1
|
Coulter AM, Cortés V, Theodore CJ, Cianciolo RE, Korstanje R, Campellone KG. WHAMM functions in kidney reabsorption and polymerizes actin to promote autophagosomal membrane closure and cargo sequestration. Mol Biol Cell 2024; 35:ar80. [PMID: 38598293 PMCID: PMC11238085 DOI: 10.1091/mbc.e24-01-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display structural abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.
Collapse
Affiliation(s)
- Alyssa M. Coulter
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | | | - Corey J. Theodore
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | | | | | - Kenneth G. Campellone
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
- Center on Aging, UConn Health, Farmington, CT 06030
| |
Collapse
|
2
|
Werbenko E, de Gorter DJJ, Kleimann S, Beckmann D, Waltereit-Kracke V, Reinhardt J, Geers F, Paruzel P, Hansen U, Pap T, Stradal TEB, Dankbar B. Hem1 is essential for ruffled border formation in osteoclasts and efficient bone resorption. Sci Rep 2024; 14:8109. [PMID: 38582757 PMCID: PMC10998871 DOI: 10.1038/s41598-024-58110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Bone resorption is highly dependent on the dynamic rearrangement of the osteoclast actin cytoskeleton to allow formation of actin rings and a functional ruffled border. Hem1 is a hematopoietic-specific subunit of the WAVE-complex which regulates actin polymerization and is crucial for lamellipodia formation in hematopoietic cell types. However, its role in osteoclast differentiation and function is still unknown. Here, we show that although the absence of Hem1 promotes osteoclastogenesis, the ability of Hem1-/- osteoclasts to degrade bone was severely impaired. Global as well as osteoclast-specific deletion of Hem1 in vivo revealed increased femoral trabecular bone mass despite elevated numbers of osteoclasts in vivo. We found that the resorption defect derived from the morphological distortion of the actin-rich sealing zone and ruffled border deformation in Hem1-deficient osteoclasts leading to impaired vesicle transport and increased intracellular acidification. Collectively, our data identify Hem1 as a yet unknown key player in bone remodeling by regulating ruffled border formation and consequently the resorptive capacity of osteoclasts.
Collapse
Affiliation(s)
- Eugenie Werbenko
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - David J J de Gorter
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Simon Kleimann
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Denise Beckmann
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Vanessa Waltereit-Kracke
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Julia Reinhardt
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Fabienne Geers
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Peter Paruzel
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Berno Dankbar
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149, Muenster, Germany.
| |
Collapse
|
3
|
Coulter AM, Cortés V, Theodore CJ, Cianciolo RE, Korstanje R, Campellone KG. WHAMM functions in kidney reabsorption and polymerizes actin to promote autophagosomal membrane closure and cargo sequestration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576497. [PMID: 38328079 PMCID: PMC10849548 DOI: 10.1101/2024.01.22.576497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.
Collapse
Affiliation(s)
- Alyssa M Coulter
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | | | - Corey J Theodore
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | | | | | - Kenneth G Campellone
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
- Center on Aging; UConn Health, Farmington CT, USA
| |
Collapse
|
4
|
Nguyen MT, Ly QK, Kim HJ, Lee W. WAVE2 Is a Vital Regulator in Myogenic Differentiation of Progenitor Cells through the Mechanosensitive MRTFA-SRF Axis. Cells 2023; 13:9. [PMID: 38201213 PMCID: PMC10778525 DOI: 10.3390/cells13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal myogenesis is an intricate process involving the differentiation of progenitor cells into myofibers, which is regulated by actin cytoskeletal dynamics and myogenic transcription factors. Although recent studies have demonstrated the pivotal roles of actin-binding proteins (ABPs) as mechanosensors and signal transducers, the biological significance of WAVE2 (Wiskott-Aldrich syndrome protein family member 2), an ABP essential for actin polymerization, in myogenic differentiation of progenitor cells has not been investigated. Our study provides important insights into the regulatory roles played by WAVE2 in the myocardin-related transcription factor A (MRTFA)-serum response factor (SRF) signaling axis and differentiation of myoblasts. We demonstrate that WAVE2 expression is induced during myogenic differentiation and plays a pivotal role in actin cytoskeletal remodeling in C2C12 myoblasts. Knockdown of WAVE2 in C2C12 cells reduced filamentous actin levels, increased globular actin accumulation, and impaired the nuclear translocation of MRTFA. Furthermore, WAVE2 depletion in myoblasts inhibited the expression and transcriptional activity of SRF and suppressed cell proliferation in myoblasts. Consequently, WAVE2 knockdown suppressed myogenic regulatory factors (i.e., MyoD, MyoG, and SMYD1) expressions, thereby hindering the differentiation of myoblasts. Thus, this study suggests that WAVE2 is essential for myogenic differentiation of progenitor cells by modulating the mechanosensitive MRTFA-SRF axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Hyun-Jung Kim
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea
| |
Collapse
|
5
|
Bedi A, Choi K, Keane C, Bolger-Munro M, Ambrose AR, Gold MR. WAVE2 Regulates Actin-Dependent Processes Induced by the B Cell Antigen Receptor and Integrins. Cells 2023; 12:2704. [PMID: 38067132 PMCID: PMC10705906 DOI: 10.3390/cells12232704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
B cell antigen receptor (BCR) signaling induces actin cytoskeleton remodeling by stimulating actin severing, actin polymerization, and the nucleation of branched actin networks via the Arp2/3 complex. This enables B cells to spread on antigen-bearing surfaces in order to increase antigen encounters and to form an immune synapse (IS) when interacting with antigen-presenting cells (APCs). Although the WASp, N-WASp, and WAVE nucleation-promoting factors activate the Arp2/3 complex, the role of WAVE2 in B cells has not been directly assessed. We now show that both WAVE2 and the Arp2/3 complex localize to the peripheral ring of branched F-actin when B cells spread on immobilized anti-Ig antibodies. The siRNA-mediated depletion of WAVE2 reduced and delayed B cell spreading on immobilized anti-Ig, and this was associated with a thinner peripheral F-actin ring and reduced actin retrograde flow compared to control cells. Depleting WAVE2 also impaired integrin-mediated B cell spreading on fibronectin and the LFA-1-induced formation of actomyosin arcs. Actin retrograde flow amplifies BCR signaling at the IS, and we found that depleting WAVE2 reduced microcluster-based BCR signaling and signal amplification at the IS, as well as B cell activation in response to antigen-bearing cells. Hence, WAVE2 contributes to multiple actin-dependent processes in B lymphocytes.
Collapse
Affiliation(s)
- Abhishek Bedi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Kate Choi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Connor Keane
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Madison Bolger-Munro
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Ashley R Ambrose
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Michael R Gold
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| |
Collapse
|
6
|
Tang J, Yang L, Guan F, Miller H, Camara NOS, James LK, Benlagha K, Kubo M, Heegaard S, Lee P, Lei J, Zeng H, He C, Zhai Z, Liu C. The role of Raptor in lymphocytes differentiation and function. Front Immunol 2023; 14:1146628. [PMID: 37283744 PMCID: PMC10239924 DOI: 10.3389/fimmu.2023.1146628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Raptor, a key component of mTORC1, is required for recruiting substrates to mTORC1 and contributing to its subcellular localization. Raptor has a highly conserved N-terminus domain and seven WD40 repeats, which interact with mTOR and other mTORC1-related proteins. mTORC1 participates in various cellular events and mediates differentiation and metabolism. Directly or indirectly, many factors mediate the differentiation and function of lymphocytes that is essential for immunity. In this review, we summarize the role of Raptor in lymphocytes differentiation and function, whereby Raptor mediates the secretion of cytokines to induce early lymphocyte metabolism, development, proliferation and migration. Additionally, Raptor regulates the function of lymphocytes by regulating their steady-state maintenance and activation.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Louisa K. James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), Rikagaku Kenkyusho, Institute of Physical and Chemical Research (RIKEN) Yokohama Institute, Yokohama, Japan
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hu Zeng
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Rana PS, Wang W, Markovic V, Szpendyk J, Chan ER, Sossey-Alaoui K. The WAVE2/miR-29/Integrin-β1 Oncogenic Signaling Axis Promotes Tumor Growth and Metastasis in Triple-negative Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:160-174. [PMID: 36968231 PMCID: PMC10035451 DOI: 10.1158/2767-9764.crc-22-0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women and the major cause of death because of its invasion, metastasis, and resistance to therapies capabilities. The most aggressive subtype of breast cancer is triple-negative breast cancer (TNBC) due to invasive and metastatic properties along with early age of diagnosis and poor prognosis. TNBC tumors do not express estrogen, progesterone, and HER2 receptors, which limits their treatment with targeted therapies. Cancer invasiveness and metastasis are known to be promoted by increased cell motility and upregulation of the WAVE proteins. While the contribution of WAVE2 to cancer progression is well documented, the WAVE2-mediated regulation of TNBC oncogenic properties is still under investigated, as does the molecular mechanisms by which WAVE2 regulates such oncogenic pathways. In this study, we show that WAVE2 plays a significant role in TNBC development, progression, and metastasis, through the regulation of miR-29 expression, which in turn targets Integrin-β1 (ITGB1) and its downstream oncogenic activities. Conversely, we found WAVE2 expression to be regulated by miR-29 in a negative regulatory feedback loop. Reexpression of exogenous WAVE2 in the WAVE2-deficient TNBC cells resulted in reactivation of ITGB1 expression and activity, further confirming the specificity of WAVE2 in regulating Integrin-β1. Together, our data identify a novel WAVE2/miR-29/ITGB1 signaling axis, which is essential for the regulation of the invasion-metastasis cascade in TNBC. Our findings offer new therapeutic strategies for the treatment of TNBC by targeting WAVE2 and/or its downstream effectors. Significance Identification of a novel WAVE2/miR-29/ITGB1 signaling axis may provide new insights on how WAVE2 regulates the invasion-metastasis cascade of TNBC tumors through the modulation of ITGB1 and miR-29.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Wei Wang
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | | | | | | | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| |
Collapse
|
8
|
Ahn HR, Baek GO, Yoon MG, Son JA, Yoon JH, Cheong JY, Cho HJ, Kang HC, Eun JW, Kim SS. Hypomethylation-mediated upregulation of the WASF2 promoter region correlates with poor clinical outcomes in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:158. [PMID: 35477411 PMCID: PMC9047373 DOI: 10.1186/s13046-022-02365-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. Wiskott–Aldrich syndrome protein family member 2 (WASF2) is an integral member of the actin cytoskeleton pathway, which plays a crucial role in cell motility. In this study, we aimed to explore the role of WASF2 in HCC carcinogenesis and its regulatory mechanism. Methods WASF2 expression in HCC was analyzed using six public RNA-seq datasets and 66 paired tissues from patients with HCC. The role of WASF2 in normal hepatocyte cell phenotypes was evaluated using a WASF2 overexpression vector in vitro; it was evaluated in HCC cell phenotypes using small interfering RNA (siRNA) in vitro and in vivo. Epigenetic regulatory mechanism of WASF2 was assessed in the Cancer Genome Atlas liver hepatocellular carcinoma project (TCGA_LIHC) dataset and also validated in 38 paired HCC tissues. Site mutagenesis, bisulfite sequencing polymerase chain reaction (BSP), methylation-specific polymerase chain reaction (MSP), and quantitative MSP (qMSP) were used for evaluating WASF2 methylation status. Results WASF2 is overexpressed in HCC and is clinically correlated with its prognosis. WASF2 overexpression promoted normal hepatocyte proliferation. WASF2 inactivation decreased the viability, growth, proliferation, migration, and invasion of Huh-7 and SNU475 HCC cells by inducing G2/M phase arrest. This induced cell death and inhibited epithelial–mesenchymal transition, hindering actin polymerization. In addition, WASF2 knockdown using siWASF2 in a xenograft mouse model and a lung metastasis model exerted tumor suppressive effect. There was a negative correlation between WASF2 methylation status and mRNA expression. The methylation pattern of CpG site 2 (− 726 bp), located in the WASF2 promoter, plays an important role in the regulation of WASF2 expression. Furthermore, the cg242579 CpG island in the WASF2 5′ promoter region was hypomethylated in HCC compared to that in the matched non-tumor samples. Patients with high WASF2 methylation and low WASF2 expression displayed the highest overall survival. Conclusions WASF2 is overexpressed and hypomethylated in HCC and correlates with patient prognosis. WASF2 inactivation exerts anti-tumorigenic effects on HCC cells in vitro and in vivo, suggesting that WASF2 could be a potential therapeutic target for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02365-7.
Collapse
|
9
|
Han Z, Mou Z, Jing Y, Jiang R, Sun T. EMX1 functions as a tumor inhibitor in spinal cord glioma through transcriptional suppression of WASF2 and inactivation of the Wnt/β-catenin axis. Brain Behav 2022; 12:e2684. [PMID: 35849030 PMCID: PMC9392518 DOI: 10.1002/brb3.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gliomas are the most frequent and aggressive cancers in the central nervous system, and spinal cord glioma (SCG) is a rare class of the gliomas. Empty spiracles homobox genes (EMXs) have shown potential tumor suppressing roles in glioma, but the biological function of EMX1 in SCG is unclear. METHODS The EMX1 expression in clinical tissues of patients with SCG was examined. SCG cells were extracted from the tissues, and altered expression of EMX1 was then introduced to examine the role of EMX1 in cell growth and invasiveness in vitro. Xenograft tumors were induced in nude mice for in vivo validation. The targets of EXM1 were predicted via bioinformatic analysis and validated by luciferase and ChIP-qPCR assays. Rescue experiments were conducted to validate the involvements of the downstream molecules. RESULTS EMX1 was poorly expressed in glioma, which was linked to decreased survival rate of patients according to the bioinformatics prediction. In clinical tissues, EMX1 was poorly expressed in SCG, especially in the high-grade tissues. EMX1 upregulation significantly suppressed growth and metastasis of SCG cells in vitro and in vivo. EMX1 bound to the promoter of WASP family member 2 (WASF2) to suppress its transcription. Restoration of WASF2 blocked the tumor-suppressing effect of EMX1. EMX1 suppressed Wnt/β-catenin signaling activity by inhibiting WASF2. Coronaridine, a Wnt/β-catenin-specific antagonist, blocked SCG cell growth and metastasis induced by WASF2. CONCLUSION This study elucidates that EMX1 functions as a tumor inhibitor in SCG by suppressing WASF2-dependent activation of the Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Ziyin Han
- Department of Traumatic Orthopedics, Yantaishan Hospital of Yantai, Yantai, Shandong, P.R. China
| | - Zufang Mou
- Administration Department of Nosocomial Infection, Yantaishan Hospital of Yantai, Yantai, Shandong, P.R. China
| | - Yulong Jing
- Department of Traumatic Orthopedics, Yantaishan Hospital of Yantai, Yantai, Shandong, P.R. China
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Yantai Campus, Yantai, Shandong, P.R. China
| | - Tao Sun
- Department of Traumatic Orthopedics, Yantaishan Hospital of Yantai, Yantai, Shandong, P.R. China
| |
Collapse
|
10
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
11
|
Omelchenko T. Cellular protrusions in 3D: Orchestrating early mouse embryogenesis. Semin Cell Dev Biol 2022; 129:63-74. [PMID: 35577698 DOI: 10.1016/j.semcdb.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin-myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.
Collapse
Affiliation(s)
- Tatiana Omelchenko
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York 10065, USA.
| |
Collapse
|
12
|
Embedding of HIV Egress within Cortical F-Actin. Pathogens 2022; 11:pathogens11010056. [PMID: 35056004 PMCID: PMC8777837 DOI: 10.3390/pathogens11010056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/07/2022] Open
Abstract
F-Actin remodeling is important for the spread of HIV via cell-cell contacts; however, the mechanisms by which HIV corrupts the actin cytoskeleton are poorly understood. Through live cell imaging and focused ion beam scanning electron microscopy (FIB-SEM), we observed F-Actin structures that exhibit strong positive curvature to be enriched for HIV buds. Virion proteomics, gene silencing, and viral mutagenesis supported a Cdc42-IQGAP1-Arp2/3 pathway as the primary intersection of HIV budding, membrane curvature and F-Actin regulation. Whilst HIV egress activated the Cdc42-Arp2/3 filopodial pathway, this came at the expense of cell-free viral release. Importantly, release could be rescued by cell-cell contact, provided Cdc42 and IQGAP1 were present. From these observations, we conclude that a proportion out-going HIV has corrupted a central F-Actin node that enables initial coupling of HIV buds to cortical F-Actin to place HIV at the leading cell edge. Whilst this initially prevents particle release, the maturation of cell-cell contacts signals back to this F-Actin node to enable viral release & subsequent infection of the contacting cell.
Collapse
|
13
|
Law AL, Jalal S, Pallett T, Mosis F, Guni A, Brayford S, Yolland L, Marcotti S, Levitt JA, Poland SP, Rowe-Sampson M, Jandke A, Köchl R, Pula G, Ameer-Beg SM, Stramer BM, Krause M. Nance-Horan Syndrome-like 1 protein negatively regulates Scar/WAVE-Arp2/3 activity and inhibits lamellipodia stability and cell migration. Nat Commun 2021; 12:5687. [PMID: 34584076 PMCID: PMC8478917 DOI: 10.1038/s41467-021-25916-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
Cell migration is important for development and its aberrant regulation contributes to many diseases. The Scar/WAVE complex is essential for Arp2/3 mediated lamellipodia formation during mesenchymal cell migration and several coinciding signals activate it. However, so far, no direct negative regulators are known. Here we identify Nance-Horan Syndrome-like 1 protein (NHSL1) as a direct binding partner of the Scar/WAVE complex, which co-localise at protruding lamellipodia. This interaction is mediated by the Abi SH3 domain and two binding sites in NHSL1. Furthermore, active Rac binds to NHSL1 at two regions that mediate leading edge targeting of NHSL1. Surprisingly, NHSL1 inhibits cell migration through its interaction with the Scar/WAVE complex. Mechanistically, NHSL1 may reduce cell migration efficiency by impeding Arp2/3 activity, as measured in cells using a Arp2/3 FRET-FLIM biosensor, resulting in reduced F-actin density of lamellipodia, and consequently impairing the stability of lamellipodia protrusions.
Collapse
Affiliation(s)
- Ah-Lai Law
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- School of Life Sciences, University of Bedfordshire, Luton, LU1 3JU, UK
| | - Shamsinar Jalal
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Tommy Pallett
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Fuad Mosis
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Ahmad Guni
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Simon Brayford
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Lawrence Yolland
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Stefania Marcotti
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - James A Levitt
- Ameer-Beg Group, Richard Dimbleby Cancer Research Laboratories, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Simon P Poland
- Ameer-Beg Group, Richard Dimbleby Cancer Research Laboratories, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Maia Rowe-Sampson
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Anett Jandke
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Robert Köchl
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Giordano Pula
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg (UKE), Martinistrasse 52, O26, 20246, Hamburg, Germany
| | - Simon M Ameer-Beg
- Ameer-Beg Group, Richard Dimbleby Cancer Research Laboratories, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Brian Marc Stramer
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Matthias Krause
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
14
|
The Role of WAVE2 Signaling in Cancer. Biomedicines 2021; 9:biomedicines9091217. [PMID: 34572403 PMCID: PMC8464821 DOI: 10.3390/biomedicines9091217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
The Wiskott–Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE)—WAVE1, WAVE2 and WAVE3 regulate rapid reorganization of cortical actin filaments and have been shown to form a key link between small GTPases and the actin cytoskeleton. Upon receiving upstream signals from Rho-family GTPases, the WASP and WAVE family proteins play a significant role in polymerization of actin cytoskeleton through activation of actin-related protein 2/3 complex (Arp2/3). The Arp2/3 complex, once activated, forms actin-based membrane protrusions essential for cell migration and cancer cell invasion. Thus, by activation of Arp2/3 complex, the WAVE and WASP family proteins, as part of the WAVE regulatory complex (WRC), have been shown to play a critical role in cancer cell invasion and metastasis, drawing significant research interest over recent years. Several studies have highlighted the potential for targeting the genes encoding either part of or a complete protein from the WASP/WAVE family as therapeutic strategies for preventing the invasion and metastasis of cancer cells. WAVE2 is well documented to be associated with the pathogenesis of several human cancers, including lung, liver, pancreatic, prostate, colorectal and breast cancer, as well as other hematologic malignancies. This review focuses mainly on the role of WAVE2 in the development, invasion and metastasis of different types of cancer. This review also summarizes the molecular mechanisms that regulate the activity of WAVE2, as well as those oncogenic pathways that are regulated by WAVE2 to promote the cancer phenotype. Finally, we discuss potential therapeutic strategies that target WAVE2 or the WAVE regulatory complex, aimed at preventing or inhibiting cancer invasion and metastasis.
Collapse
|
15
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
16
|
Tang Q, Schaks M, Koundinya N, Yang C, Pollard LW, Svitkina TM, Rottner K, Goode BL. WAVE1 and WAVE2 have distinct and overlapping roles in controlling actin assembly at the leading edge. Mol Biol Cell 2020; 31:2168-2178. [PMID: 32697617 PMCID: PMC7550694 DOI: 10.1091/mbc.e19-12-0705] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Neha Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
17
|
Salzer E, Zoghi S, Kiss MG, Kage F, Rashkova C, Stahnke S, Haimel M, Platzer R, Caldera M, Ardy RC, Hoeger B, Block J, Medgyesi D, Sin C, Shahkarami S, Kain R, Ziaee V, Hammerl P, Bock C, Menche J, Dupré L, Huppa JB, Sixt M, Lomakin A, Rottner K, Binder CJ, Stradal TEB, Rezaei N, Boztug K. The cytoskeletal regulator HEM1 governs B cell development and prevents autoimmunity. Sci Immunol 2020; 5:5/49/eabc3979. [PMID: 32646852 DOI: 10.1126/sciimmunol.abc3979] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
The WAVE regulatory complex (WRC) is crucial for assembly of the peripheral branched actin network constituting one of the main drivers of eukaryotic cell migration. Here, we uncover an essential role of the hematopoietic-specific WRC component HEM1 for immune cell development. Germline-encoded HEM1 deficiency underlies an inborn error of immunity with systemic autoimmunity, at cellular level marked by WRC destabilization, reduced filamentous actin, and failure to assemble lamellipodia. Hem1-/- mice display systemic autoimmunity, phenocopying the human disease. In the absence of Hem1, B cells become deprived of extracellular stimuli necessary to maintain the strength of B cell receptor signaling at a level permissive for survival of non-autoreactive B cells. This shifts the balance of B cell fate choices toward autoreactive B cells and thus autoimmunity.
Collapse
Affiliation(s)
- Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Máté G Kiss
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christina Rashkova
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - René Platzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jana Block
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - David Medgyesi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Celine Sin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Vahid Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter Hammerl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Christoph Bock
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Center for Pathophysiology of Toulouse Purpan, INSERM UMR1043, CNRS UMR5282, Paul Sabatier University, Toulouse, France
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexis Lomakin
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christoph J Binder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
19
|
Edwards JJ, Rouillard AD, Fernandez NF, Wang Z, Lachmann A, Shankaran SS, Bisgrove BW, Demarest B, Turan N, Srivastava D, Bernstein D, Deanfield J, Giardini A, Porter G, Kim R, Roberts AE, Newburger JW, Goldmuntz E, Brueckner M, Lifton RP, Seidman CE, Chung WK, Tristani-Firouzi M, Yost HJ, Ma'ayan A, Gelb BD. Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects. JACC Basic Transl Sci 2020; 5:376-386. [PMID: 32368696 PMCID: PMC7188873 DOI: 10.1016/j.jacbts.2020.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022]
Abstract
Combining CHD phenotype–driven gene set enrichment and CRISPR knockdown screening in zebrafish is an effective approach to identifying novel CHD genes. Mutations affecting genes coding for the WAVE2 protein complex and small GTPase-mediated signaling are associated with LVOTO lesions. WAVE2 complex genes brk1, nckap1, and wasf2 and regulators of small GTPase signaling cul3a and racgap1 are critical to zebrafish heart development.
Genetic variants are the primary driver of congenital heart disease (CHD) pathogenesis. However, our ability to identify causative variants is limited. To identify causal CHD genes that are associated with specific molecular functions, the study used prior knowledge to filter de novo variants from 2,881 probands with sporadic severe CHD. This approach enabled the authors to identify an association between left ventricular outflow tract obstruction lesions and genes associated with the WAVE2 complex and regulation of small GTPase-mediated signal transduction. Using CRISPR zebrafish knockdowns, the study confirmed that WAVE2 complex proteins brk1, nckap1, and wasf2 and the regulators of small GTPase signaling cul3a and racgap1 are critical to cardiac development.
Collapse
Key Words
- CHD, congenital heart disease
- CORUM, Comprehensive Resource of Mammalian Protein Complexes
- CRISPR, clustered regularly interspaced short palindromic repeats
- CTD, conotruncal defect
- GOBP, Gene Ontology biological processes
- HHE, high heart expression
- HLHS, hypoplastic left heart syndrome
- HTX, heterotaxy
- LVOTO, left ventricular outflow tract obstruction
- MGI, Mouse Genome Informatics
- PCGC, Pediatric Cardiac Genomics Consortium
- PPI, protein-protein interaction
- congenital heart disease
- systems biology
- translational genomics
Collapse
Affiliation(s)
- Jonathan J Edwards
- Department of Pediatrics, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew D Rouillard
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicolas F Fernandez
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sunita S Shankaran
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Brent W Bisgrove
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Bradley Demarest
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
| | - Daniel Bernstein
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - John Deanfield
- Department of Cardiology, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Alessandro Giardini
- Department of Cardiology, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - George Porter
- Department of Pediatrics, University of Rochester Medical Center, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard Kim
- Section of Cardiothoracic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Amy E Roberts
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts
| | - Jane W Newburger
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts
| | - Elizabeth Goldmuntz
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martina Brueckner
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts.,Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts.,Cardiovascular Division, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York.,Department of Medicine, Columbia University Medical Center, New York, New York
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - H Joseph Yost
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
20
|
Kabrawala S, Zimmer MD, Campellone KG. WHIMP links the actin nucleation machinery to Src-family kinase signaling during protrusion and motility. PLoS Genet 2020; 16:e1008694. [PMID: 32196488 PMCID: PMC7112243 DOI: 10.1371/journal.pgen.1008694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 02/22/2020] [Indexed: 12/27/2022] Open
Abstract
Cell motility is governed by cooperation between the Arp2/3 complex and nucleation-promoting factors from the Wiskott-Aldrich Syndrome Protein (WASP) family, which together assemble actin filament networks to drive membrane protrusion. Here we identify WHIMP (WAVE Homology In Membrane Protrusions) as a new member of the WASP family. The Whimp gene is encoded on the X chromosome of a subset of mammals, including mice. Murine WHIMP promotes Arp2/3-dependent actin assembly, but is less potent than other nucleation factors. Nevertheless, WHIMP-mediated Arp2/3 activation enhances both plasma membrane ruffling and wound healing migration, whereas WHIMP depletion impairs protrusion and slows motility. WHIMP expression also increases Src-family kinase activity, and WHIMP-induced ruffles contain the additional nucleation-promoting factors WAVE1, WAVE2, and N-WASP, but not JMY or WASH. Perturbing the function of Src-family kinases, WAVE proteins, or Arp2/3 complex inhibits WHIMP-driven ruffling. These results suggest that WHIMP-associated actin assembly plays a direct role in membrane protrusion, but also results in feedback control of tyrosine kinase signaling to modulate the activation of multiple WASP-family members. The actin cytoskeleton is a collection of protein polymers that assemble and disassemble within cells at specific times and locations. Sophisticated cytoskeletal regulators called nucleation-promoting factors ensure that actin polymerizes when and where it is needed, and many of these factors are members of the Wiskott-Aldrich Syndrome Protein (WASP) family. Several of the 8 known WASP-family proteins function in cell motility, but how the different factors collaborate with one another is not well understood. In this study, we identified WHIMP, a new WASP-family member that is encoded on the X chromosome of a variety of mammals. In mouse cells, WHIMP enhances cell motility by assembling actin filaments that push the plasma membrane forward. Unexpectedly, WHIMP also activates tyrosine kinases, enzymes that stimulate multiple WASP-family members during motility. Our results open new avenues of research into how nucleation factors cooperate during movement and how the molecular activities that underlie motility differ in distinct cell types and organisms.
Collapse
Affiliation(s)
- Shail Kabrawala
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Margaret D. Zimmer
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
21
|
Janssen E, Geha RS. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 2019; 287:121-134. [PMID: 30565251 DOI: 10.1111/imr.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Qin H, Lu S, Thangaraju M, Cowell JK. Wasf3 Deficiency Reveals Involvement in Metastasis in a Mouse Model of Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2450-2458. [PMID: 31542393 DOI: 10.1016/j.ajpath.2019.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
Abstract
The WASF3 gene has been implicated in cancer cell movement, invasion, and metastasis by regulating genetic pathways important in these processes. Invasion and metastasis assays, however, are largely centered on xenograft models in immune-compromised mice. To facilitate analysis of the role of WASF3 in the spontaneous development of cancer cell metastasis, we generated a Wasf3 null strain by deleting exons 4 and 5, which encode essential motifs for Wasf3 function. On exposure to cre-recombinase a stop codon is generated immediately downstream in exon 6. Using a cytomegalovirus (CMV)-cre strain, Wasf3 constitutively was inactivated, which led to viable mice with no visible morphologic or behavioral abnormalities. There was no abnormal development or function of the mouse mammary gland in the Wasf3 null mice and brain development was normal. In the mouse mammary tumor virus (MMTV)-driven polyoma middle-T oncogene strain, which shows early onset breast cancer development and metastasis, Wiskott-Aldrich syndrome protein family member 3 (Wasf3) is up-regulated in metastatic lesions. When this oncogene was introduced onto the Wasf3-null background, although metastasis was observed in these mice, there was a reduction in the number and size of metastatic lesions in the lungs. These data provide evidence for a role in WASF3 in the development of metastasis in a spontaneous model of breast cancer.
Collapse
Affiliation(s)
- Haiyan Qin
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Sumin Lu
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - John K Cowell
- Georgia Cancer Center, Augusta University, Augusta, Georgia.
| |
Collapse
|
23
|
Taniuchi K, Furihata M, Naganuma S, Saibara T. WAVE2 is associated with poor prognosis in pancreatic cancers and promotes cell motility and invasiveness via binding to ACTN4. Cancer Med 2018; 7:5733-5751. [PMID: 30353690 PMCID: PMC6246955 DOI: 10.1002/cam4.1837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022] Open
Abstract
WAVE2 is a member of the WASP/WAVE family of actin cytoskeletal regulatory proteins; unfortunately, little is known about its function in pancreatic cancers. In this study, we report the role of WAVE2 in the motility and invasiveness of pancreatic cancer cells. High WAVE2 expression in human pancreatic cancer tissues was correlated with overall survival. WAVE2 accumulated in the cell protrusions of pancreatic cancer cell lines. Downregulation of WAVE2 by small interfering RNA decreased the cell protrusions and inhibited the motility and invasiveness of pancreatic cancer cells. WAVE2 promoted pancreatic cancer cell motility and invasion by forming a complex with the actin cytoskeletal protein alpha‐actinin 4 (ACTN4). Downregulation of ACTN4 by small interfering RNA also inhibited the motility and invasiveness of the cells through a decrease in cell protrusions. Further investigation showed that WAVE2/ACTN4 signaling selectively stimulated p27 phosphorylation and thereby increased the motility and invasiveness of the cells. These results suggest that WAVE2 and ACTN4 stimulate p27 phosphorylation and provide evidence that WAVE2 promotes the motility and invasiveness of pancreatic cancer cells.
Collapse
Affiliation(s)
- Keisuke Taniuchi
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kochi, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mutsuo Furihata
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kochi, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
24
|
Chang JW, Kuo WH, Lin CM, Chen WL, Chan SH, Chiu MF, Chang IS, Jiang SS, Tsai FY, Chen CH, Huang PH, Chang KJ, Lin KT, Lin SC, Wang MY, Uen YH, Tu CW, Hou MF, Tsai SF, Shen CY, Tung SL, Wang LH. Wild-type p53 upregulates an early onset breast cancer-associated gene GAS7 to suppress metastasis via GAS7-CYFIP1-mediated signaling pathway. Oncogene 2018; 37:4137-4150. [PMID: 29706651 PMCID: PMC6062498 DOI: 10.1038/s41388-018-0253-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/07/2018] [Accepted: 03/14/2018] [Indexed: 01/13/2023]
Abstract
The early onset breast cancer patients (age ≤ 40) often display higher incidence of axillary lymph node metastasis, and poorer five-year survival than the late-onset patients. To identify the genes and molecules associated with poor prognosis of early onset breast cancer, we examined gene expression profiles from paired breast normal/tumor tissues, and coupled with Gene Ontology and public data base analysis. Our data showed that the expression of GAS7b gene was lower in the early onset breast cancer patients as compared to the elder patients. We found that GAS7 was associated with CYFIP1 and WAVE2 complex to suppress breast cancer metastasis via blocking CYFIP1 and Rac1 protein interaction, actin polymerization, and β1-integrin/FAK/Src signaling. We further demonstrated that p53 directly regulated GAS7 gene expression, which was inversely correlated with p53 mutations in breast cancer specimens. Our study uncover a novel regulatory mechanism of p53 in early onset breast cancer progression through GAS7-CYFIP1-mediated signaling pathways.
Collapse
Affiliation(s)
- Jer-Wei Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Mei Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Wen-Ling Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Shih-Hsuan Chan
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan.,Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Meng-Fan Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Hsin Huang
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - King-Jen Chang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Taiwan Adventist Hospital, Taipei, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Chieh Lin
- College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Huei Uen
- Department of Surgery, Asia University Hospital, Taichung, Taiwan
| | - Chi-Wen Tu
- Department of General Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung, Taiwan.,Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shiao-Lin Tung
- Department of Hematology and Oncology, Ton-Yen General Hospital, Hsinchu, Taiwan
| | - Lu-Hai Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan. .,College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
25
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
26
|
A conformational change within the WAVE2 complex regulates its degradation following cellular activation. Sci Rep 2017; 7:44863. [PMID: 28332566 PMCID: PMC5362955 DOI: 10.1038/srep44863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/08/2017] [Indexed: 11/08/2022] Open
Abstract
WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation.
Collapse
|
27
|
Swaney KF, Li R. Function and regulation of the Arp2/3 complex during cell migration in diverse environments. Curr Opin Cell Biol 2016; 42:63-72. [PMID: 27164504 DOI: 10.1016/j.ceb.2016.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
As the first de novo actin nucleator discovered, the Arp2/3 complex has been a central player in models of protrusive force production via the dynamic actin network. Here, we review recent studies on the functional role of the Arp2/3 complex in the migration of diverse cell types in different migratory environments. These findings have revealed an unexpected level of plasticity, both in how cells rely on the Arp2/3 complex for migration and other physiological functions and in the intricate modulation of the Arp2/3 complex by other actin regulators and upstream signaling cascades.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA.
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA
| |
Collapse
|
28
|
Gβ Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration. PLoS Biol 2016; 14:e1002381. [PMID: 26890004 PMCID: PMC4758609 DOI: 10.1371/journal.pbio.1002381] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/15/2016] [Indexed: 02/03/2023] Open
Abstract
For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well. Coupling of individual oscillators regulates biological functions ranging from crickets chirping in unison to the coordination of pacemaker cells of the heart. This study finds that a similar concept—coupling between actin oscillators—is at work within single slime mold cells to establish polarity and guide their direction of migration. The actin cytoskeleton of motile cells is comprised of highly dynamic structures. Recently, small oscillating actin foci have been discovered around the periphery of Dictyostelium cells. These oscillators are thought to enable pseudopod formation, but how their dynamics are regulated for this is unknown. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. Actin oscillators are weakly coupled to one another in wild-type cells, but they become strongly synchronized after acute inactivation of the signaling protein Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. Supported by a mathematical model, our data suggest that wild-type cells are tuned to an optimal coupling strength for patterning by upstream cues. These observations are only possible following acute inhibition of Gβ, which highlights the value of revisiting classical mutants with acute loss-of-function perturbations.
Collapse
|
29
|
Brüser L, Bogdan S. Molecular Control of Actin Dynamics In Vivo: Insights from Drosophila. Handb Exp Pharmacol 2016; 235:285-310. [PMID: 27757759 DOI: 10.1007/164_2016_33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The actin cytoskeleton provides mechanical support for cells and generates forces to drive cell shape changes and cell migration in morphogenesis. Molecular understanding of actin dynamics requires a genetically traceable model system that allows interdisciplinary experimental approaches to elucidate the regulatory network of cytoskeletal proteins in vivo. Here, we will discuss some examples of how advances in Drosophila genetics and high-resolution imaging techniques contribute to the discovery of new actin functions, signaling pathways, and mechanisms of actin regulation in vivo.
Collapse
Affiliation(s)
- Lena Brüser
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany
| | - Sven Bogdan
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany.
| |
Collapse
|
30
|
Molecular difference between WASP and N-WASP critical for chemotaxis of T-cells towards SDF-1α. Sci Rep 2015; 5:15031. [PMID: 26463123 PMCID: PMC4604493 DOI: 10.1038/srep15031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/26/2015] [Indexed: 11/13/2022] Open
Abstract
Wiskott-Aldrich Syndrome protein (WASP) integrates cell signaling pathways to the actin cytoskeleton, which play a critical role in T-cell activation and migration. Hematopoietic cells express both WASP and neural-WASP (N-WASP) which share similar domain structure, yet WASP deficiency causes Wiskott-Aldrich syndrome, suggesting that N-WASP present in the cells is not able to carry out all the functions of WASP. We have identified a unique internal thirty amino acid region (I30) in WASP, which regulates its function in chemotaxis of Jurkat T-cells. Deletion of the I30 region altered the WASP’s closed conformation and impaired its ability to rescue the chemotactic defect of WASP-deficient (JurkatWKD) T-cells. Expression of N-WASP in JurkatWKD T-cells using WASP promoter restored the migration velocity without correcting the chemotactic defect. However, insertion of I30 region in N-WASP (N-WASP-I30) enabled N-WASP to rescue the chemotactic defect of JurkatWKD T-cells. N-WASP-I30-EGFP displayed a punctate localization in contrast to the predominant nuclear localization of N-WASP-EGFP. Thus, our study has demonstrated that the I30 region of WASP is critical for localization and chemotaxis. This suggests that N-WASP’s failure to compensate for WASP in rescuing chemotaxis could be due to the absence of this I30 region.
Collapse
|
31
|
Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation. Genetics 2015; 202:123-39. [PMID: 26434722 DOI: 10.1534/genetics.115.183137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Neural tube defects including spina bifida are common and severe congenital disorders. In mice, mutations in more than 200 genes can result in neural tube defects. We hypothesized that this large gene set might include genes whose homologs contribute to morphogenesis in diverse animals. To test this hypothesis, we screened a set of Caenorhabditis elegans homologs for roles in gastrulation, a topologically similar process to vertebrate neural tube closure. Both C. elegans gastrulation and vertebrate neural tube closure involve the internalization of surface cells, requiring tissue-specific gene regulation, actomyosin-driven apical constriction, and establishment and maintenance of adhesions between specific cells. Our screen identified several neural tube defect gene homologs that are required for gastrulation in C. elegans, including the transcription factor sptf-3. Disruption of sptf-3 in C. elegans reduced the expression of early endodermally expressed genes as well as genes expressed in other early cell lineages, establishing sptf-3 as a key contributor to multiple well-studied C. elegans cell fate specification pathways. We also identified members of the actin regulatory WAVE complex (wve-1, gex-2, gex-3, abi-1, and nuo-3a). Disruption of WAVE complex members reduced the narrowing of endodermal cells' apical surfaces. Although WAVE complex members are expressed broadly in C. elegans, we found that expression of a vertebrate WAVE complex member, nckap1, is enriched in the developing neural tube of Xenopus. We show that nckap1 contributes to neural tube closure in Xenopus. This work identifies in vivo roles for homologs of mammalian neural tube defect genes in two manipulable genetic model systems.
Collapse
|
32
|
Isogai T, van der Kammen R, Leyton-Puig D, Kedziora KM, Jalink K, Innocenti M. Initiation of lamellipodia and ruffles involves cooperation between mDia1 and the Arp2/3 complex. J Cell Sci 2015; 128:3796-810. [PMID: 26349808 DOI: 10.1242/jcs.176768] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/02/2015] [Indexed: 01/20/2023] Open
Abstract
Protrusion of lamellipodia and ruffles requires polymerization of branched actin filaments by the Arp2/3 complex. Although regulation of Arp2/3 complex activity has been extensively investigated, the mechanism of initiation of lamellipodia and ruffles remains poorly understood. Here, we show that mDia1 acts in concert with the Arp2/3 complex to promote initiation of lamellipodia and ruffles. We find that mDia1 is an epidermal growth factor (EGF)-regulated actin nucleator involved in membrane ruffling using a combination of knockdown and rescue experiments. At the molecular level, mDia1 polymerizes linear actin filaments, activating the Arp2/3 complex, and localizes within nascent and mature membrane ruffles. We employ functional complementation experiments and optogenetics to show that mDia1 cooperates with the Arp2/3 complex in initiating lamellipodia and ruffles. Finally, we show that genetic and pharmacological interference with this cooperation hampers ruffling and cell migration. Thus, we propose that the lamellipodium- and ruffle-initiating machinery consists of two actin nucleators that act sequentially to regulate membrane protrusion and cell migration.
Collapse
Affiliation(s)
- Tadamoto Isogai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Rob van der Kammen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Daniela Leyton-Puig
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Katarzyna M Kedziora
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Kees Jalink
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Metello Innocenti
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
33
|
Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal 2015; 27:1789-98. [DOI: 10.1016/j.cellsig.2015.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023]
|
34
|
ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor. PLoS One 2015; 10:e0121747. [PMID: 25799492 PMCID: PMC4370635 DOI: 10.1371/journal.pone.0121747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 12/19/2022] Open
Abstract
Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF) stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration.
Collapse
|
35
|
Mooren OL, Li J, Nawas J, Cooper JA. Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier. Mol Biol Cell 2014; 25:4115-29. [PMID: 25355948 PMCID: PMC4263454 DOI: 10.1091/mbc.e14-05-0976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Actin assembly downstream of WAVE2 in endothelial cells is necessary to engage transmigrating lymphocytes, promote the transcellular route of migration, and close junctional pores after the lymphocyte moves away. In addition, WAVE2 is necessary for endothelial monolayer integrity. The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| | - Jinmei Li
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| | - Julie Nawas
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| |
Collapse
|
36
|
Herion NJ, Salbaum JM, Kappen C. Traffic jam in the primitive streak: the role of defective mesoderm migration in birth defects. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2014; 100:608-22. [PMID: 25115487 PMCID: PMC9828327 DOI: 10.1002/bdra.23283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023]
Abstract
Gastrulation is the process in which the three germ layers are formed that contribute to the formation of all major tissues in the developing embryo. We here review mouse genetic models in which defective gastrulation leads to mesoderm insufficiencies in the embryo. Depending on severity of the abnormalities, the outcomes range from incompatible with embryonic survival to structural birth defects, such as heart defects, spina bifida, or caudal dysgenesis. The combined evidence from the mutant models supports the notion that these congenital anomalies can originate from perturbations of mesoderm specification, epithelial-mesenchymal transition, and mesodermal cell migration. Knowledge about the molecular pathways involved may help to improve strategies for the prevention of major structural birth defects.
Collapse
Affiliation(s)
- Nils J. Herion
- Pennington Biomedical Research Center, Department of Developmental Biology, Baton Rouge, Louisiana
| | - J. Michael Salbaum
- Pennington Biomedical Research Center, Laboratory for Regulation of Gene Expression, Baton Rouge, Louisiana
| | - Claudia Kappen
- Pennington Biomedical Research Center, Department of Developmental Biology, Baton Rouge, Louisiana,Correspondence to: Claudia Kappen, Pennington Biomedical Research Center, Department of Developmental Biology, 6400 Perkins Road, Baton Rouge, LA 70808.
| |
Collapse
|
37
|
Graziano BR, Weiner OD. Self-organization of protrusions and polarity during eukaryotic chemotaxis. Curr Opin Cell Biol 2014; 30:60-7. [PMID: 24998184 DOI: 10.1016/j.ceb.2014.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/30/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022]
Abstract
Many eukaryotic cells regulate their polarity and motility in response to external chemical cues. While we know many of the linear connections that link receptors with downstream actin polymerization events, we have a much murkier understanding of the higher order positive and negative feedback loops that organize these processes in space and time. Importantly, physical forces and actin polymerization events do not simply act downstream of chemotactic inputs but are rather involved in a web of reciprocal interactions with signaling components to generate self-organizing pseudopods and cell polarity. Here we focus on recent progress and open questions in the field, including the basic unit of actin organization, how cells regulate the number and speed of protrusions, and 2D versus 3D migration.
Collapse
Affiliation(s)
- Brian R Graziano
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Yoon KJ, Nguyen HN, Ursini G, Zhang F, Kim NS, Wen Z, Makri G, Nauen D, Shin JH, Park Y, Chung R, Pekle E, Zhang C, Towe M, Hussaini SMQ, Lee Y, Rujescu D, St Clair D, Kleinman JE, Hyde TM, Krauss G, Christian KM, Rapoport JL, Weinberger DR, Song H, Ming GL. Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell 2014; 15:79-91. [PMID: 24996170 PMCID: PMC4237009 DOI: 10.1016/j.stem.2014.05.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 01/01/2023]
Abstract
Defects in brain development are believed to contribute toward the onset of neuropsychiatric disorders, but identifying specific underlying mechanisms has proven difficult. Here, we took a multifaceted approach to investigate why 15q11.2 copy number variants are prominent risk factors for schizophrenia and autism. First, we show that human iPSC-derived neural progenitors carrying 15q11.2 microdeletion exhibit deficits in adherens junctions and apical polarity. This results from haploinsufficiency of CYFIP1, a gene within 15q11.2 that encodes a subunit of the WAVE complex, which regulates cytoskeletal dynamics. In developing mouse cortex, deficiency in CYFIP1 and WAVE signaling similarly affects radial glial cells, leading to their ectopic localization outside of the ventricular zone. Finally, targeted human genetic association analyses revealed an epistatic interaction between CYFIP1 and WAVE signaling mediator ACTR2 and risk for schizophrenia. Our findings provide insight into how CYFIP1 regulates neural stem cell function and may contribute to the susceptibility of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ki-Jun Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nam-Shik Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Georgia Makri
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Nauen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Youngbin Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raeeun Chung
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eva Pekle
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ce Zhang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Maxwell Towe
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Yohan Lee
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Dan Rujescu
- Department of Psychiatry, Ludwig-Maximilians University, Nussbaumstrasse 7, 80336, Munich, Germany
| | - David St Clair
- University of Aberdeen Royal Cornhill Hospital, Aberdeen AB25 2ZD, UK
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregory Krauss
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Judith L Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Daniel R Weinberger
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Zhou D, Shen X, Gu Y, Zhang N, Li T, Wu X, Lei L. Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes. BMC DEVELOPMENTAL BIOLOGY 2014; 14:28. [PMID: 24953160 PMCID: PMC4074394 DOI: 10.1186/1471-213x-14-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/19/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dimethyl sulfoxide (DMSO) is used extensively as a permeable cryoprotectant and is a common solvent utilized for several water-insoluble substances. DMSO has various biological and pharmacological activities; however, the effect of DMSO on mouse oocyte meiotic maturation remains unknown. RESULTS In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell-like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap formation and spindle migration. These features are among the primary causes of abnormal symmetric division; however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each "blastomere" of the 2-cell-like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each "blastomere" and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection (ICSI). Furthermore, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division failure. CONCLUSION Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric division. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, China.
| |
Collapse
|
40
|
Abstract
The importance of the cytoskeleton in mounting a successful immune response is evident from the wide range of defects that occur in actin-related primary immunodeficiencies (PIDs). Studies of these PIDs have revealed a pivotal role for the actin cytoskeleton in almost all stages of immune system function, from hematopoiesis and immune cell development, through to recruitment, migration, intercellular and intracellular signaling, and activation of both innate and adaptive immune responses. The major focus of this review is the immune defects that result from mutations in the Wiskott-Aldrich syndrome gene (WAS), which have a broad impact on many different processes and give rise to clinically heterogeneous immunodeficiencies. We also discuss other related genetic defects and the possibility of identifying new genetic causes of cytoskeletal immunodeficiency.
Collapse
Affiliation(s)
- Dale A Moulding
- Molecular Immunology Unit, Center for Immunodeficiency, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
41
|
The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Transl Psychiatry 2014; 4:e374. [PMID: 24667445 PMCID: PMC3966042 DOI: 10.1038/tp.2014.16] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/02/2014] [Indexed: 02/07/2023] Open
Abstract
Copy number variation (CNV) at the 15q11.2 region has been identified as a significant risk locus for neurological and neuropsychiatric conditions such as schizophrenia (SCZ) and autism spectrum disorder (ASD). However, the individual roles for genes at this locus in nervous system development, function and connectivity remain poorly understood. Haploinsufficiency of one gene in this region, Cyfip1, may provide a model for 15q11.2 CNV-associated neuropsychiatric phenotypes. Here we show that altering CYFIP1 expression levels in neurons both in vitro and in vivo influences dendritic complexity, spine morphology, spine actin dynamics and synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor lateral diffusion. CYFIP1 is highly enriched at synapses and its overexpression in vitro leads to increased dendritic complexity. Neurons derived from Cyfip1 heterozygous animals on the other hand, possess reduced dendritic complexity, increased mobile F-actin and enhanced GluA2-containing AMPA receptor mobility at synapses. Interestingly, Cyfip1 overexpression or haploinsufficiency increased immature spine number, whereas activity-dependent changes in spine volume were occluded in Cyfip1 haploinsufficient neurons. In vivo, Cyfip1 heterozygous animals exhibited deficits in dendritic complexity as well as an altered ratio of immature-to-mature spines in hippocampal CA1 neurons. In summary, we provide evidence that dysregulation of CYFIP1 expression levels leads to pathological changes in CNS maturation and neuronal connectivity, both of which may contribute to the development of the neurological symptoms seen in ASD and SCZ.
Collapse
|
42
|
Law AL, Vehlow A, Kotini M, Dodgson L, Soong D, Theveneau E, Bodo C, Taylor E, Navarro C, Perera U, Michael M, Dunn GA, Bennett D, Mayor R, Krause M. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J Cell Biol 2013; 203:673-89. [PMID: 24247431 PMCID: PMC3840943 DOI: 10.1083/jcb.201304051] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022] Open
Abstract
Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd's Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.
Collapse
Affiliation(s)
- Ah-Lai Law
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Anne Vehlow
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Maria Kotini
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Lauren Dodgson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Daniel Soong
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Cristian Bodo
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Eleanor Taylor
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Christel Navarro
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Upamali Perera
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Magdalene Michael
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Graham A. Dunn
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Daimark Bennett
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Matthias Krause
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| |
Collapse
|
43
|
Wang QC, Liu J, Wang F, Duan X, Dai XX, Wang T, Liu HL, Cui XS, Sun SC, Kim NH. Role of nucleation-promoting factors in mouse early embryo development. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:559-564. [PMID: 23552571 DOI: 10.1017/s1431927613000032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
During mitosis nucleation-promoting factors (NPFs) bind to the Arp2/3 complex and activate actin assembly. JMY and WAVE2 are two critical members of the NPFs. Previous studies have demonstrated that NPFs promote multiple processes such as cell migration and cytokinesis. However, the role of NPFs in development of mammalian embryos is still unknown. Results of the present study show that the NPFs JMY and WAVE2 are critical for cytokinesis during development of mouse embryos. Both JMY and WAVE2 are expressed in mouse embryos. After injection of JMY or WAVE2 siRNA, all embryos failed to develop to the morula or blastocyst stages. Moreover, using fluorescence intensity analysis, we found that the expression of actin decreased, and multiple nuclei were observed within a single cell indicating that NPFs-induced actin reduction caused the failure of cell division. In addition, injection of JMY and WAVE2 siRNA also caused ARP2 degradation, indicating that involvement of NPFs in development of mouse embryos is mainly through regulation of ARP2/3-induced actin assembly. Taken together, these data suggested that WAVE2 and JMY are involved in development of mouse embryos, and their regulation may be through a NPFs-Arp2/3-actin pathway.
Collapse
Affiliation(s)
- Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bryce NS, Reynolds AB, Koleske AJ, Weaver AM. WAVE2 regulates epithelial morphology and cadherin isoform switching through regulation of Twist and Abl. PLoS One 2013; 8:e64533. [PMID: 23691243 PMCID: PMC3654908 DOI: 10.1371/journal.pone.0064533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/16/2013] [Indexed: 12/17/2022] Open
Abstract
Background Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. Principal Findings We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. Conclusions The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis.
Collapse
Affiliation(s)
- Nicole S Bryce
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | | | | |
Collapse
|
45
|
Sossey-Alaoui K. Surfing the big WAVE: Insights into the role of WAVE3 as a driving force in cancer progression and metastasis. Semin Cell Dev Biol 2013; 24:287-97. [PMID: 23116924 PMCID: PMC4207066 DOI: 10.1016/j.semcdb.2012.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 02/06/2023]
Abstract
WAVE3 belongs to the WASP/WAVE family of actin cytoskeleton remodeling proteins. These proteins are known to be involved in several biological functions ranging from controlling cell shape and movement, to being closely associated with pathological conditions such as cancer progression and metastasis. Last decade has seen an explosion in the literature reporting significant scientific advances on the molecular mechanisms whereby the WASP/WAVE proteins are regulated both in normal physiological as well as pathological conditions. The purpose of this review is to present the major findings pertaining to how WAVE3 has become a critical player in the regulation of signaling pathways involved in cancer progression and metastasis. The review will conclude with suggesting options for the potential use of WAVE3 as a therapeutic target to prevent the progression of cancer to the lethal stage that is the metastatic disease.
Collapse
Affiliation(s)
- Khalid Sossey-Alaoui
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., NB-50, Cleveland, OH 44195, USA.
| |
Collapse
|
46
|
Uyama M, Kawanami M, Tamura M. Wasf2: a novel target of intermittent parathyroid hormone administration. Int J Mol Med 2013; 31:1243-7. [PMID: 23525371 DOI: 10.3892/ijmm.2013.1315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/21/2013] [Indexed: 11/06/2022] Open
Abstract
Systemic intermittent administration of parathyroid hormone (PTH) stimulates bone formation in animals and humans, and recombinant human PTH1-34 (teriparatide) is used clinically for the treatment of osteoporosis. In this study, we investigated the regulation of gene expression by intermittent PTH administration in MC3T3-E1 osteoblastic cells. We found that intermittent PTH1-34 administration downregulated Wiskott-Aldrich syndrome protein family member (Wasf) 2 mRNA expression. Wnt inhibitor, IWP-2, and protein kinase C inhibitor, Go6976, inhibited this downregulation. However, continuous PTH did not affect Wasf2 expression. Transfection of Wasf2 siRNA reduced bone sialoprotein (BSP) mRNA expression in a similar manner following intermittent PTH administration in MC3T3-E1 cells. These results identify Wasf2 as a novel target of intermittent PTH administration via the Wnt and phosphoinositide-dependent protein kinase signaling pathways, and the resulting regulation of BSP expression may contribute to the anabolic effects of PTH.
Collapse
Affiliation(s)
- Maki Uyama
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | | | | |
Collapse
|
47
|
Yao Q, Cao Z, Tu C, Zhao Y, Liu H, Zhang S. MicroRNA-146a acts as a metastasis suppressor in gastric cancer by targeting WASF2. Cancer Lett 2013; 335:219-24. [PMID: 23435376 DOI: 10.1016/j.canlet.2013.02.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/21/2012] [Accepted: 02/11/2013] [Indexed: 12/22/2022]
Abstract
Previous studies have shown that miR-146a acts as either an oncogene or a tumor suppressor in various cancers. In this study, we investigated the role of miR-146a in gastric cancer cells and its potential target genes. The results showed that miR-146a expression correlated inversely with WASF2 protein expression in gastric cancer cell lines. Overexpression of miR-146a suppressed the migration and invasion of gastric cancer cells, and also the protein level of WASF2. WASF2 was shown to be a direct target gene of miR-146a by luciferase assays. Restoration of WASF2 promoted the migration and invasion of gastric cancer cells, similar to that mediated by miR-146a inhibition. This study has identified an onco-suppressive role of miR-146a in gastric cancer cells by its reduction of WASF2 expression. The newly identified miR-146a/WASF2 axis partially reveals the molecular mechanism underlying the migration and invasion of gastric cancer cells and represents a new potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Qunyan Yao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
48
|
Mendoza MC. Phosphoregulation of the WAVE regulatory complex and signal integration. Semin Cell Dev Biol 2013; 24:272-9. [PMID: 23354023 DOI: 10.1016/j.semcdb.2013.01.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/16/2013] [Indexed: 01/19/2023]
Abstract
The WAVE2 regulatory complex (WRC) induces actin polymerization by activating the actin nucleator Arp2/3. Polymerizing actin pushes against the cell membrane and induces dramatic edge protrusions. In order to properly control such changes in cell morphology and function, cells have evolved multiple methods to tightly regulate WRC and Arp2/3 activity in space and time. Of these mechanisms, phosphorylation plays a fundamental role in transmitting extracellular and intracellular signals to the WRC and the actin cytoskeleton. This review discusses the phosphorylation-based regulatory inputs into the WRC. Signaling pathways that respond to growth factors, chemokines, hormones, and extracellular matrix converge upon the WAVE and ABI components of the WRC. The Abl, Src, ERK, and PKA kinases promote complex activation through a WRC conformation change that permits interaction with the Arp2/3 complex and through WRC translocation to the cell edge. The neuron-specific CDK5 and constitutively active CK2 kinases inhibit WRC activation. These regulatory signals are integrated in space and time as they coalesce upon the WRC. The combination of WRC phosphorylation events and WRC activity is controlled by stimulus, cell type, and cell cycle-specific pathway activation and via pathway cross-inhibition and cross-activation.
Collapse
Affiliation(s)
- Michelle C Mendoza
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
49
|
Liu J, Wang QC, Wang F, Duan X, Dai XX, Wang T, Liu HL, Cui XS, Kim NH, Sun SC. Nucleation promoting factors regulate the expression and localization of Arp2/3 complex during meiosis of mouse oocytes. PLoS One 2012; 7:e52277. [PMID: 23272233 PMCID: PMC3525642 DOI: 10.1371/journal.pone.0052277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division.
Collapse
Affiliation(s)
- Jun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Xin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Teng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
50
|
Abstract
Many forms of cellular motility are driven by the growth of branched networks of actin filaments, which push against a membrane. In the dendritic nucleation model, Arp2/3 complex is critical, binding to the side of an existing mother filament, nucleating a new daughter filament, and thus creating a branch. Spatial and temporal regulation of Arp2/3 activity is critical for efficient generation of force and movement. A diverse collection of Arp2/3 regulatory proteins has been identified. They bind to and/or activate Arp2/3 complex via an acidic motif with a conserved tryptophan residue. We tested this model for Arp2/3 regulator function in vivo, by examining the roles of multiple Arp2/3 regulators in endocytosis in living yeast cells. We measured the molecular composition of the actin network in cells with mutations that removed the acidic motifs of the four Arp2/3 regulators previously shown to influence the proper function of the actin network. Unexpectedly, we did not find a simple or direct correlation between defects in patch assembly and movement and changes in the composition and dynamics of dendritic nucleation proteins. Taken together our data does not support the simple hypothesis that the primary role for Arp2/3 regulators is to recruit and activate Arp2/3. Rather our data suggests that these regulators may be playing more subtle roles in establishing functional networks in vivo.
Collapse
Affiliation(s)
- Brian J Galletta
- Department of Cell Biology and Physiology, Washington University, Saint Louis, MO, USA
| | | | | |
Collapse
|