstract
The lifespan and activity of proteins depend on protein quality control systems formed by chaperones and proteases that ensure correct protein folding and prevent the formation of toxic aggregates. We previously found that the Arabidopsis thaliana J-protein J20 delivers inactive (misfolded) forms of the plastidial enzyme deoxyxylulose 5-phosphate synthase (DXS) to the Hsp70 chaperone for either proper folding or degradation. Here we show that the fate of Hsp70-bound DXS depends on pathways involving specific Hsp100 chaperones. Analysis of individual mutants for the four Hsp100 chaperones present in Arabidopsis chloroplasts showed increased levels of DXS proteins (but not transcripts) only in those defective in ClpC1 or ClpB3. However, the accumulated enzyme was active in the clpc1 mutant but inactive in clpb3 plants. Genetic evidence indicated that ClpC chaperones might be required for the unfolding of J20-delivered DXS protein coupled to degradation by the Clp protease. By contrast, biochemical and genetic approaches confirmed that Hsp70 and ClpB3 chaperones interact to collaborate in the refolding and activation of DXS. We conclude that specific J-proteins and Hsp100 chaperones act together with Hsp70 to recognize and deliver DXS to either reactivation (via ClpB3) or removal (via ClpC1) depending on the physiological status of the plastid. In this paper we report a relatively simple mechanism by which plant chloroplasts deal with inactive forms of DXS, the main rate-determining enzyme for the production of plastidial isoprenoids relevant for photosynthesis and development. We provide evidence supporting that particular members of the Hsp100 chaperone family contribute to either refold or degrade inactive DXS proteins specifically recognized by the J-protein adaptor J20 and delivered to Hsp70 chaperones. Our results also unveil a J-protein-based mechanism for substrate delivery to the Clp complex, the main protease in the chloroplast stroma. Together, this work allows a better understanding of how chloroplasts get rid of damaged DXS (and potentially other proteins), which should contribute to take more informed decisions in future approaches aimed to manipulate the levels of plastidial metabolites of interest (including vitamins, biofuels, or drugs against cancer and malaria) in crop plants.
Collapse
Affiliation(s)
- Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Briardo Llorente
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus UAB Bellaterra, Barcelona, Spain
| | | | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| |
Collapse
|
36
|
Lu Y. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:168. [PMID: 26909098 PMCID: PMC4754418 DOI: 10.3389/fpls.2016.00168] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is a multi-component pigment-protein complex that is responsible for water splitting, oxygen evolution, and plastoquinone reduction. Components of PSII can be classified into core proteins, low-molecular-mass proteins, extrinsic oxygen-evolving complex (OEC) proteins, and light-harvesting complex II proteins. In addition to these PSII subunits, more than 60 auxiliary proteins, enzymes, or components of thylakoid protein trafficking/targeting systems have been discovered to be directly or indirectly involved in de novo assembly and/or the repair and reassembly cycle of PSII. For example, components of thylakoid-protein-targeting complexes and the chloroplast-vesicle-transport system were found to deliver PSII subunits to thylakoid membranes. Various auxiliary proteins, such as PsbP-like (Psb stands for PSII) and light-harvesting complex-like proteins, atypical short-chain dehydrogenase/reductase family proteins, and tetratricopeptide repeat proteins, were discovered to assist the de novo assembly and stability of PSII and the repair and reassembly cycle of PSII. Furthermore, a series of enzymes were discovered to catalyze important enzymatic steps, such as C-terminal processing of the D1 protein, thiol/disulfide-modulation, peptidylprolyl isomerization, phosphorylation and dephosphorylation of PSII core and antenna proteins, and degradation of photodamaged PSII proteins. This review focuses on the current knowledge of the identities and molecular functions of different types of proteins that influence the assembly, stability, and repair of PSII in the higher plant Arabidopsis thaliana.
Collapse
|
37
|
Kato Y, Ozawa SI, Takahashi Y, Sakamoto W. D1 fragmentation in photosystem II repair caused by photo-damage of a two-step model. PHOTOSYNTHESIS RESEARCH 2015; 126:409-16. [PMID: 25893898 DOI: 10.1007/s11120-015-0144-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/09/2015] [Indexed: 05/26/2023]
Abstract
Light energy drives photosynthesis, but it simultaneously inactivates photosynthetic mechanisms. A major target site of photo-damage is photosystem II (PSII). It further targets one reaction center protein, D1, which is maintained efficiently by the PSII repair cycle. Two proteases, FtsH and Deg, are known to contribute to this process, respectively, by efficient degradation of photo-damaged D1 protein processively and endoproteolytically. This study tested whether the D1 cleavage accomplished by these proteases is affected by different monochromic lights such as blue and red light-emitting-diode light sources, remaining mindful that the use of these lights distinguishes the current models for photoinhibition: the excess-energy model and the two-step model. It is noteworthy that in the two-step model, primary damage results from the absorption of light energy in the Mn-cluster, which can be enhanced by a blue rather than a red light source. Results showed that blue and red lights affect D1 degradation differently. One prominent finding was that D1 fragmentation that is specifically generated by luminal Deg proteases was enhanced by blue light but not by red light in the mutant lacking FtsH2. Although circumstantial, this evidence supports a two-step model of PSII photo-damage. We infer that enhanced D1 fragmentation by luminal Deg proteases is a response to primary damage at the Mn-cluster.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Shin-Ichiro Ozawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Yuichiro Takahashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
38
|
Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:71-97. [PMID: 25381655 DOI: 10.1007/s11120-014-0057-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode 'auxiliary metabolic genes' (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage-host interactions involved in the photosynthetic process.
Collapse
Affiliation(s)
- Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andrew D Millard
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
39
|
Gururani MA, Venkatesh J, Tran LSP. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. MOLECULAR PLANT 2015; 8:1304-20. [PMID: 25997389 DOI: 10.1016/j.molp.2015.05.005] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.
Collapse
Affiliation(s)
| | - Jelli Venkatesh
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Lam Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
40
|
Zavafer A, Chow WS, Cheah MH. The action spectrum of Photosystem II photoinactivation in visible light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:247-60. [PMID: 26298696 DOI: 10.1016/j.jphotobiol.2015.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 12/25/2022]
Abstract
Photosynthesis is always accompanied by light induced damage to the Photosystem II (PSII) which is compensated by its subsequent repair. Photoinhibition of PSII is a complex process, balancing between photoinactivation, protective and repair mechanisms. Current understanding of photoinactivation is limited with competing hypotheses where the photosensitiser is either photosynthetic pigments or the Mn4CaO5 cluster itself, with little consensus on the mechanisms and consequences of PSII photoinactivation. The mechanism of photoinactivation should be reflected in the action spectrum of PSII photoinactivation, but there is a great diversity of the action spectra reported thus far. The only consensus is that PSII photoinactivation is greatest in the UV region of the electromagnetic spectrum. In this review, the authors revisit the methods, technical constraints and the different action spectra of PSII photoinactivation reported to date and compare them against the diverse mechanisms proposed. Upon critical examination of the reported action spectra, a hybrid mechanism of photoinactivation, sensitised by both photosynthetic pigments and the Mn4CaO5 appears to be the most plausible rationalisation.
Collapse
Affiliation(s)
- Alonso Zavafer
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT 2601, Australia
| | - Wah Soon Chow
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT 2601, Australia
| | - Mun Hon Cheah
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT 2601, Australia.
| |
Collapse
|
41
|
Fisher N, Kramer DM. Non-photochemical reduction of thylakoid photosynthetic redox carriers in vitro: relevance to cyclic electron flow around photosystem I? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1837:1944-1954. [PMID: 25251244 DOI: 10.1016/j.bbabio.2014.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/07/2014] [Accepted: 09/14/2014] [Indexed: 01/17/2023]
Abstract
UNLABELLED Non-photochemical (dark) increases in chlorophyll a fluorescence yield associated with non-photochemical reduction of redox carriers (Fnpr) have been attributed to the reduction of plastoquinone (PQ) related to cyclic electron flow (CEF) around photosystem I. In vivo, this rise in fluorescence is associated with activity of the chloroplast plastoquinone reductase (plastid NAD(P)H plastoquinone oxidoreductase) complex. In contrast, this signal measured in isolated thylakoids has been attributed to the activity of the protein gradient regulation-5 (PGR5)/PGR5-like (PGRL1)-associated CEF pathway. Here, we report a systematic experimentation on the origin of Fnpr in isolated thylakoids. Addition of NADPH and ferredoxin to isolated spinach thylakoids resulted in the reduction of the PQ pool, but neither its kinetics nor its inhibitor sensitivities matched those of Fnpr. Notably, Fnpr was more rapid than PQ reduction, and completely insensitive to inhibitors of the PSII QB site and oxygen evolving complex as well as inhibitors of the cytochrome b6f complex. We thus conclude that Fnpr in isolated thylakoids is not a result of redox equilibrium with bulk PQ. Redox titrations and fluorescence emission spectra imply that Fnpr is dependent on the reduction of a low potential redox component (Em about − 340 mV) within photosystem II (PSII), and is likely related to earlier observations of low potential variants of QA within a subpopulation of PSII that is directly reducible by ferredoxin. The implications of these results for our understanding of CEF and other photosynthetic processes are discussed.
Collapse
Affiliation(s)
- Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
42
|
Spitzer C, Li F, Buono R, Roschzttardtz H, Chung T, Zhang M, Osteryoung KW, Vierstra RD, Otegui MS. The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. THE PLANT CELL 2015; 27:391-402. [PMID: 25649438 PMCID: PMC4456926 DOI: 10.1105/tpc.114.135939] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 12/25/2014] [Accepted: 01/17/2015] [Indexed: 05/18/2023]
Abstract
Endosomal Sorting Complex Required for Transport (ESCRT)-III proteins mediate membrane remodeling and the release of endosomal intraluminal vesicles into multivesicular bodies. Here, we show that the ESCRT-III subunit paralogs CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A) and CHMP1B are required for autophagic degradation of plastid proteins in Arabidopsis thaliana. Similar to autophagy mutants, chmp1a chmp1b (chmp1) plants hyperaccumulated plastid components, including proteins involved in plastid division. The autophagy machinery directed the release of bodies containing plastid material into the cytoplasm, whereas CHMP1A and B were required for delivery of these bodies to the vacuole. Autophagy was upregulated in chmp1 as indicated by an increase in vacuolar green fluorescent protein (GFP) cleavage from the autophagic reporter GFP-ATG8. However, autophagic degradation of the stromal cargo RECA-GFP was drastically reduced in the chmp1 plants upon starvation, suggesting that CHMP1 mediates the efficient delivery of autophagic plastid cargo to the vacuole. Consistent with the compromised degradation of plastid proteins, chmp1 plastids show severe morphological defects and aberrant division. We propose that CHMP1 plays a direct role in the autophagic turnover of plastid constituents.
Collapse
Affiliation(s)
- Christoph Spitzer
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Faqiang Li
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Rafael Buono
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | - Taijoon Chung
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Min Zhang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706 Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
43
|
Kato Y, Sakamoto W. Phosphorylation of photosystem II core proteins prevents undesirable cleavage of D1 and contributes to the fine-tuned repair of photosystem II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:312-21. [PMID: 24862025 DOI: 10.1111/tpj.12562] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/16/2014] [Accepted: 05/13/2014] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a primary target for light-induced damage in photosynthetic protein complexes. To avoid photoinhibition, chloroplasts have evolved a repair cycle with efficient degradation of the PSII reaction center protein, D1, by the proteases FtsH and Deg. Earlier reports have described that phosphorylated D1 is a poor substrate for proteolysis, suggesting a mechanistic role for protein phosphorylation in PSII quality control, but its precise role remains elusive. STN8, a protein kinase, plays a central role in this phosphorylation process. To elucidate the relationship between phosphorylation of D1 and the protease function we assessed in this study the involvement of STN8, using Arabidopsis thaliana mutants lacking FtsH2 [yellow variegated2 (var2)] and Deg5/Deg8 (deg5 deg8). In support of our presumption we found that phosphorylation of D1 increased more in var2. Furthermore, the coexistence of var2 and stn8 was shown to recover the delay in degradation of D1, resulting in mitigation of the high vulnerability to photoinhibition of var2. Partial D1 cleavage fragments that depended on Deg proteases tended to increase, with concomitant accumulation of reactive oxygen species in the mutants lacking STN8. We inferred that the accelerated degradation of D1 in var2 stn8 presents a tradeoff in that it improved the repair of PSII but simultaneously enhanced oxidative stress. Together, these results suggest that PSII core phosphorylation prevents undesirable cleavage of D1 by Deg proteases, which causes cytotoxicity, thereby balancing efficient linear electron flow and photo-oxidative damage. We propose that PSII core phosphorylation contributes to fine-tuned degradation of D1.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | | |
Collapse
|
44
|
Yoshioka-Nishimura M, Yamamoto Y. Quality control of Photosystem II: the molecular basis for the action of FtsH protease and the dynamics of the thylakoid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:100-6. [PMID: 24725639 DOI: 10.1016/j.jphotobiol.2014.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 01/20/2023]
Abstract
The reaction center-binding D1 protein of Photosystem II is damaged by excessive light, which leads to photoinhibition of Photosystem II. The damaged D1 protein is removed immediately by specific proteases, and a metalloprotease FtsH located in the thylakoid membranes is involved in the proteolytic process. According to recent studies on the distribution and organization of the protein complexes/supercomplexes in the thylakoid membranes, the grana of higher plant chloroplasts are crowded with Photosystem II complexes and light-harvesting complexes. For the repair of the photodamaged D1 protein, the majority of the active hexameric FtsH proteases should be localized in close proximity to the Photosystem II complexes. The unstacking of the grana may increase the area of the grana margin and facilitate easier access of the FtsH proteases to the damaged D1 protein. These results suggest that the structural changes of the thylakoid membranes by light stress increase the mobility of the membrane proteins and support the quality control of Photosystem II.
Collapse
Affiliation(s)
- Miho Yoshioka-Nishimura
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
45
|
Torabi S, Umate P, Manavski N, Plöchinger M, Kleinknecht L, Bogireddi H, Herrmann RG, Wanner G, Schröder WP, Meurer J. PsbN is required for assembly of the photosystem II reaction center in Nicotiana tabacum. THE PLANT CELL 2014; 26:1183-99. [PMID: 24619613 PMCID: PMC4001377 DOI: 10.1105/tpc.113.120444] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/29/2014] [Accepted: 02/17/2014] [Indexed: 05/20/2023]
Abstract
The chloroplast-encoded low molecular weight protein PsbN is annotated as a photosystem II (PSII) subunit. To elucidate the localization and function of PsbN, encoded on the opposite strand to the psbB gene cluster, we raised antibodies and inserted a resistance cassette into PsbN in both directions. Both homoplastomic tobacco (Nicotiana tabacum) mutants psbN-F and psbN-R show essentially the same PSII deficiencies. The mutants are extremely light sensitive and failed to recover from photoinhibition. Although synthesis of PSII proteins was not altered significantly, both mutants accumulated only ∼25% of PSII proteins compared with the wild type. Assembly of PSII precomplexes occurred at normal rates, but heterodimeric PSII reaction centers (RCs) and higher order PSII assemblies were not formed efficiently in the mutants. The psbN-R mutant was complemented by allotopic expression of the PsbN gene fused to the sequence of a chloroplast transit peptide in the nuclear genome. PsbN represents a bitopic trans-membrane peptide localized in stroma lamellae with its highly conserved C terminus exposed to the stroma. Significant amounts of PsbN were already present in dark-grown seedling. Our data prove that PsbN is not a constituent subunit of PSII but is required for repair from photoinhibition and efficient assembly of the PSII RC.
Collapse
Affiliation(s)
- Salar Torabi
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Pavan Umate
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Magdalena Plöchinger
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Laura Kleinknecht
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Hanumakumar Bogireddi
- Umeå Plant Science Center and Department of
Chemistry, University of Umeå, SE-901 87 Umeå, Sweden
| | - Reinhold G. Herrmann
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Wolfgang P. Schröder
- Umeå Plant Science Center and Department of
Chemistry, University of Umeå, SE-901 87 Umeå, Sweden
| | - Jörg Meurer
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
46
|
Suorsa M, Rantala M, Danielsson R, Järvi S, Paakkarinen V, Schröder WP, Styring S, Mamedov F, Aro EM. Dark-adapted spinach thylakoid protein heterogeneity offers insights into the photosystem II repair cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1463-71. [PMID: 24296034 DOI: 10.1016/j.bbabio.2013.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 02/01/2023]
Abstract
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Marjaana Rantala
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Ravi Danielsson
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Sari Järvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Virpi Paakkarinen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Wolfgang P Schröder
- Umeå Plant Science Center and Department of Chemistry, Linnaeus väg 10, University of Umeå, SE-901 87 Umeå, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, University of Uppsala, Box 523, SE-75120 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, University of Uppsala, Box 523, SE-75120 Uppsala, Sweden.
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
47
|
Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 2013; 587:3372-81. [DOI: 10.1016/j.febslet.2013.09.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 02/08/2023]
|
48
|
Zienkiewicz M, Kokoszka N, Bacławska I, Drożak A, Romanowska E. Light intensity and quality stimulated Deg1-dependent cleavage of PSII components in the chloroplasts of maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:126-136. [PMID: 23563498 DOI: 10.1016/j.plaphy.2013.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/26/2013] [Indexed: 06/02/2023]
Abstract
Recent studies have revealed that photo damages inducing high white light illumination of C3-type plant Arabidopsis thaliana promotes Deg1-mediated degradation of not only photosystem II core proteins D1/D2 but also minor LHCII proteins CP26, CP29 and PSII-associated PsbS protein. Using biochemical and immunological approaches we show that that the substrate pool of the heterologously expressed Deg1 ortholog protease from C4-type plant Zea mays is very similar to that of the A. thaliana in both mesophyll and bundle sheath chloroplasts. The Deg1-mediated degradation of photosystem II components has been observed after high light and red light treatment of maize leaves, while far red light did not induce Deg1-mediated degradation. Moreover, two isoforms of the Deg1 protease have been identified. Their genes are localized in chromosomes 6 and 8. The Pull-Down assay indicated that both proteins were able to bind the same set of chloroplast proteins, nevertheless in vitro digestion of Z. mays thylakoids in the form of inside-out vesicles has raveled that only Deg1 found in chromosome 8 exhibited proteolytic activity. Interestingly, the relative amount of Deg1 proteases in Z. mays bundle sheath chloroplasts (BS) is significantly higher than in mesophyll chloroplasts (M) in spite of lower content of PSII (∼20%) in BS.
Collapse
Affiliation(s)
- Maksymilian Zienkiewicz
- University of Warsaw, Department of Molecular Plant Physiology, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Nela Kokoszka
- University of Warsaw, Department of Molecular Plant Physiology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Ilona Bacławska
- University of Warsaw, Department of Molecular Plant Physiology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Drożak
- University of Warsaw, Department of Molecular Plant Physiology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Elżbieta Romanowska
- University of Warsaw, Department of Molecular Plant Physiology, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
49
|
Sun W, Gao F, Fan H, Shan X, Sun R, Liu L, Gong W. The structures of Arabidopsis Deg5 and Deg8 reveal new insights into HtrA proteases. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:830-7. [PMID: 23633592 PMCID: PMC3640471 DOI: 10.1107/s0907444913002023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/21/2013] [Indexed: 12/22/2022]
Abstract
Plant Deg5 and Deg8 are two members of the HtrA proteases, a family of oligomeric serine endopeptidases that are involved in a variety of protein quality-control processes. These two HtrA proteases are located in the thylakoid lumen and participate in high-light stress responses by collaborating with other chloroplast proteins. Deg5 and Deg8 degrade photodamaged D1 protein of the photosystem II reaction centre, allowing its in situ replacement. Here, the crystal structures of Arabidopsis thaliana Deg5 (S266A) and Deg8 (S292A) are reported at 2.6 and 2.0 Å resolution, respectively. The Deg5 trimer contains two calcium ions in a central channel, suggesting a link between photodamage control and calcium ions in chloroplasts. Previous structures of HtrA proteases have indicated that their regulation usually requires C-terminal PDZ domain(s). Deg5 is unique in that it contains no PDZ domain and the trimeric structure of Deg5 (S266A) reveals a novel catalytic triad conformation. A similar triad conformation is observed in the hexameric structure of the single PDZ-domain-containing Deg8 (S292A). These findings suggest a novel activation mechanism for plant HtrA proteases and provide structural clues to their function in light-stress response.
Collapse
Affiliation(s)
- Wei Sun
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 5 Datun Road, Chaoyang District, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Kato Y, Sakamoto W. Possible compensatory role among chloroplast proteases under excess-light stress condition. PLANT SIGNALING & BEHAVIOR 2013; 8:e23198. [PMID: 23299325 PMCID: PMC3676490 DOI: 10.4161/psb.23198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The reaction center protein D1 of photosystem II (PSII), known as a primary target of photodamage, is repaired efficiently by the PSII repair cycle, to cope with constant photooxidative damage. Recent studies of Arabidopsis show that the endo-type Deg protease and the exo-type FtsH proteases cooperatively degrade D1 in the PSII repair in vivo. It is particularly interesting that we observed upregulation of Clp and SppA proteases when FtsH was limited in the mutant lacking FtsH2. To examine how the complementary functions of chloroplastic proteases are commonly regulated, we undertook a high-light stress on wild-type Arabidopsis leaves. The result that wild type leaves also showed increased levels of these proteases upon exposure to excessively strong illumination not only revealed the importance of FtsH and Deg in the PSII repair, but also implied cooperation among chloroplastic proteases under chronic stress conditions.
Collapse
|