1
|
Kang X, Chen H, Zhou Z, Tu S, Cui B, Li Y, Dong S, Zhang Q, Xu Y. Targeting Cyclin-Dependent Kinase 1 Induces Apoptosis and Cell Cycle Arrest of Activated Hepatic Stellate Cells. Adv Biol (Weinh) 2024; 8:e2300403. [PMID: 38103005 DOI: 10.1002/adbi.202300403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Liver fibrosis is the integral process of chronic liver diseases caused by multiple etiologies and characterized by excessive deposition of extracellular matrix (ECM). During liver fibrosis, hepatic stellate cells (HSCs) transform into a highly proliferative, activated state, producing various cytokines, chemokines, and ECM. However, the precise mechanisms that license HSCs into the highly proliferative state remain unclear. Cyclin-dependent kinase 1 (CDK1) is a requisite event for the transition of the G1/S and G2/M phases in eukaryotic cells. In this study, it is demonstrated that CDK1 and its activating partners, Cyclin A2 and Cyclin B1, are upregulated in both liver fibrosis/cirrhosis patient specimens and the murine hepatic fibrosis models, especially in activated HSCs. In vitro, CDK1 is upregulated in spontaneously activated HSCs, and inhibiting CDK1 with specific small-molecule inhibitors (CGP74514A, RO-3306, or Purvalanol A) orshort hairpin RNAs (shRNAs) resulted in HSC apoptosis and cell cycle arrest by regulating Survivin expression. Above all, it is illustrated that increased CDK1 expression licenses the HSCs into a highly proliferative state and can serve as a potential therapeutic target in liver fibrosis.
Collapse
Affiliation(s)
- Xinmei Kang
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Huaxin Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Zhuowei Zhou
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Silin Tu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Bo Cui
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Yanli Li
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Shuai Dong
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Qi Zhang
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Yan Xu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| |
Collapse
|
2
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
3
|
Gladwell W, Yost O, Li H, Bell WJ, Chen SH, Ward JM, Kleeberger SR, Resnick MA, Menendez D. APOBEC3G Is a p53-Dependent Restriction Factor in Respiratory Syncytial Virus Infection of Human Cells Included in the p53/Immune Axis. Int J Mol Sci 2023; 24:16793. [PMID: 38069117 PMCID: PMC10706465 DOI: 10.3390/ijms242316793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Identifying and understanding genetic factors that influence the propagation of the human respiratory syncytial virus (RSV) can lead to health benefits and possibly augment recent vaccine approaches. We previously identified a p53/immune axis in which the tumor suppressor p53 directly regulates the expression of immune system genes, including the seven members of the APOBEC3 family of DNA cytidine deaminases (A3), which are innate immune sentinels against viral infections. Here, we examined the potential p53 and A3 influence in RSV infection, as well as the overall p53-dependent cellular and p53/immune axis responses to infection. Using a paired p53 model system of p53+ and p53- human lung tumor cells, we found that RSV infection activates p53, leading to the altered p53-dependent expression of A3D, A3F, and A3G, along with p53 site-specific binding. Focusing on A3G because of its 10-fold-greater p53 responsiveness to RSV, the overexpression of A3G can reduce RSV viral replication and syncytial formation. We also observed that RSV-infected cells undergo p53-dependent apoptosis. The study was expanded to globally address at the transcriptional level the p53/immune axis response to RSV. Nearly 100 genes can be directly targeted by the p53/immune axis during RSV infection based on our p53BAER analysis (Binding And Expression Resource). Overall, we identify A3G as a potential p53-responsive restriction factor in RSV infection. These findings have significant implications for RSV clinical and therapeutic studies and other p53-influenced viral infections, including using p53 adjuvants to boost the response of A3 genes.
Collapse
Affiliation(s)
- Wesley Gladwell
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
| | - Oriana Yost
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
| | - Heather Li
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
| | - Whitney J. Bell
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Shih-Heng Chen
- Viral Vector Core Facility, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA;
| | - James M. Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Steven R. Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
| | - Michael A. Resnick
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Daniel Menendez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
4
|
Calado M, Pires D, Conceição C, Santos-Costa Q, Anes E, Azevedo-Pereira JM. Human immunodeficiency virus transmission-Mechanisms underlying the cell-to-cell spread of human immunodeficiency virus. Rev Med Virol 2023; 33:e2480. [PMID: 37698498 DOI: 10.1002/rmv.2480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Despite the success of combined antiretroviral therapy in controlling viral load and reducing the risk of human immunodeficiency virus (HIV) transmission, an estimated 1.5 million new infections occurred worldwide in 2021. These new infections are mainly the result of sexual intercourse and thus involve cells present on the genital mucosa, such as dendritic cells (DCs), macrophages (Mø) and CD4+ T lymphocytes. Understanding the mechanisms by which HIV interacts with these cells and how HIV exploits these interactions to establish infection in a new human host is critical to the development of strategies to prevent and control HIV transmission. In this review, we explore how HIV has evolved to manipulate some of the physiological roles of these cells, thereby gaining access to strategic cellular niches that are critical for the spread and pathogenesis of HIV infection. The interaction of HIV with DCs, Mø and CD4+ T lymphocytes, and the role of the intercellular transfer of viral particles through the establishment of the infectious or virological synapses, but also through membrane protrusions such as filopodia and tunnelling nanotubes (TNTs), and cell fusion or cell engulfment processes are presented and discussed.
Collapse
Affiliation(s)
- Marta Calado
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | - Carolina Conceição
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Quirina Santos-Costa
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Liu S, Guo T, Hu J, Huang W, She P, Wu Y. HIV-1-related factors interact with p53 to influence cellular processes. AIDS Res Ther 2023; 20:66. [PMID: 37691100 PMCID: PMC10493029 DOI: 10.1186/s12981-023-00563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the primary epidemic strain in China. Its genome contains two regulatory genes (tat and rev), three structural genes (gag, pol, and env), and four accessory genes (nef, vpr, vpu, and vif). Long terminal repeats (LTRs) in thegenome regulate integration, duplication, and expression of viral gene. The permissibility of HIV-1 infection hinges on the host cell cycle status. HIV-1 replicates by exploiting various cellular processes via upregulation or downregulation of specific cellular proteins that also control viral pathogenesis. For example, HIV-1 regulates the life cycle of p53, which in turn contributes significantly to HIV-1 pathogenesis. In this article, we review the interaction between HIV-1-associated factors and p53, providing information on their regulatory and molecular mechanisms, hinting possible directions for further research.
Collapse
Affiliation(s)
- Shanling Liu
- Department of Laboratory Medicine, The First Hospital of Changsha, 311 Yingpan Road, Changsha, 410005, Hunan, China
| | - Ting Guo
- Department of Laboratory Medicine, The First Hospital of Changsha, 311 Yingpan Road, Changsha, 410005, Hunan, China
| | - Jinwei Hu
- Department of Laboratory Medicine, The First Hospital of Changsha, 311 Yingpan Road, Changsha, 410005, Hunan, China
| | - Weiliang Huang
- Department of Laboratory Medicine, The First Hospital of Changsha, 311 Yingpan Road, Changsha, 410005, Hunan, China
| | - Pengfei She
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yong Wu
- Department of Laboratory Medicine, The First Hospital of Changsha, 311 Yingpan Road, Changsha, 410005, Hunan, China.
| |
Collapse
|
6
|
HIV-1 gp120 Protein Activates Cyclin-Dependent Kinase 1, a Possible Link to Central Nervous System Cell Death. Viruses 2022; 14:v14122793. [PMID: 36560797 PMCID: PMC9786227 DOI: 10.3390/v14122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1)-associated neurodegenerative disorder (HAND) is frequently reported in HIV-infected individuals. The gp120 envelope viral protein has been implicated in the pathogenesis of HAND in HIV-1-infected patients; however, its pathogenic mechanism remains unclear. In this study, we first overexpressed gp120 proteins in pc12 cells and used PI staining, a CCK8 assay, a TUNEL assay, and caspase-9/caspase-3-induced apoptosis to ascertain the mediated cell death. Subsequently, the gp120-overexpressed cells were subjected to RNA transcriptomics and mass spectrometry. The obtained results were integrated and validated using a quantitative polymerase chain reaction (qPCR) and the postmortem brain samples with HIV-associated dementia were analyzed against the normal control (using the GSE35864 data set on gene ontology omnibus repository). Upon the integration of the RNA transcriptomic and proteomic results, 78 upregulated genes were revealed. Fut8, Unc13c, Cdk1, Loc100359539, and Hspa2 were the top five upregulated genes. Upon the analysis of the GSE35864 data set, the results indicate that Cdk1 was upregulated in HIV-associated dementia in comparison to the normal control. Moreover, the protein expression of Cdk1 was significantly higher in the gp120 transfected group compared to the normal control and decreased significantly upon inhibition using Roscovitine (a known Cdk1 inhibitor). Taken together, our results provide a possible molecular signature of the neurological impairment secondary to HIV glycoprotein 120.
Collapse
|
7
|
Mattola S, Mäntylä E, Aho V, Salminen S, Leclerc S, Oittinen M, Salokas K, Järvensivu J, Hakanen S, Ihalainen TO, Viiri K, Vihinen-Ranta M. G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids. Front Cell Dev Biol 2022; 10:1070599. [PMID: 36568985 PMCID: PMC9773396 DOI: 10.3389/fcell.2022.1070599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Mikko Oittinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jani Järvensivu
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland,*Correspondence: Maija Vihinen-Ranta,
| |
Collapse
|
8
|
Dong Z, Zhang X, Xiao M, Li K, Wang J, Chen P, Hu Z, Lu C, Pan M. Baculovirus LEF-11 interacts with BmIMPI to induce cell cycle arrest in the G2/M phase for viral replication. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105231. [PMID: 36464350 DOI: 10.1016/j.pestbp.2022.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Viruses arrest the host cell cycle and using multiple functions of host cells is an important approach for their replication. Baculovirus arrests infected insect cells at both the late S and G2/M phase, but the strategy employed by baculovirus is not clearly understood. Our research suggests that the Bombyx mori nucleopolyhedrovirus (BmNPV) could arrest the cell cycle in the G2/M phase to promote virus replication, and also that the viral protein LEF-11 could inhibit host cell proliferation and arrest the cell cycle by inhibiting the cell cycle checkpoint proteins BmCyclinB and BmCDK1. Furthermore, we found that LEF-11 interacts with BmIMPI to regulate cell proliferation, but not by direct interaction with BmCyclinB or BmCDK1. In addition, our findings showed that BmIMPI was important and necessary for LEF-11 induced cell cycle arrest in the G2/M phase. Moreover, BmIMPI was found to interact with BmCyclinB and BmCDK1, and down-regulate the expression of BmCyclinB and BmCDK1 to compromise the cell cycle and cell proliferation. Taken together, the data presented demonstrated that baculovirus LEF-11 regulates BmIMPI to inhibit host cell proliferation and provide a new insight into the molecular mechanisms employed by viruses to induce cell cycle arrest.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xinling Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Miao Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - KeJie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
9
|
Li J, Liu R. Autophagy in Cellular Stress Responses. OXIDATIVE STRESS 2021:133-154. [DOI: 10.1007/978-981-16-0522-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Emerging Role of mTOR Signaling-Related miRNAs in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6141902. [PMID: 30305865 PMCID: PMC6165581 DOI: 10.1155/2018/6141902] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR), an atypical serine/threonine kinase of the phosphoinositide 3-kinase- (PI3K-) related kinase family, elicits a vital role in diverse cellular processes, including cellular growth, proliferation, survival, protein synthesis, autophagy, and metabolism. In the cardiovascular system, the mTOR signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of both physiological and pathological processes. MicroRNAs (miRs), a class of short noncoding RNA, are an emerging intricate posttranscriptional modulator of critical gene expression for the development and maintenance of homeostasis across a wide array of tissues, including the cardiovascular system. Over the last decade, numerous studies have revealed an interplay between miRNAs and the mTOR signaling circuit in the different cardiovascular pathophysiology, like myocardial infarction, hypertrophy, fibrosis, heart failure, arrhythmia, inflammation, and atherosclerosis. In this review, we provide a comprehensive state of the current knowledge regarding the mechanisms of interactions between the mTOR signaling pathway and miRs. We have also highlighted the latest advances on mTOR-targeted therapy in clinical trials and the new perspective therapeutic strategies with mTOR-targeting miRs in cardiovascular diseases.
Collapse
|
11
|
Ibañez-Cabellos JS, Aguado C, Pérez-Cremades D, García-Giménez JL, Bueno-Betí C, García-López EM, Romá-Mateo C, Novella S, Hermenegildo C, Pallardó FV. Extracellular histones activate autophagy and apoptosis via mTOR signaling in human endothelial cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3234-3246. [PMID: 30006152 DOI: 10.1016/j.bbadis.2018.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022]
Abstract
Circulating histones have been proposed as targets for therapy in sepsis and hyperinflammatory symptoms. However, the proposed strategies have failed in clinical trials. Although different mechanisms for histone-related cytotoxicity are being explored, those mediated by circulating histones are not fully understood. Extracellular histones induce endothelial cell death, thereby contributing to the pathogenesis of complex diseases such as sepsis and septic shock. Therefore, the comprehension of cellular responses triggered by histones is capital to design effective therapeutic strategies. Here we report how extracellular histones induce autophagy and apoptosis in a dose-dependent manner in cultured human endothelial cells. In addition, we describe how histones regulate these pathways via Sestrin2/AMPK/ULK1-mTOR and AKT/mTOR. Furthermore, we evaluate the effect of Toll-like receptors in mediating autophagy and apoptosis demonstrating how TLR inhibitors do not prevent apoptosis and/or autophagy induced by histones. Our results confirm that histones and autophagic pathways can be considered as novel targets to design therapeutic strategies in endothelial damage.
Collapse
Affiliation(s)
- José Santiago Ibañez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA-CIPF Joint Unit in Rare Diseases, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Carmen Aguado
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA-CIPF Joint Unit in Rare Diseases, Spain; Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Daniel Pérez-Cremades
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA-CIPF Joint Unit in Rare Diseases, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Carlos Bueno-Betí
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Eva M García-López
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA-CIPF Joint Unit in Rare Diseases, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain; Epigenetics Research Platform, CIBERer-UV-INCLIVA, Valencia, Spain
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Carlos Hermenegildo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA-CIPF Joint Unit in Rare Diseases, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
12
|
Abdoli A, Alirezaei M, Mehrbod P, Forouzanfar F. Autophagy: The multi-purpose bridge in viral infections and host cells. Rev Med Virol 2018; 28:e1973. [PMID: 29709097 PMCID: PMC7169200 DOI: 10.1002/rmv.1973] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
Autophagy signaling pathway is involved in cellular homeostasis, developmental processes, cellular stress responses, and immune pathways. The aim of this review is to summarize the relationship between autophagy and viruses. It is not possible to be fully comprehensive, or to provide a complete "overview of all viruses". In this review, we will focus on the interaction of autophagy and viruses and survey how human viruses exploit multiple steps in the autophagy pathway to help viral propagation and escape immune response. We discuss the role that macroautophagy plays in cells infected with hepatitis C virus, hepatitis B virus, rotavirus gastroenteritis, immune cells infected with human immunodeficiency virus, and viral respiratory tract infections both influenza virus and coronavirus.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Mehrdad Alirezaei
- Department of Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Parvaneh Mehrbod
- Influenza and Other Respiratory Viruses Dept.Pasteur Institute of IranTehranIran
| | - Faezeh Forouzanfar
- University of Strasbourg, EA7292, DHPIInstitute of Parasitology and Tropical Pathology StrasbourgFrance
| |
Collapse
|
13
|
Kalyanasundram J, Hamid A, Yusoff K, Chia SL. Newcastle disease virus strain AF2240 as an oncolytic virus: A review. Acta Trop 2018; 183:126-133. [PMID: 29626432 DOI: 10.1016/j.actatropica.2018.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/13/2018] [Accepted: 04/01/2018] [Indexed: 01/25/2023]
Abstract
The discovery of tumour selective virus-mediated apoptosis marked the birth of an alternative cancer treatment in the form of oncolytic viruses. Even though, its oncolytic efficiency was demonstrated more than 50 years ago, safety concerns which resulted from mild to lethal side effects hampered the progress of oncolytic virus research. Since the classical oncolytic virus studies rely heavily on its natural oncolytic ability, virus manipulation was limited, thereby, restricted efforts to improve its safety. In order to circumvent such restriction, experiments involving non-human viruses such as the avian Newcastle disease virus (NDV) was conducted using cultured cells, animal models and human subjects. The corresponding reports on its significant tumour cytotoxicity along with impressive safety profile initiated immense research interest in the field of oncolytic NDV. The varying degree of oncolytic efficiency and virulency among NDV strains encouraged researchers from all around the world to experiment with their respective local NDV isolates in order to develop an oncolytic virus with desirable characteristics. Such desirable features include high tumour-killing ability, selectivity and low systemic cytotoxicity. The Malaysian field outbreak isolate, NDV strain AF2240, also currently, receives significant research attention. Apart from its high cytotoxicity against tumour cells, this strain also provided fundamental insight into NDV-mediated apoptosis mechanism which involves Bax protein recruitment as well as death receptor engagement. Studies on its ability to selectively induce apoptosis in tumour cells also resulted in a proposed p38 MAPK/NF-κB/IκBα pathway. The immunogenicity of AF2240 was also investigated through PBMC stimulation and macrophage infection. In addition, the enhanced oncolytic ability of this strain under hypoxic condition signifies its dynamic tumour tropism. This review is aimed to introduce and discuss the aforementioned details of the oncolytic AF2240 strain along with its current challenges which outlines the future research direction of this virus.
Collapse
Affiliation(s)
- Jeevanathan Kalyanasundram
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia; Malaysian Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia
| | - Aini Hamid
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor D.E., Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia; Malaysian Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia; Malaysian Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia.
| |
Collapse
|
14
|
Abrams SL, Ruvolo PP, Ruvolo VR, Ligresti G, Martelli AM, Cocco L, Ratti S, Tafuri A, Steelman LS, Candido S, Libra M, McCubrey JA. Targeting signaling and apoptotic pathways involved in chemotherapeutic drug-resistance of hematopoietic cells. Oncotarget 2017; 8:76525-76557. [PMID: 29100331 PMCID: PMC5652725 DOI: 10.18632/oncotarget.20408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/15/2017] [Indexed: 12/29/2022] Open
Abstract
A critical problem in leukemia as well as other cancer therapies is the development of chemotherapeutic drug-resistance. We have developed models of hematopoietic drug resistance that are based on expression of dominant-negative TP53 [TP53 (DN)] or constitutively-active MEK1 [MEK1(CA)] oncogenes in the presence of chemotherapeutic drugs. In human cancer, functional TP53 activity is often lost in human cancers. Also, activation of the Raf/MEK/ERK pathway frequently occurs due to mutations/amplification of upstream components of this and other interacting pathways. FL5.12 is an interleukin-3 (IL−3) dependent hematopoietic cell line that is sensitive to doxorubicin (a.k.a Adriamycin). FL/Doxo is a derivative cell line that was isolated by culturing the parental FL5.12 cells in doxorubicin for prolonged periods of time. FL/Doxo + TP53 (DN) and FL/Doxo + MEK1 (CA) are FL/Doxo derivate cell lines that were infected with retrovirus encoding TP53 (DN) or MEK1 (CA) and are more resistant to doxorubicin than FL/Doxo cells. This panel of cell lines displayed differences in the sensitivity to inhibitors that suppress mTORC1, BCL2/BCLXL, MEK1 or MDM2 activities, as well as, the proteasomal inhibitor MG132. The expression of key genes involved in cell growth and drug-resistance (e.g., MDM2, MDR1, BAX) also varied in these cells. Thus, we can begin to understand some of the key genes that are involved in the resistance of hematopoietic cells to chemotherapeutic drugs and targeted therapeutics.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Peter P Ruvolo
- Section of Signal Transduction and Apoptosis, Hormel Institute, University of Minnesota, Austin, MN, USA.,Current/Present address: Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Vivian R Ruvolo
- Section of Signal Transduction and Apoptosis, Hormel Institute, University of Minnesota, Austin, MN, USA.,Current/Present address: Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Ligresti
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy.,Current/Present address: Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Agostino Tafuri
- Hematology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
15
|
Timilsina U, Gaur R. Modulation of apoptosis and viral latency - an axis to be well understood for successful cure of human immunodeficiency virus. J Gen Virol 2016; 97:813-824. [PMID: 26764023 DOI: 10.1099/jgv.0.000402] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) is the causative agent of the deadly disease AIDS, which is characterized by the progressive decline of CD4(+)T-cells. HIV-1-encoded proteins such as envelope gp120 (glycoprotein gp120), Tat (trans-activator of transcription), Nef (negative regulatory factor), Vpr (viral protein R), Vpu (viral protein unique) and protease are known to be effective in modulating host cell signalling pathways that lead to an alteration in apoptosis of both HIV-infected and uninfected bystander cells. Depending on the stage of the virus life cycle and host cell type, these viral proteins act as mediators of pro- or anti-apoptotic signals. HIV latency in viral reservoirs is a persistent phenomenon that has remained beyond the control of the human immune system. To cure HIV infections completely, it is crucial to reactivate latent HIV from cellular pools and to drive these apoptosis-resistant cells towards death. Several previous studies have reported the role of HIV-encoded proteins in apoptosis modulation, but the molecular basis for apoptosis evasion of some chronically HIV-infected cells and reactivated latently HIV-infected cells still needs to be elucidated. The current review summarizes our present understanding of apoptosis modulation in HIV-infected cells, uninfected bystander cells and latently infected cells, with a focus on highlighting strategies to activate the apoptotic pathway to kill latently infected cells.
Collapse
Affiliation(s)
- Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi- 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi- 110021, India
| |
Collapse
|
16
|
de Souza APD, de Freitas DN, Antuntes Fernandes KE, D'Avila da Cunha M, Antunes Fernandes JL, Benetti Gassen R, Fazolo T, Pinto LA, Scotta M, Mattiello R, Pitrez PM, Bonorino C, Stein RT. Respiratory syncytial virus induces phosphorylation of mTOR at ser2448 in CD8 T cells from nasal washes of infected infants. Clin Exp Immunol 2015; 183:248-57. [PMID: 26437614 DOI: 10.1111/cei.12720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/12/2022] Open
Abstract
Respiratory syncytial virus (RSV)-specific CD8(+) T cell responses do not protect against reinfection. Activation of mammalian target of rapamycin (mTOR) impairs memory CD8(+) T cell differentiation. Our hypothesis was that RSV inhibits the formation of CD8(+) T cells memory responses through mTOR activation. To explore this, human and mouse T cells were used. RSV induced mTOR phosphorylation at Ser2448 in CD8 T cells. mTOR activation by RSV was completely inhibited using rapamycin. RSV-infected children presented higher mTOR gene expression on nasal washes comparing to children infected with metapneumovirus and rhinovirus. In addition, RSV-infected infants presented a higher frequency of CD8(+) pmTORser2448(+) T cells in nasal washes compared to RSV-negative infants. Rapamycin treatment increased the frequency of mouse CD8 RSV-M282-90 pentamer-positive T cells and the frequency of RSV-specific memory T cells precursors. These data demonstrate that RSV is activating mTOR directly in CD8 T cells, indicating a role for mTOR during the course of RSV infection.
Collapse
Affiliation(s)
- A P Duarte de Souza
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - D Nascimento de Freitas
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - K E Antuntes Fernandes
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - M D'Avila da Cunha
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - J L Antunes Fernandes
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - R Benetti Gassen
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - T Fazolo
- Laboratório De Imunologia Clínica E Experimental, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - L A Pinto
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - M Scotta
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - R Mattiello
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - P M Pitrez
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - C Bonorino
- Laboratorio De Imunologia Celular E Molecular, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - R T Stein
- Laboratório De Respirologia Pediátrica, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Centro Infant, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Instituto De Pesquisas Biomédicas, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
17
|
Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: an overview. Cell Death Dis 2015; 6:e1846. [PMID: 26247731 PMCID: PMC4558497 DOI: 10.1038/cddis.2015.204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
Infection by human immunodeficiency virus-1 (HIV-1) is associated with a progressive decrease in CD4 T-cell numbers and the consequent collapse of host immune defenses. The major pathogenic mechanism of AIDS is the massive apoptotic destruction of the immunocompetent cells, including uninfected cells. The latter process, also known as by-stander killing, operates by various mechanisms one of which involves the formation of syncytia which undergo cell death by following a complex pathway. We present here a detailed and curated map of the syncytial apoptosis signaling network, aimed at simplifying the whole mechanism that we have characterized at the molecular level in the last 15 years. The map was created using Systems Biology Graphical Notation language with the help of CellDesigner software and encompasses 36 components (proteins/genes) and 54 interactions. The simplification of this complex network paves the way for the development of novel therapeutic strategies to eradicate HIV-1 infection. Agents that induce the selective death of HIV-1-elicited syncytia might lead to the elimination of viral reservoirs and hence constitute an important complement to current antiretroviral therapies.
Collapse
|
18
|
Karthik GM, Ma R, Lövrot J, Kis LL, Lindh C, Blomquist L, Fredriksson I, Bergh J, Hartman J. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells. Cancer Lett 2015. [PMID: 26208432 DOI: 10.1016/j.canlet.2015.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breast cancer cells with stem cell characteristics (CSC) are a distinct cell population with phenotypic similarities to mammary stem cells. CSCs are important drivers of tumorigenesis and the metastatic process. Tamoxifen is the most widely used hormonal therapy for estrogen receptor (ER) positive cancers. In our study, tamoxifen was effective in reducing proliferation of ER + adherent cancer cells, but not their CSC population. We isolated, expanded and incubated CSC from seven breast cancers with or without tamoxifen. By genome-wide transcriptional analysis we identified tamoxifen-induced transcriptional pathways associated with ribosomal biogenesis and mRNA translation, both regulated by the mTOR-pathway. We observed induction of the key mTOR downstream targets S6K1, S6RP and 4E-BP1 in-patient derived CSCs by tamoxifen on protein level. Using the mTOR inhibitors rapamycin, everolimus and PF-04691502 (a dual PI3K/mTOR inhibitor) and in combination with tamoxifen, significant reduction in mammosphere formation was observed. Hence, we suggest that the CSC population play a significant role during endocrine resistance through activity of the mTOR pathway. In addition, tamoxifen further stimulates the mTOR-pathway but can be antagonized using mTOR-inhibitors.
Collapse
Affiliation(s)
| | - Ran Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - John Lövrot
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lorand Levente Kis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Claes Lindh
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | | | - Irma Fredriksson
- Department of Breast and Endocrine Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Radiumhemmet - Karolinska Oncology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden.
| |
Collapse
|
19
|
Ding K, Wang H, Wu Y, Zhang L, Xu J, Li T, Ding Y, Zhu L, He J. Rapamycin protects against apoptotic neuronal death and improves neurologic function after traumatic brain injury in mice via modulation of the mTOR-p53-Bax axis. J Surg Res 2015; 194:239-47. [DOI: 10.1016/j.jss.2014.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 09/13/2014] [Accepted: 09/23/2014] [Indexed: 01/10/2023]
|
20
|
Dinkins C, Pilli M, Kehrl JH. Roles of autophagy in HIV infection. Immunol Cell Biol 2014; 93:11-7. [PMID: 25385065 DOI: 10.1038/icb.2014.88] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 02/07/2023]
Abstract
Autophagy is a major cellular pathway, which at basal levels regulates and maintains the cytoplasmic environment through the capture, isolation and digestion of intracellular materials in a specialized structure called an autophagosome. The unique ability of autophagy to degrade large targets, such as damaged and surplus organelles, intracellular microbes and protein aggregates, has made it a prime focus in inflammation and microbial research. Indeed, autophagy has been shown to be involved in a number of infectious and inflammatory pathologies, by which it may confer protection against intracellular microbes, be targeted by microbes for evasion or be hijacked for microbe biogenesis. In addition, autophagy helps regulate the intracellular and global immune response to both extracellular and intracellular pathogens. Here we review the current literature on the interactions between autophagy and HIV among different immune cells and discuss new research that re-emphasizes the role of inflammation in HIV-mediated CD4(+) T cell death.
Collapse
Affiliation(s)
- Christina Dinkins
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Manohar Pilli
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Mbita Z, Hull R, Dlamini Z. Human immunodeficiency virus-1 (HIV-1)-mediated apoptosis: new therapeutic targets. Viruses 2014; 6:3181-227. [PMID: 25196285 PMCID: PMC4147692 DOI: 10.3390/v6083181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022] Open
Abstract
HIV has posed a significant challenge due to the ability of the virus to both impair and evade the host’s immune system. One of the most important mechanisms it has employed to do so is the modulation of the host’s native apoptotic pathways and mechanisms. Viral proteins alter normal apoptotic signaling resulting in increased viral load and the formation of viral reservoirs which ultimately increase infectivity. Both the host’s pro- and anti-apoptotic responses are regulated by the interactions of viral proteins with cell surface receptors or apoptotic pathway components. This dynamic has led to the development of therapies aimed at altering the ability of the virus to modulate apoptotic pathways. These therapies are aimed at preventing or inhibiting viral infection, or treating viral associated pathologies. These drugs target both the viral proteins and the apoptotic pathways of the host. This review will examine the cell types targeted by HIV, the surface receptors exploited by the virus and the mechanisms whereby HIV encoded proteins influence the apoptotic pathways. The viral manipulation of the hosts’ cell type to evade the immune system, establish viral reservoirs and enhance viral proliferation will be reviewed. The pathologies associated with the ability of HIV to alter apoptotic signaling and the drugs and therapies currently under development that target the ability of apoptotic signaling within HIV infection will also be discussed.
Collapse
Affiliation(s)
- Zukile Mbita
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Zodwa Dlamini
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| |
Collapse
|
22
|
Nardacci R, Amendola A, Ciccosanti F, Corazzari M, Esposito V, Vlassi C, Taibi C, Fimia GM, Del Nonno F, Ippolito G, D'Offizi G, Piacentini M. Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients. Autophagy 2014; 10:1167-78. [PMID: 24813622 PMCID: PMC4203545 DOI: 10.4161/auto.28678] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent in vitro studies have suggested that autophagy may play a role in both HIV-1 replication and disease progression. In this study we investigated whether autophagy protects the small proportion of HIV-1 infected individuals who remain clinically stable for years in the absence of antiretroviral therapy, these named long-term nonprogressors (LTNP) and elite controllers (EC). We found that peripheral blood mononuclear cells (PBMC) of the HIV-1 controllers present a significantly higher amount of autophagic vesicles associated with an increased expression of autophagic markers with respect to normal progressors. Of note, ex vivo treatment of PBMC from the HIV-1 controllers with the MTOR inhibitor rapamycin results in a more efficient autophagic response, leading to a reduced viral production. These data lead us to propose that autophagy contributes to limiting viral pathogenesis in HIV-1 controllers by targeting viral components for degradation.
Collapse
Affiliation(s)
- Roberta Nardacci
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy
| | - Alessandra Amendola
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy
| | - Fabiola Ciccosanti
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy
| | - Marco Corazzari
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy; Department of Biology; University of Rome "Tor Vergata"; Rome, Italy
| | - Valentina Esposito
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy
| | - Chrysoula Vlassi
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy
| | - Chiara Taibi
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy; Department of Biological and Environmental Sciences and Technologies (DiSTeBA); University of Salento; Lecce, Italy
| | - Franca Del Nonno
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy
| | - Gianpiero D'Offizi
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases; IRCCS "L. Spallanzani"; Rome, Italy; Department of Biology; University of Rome "Tor Vergata"; Rome, Italy
| |
Collapse
|
23
|
Wang L, Hu H, Wang Z, Xiong H, Cheng Y, Liao JD, Deng Y, Lü J. Methylseleninic acid suppresses pancreatic cancer growth involving multiple pathways. Nutr Cancer 2014; 66:295-307. [PMID: 24447148 DOI: 10.1080/01635581.2014.868911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As a potential novel agent for treating pancreatic cancer, methylseleninic acid (MSeA) was evaluated in cell culture and xenograft models. Results showed that MSeA induced G1 cell cycle arrest and apoptosis in a majority of human and mouse pancreatic cancer cell lines, but G2 arrest in human PANC-1 and PANC-28 cell lines. In contrast to our previous finding in human prostate cancer LNCaP cells having a lack of P53 activation by MSeA, induction of G2 arrest in PANC-1 cells was accompanied by increased mutant P53 Ser15 phosphorylation, upregulation of P53-targets P21Cip1 and GADD45 and G2 checkpoint kinase (Chk2) activation, suggestive of DNA damage responses. A rapid inhibition of AKT phosphorylation was followed by reduced mTOR signaling and increased autophagy in PANC-1 cells attenuating caspase-mediated apoptosis execution. Furthermore, daily oral treatment with MSeA (3 mg Se/kg body weight) significantly suppressed growth of subcutaneously inoculated PANC-1 xenograft in SCID mice. Immunohistochemical analyses detected increased p-Ser15 P53, P21Cip1, pS139-H2AX (DNA damage responses), and caspase-3 cleavage and decreased pSer473AKT and Ki67 proliferative index and reduced intratumor vascular density in MSeA-treated xenograft. These results provide impetus for further research of MSeA in the therapy and/or chemoprevention of pancreatic cancer.
Collapse
Affiliation(s)
- Lei Wang
- a Hormel Institute , University of Minnesota , Austin , Minnesota , USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Rai P, Plagov A, Lan X, Chandel N, Singh T, Lederman R, Ayasolla KR, Mathieson PW, Saleem MA, Husain M, Malhotra A, Chander PN, Singhal PC. mTOR plays a critical role in p53-induced oxidative kidney cell injury in HIVAN. Am J Physiol Renal Physiol 2013; 305:F343-54. [PMID: 23678040 PMCID: PMC3742868 DOI: 10.1152/ajprenal.00135.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/08/2013] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress has been implicated to contribute to HIV-induced kidney cell injury; however, the role of p53, a modulator of oxidative stress, has not been evaluated in the development of HIV-associated nephropathy (HIVAN). We hypothesized that mammalian target of rapamycin (mTOR) may be critical for the induction of p53-mediated oxidative kidney cell injury in HIVAN. To test our hypothesis, we evaluated the effect of an mTOR inhibitor, rapamycin, on kidney cell p53 expression, downstream signaling, and kidney cell injury in both in vivo and in vitro studies. Inhibition of the mTOR pathway resulted in downregulation of renal tissue p53 expression, associated downstream signaling, and decreased number of sclerosed glomeruli, tubular microcysts, and apoptosed and 8-hydroxy deoxyguanosine (8-OHdG)-positive (+ve) cells in Tg26 mice. mTOR inhibition not only attenuated kidney cell expression of p66ShcA and phospho-p66ShcA but also reactivated the redox-sensitive stress response program in the form of enhanced expression of manganese superoxide dismutase (MnSOD) and catalase. In in vitro studies, the mTOR inhibitor also provided protection against HIV-induced podocyte apoptosis. Moreover, mTOR inhibition downregulated HIV-induced podocyte (HP/HIV) p53 expression. Since HP/HIV silenced for mTOR displayed a lack of expression of p53 as well as attenuated podocyte apoptosis, this suggests that mTOR is critical for kidney cell p53 activation and associated oxidative kidney cell injury in the HIV milieu.
Collapse
Affiliation(s)
- Partab Rai
- Department of Medicine, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Great Neck, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang Z, Ting Z, Li Y, Chen G, Lu Y, Hao X. microRNA-199a is able to reverse cisplatin resistance in human ovarian cancer cells through the inhibition of mammalian target of rapamycin. Oncol Lett 2013; 6:789-794. [PMID: 24137412 PMCID: PMC3789061 DOI: 10.3892/ol.2013.1448] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/07/2013] [Indexed: 01/07/2023] Open
Abstract
microRNAs (miRNAs/miRs) may have a crucial function in tumor metastasis through the regulation of a plethora of signaling pathways. Increasing evidence has shown that miR-199a is important in regulating the tumor metastasis of ovarian cancer, although the precise biological function of miR-199a is unclear at present. In the current study, it was observed that the expression levels of miR-199a were higher in OV2008 cells compared with C13* cells. However, lower levels of mammalian target of rapamycin (mTOR) protein were detected by western blotting in the OV2008 cells compared with the C13* cells. The miR-199a levels were increased in the C13* cells using miR-199a mimics and the mTOR levels were observed to decrease. This may have resulted in a reversal of cisplatin resistance in the C13* cells. To test this hypothesis, the Renilla luciferase reporter gene system was used to analyze the mTOR levels. The results indicated that the expression levels of mTOR were significantly blocked by the increased miR-199a levels. When the miR-199a inhibitor was applied to decrease the miR-199a levels, it was observed that the mTOR expression levels were increased, while cisplatin-induced apoptosis was decreased in the OV2008 cells. The study concludes that miR-199a is able to reverse cisplatin resistance in human ovarian cancer cells through the inhibition of mTOR and that mTOR may be the target of miR-199a during this process.
Collapse
Affiliation(s)
- Zhongxian Wang
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Sciences and Yichang Central People's Hospital, China Three Gorges University, Yichang, P.R. China
| | | | | | | | | | | |
Collapse
|
26
|
Ghrici M, El Zowalaty M, Omar AR, Ideris A. Induction of apoptosis in MCF-7 cells by the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus Malaysian strain AF2240. Oncol Rep 2013; 30:1035-44. [PMID: 23807159 PMCID: PMC3783058 DOI: 10.3892/or.2013.2573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/10/2013] [Indexed: 12/11/2022] Open
Abstract
Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.
Collapse
Affiliation(s)
- Mohamed Ghrici
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | | | | | | |
Collapse
|
27
|
Subgroup J avian leukosis virus infection inhibits autophagy in DF-1 cells. Virol J 2013; 10:196. [PMID: 23773913 PMCID: PMC3720224 DOI: 10.1186/1743-422x-10-196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/12/2013] [Indexed: 01/22/2023] Open
Abstract
Background Subgroup J avian leukosis virus (ALV-J) infection can induce tumor-related diseases in chickens. Previous studies by our laboratory demonstrated that ALV-J infection of DF-1 cells resulted in altered activity and phosphorylation of AKT. However, little is known about the subsequent activation of host DF-1 cells. Results In the current study, autophagy inhibition was observed for ALV-J infected DF-1 cells. Our data showed that the autophagosome protein, microtubule-associated protein 1 light chain 3-II (LC3-II), was reduced considerably in DF-1 cells infected with active ALV-J, while no change was observed for cells infected with inactivated ALV-J. Autophagy inhibition was also confirmed by fluorescence microscopy and transmission electron microscopy. Interestingly, when autophagy was promoted by rapamycin, the titers of ALV-J replication were decreased, and the replication level of ALV-J was significantly enhanced when atg5 (autophagy-related gene 5) was knocked out. Conclusions These results suggested that ALV-J infection could down-regulate autophagy in DF-1 cells during viral replication. This study is the first to report on the relationship between ALV-J infection and autophagy in DF-1 cells.
Collapse
|
28
|
CAI YUCHEN, XIA QING, SU QUANGUAN, LUO RONGZHEN, SUN YUELI, SHI YANXIA, JIANG WENQI. mTOR inhibitor RAD001 (everolimus) induces apoptotic, not autophagic cell death, in human nasopharyngeal carcinoma cells. Int J Mol Med 2013; 31:904-12. [DOI: 10.3892/ijmm.2013.1282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/27/2012] [Indexed: 11/05/2022] Open
|
29
|
Zhang J, Biggar KK, Storey KB. Regulation of p53 by reversible post-transcriptional and post-translational mechanisms in liver and skeletal muscle of an anoxia tolerant turtle, Trachemys scripta elegans. Gene 2013; 513:147-55. [PMID: 23124036 DOI: 10.1016/j.gene.2012.10.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/25/2012] [Accepted: 10/10/2012] [Indexed: 01/07/2023]
Abstract
The red-eared slider turtle (Trachemys scripta elegans) exhibits well-developed natural anoxia tolerance that depends on multiple biochemical adaptations, including anoxia-induced hypometabolism. We hypothesized that signaling by the p53 protein could aid in establishing the hypometabolic state by arresting the cell cycle, protecting against DNA damage as well as altering pathways of energy metabolism. Immunoblotting was used to evaluate the regulation and post-transcriptional modifications of p53 in liver and skeletal muscle of red-eared slider turtles subjected to 5h or 20h of anoxic submergence. Tissue specific regulation of p53 was observed with the liver showing a more rapid activation of p53 in response to anoxia as well as differential expression of seven serine phosphorylation and two lysine acetylation sites when compared with skeletal muscle. Protein expression of MDM2, a major p53 inhibitor, was also examined but did not change during anoxia. Reverse-transcriptase PCR was used to assess transcript levels of selected p53 target genes (14-3-3σ, Gadd45α and Pgm) and one microRNA (miR-34a); results showed down-regulation of Pgm and up-regulation of the other three. These findings show an activation of p53 in response to anoxia exposure and suggest an important role for the p53 stress response pathway in regulating natural anoxia tolerance and hypometabolism in a vertebrate facultative anaerobe.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | | | | |
Collapse
|
30
|
Abstract
Apoptosis of uninfected bystander cells is a key element of HIV pathogenesis and believed to be the driving force behind the selective depletion of CD4+ T cells leading to immunodeficiency. While several viral proteins have been implicated in this process the complex interaction between Env glycoprotein expressed on the surface of infected cells and the receptor and co-receptor expressing bystander cells has been proposed as a major mechanism. HIV-1 utilizes CD4 as the primary receptor for entry into cells; however, it is the viral co-receptor usage that greatly influences CD4 decline and progression to AIDS. This phenomenon is relatively simple for X4 viruses, which arise later during the course of the disease, are considered to be highly fusogenic, and cause a rapid CD4+ T cell decline. However, in contrast, R5 viruses in general have a greater transmissibility, are encountered early during the disease and have a lesser pathogenic potential than the former. The above generalization gets complicated in numerous situations where R5 viruses persist throughout the disease and are capable of causing a rigorous CD4+ T cell decline. This review will discuss the multiple factors that are reported to influence HIV induced bystander apoptosis and pathogenesis including Env glycoprotein phenotype, virus tropism, disease stage, co-receptor expression on CD4+ T cells, immune activation and therapies targeting the viral envelope.
Collapse
Affiliation(s)
- Himanshu Garg
- Center of Excellence for Infectious Disease, Department of Biomedical Science, Texas Tech University Health Sciences Center, 5001 El Paso Dr, MSB-1 Annex, El Paso, TX 79905, USA.
| | | | | |
Collapse
|
31
|
Imbeault M, Giguère K, Ouellet M, Tremblay MJ. Exon level transcriptomic profiling of HIV-1-infected CD4(+) T cells reveals virus-induced genes and host environment favorable for viral replication. PLoS Pathog 2012; 8:e1002861. [PMID: 22876188 PMCID: PMC3410884 DOI: 10.1371/journal.ppat.1002861] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/30/2012] [Indexed: 01/01/2023] Open
Abstract
HIV-1 is extremely specialized since, even amongst CD4+ T lymphocytes (its major natural reservoir in peripheral blood), the virus productively infects only a small proportion of cells under an activated state. As the percentage of HIV-1-infected cells is very low, most studies have so far failed to capture the precise transcriptomic profile at the whole-genome scale of cells highly susceptible to virus infection. Using Affymetrix Exon array technology and a reporter virus allowing the magnetic isolation of HIV-1-infected cells, we describe the host cell factors most favorable for virus establishment and replication along with an overview of virus-induced changes in host gene expression occurring exclusively in target cells productively infected with HIV-1. We also establish that within a population of activated CD4+ T cells, HIV-1 has no detectable effect on the transcriptome of uninfected bystander cells at early time points following infection. The data gathered in this study provides unique insights into the biology of HIV-1-infected CD4+ T cells and identifies genes thought to play a determinant role in the interplay between the virus and its host. Furthermore, it provides the first catalogue of alternative splicing events found in primary human CD4+ T cells productively infected with HIV-1. Some previous studies have monitored HIV-1-induced gene expression in various host cell targets and tissues but the discrimination between productively infected cells and uninfected bystander cells represents a technical challenge yet to be solved. Consequently, data interpretation has always been biased towards the transcriptional response of a majority of uninfected bystander cells that were exposed to soluble factors released by virus-infected cells. Following the design of a unique and innovative molecular tool to identify cells productively infected with HIV-1 and the description of an efficient magnetic beads-based technique to separate them from uninfected bystander cells, we undertake this challenge and perform the first comparative whole-genome transcriptomic and large-scale proteomic profiling of both HIV-1-infected and uninfected bystander CD4+ T cells. We demonstrate herein that HIV-1- infected and uninfected bystander cells display distinctive transcriptomic signatures which might permit to identify new susceptibility and resistance factors.
Collapse
Affiliation(s)
- Michaël Imbeault
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec - CHUL, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Katia Giguère
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec - CHUL, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Michel Ouellet
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec - CHUL, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Michel J. Tremblay
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec - CHUL, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
32
|
Nguyen SA, Walker D, Gillespie MB, Gutkind JS, Day TA. mTOR inhibitors and its role in the treatment of head and neck squamous cell carcinoma. Curr Treat Options Oncol 2012; 13:71-81. [PMID: 22282394 DOI: 10.1007/s11864-011-0180-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OPINION STATEMENT Head and neck squamous cell carcinomas (HNSCC) represent 6% of all cancers diagnosed each year in the United States, affecting approximately 43,000 new patients and resulting in approximately 12,000 deaths. Currently, three main rapalogs exist for the treatment of cancer: CCI-779 (temsirolimus), RAD001 (everolimus), and AP235373 (deforolimus). Clinicians managing HNSCC need to be aware of the three rapalogs. Extensive evidence has shown rapamycin-analogs to be effective agents in the treatment of a number of solid tumors. While extensive preclinical data suggests that HNSCC would be an appropriate tumor type to benefit from inhibition of the mTOR pathway, limited clinical data is yet available to support this. Numerous phase II trials evaluating mTOR inhibitors for use in HNSCC are currently recruiting patients.
Collapse
Affiliation(s)
- Shaun A Nguyen
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
33
|
HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase. Cell Death Dis 2012; 3:e282. [PMID: 22419111 PMCID: PMC3317353 DOI: 10.1038/cddis.2012.21] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Trans-activator protein (Tat) of human immunodeficiency virus (HIV)
is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As
a number of viral proteins Tat is suspected to disturb mitochondrial function.
We prepared pure synthetic full-length Tat by native chemical ligation (NCL),
and Tat peptides, to evaluate their direct effects on isolated mitochondria.
Submicromolar doses of synthetic Tat cause a rapid dissipation of the
mitochondrial transmembrane potential (ΔΨm) as well as
cytochrome c release in mitochondria isolated from mouse liver, heart,
and brain. Accordingly, Tat decreases substrate oxidation by mitochondria
isolated from these tissues, with oxygen uptake being initially restored by
adding cytochrome c. The anion-channel inhibitor
4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) protects
isolated mitochondria against Tat-induced mitochondrial membrane
permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker,
does not. Pharmacologic inhibitors of the permeability transition pore,
Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce
Tat-induced MMP. We finally observed that Tat inhibits cytochrome c
oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and
brain of both mouse and human samples, making it the first described viral
protein to be a potential COX inhibitor.
Collapse
|
34
|
Li Q, Rao R, Vazzana J, Goedegebuure P, Odunsi K, Gillanders W, Shrikant PA. Regulating mammalian target of rapamycin to tune vaccination-induced CD8(+) T cell responses for tumor immunity. THE JOURNAL OF IMMUNOLOGY 2012; 188:3080-7. [PMID: 22379028 DOI: 10.4049/jimmunol.1103365] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccine strategies aimed at generating CD8(+) T cell memory responses are likely to show augmented efficacy against chronic challenges like tumor. The abundance in variety of memory CD8(+) T cells behooves development of vaccine strategies that generate distinct memory responses and evaluate them for tumor efficacy. In this study, we demonstrate the ability of a variety of rapamycin treatment regimens to regulate virus vaccination-induced CD8(+) T cell memory responses and tumor efficacy. Strikingly, a short course of high-dose, but not low-dose, rapamycin treatment transiently blocks viral vaccination-induced mammalian target of rapamycin activity in CD8(+) T cells favoring persistence and Ag-recall responses over type 1 effector maturation; however, prolonged high-dose rapamycin administration abrogated memory responses. Furthermore, a short course of high-dose rapamycin treatment generated CD8(+) T cell memory responses that were independent of IL-15 and IL-7 and were programmed early for sustenance and greater tumor efficacy. These results demonstrate the impact a regimen of rapamycin treatment has on vaccine-induced CD8(+) T cell responses and indicates that judicious application of rapamycin can augment vaccine efficacy for chronic challenges.
Collapse
Affiliation(s)
- Qingsheng Li
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene 2011; 31:1923-37. [PMID: 21874045 PMCID: PMC3583298 DOI: 10.1038/onc.2011.379] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Radiation therapy remains the standard of care for many cancers, including the malignant pediatric brain tumor medulloblastoma. Radiation leads to long-term side effects, while radio-resistance contributes to tumor recurrence. Radio-resistant medulloblastoma cells occupy the peri-vascular niche. They express Yes-associated protein (YAP), a Sonic hedgehog (Shh) target markedly elevated in Shh-driven medulloblastomas. Here we report that YAP accelerates tumor growth and confers radio-resistance, promoting ongoing proliferation after radiation. YAP activity enables cells to enter mitosis with un-repaired DNA through driving IGF2 expression and Akt activation, resulting in ATM/Chk2 inactivation and abrogation of cell cycle checkpoints. Our results establish a central role for YAP in counteracting radiation-based therapies and driving genomic instability, and indicate the YAP/IGF2/Akt axis as a therapeutic target in medulloblastoma.
Collapse
|
36
|
Lopes TJS, Schaefer M, Shoemaker J, Matsuoka Y, Fontaine JF, Neumann G, Andrade-Navarro MA, Kawaoka Y, Kitano H. Tissue-specific subnetworks and characteristics of publicly available human protein interaction databases. ACTA ACUST UNITED AC 2011; 27:2414-21. [PMID: 21798963 DOI: 10.1093/bioinformatics/btr414] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Protein-protein interaction (PPI) databases are widely used tools to study cellular pathways and networks; however, there are several databases available that still do not account for cell type-specific differences. Here, we evaluated the characteristics of six interaction databases, incorporated tissue-specific gene expression information and finally, investigated if the most popular proteins of scientific literature are involved in good quality interactions. RESULTS We found that the evaluated databases are comparable in terms of node connectivity (i.e. proteins with few interaction partners also have few interaction partners in other databases), but may differ in the identity of interaction partners. We also observed that the incorporation of tissue-specific expression information significantly altered the interaction landscape and finally, we demonstrated that many of the most intensively studied proteins are engaged in interactions associated with low confidence scores. In summary, interaction databases are valuable research tools but may lead to different predictions on interactions or pathways. The accuracy of predictions can be improved by incorporating datasets on organ- and cell type-specific gene expression, and by obtaining additional interaction evidence for the most 'popular' proteins. CONTACT kitano@sbi.jp SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tiago J S Lopes
- JST ERATO KAWAOKA Infection-induced Host Responses Project, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Inhibition of β-TrcP-dependent ubiquitination of p53 by HIV-1 Vpu promotes p53-mediated apoptosis in human T cells. Blood 2011; 117:6600-7. [PMID: 21521785 DOI: 10.1182/blood-2011-01-333427] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HIV-1 viral protein U (Vpu) is involved in ubiquitination and degradation of BM stromal cell Ag 2 and surface receptor CD4 through their recruitment to SCF(β-TrcP) (Skp1/Cul1/F-box) ubiquitin ligase (SCF) complex. Here, we show that specific interaction of wild-type Vpu protein with SCF complex leads to inhibition of ubiquitination and proteasomal degradation of p53 protein in a β-TrcP-dependent manner. Successful interaction of SCF(β-TrcP) complex with β-TrcP binding motif (DS(52)GNES(56)) present in Vpu is essential because mutant Vpu possessing specific alanine substitutions (DA(52)GNEA(56)) in the β-TrcP binding motif not only failed to stabilize p53 protein but was also unable to inhibit ubiquitination of p53 protein. Furthermore, Vpu competes efficiently with the interaction of p53 protein with the β-TrcP subunit of the SCF complex and inhibits subsequent ubiquitination of p53 proteins in a dose-dependent manner. We also observed potent apoptotic activity in a p53 null cell line (H-1299) that was cotransfected with p53 and Vpu-expressing plasmids. Furthermore, MOLT-3 (human T-lymphoblast) cells when infected with vesicular stomatitis virus glycoprotein-pseudotypic HIV-1 possessing wild-type vpu gene exhibited maximum activation of p53/Bax proteins and p53-mediated cell death. These findings establish a novel function of Vpu in modulating the stability of p53 protein that correlates positively with apoptosis during late stages of HIV-1 infection.
Collapse
|
38
|
Abstract
Glioblastoma (GBM) is the most common primary tumor of the CNS in the adult. It is characterized by exponential growth and diffuse invasiveness. Among many different genetic alterations in GBM, e.g., mutations of PTEN, EGFR, p16/p19 and p53 and their impact on aberrant signaling have been thoroughly characterized. A major barrier to develop a common therapeutic strategy is founded on the fact that each tumor has its individual genetic fingerprint. Nonetheless, the PI3K pathway may represent a common therapeutic target to most GBM due to its central position in the signaling cascade affecting proliferation, apoptosis and migration. The read-out of blocking PI3K alone or in combination with other cancer pathways should mainly focus, besides the cytostatic effect, on cell death induction since sublethal damage may induce selection of more malignant clones. Targeting more than one pathway instead of a single agent approach may be more promising to kill GBM cells.
Collapse
|
39
|
Wan ZT, Chen XL. Mechanisms of HIV envelope-induced T lymphocyte apoptosis. Virol Sin 2010; 25:307-15. [PMID: 20960177 DOI: 10.1007/s12250-010-3148-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 06/13/2010] [Indexed: 12/28/2022] Open
Abstract
Infection by the human immunodeficiency virus (HIV) is characterized by a progressive depletion of CD4 T lymphocytes, which leads to dysfunction of the immune system. Although a variety of mechanisms may contribute to the gradual T cell decline that occurs in HIV-infected patients, abnormal apoptosis of infected or bystander T lymphocytes is an important event leading to immunodeficiency. The HIV envelope glycoprotein plays a crucial role in HIV associated apoptosis through both death receptor-mediated and mitochondria-dependent pathways. This review summarizes current knowledge of Env-mediated T lymphocyte apoptosis.
Collapse
Affiliation(s)
- Zhi-Tao Wan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | |
Collapse
|
40
|
Kumar D, Konkimalla S, Yadav A, Sataranatarajan K, Kasinath BS, Chander PN, Singhal PC. HIV-associated nephropathy: role of mammalian target of rapamycin pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:813-21. [PMID: 20581056 PMCID: PMC2913356 DOI: 10.2353/ajpath.2010.100131] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2010] [Indexed: 12/22/2022]
Abstract
Both glomerular and tubular lesions are characterized by a proliferative phenotype in HIV-associated nephropathy. We hypothesized that mammalian target of rapamycin (mTOR) contributes to the development of the HIVAN phenotype. Both glomerular and tubular epithelial cells showed enhanced expression of phospho (p)-mTOR in HIV-1 transgenic mice (Tgs). In addition, renal tissues of transgenic mice (RT-Tg) showed enhanced phosphorylation of p70S6 kinase and an associated diminished phosphorylation of eEF2. Moreover, RT-Tgs showed enhanced phosphorylation of 4EBP1 and eIF4B; these findings indicated activation of the mTOR pathway in RT-Tgs. To test our hypothesis, age- and sex-matched control mice and Tgs were administered either saline or rapamycin (an inhibitor of the mTOR pathway) for 4 weeks. Tgs receiving rapamycin not only showed inhibition of the mTOR-associated downstream signaling but also displayed attenuated renal lesions. RT-Tgs showed enhanced expression of hypoxia-inducible factor-alpha and also displayed increased expression of vascular endothelial growth factor; on the other hand, rapamycin inhibited RT-Tg expression of both hypoxia-inducible factor-alpha and vascular endothelial growth factor. We conclude that the mTOR pathway contributes to the HIVAN phenotype and that inhibition of the mTOR pathway can be used as a therapeutic strategy to alter the course of HIVAN.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Immunology, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Galli A, Kearney M, Nikolaitchik OA, Yu S, Chin MPS, Maldarelli F, Coffin JM, Pathak VK, Hu WS. Patterns of Human Immunodeficiency Virus type 1 recombination ex vivo provide evidence for coadaptation of distant sites, resulting in purifying selection for intersubtype recombinants during replication. J Virol 2010; 84:7651-61. [PMID: 20504919 PMCID: PMC2897624 DOI: 10.1128/jvi.00276-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/20/2010] [Indexed: 11/20/2022] Open
Abstract
High-frequency recombination is a hallmark of HIV-1 replication. Recombination can occur between two members of the same subtype or between viruses from two different subtypes, generating intra- or intersubtype recombinants, respectively. Many intersubtype recombinants have been shown to circulate in human populations. We hypothesize that sequence diversity affects the emergence of viable recombinants by decreasing recombination events and reducing the ability of the recombinants to replicate. To test our hypothesis, we compared recombination between two viruses containing subtype B pol genes (B/B) and between viruses with pol genes from subtype B or F (B/F). Recombination events generated during a single cycle of infection without selection pressure on pol gene function were analyzed by single-genome sequencing. We found that recombination occurred slightly ( approximately 30%) less frequently in B/F than in B/B viruses, and the overall distribution of crossover junctions in pol was similar for the two classes of recombinants. We then examined the emergence of recombinants in a multiple cycle assay, so that functional pol gene products were selected. We found that the emerging B/B recombinants had complex patterns, and the crossover junctions were distributed throughout the pol gene. In contrast, selected B/F recombinants had limited recombination patterns and restricted crossover junction distribution. These results provide evidence for the evolved coadapted sites in variants from different subtypes; these sites may be segregated by recombination events, causing the newly generated intersubtype recombinants to undergo purifying selection. Therefore, the ability of the recombinants to replicate is the major barrier for many of these viruses.
Collapse
Affiliation(s)
- Andrea Galli
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Mary Kearney
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Olga A. Nikolaitchik
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Sloane Yu
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Mario P. S. Chin
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Frank Maldarelli
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - John M. Coffin
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Vinay K. Pathak
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Wei-Shau Hu
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
42
|
Pitcher J, Shimizu S, Meucci O. Disruption of neuronal CXCR4 function by opioids: preliminary evidence of ferritin heavy chain as a potential etiological agent in neuroAIDS. J Neuroimmunol 2010; 224:66-71. [PMID: 20627326 PMCID: PMC2910242 DOI: 10.1016/j.jneuroim.2010.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/04/2010] [Indexed: 11/24/2022]
Abstract
The chemokine CXCL12 and its receptor, CXCR4, regulate neuronal migration, differentiation, and survival. Alterations of CXCL12/CXCR4 signaling are implicated in different neuropathologies, including the neurological complications of HIV infection. Opiates are important co-factors for progression to neuroAIDS and can disrupt the CXCL12/CXCR4 axis in vitro and in vivo. This paper will review recently identified mechanisms of opiate-induced CXCR4 impairment in neurons and introduce results from pilot studies in human brain tissue, which highlight the role of the protein ferritin heavy chain in HIV neuropathology in patients with history of drug abuse.
Collapse
Affiliation(s)
- Jonathan Pitcher
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, 19102 PA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, 19102 PA
| | - Saori Shimizu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, 19102 PA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, 19102 PA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, 19102 PA
| |
Collapse
|
43
|
Peng L, Liang D, Tong W, Li J, Yuan Z. Hepatitis C virus NS5A activates the mammalian target of rapamycin (mTOR) pathway, contributing to cell survival by disrupting the interaction between FK506-binding protein 38 (FKBP38) and mTOR. J Biol Chem 2010; 285:20870-81. [PMID: 20439463 PMCID: PMC2898342 DOI: 10.1074/jbc.m110.112045] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/25/2010] [Indexed: 01/16/2023] Open
Abstract
Hepatitis C virus (HCV) often establishes a persistent infection that most likely involves a complex host-virus interplay. We previously reported that the HCV nonstructural protein 5A (NS5A) bound to cellular protein FKBP38 and resulted in apoptosis suppression in human hepatoma cell line Huh7. In the present research we further found that NS5A increased phosphorylation levels of two mTOR-targeted substrates, S6K1 and 4EBP1, in Huh7 in the absence of serum. mTOR inhibitor rapamycin or NS5A knockdown blocked S6K1 and 4EBP1 phosphorylation increase in NS5A-Huh7 and HCV replicon cells, suggesting that NS5A specifically regulated mTOR activation. Overexpression of NS5A and FKBP38 mutants or FKBP38 knockdown revealed this mTOR activation was dependent on NS5A-FKBP38 interaction. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 treatment in NS5A-Huh7 showed that the mTOR activation was independent of PI3K. Moreover, NS5A suppressed caspase 3 and poly(ADP-ribose) polymerase activation, which was abolished by NS5A knockdown or rapamycin, indicating NS5A inhibited apoptosis specifically through the mTOR pathway. Further analyses suggested that apoptotic inhibition exerted by NS5A via mTOR also required NS5A-FKBP38 interaction. Glutathione S-transferase pulldown and co-immunoprecipitation showed that NS5A disrupted the mTOR-FKBP38 association. Additionally, NS5A or FKBP38 mutants recovered the mTOR-FKBP38 interaction; this indicated that the impairment of mTOR-FKBP38 association was dependent on NS5A-FKBP38 binding. Collectively, our data demonstrate that HCV NS5A activates the mTOR pathway to inhibit apoptosis through impairing the interaction between mTOR and FKBP38, which may represent a pivotal mechanism for HCV persistence and pathogenesis.
Collapse
Affiliation(s)
- Lu Peng
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Dongyu Liang
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Wenyan Tong
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Jianhua Li
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Zhenghong Yuan
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
44
|
Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, Garcia E, Dinkins C, Leuba F, Wu L, Schwartz O, Deretic V, Piguet V. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 2010; 32:654-69. [PMID: 20451412 PMCID: PMC2929482 DOI: 10.1016/j.immuni.2010.04.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 12/10/2009] [Accepted: 03/23/2010] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) in mucosal surfaces are early targets for human immunodeficiency virus-1 (HIV-1). DCs mount rapid and robust immune responses upon pathogen encounter. However, immune response in the early events of HIV-1 transmission appears limited, suggesting that HIV-1 evade early immune control by DCs. We report that HIV-1 induces a rapid shutdown of autophagy and immunoamphisomes in DCs. HIV-1 envelope activated the mammalian target of rapamycin pathway in DCs, leading to autophagy exhaustion. HIV-1-induced inhibition of autophagy in DC increased cell-associated HIV-1 and transfer of HIV-1 infection to CD4(+) T cells. HIV-1-mediated downregulation of autophagy in DCs impaired innate and adaptive immune responses. Immunoamphisomes in DCs engulf incoming pathogens and appear to amplify pathogen degradation as well as Toll-like receptor responses and antigen presentation. The findings that HIV-1 downregulates autophagy and impedes immune functions of DCs represent a pathogenesis mechanism that can be pharmacologically countered with therapeutic and prophylactic implications.
Collapse
Affiliation(s)
- Fabien P. Blanchet
- Departments of Dermatology and Venereology, Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1211 Geneva, Switzerland
| | - Arnaud Moris
- Institut Pasteur, Virus and Immunity Unit, 75015 Paris, France
- INSERM UMRS-945, UPMC, 75013 Paris, France
| | - Damjan S. Nikolic
- Departments of Dermatology and Venereology, Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1211 Geneva, Switzerland
| | - Martin Lehmann
- Departments of Dermatology and Venereology, Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1211 Geneva, Switzerland
| | | | - Romaine Stalder
- Departments of Dermatology and Venereology, Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1211 Geneva, Switzerland
| | - Eduardo Garcia
- Departments of Dermatology and Venereology, Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1211 Geneva, Switzerland
| | | | - Florence Leuba
- Departments of Dermatology and Venereology, Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1211 Geneva, Switzerland
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | | | - Vojo Deretic
- University of New-Mexico, Albuquerque, NM 87131, USA
| | - Vincent Piguet
- Departments of Dermatology and Venereology, Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
45
|
Kim DH, Choi JH, Park HJ, Park JH, Lee KT. Costunolide Induces Apoptosis via Modulation of Cyclin-Dependent Kinase in HL-60 Human Leukemia Cells. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.2.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
46
|
Tripathy MK, Mitra D. Differential modulation of mitochondrial OXPHOS system during HIV-1 induced T-cell apoptosis: up regulation of Complex-IV subunit COX-II and its possible implications. Apoptosis 2010; 15:28-40. [PMID: 19771519 DOI: 10.1007/s10495-009-0408-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human Immunodeficiency Virus-1 (HIV-1) infection leads to CD4+ T cell depletion primarily by apoptosis employing both intrinsic and extrinsic pathways. Although extensive literature exists about the role of mitochondrial proteins in HIV induced T cell apoptosis, there is little understanding about the role of different components of mitochondrial oxidative phosphorylation (OXPHOS) system in apoptosis. The OXPHOS system comprises of five enzyme complexes (Complex I, II, III, IV, V), subunits of which have been implicated in various functions in addition to their primary role in energy generating process. Here using differential gene expression analysis, we report that Cytochrome Oxidase-II (COX-II), a subunit of Complex-IV is induced in HIV infected apoptotic T-cells. We also observe a temporal up regulation of this subunit across different T-cell lines and in human PBMCs. Further analysis indicates increase in expression of majority of Complex-IV subunits with concomitant increase in Complex-IV activity in HIV infected T cells. Silencing of COX-II expression leads to reduced apoptosis in infected T-cells, indicating its importance in apoptosis. Furthermore, our results also show that the activities of enzyme complexes I, II and III are decreased while those of Complex IV and V are increased at the time of acute infection and apoptosis. This differential regulation in activities of OXPHOS system complexes indicate a complex modulation of host cell energy generating system during HIV infection that ultimately leads to T cell apoptosis.
Collapse
|
47
|
Belibi FA, Edelstein CL. Metastatic Renal Cancer: What Role for Everolimus? CLINICAL MEDICINE REVIEWS IN ONCOLOGY 2010; 2:4. [PMID: 24771995 DOI: 10.4137/cmro.s1551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Metastatic renal cell carcinoma is uncommon (only 3% of cancers worldwide) but of poor prognosis. Renal cell carcinoma has traditionally been treated with cytokines (interferon-α or interleukin-2). More recently, a more clear understanding of the molecular and cellular mechanisms of the disease, involving the VEGF receptor and mTOR, has led to the discovery of novel therapies. Therapeutic options in patients with advanced RCC include the VEGF receptor inhibitors Sunitinib and Sorafenib, the anti-VEGF monoclonal antibody Bevacizumab and the mTORC1 inhibitors Temsirolimus and Everolimus. In 2009, Everolimus was FDA-approved for the treatment of patients with advanced clear cell RCC which had progressed within 6 months of stopping treatment with Sunitinib or sorafenib, or both drugs. Everolimus resulted in a 70% reduction in the risk of disease recurrence or death. The purpose of this review is to update on the current knowledge of the role of Everolimus in metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Franck A Belibi
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
48
|
Perfettini JL, Nardacci R, Séror C, Raza SQ, Sepe S, Saïdi H, Brottes F, Amendola A, Subra F, Del Nonno F, Chessa L, D'Incecco A, Gougeon ML, Piacentini M, Kroemer G. 53BP1 represses mitotic catastrophe in syncytia elicited by the HIV-1 envelope. Cell Death Differ 2009; 17:811-20. [PMID: 19876065 DOI: 10.1038/cdd.2009.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
p53 binding protein-1 (53BP1) participates in checkpoint signaling during the DNA damage response (DDR) and during mitosis. In this study we report that 53BP1 aggregates in nuclear foci within syncytia elicited by the human immunodeficiency virus (HIV)-1 envelope. 53BP1 aggregation occurs as a consequence of nuclear fusion (karyogamy (KG)). It colocalizes partially with the promyelomonocytic leukemia protein (PML), and the ataxia telangiectasia mutated kinase (ATM), the two components of the DDR that mediate apoptosis induced by the HIV-1 envelope. ATM-dependent phosphorylation of 53BP1 on serines 25 and 1778 (53BP1S25P and 53BP1S1778P) occurs at these DNA damage foci. 53BP1S25P was also detected in syncytia present in the lymph nodes or frontal brain sections from HIV-1-infected carriers, as well as in peripheral blood mononucleated cells from HIV-1-infected individuals, correlating with viral load. Knockdown of 53BP1 caused HIV-1 envelope-induced syncytia to enter abnormal mitoses, leading to their selective destruction through mitochondrion-dependent and caspase-dependent pathways. In conclusion, depletion of 53BP1 triggers the demise of HIV-1-elicited syncytia through mitotic catastrophe.
Collapse
|
49
|
Probing the HIV-1 genomic RNA trafficking pathway and dimerization by genetic recombination and single virion analyses. PLoS Pathog 2009; 5:e1000627. [PMID: 19834549 PMCID: PMC2757677 DOI: 10.1371/journal.ppat.1000627] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 09/21/2009] [Indexed: 11/19/2022] Open
Abstract
Once transcribed, the nascent full-length RNA of HIV-1 must travel to the appropriate host cell sites to be translated or to find a partner RNA for copackaging to form newly generated viruses. In this report, we sought to delineate the location where HIV-1 RNA initiates dimerization and the influence of the RNA transport pathway used by the virus on downstream events essential to viral replication. Using a cell-fusion-dependent recombination assay, we demonstrate that the two RNAs destined for copackaging into the same virion select each other mostly within the cytoplasm. Moreover, by manipulating the RNA export element in the viral genome, we show that the export pathway taken is important for the ability of RNA molecules derived from two viruses to interact and be copackaged. These results further illustrate that at the point of dimerization the two main cellular export pathways are partially distinct. Lastly, by providing Gag in trans, we have demonstrated that Gag is able to package RNA from either export pathway, irrespective of the transport pathway used by the gag mRNA. These findings provide unique insights into the process of RNA export in general, and more specifically, of HIV-1 genomic RNA trafficking. High genetic diversity of HIV-1 presents a difficult barrier for drug treatment and vaccine development. HIV-1 efficiently reassorts mutations in its genome by packaging two copies of RNA into one virion and using portions of each RNA as the template for DNA synthesis. Thus, a key to HIV-1's genetic diversity is how it packages two RNAs into one virion. We have previously shown that HIV-1 packages RNA as a dimer, rather than two monomers. In this report, we determined that HIV-1 RNA finds its copackaged dimer partner mostly in the cytoplasm, not the nucleus, of the infected cells. We also found that the host cell machinery used to transport the HIV-1 RNA out of the nucleus affects the ability of two RNAs to copackage into one virion: HIV-1 RNAs transported using the CRM-1 pathway does not copackage efficiently with RNA transported by the NXF1 pathway. This is also the first demonstration that RNAs transported by the two major cellular pathways, CRM-1 and NXF1, are partially segregated at some point in the cytoplasm. Therefore, this work provides novel insights to both HIV replication mechanisms and cellular RNA transport pathways.
Collapse
|
50
|
Imbeault M, Lodge R, Ouellet M, Tremblay MJ. Efficient magnetic bead-based separation of HIV-1-infected cells using an improved reporter virus system reveals that p53 up-regulation occurs exclusively in the virus-expressing cell population. Virology 2009; 393:160-7. [PMID: 19692106 DOI: 10.1016/j.virol.2009.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/02/2009] [Accepted: 07/14/2009] [Indexed: 11/27/2022]
Abstract
HIV-1 infection in cell lines is very efficient, since the target population is clonal and highly dividing. However, infection of primary cells such as CD4 T lymphocytes and monocyte-derived macrophages is much more difficult, resulting in a very small percentage of infected cells. In order to study events occurring in productively infected primary cells, we determined that a way to isolate this population from bystander cells was needed. We engineered a novel HIV-1-based reporter virus called NL4-3-IRES-HSA that allows for the magnetic separation of cells infected with fully competent virions. This X4-using virus encodes for the heat-stable antigen (HSA/murine CD24) without the deletion of any viral genes by introducing an IRES sequence between HSA and the auxiliary gene Nef. Using commercial magnetic beads, we achieved efficient purification of HIV-1-infected cells (i.e. purity >85% and recovery >90%) from diverse primary cell types at early time points following infection. We used this system to accurately quantify p53 protein levels in both virus-infected and uninfected bystander primary CD4(+) T cells. We show that p53 up-regulation occurs exclusively in the infected population. We devised a strategy that allows for an efficient separation of HIV-1 infected cells from bystanders. We believe that this new reporter virus system will be of great help to study in depth how HIV-1 interacts with its host in a primary cells context.
Collapse
Affiliation(s)
- Michaël Imbeault
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Canada G1V 4G2
| | | | | | | |
Collapse
|