1
|
Fielden LF, Busch JD, Lindau C, Qiu J, Wiedemann N. Analysis of mitochondrial protein translocation by disulfide bond formation and cysteine specific crosslinking. Methods Enzymol 2024; 707:257-298. [PMID: 39488378 DOI: 10.1016/bs.mie.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Protein translocation is a highly dynamic process and, in addition, mitochondrial protein import is especially complicated as the majority of nuclear encoded precursor proteins must engage with multiple translocases before they are assembled in the correct mitochondrial subcompartment. In this chapter, we describe assays for engineered disulfide bond formation and cysteine specific crosslinking to analyze the rearrangement of translocase subunits or to probe protein-protein interactions between precursor proteins and translocase subunits. Such assays were used to characterize the translocase of the outer membrane, the presequence translocase of the inner membrane and the sorting and assembly machinery for the biogenesis of β-Barrel proteins. Moreover, these approaches were also employed to determine the translocation path of precursor proteins (identification of import receptors and specific domains required for translocation) as well as the analysis, location and translocase subunit dependence for the formation of β-Barrel proteins. Here we describe how engineered disulfide bond formation and cysteine specific crosslinking assays are planned and performed and discuss important aspects for its application to study mitochondrial protein translocation.
Collapse
Affiliation(s)
- Laura F Fielden
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jian Qiu
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Badrie S, Draken JA, Mokranjac D. In vitro import of mitochondrial precursor proteins into yeast mitochondria. Methods Enzymol 2024; 706:347-363. [PMID: 39455223 DOI: 10.1016/bs.mie.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain about 1000 different proteins, only a handful of which are encoded in the mitochondrial genome. The remaining c. 99% of mitochondrial proteins are encoded in the nuclear genome, synthesized on cytosolic ribosomes as precursor proteins with specific mitochondrial targeting signals and are subsequently imported into the organelle. Mitochondrial targeting signals are very diverse and mitochondria therefore also have a number of very sophisticated molecular machines that recognize, import and sort mitochondrial precursor proteins to the different mitochondrial subcompartments. The ability to synthesize mitochondrial precursor proteins in vitro and subsequently import them into isolated mitochondria has revolutionized our understanding of mitochondrial protein import pathways. Here, we describe the basic protocol for synthesis of mitochondrial precursor proteins in vitro and their subsequent import into isolated mitochondria from yeast Saccharomyces cerevisiae, the method which was used to elucidate and characterize the vast majority of mitochondrial protein import pathways.
Collapse
Affiliation(s)
- Soraya Badrie
- LMU Munich, Biozentrum-Cell Biology, Planegg, Germany
| | | | | |
Collapse
|
3
|
den Brave F, Schulte U, Fakler B, Pfanner N, Becker T. Mitochondrial complexome and import network. Trends Cell Biol 2024; 34:578-594. [PMID: 37914576 DOI: 10.1016/j.tcb.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions. Protein translocases are responsible for importing precursor proteins into mitochondria and form central elements of several protein interaction networks. These networks include molecular chaperones and quality control factors, metabolite channels and respiratory chain complexes, and membrane and organellar contact sites. Protein translocases link the distinct networks into an overarching network, the mitochondrial import network (MitimNet), to coordinate biogenesis, membrane organization and function of mitochondria.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
4
|
Krakowczyk M, Lenkiewicz AM, Sitarz T, Malinska D, Borrero M, Mussulini BHM, Linke V, Szczepankiewicz AA, Biazik JM, Wydrych A, Nieznanska H, Serwa RA, Chacinska A, Bragoszewski P. OMA1 protease eliminates arrested protein import intermediates upon mitochondrial depolarization. J Cell Biol 2024; 223:e202306051. [PMID: 38530280 PMCID: PMC10964989 DOI: 10.1083/jcb.202306051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/28/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Most mitochondrial proteins originate from the cytosol and require transport into the organelle. Such precursor proteins must be unfolded to pass through translocation channels in mitochondrial membranes. Misfolding of transported proteins can result in their arrest and translocation failure. Arrested proteins block further import, disturbing mitochondrial functions and cellular proteostasis. Cellular responses to translocation failure have been defined in yeast. We developed the cell line-based translocase clogging model to discover molecular mechanisms that resolve failed import events in humans. The mechanism we uncover differs significantly from these described in fungi, where ATPase-driven extraction of blocked protein is directly coupled with proteasomal processing. We found human cells to rely primarily on mitochondrial factors to clear translocation channel blockage. The mitochondrial membrane depolarization triggered proteolytic cleavage of the stalled protein, which involved mitochondrial protease OMA1. The cleavage allowed releasing the protein fragment that blocked the translocase. The released fragment was further cleared in the cytosol by VCP/p97 and the proteasome.
Collapse
Affiliation(s)
- Magda Krakowczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna M. Lenkiewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Sitarz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dominika Malinska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mayra Borrero
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Ben Hur Marins Mussulini
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Vanessa Linke
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna M. Biazik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- University of New South Wales, Sydney, Australia
| | - Agata Wydrych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Nieznanska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Remigiusz A. Serwa
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bragoszewski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Wang Q, Zhuang J, Huang R, Guan Z, Yan L, Hong S, Zhang L, Huang C, Liu Z, Yin P. The architecture of substrate-engaged TOM-TIM23 supercomplex reveals preprotein proximity sites for mitochondrial protein translocation. Cell Discov 2024; 10:19. [PMID: 38360717 PMCID: PMC10869343 DOI: 10.1038/s41421-023-00643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/24/2023] [Indexed: 02/17/2024] Open
Affiliation(s)
- Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinjin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ling Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sixing Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Can Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Needs HI, Glover E, Pereira GC, Witt A, Hübner W, Dodding MP, Henley JM, Collinson I. Rescue of mitochondrial import failure by intercellular organellar transfer. Nat Commun 2024; 15:988. [PMID: 38307874 PMCID: PMC10837123 DOI: 10.1038/s41467-024-45283-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells, composed mostly of nuclear-encoded proteins imported from the cytosol. Thus, problems with the import machinery will disrupt their regenerative capacity and the cell's energy supplies - particularly troublesome for energy-demanding cells of nervous tissue and muscle. Unsurprisingly then, import breakdown is implicated in disease. Here, we explore the consequences of import failure in mammalian cells; wherein, blocking the import machinery impacts mitochondrial ultra-structure and dynamics, but, surprisingly, does not affect import. Our data are consistent with a response involving intercellular mitochondrial transport via tunnelling nanotubes to import healthy mitochondria and jettison those with blocked import sites. These observations support the existence of a widespread mechanism for the rescue of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hope I Needs
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Emily Glover
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Gonçalo C Pereira
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
- Nanna Therapeutics, Merrifield Centre, Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Alina Witt
- Fakultät für Physik, Universität Bielefeld, Bielefeld, Postfach 100131 D-33501, Germany
| | - Wolfgang Hübner
- Fakultät für Physik, Universität Bielefeld, Bielefeld, Postfach 100131 D-33501, Germany
| | - Mark P Dodding
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
7
|
den Brave F, Pfanner N, Becker T. Mitochondrial entry gate as regulatory hub. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119529. [PMID: 37951505 DOI: 10.1016/j.bbamcr.2023.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 11/14/2023]
Abstract
Mitochondria import 1000-1300 different precursor proteins from the cytosol. The main mitochondrial entry gate is formed by the translocase of the outer membrane (TOM complex). Molecular coupling and modification of TOM subunits control and modulate protein import in response to cellular signaling. The TOM complex functions as regulatory hub to integrate mitochondrial protein biogenesis and quality control into the cellular proteostasis network.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
8
|
Genge MG, Roy Chowdhury S, Dohnálek V, Yunoki K, Hirashima T, Endo T, Doležal P, Mokranjac D. Two domains of Tim50 coordinate translocation of proteins across the two mitochondrial membranes. Life Sci Alliance 2023; 6:e202302122. [PMID: 37748811 PMCID: PMC10520260 DOI: 10.26508/lsa.202302122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Hundreds of mitochondrial proteins with N-terminal presequences are translocated across the outer and inner mitochondrial membranes via the TOM and TIM23 complexes, respectively. How translocation of proteins across two mitochondrial membranes is coordinated is largely unknown. Here, we show that the two domains of Tim50 in the intermembrane space, named core and PBD, both have essential roles in this process. Building upon the surprising observation that the two domains of Tim50 can complement each other in trans, we establish that the core domain contains the main presequence-binding site and serves as the main recruitment point to the TIM23 complex. On the other hand, the PBD plays, directly or indirectly, a critical role in cooperation of the TOM and TIM23 complexes and supports the receptor function of Tim50. Thus, the two domains of Tim50 both have essential but distinct roles and together coordinate translocation of proteins across two mitochondrial membranes.
Collapse
Affiliation(s)
- Marcel G Genge
- Biocenter-Department of Cell Biology, LMU Munich, Munich, Germany
| | | | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kaori Yunoki
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Takashi Hirashima
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Toshiya Endo
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Dejana Mokranjac
- Biocenter-Department of Cell Biology, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Zhou X, Yang Y, Wang G, Wang S, Sun D, Ou X, Lian Y, Li L. Molecular pathway of mitochondrial preprotein import through the TOM-TIM23 supercomplex. Nat Struct Mol Biol 2023; 30:1996-2008. [PMID: 37696957 DOI: 10.1038/s41594-023-01103-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
Over half of mitochondrial proteins are imported from the cytosol via the pre-sequence pathway, controlled by the TOM complex in the outer membrane and the TIM23 complex in the inner membrane. The mechanisms through which proteins are translocated via the TOM and TIM23 complexes remain unclear. Here we report the assembly of the active TOM-TIM23 supercomplex of Saccharomyces cerevisiae with translocating polypeptide substrates. Electron cryo-microscopy analyses reveal that the polypeptide substrates pass the TOM complex through the center of a Tom40 subunit, interacting with a glutamine-rich region. Structural and biochemical analyses show that the TIM23 complex contains a heterotrimer of the subunits Tim23, Tim17 and Mgr2. The polypeptide substrates are shielded from lipids by Mgr2 and Tim17, which creates a translocation pathway characterized by a negatively charged entrance and a central hydrophobic region. These findings reveal an unexpected pre-sequence pathway through the TOM-TIM23 supercomplex spanning the double membranes of mitochondria.
Collapse
Affiliation(s)
- Xueyin Zhou
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuqi Yang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Guopeng Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Shanshan Wang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dongjie Sun
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiaomin Ou
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yuke Lian
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Long Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
11
|
Sim SI, Chen Y, Lynch DL, Gumbart JC, Park E. Structural basis of mitochondrial protein import by the TIM23 complex. Nature 2023; 621:620-626. [PMID: 37344598 PMCID: PMC11495887 DOI: 10.1038/s41586-023-06239-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sue Im Sim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Yuanyuan Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Diane L Lynch
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
| |
Collapse
|
12
|
Makki A, Rehling P. Protein transport along the presequence pathway. Biol Chem 2023; 404:807-812. [PMID: 37155927 DOI: 10.1515/hsz-2023-0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Most mitochondrial proteins are nuclear-encoded and imported by the protein import machinery based on specific targeting signals. The proteins that carry an amino-terminal targeting signal (presequence) are imported via the presequence import pathway that involves the translocases of the outer and inner membranes - TOM and TIM23 complexes. In this article, we discuss how mitochondrial matrix and inner membrane precursor proteins are imported along the presequence pathway in Saccharomyces cerevisiae with a focus on the dynamics of the TIM23 complex, and further update with some of the key findings that advanced the field in the last few years.
Collapse
Affiliation(s)
- Abhijith Makki
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany
| |
Collapse
|
13
|
Peker E, Weiss K, Song J, Zarges C, Gerlich S, Boehm V, Trifunovic A, Langer T, Gehring NH, Becker T, Riemer J. A two-step mitochondrial import pathway couples the disulfide relay with matrix complex I biogenesis. J Cell Biol 2023; 222:e202210019. [PMID: 37159021 PMCID: PMC10174193 DOI: 10.1083/jcb.202210019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Mitochondria critically rely on protein import and its tight regulation. Here, we found that the complex I assembly factor NDUFAF8 follows a two-step import pathway linking IMS and matrix import systems. A weak targeting sequence drives TIM23-dependent NDUFAF8 matrix import, and en route, allows exposure to the IMS disulfide relay, which oxidizes NDUFAF8. Import is closely surveyed by proteases: YME1L prevents accumulation of excess NDUFAF8 in the IMS, while CLPP degrades reduced NDUFAF8 in the matrix. Therefore, NDUFAF8 can only fulfil its function in complex I biogenesis if both oxidation in the IMS and subsequent matrix import work efficiently. We propose that the two-step import pathway for NDUFAF8 allows integration of the activity of matrix complex I biogenesis pathways with the activity of the mitochondrial disulfide relay system in the IMS. Such coordination might not be limited to NDUFAF8 as we identified further proteins that can follow such a two-step import pathway.
Collapse
Affiliation(s)
- Esra Peker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Konstantin Weiss
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christine Zarges
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Sarah Gerlich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Niels H. Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Needs HI, Wilkinson KA, Henley JM, Collinson I. Aggregation-prone Tau impairs mitochondrial import, which affects organelle morphology and neuronal complexity. J Cell Sci 2023; 136:jcs260993. [PMID: 37303235 PMCID: PMC10357015 DOI: 10.1242/jcs.260993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
Mitochondrial protein import is essential for organellar biogenesis, and thereby for the sufficient supply of cytosolic ATP - which is particularly important for cells with high energy demands like neurons. This study explores the prospect of import machinery perturbation as a cause of neurodegeneration instigated by the accumulation of aggregating proteins linked to disease. We found that the aggregation-prone Tau variant (TauP301L) reduces the levels of components of the import machinery of the outer (TOM20, encoded by TOMM20) and inner membrane (TIM23, encoded by TIMM23) while associating with TOM40 (TOMM40). Intriguingly, this interaction affects mitochondrial morphology, but not protein import or respiratory function; raising the prospect of an intrinsic rescue mechanism. Indeed, TauP301L induced the formation of tunnelling nanotubes (TNTs), potentially for the recruitment of healthy mitochondria from neighbouring cells and/or the disposal of mitochondria incapacitated by aggregated Tau. Consistent with this, inhibition of TNT formation (and rescue) reveals Tau-induced import impairment. In primary neuronal cultures, TauP301L induced morphological changes characteristic of neurodegeneration. Interestingly, these effects were mirrored in cells where the import sites were blocked artificially. Our results reveal a link between aggregation-prone Tau and defective mitochondrial import relevant to disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
15
|
Kim DB, Na C, Hwang I, Lee DW. Understanding protein translocation across chloroplast membranes: Translocons and motor proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:408-416. [PMID: 36223071 DOI: 10.1111/jipb.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Subcellular organelles in eukaryotes are surrounded by lipid membranes. In an endomembrane system, vesicle trafficking is the primary mechanism for the delivery of organellar proteins to specific organelles. However, organellar proteins for chloroplasts, mitochondria, the nucleus, and peroxisomes that are translated in the cytosol are directly imported into their target organelles. Chloroplasts are a plant-specific organelle with outer and inner envelope membranes, a dual-membrane structure that is similar to mitochondria. Interior chloroplast proteins translated by cytosolic ribosomes are thus translocated through TOC and TIC complexes (translocons in the outer and inner envelope of chloroplasts, respectively), with stromal ATPase motor proteins playing a critical role in pulling pre-proteins through these import channels. Over the last three decades, the identity and function of TOC/TIC components and stromal motor proteins have been actively investigated, which has shed light on the action mechanisms at a molecular level. However, there remains some disagreement over the exact composition of TIC complexes and genuine stromal motor proteins. In this review, we discuss recent findings on the mechanisms by which proteins are translocated through TOC/TIC complexes and discuss future prospects for this field of research.
Collapse
Affiliation(s)
- Da Been Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Changhee Na
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
16
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
17
|
Ford HC, Allen WJ, Pereira GC, Liu X, Dillingham MS, Collinson I. Towards a molecular mechanism underlying mitochondrial protein import through the TOM and TIM23 complexes. eLife 2022; 11:75426. [PMID: 35674314 PMCID: PMC9255969 DOI: 10.7554/elife.75426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/07/2022] [Indexed: 12/27/2022] Open
Abstract
Nearly all mitochondrial proteins need to be targeted for import from the cytosol. For the majority, the first port of call is the translocase of the outer membrane (TOM complex), followed by a procession of alternative molecular machines, conducting transport to their final destination. The pre-sequence translocase of the inner membrane (TIM23-complex) imports proteins with cleavable pre-sequences. Progress in understanding these transport mechanisms has been hampered by the poor sensitivity and time resolution of import assays. However, with the development of an assay based on split NanoLuc luciferase, we can now explore this process in greater detail. Here, we apply this new methodology to understand how ∆ψ and ATP hydrolysis, the two main driving forces for import into the matrix, contribute to the transport of pre-sequence-containing precursors (PCPs) with varying properties. Notably, we found that two major rate-limiting steps define PCP import time: passage of PCP across the outer membrane and initiation of inner membrane transport by the pre-sequence - the rates of which are influenced by PCP size and net charge. The apparent distinction between transport through the two membranes (passage through TOM is substantially complete before PCP-TIM engagement) is in contrast with the current view that import occurs through TOM and TIM in a single continuous step. Our results also indicate that PCPs spend very little time in the TIM23 channel - presumably rapid success or failure of import is critical for maintenance of mitochondrial fitness.
Collapse
Affiliation(s)
- Holly C Ford
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - William J Allen
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Gonçalo C Pereira
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Xia Liu
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Sayyed UMH, Mahalakshmi R. Mitochondrial protein translocation machinery: From TOM structural biogenesis to functional regulation. J Biol Chem 2022; 298:101870. [PMID: 35346689 PMCID: PMC9052162 DOI: 10.1016/j.jbc.2022.101870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/15/2023] Open
Abstract
The human mitochondrial outer membrane is biophysically unique as it is the only membrane possessing transmembrane β-barrel proteins (mitochondrial outer membrane proteins, mOMPs) in the cell. The most vital of the three mOMPs is the core protein of the translocase of the outer mitochondrial membrane (TOM) complex. Identified first as MOM38 in Neurospora in 1990, the structure of Tom40, the core 19-stranded β-barrel translocation channel, was solved in 2017, after nearly three decades. Remarkably, the past four years have witnessed an exponential increase in structural and functional studies of yeast and human TOM complexes. In addition to being conserved across all eukaryotes, the TOM complex is the sole ATP-independent import machinery for nearly all of the ∼1000 to 1500 known mitochondrial proteins. Recent cryo-EM structures have provided detailed insight into both possible assembly mechanisms of the TOM core complex and organizational dynamics of the import machinery and now reveal novel regulatory interplay with other mOMPs. Functional characterization of the TOM complex using biochemical and structural approaches has also revealed mechanisms for substrate recognition and at least five defined import pathways for precursor proteins. In this review, we discuss the discovery, recently solved structures, molecular function, and regulation of the TOM complex and its constituents, along with the implications these advances have for alleviating human diseases.
Collapse
Affiliation(s)
- Ulfat Mohd Hanif Sayyed
- Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | | |
Collapse
|
19
|
Priesnitz C, Böttinger L, Zufall N, Gebert M, Guiard B, van der Laan M, Becker T. Coupling to Pam16 differentially controls the dual role of Pam18 in protein import and respiratory chain formation. Cell Rep 2022; 39:110619. [PMID: 35385740 DOI: 10.1016/j.celrep.2022.110619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
The presequence translocase (TIM23 complex) imports precursor proteins into the mitochondrial inner membrane and matrix. The presequence translocase-associated motor (PAM) provides a driving force for transport into the matrix. The J-protein Pam18 stimulates the ATPase activity of the mitochondrial Hsp70 (mtHsp70). Pam16 recruits Pam18 to the TIM23 complex to ensure protein import. The Pam16-Pam18 module also associates with components of the respiratory chain, but the function of the dual localization of Pam16-Pam18 is largely unknown. Here, we show that disruption of the Pam16-Pam18 heterodimer causes redistribution of Pam18 to the respiratory chain supercomplexes, where it forms a homodimer. Redistribution of Pam18 decreases protein import into mitochondria but stimulates mtHsp70-dependent assembly of respiratory chain complexes. We conclude that coupling to Pam16 differentially controls the dual function of Pam18. It recruits Pam18 to the TIM23 complex to promote protein import but attenuates the Pam18 function in the assembly of respiratory chain complexes.
Collapse
Affiliation(s)
- Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Böttinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicole Zufall
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Michael Gebert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
20
|
Bileck A, Bortel P, Kriz M, Janker L, Kiss E, Gerner C, Del Favero G. Inward Outward Signaling in Ovarian Cancer: Morpho-Phospho-Proteomic Profiling Upon Application of Hypoxia and Shear Stress Characterizes the Adaptive Plasticity of OVCAR-3 and SKOV-3 Cells. Front Oncol 2022; 11:746411. [PMID: 35251951 PMCID: PMC8896345 DOI: 10.3389/fonc.2021.746411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022] Open
Abstract
With the onset of resistance, ovarian cancer cells display almost unpredictable adaptive potential. This may derive from the tumor genetic ancestry and can be additionally tailored by post translational protein modifications (PTMs). In this study, we took advantage of high-end (phospho)-proteome analysis combined with multiparametric morphometric profiling in high-grade serous (OVCAR-3) and non-serous (SKOV-3) ovarian carcinoma cells. For functional experiments, we applied two different protocols, representing typical conditions of the abdominal cavity and of the growing tumor tissue: on the one side hypoxia (oxygen 1%) which develops within the tumor mass or is experienced during migration/extravasation in non-vascularized areas. On the other hand, fluid shear stress (250 rpm, 2.8 dyn/cm2) which affects tumor surface in the peritoneum or metastases in the bloodstream. After 3 hours incubation, treatment groups were clearly distinguishable by PCA analysis. Whereas basal proteome profiles of OVCAR-3 and SKOV-3 cells appeared almost unchanged, phosphoproteome analysis revealed multiple regulatory events. These affected primarily cellular structure and proliferative potential and consolidated in the proteome signature after 24h treatment. Upon oxygen reduction, metabolism switched toward glycolysis (e.g. upregulation hexokinase-2; HK2) and cell size increased, in concerted regulation of pathways related to Rho-GTPases and/or cytoskeletal elements, resembling a vasculogenic mimicry response. Shear stress regulated proteins governing cell cycle and structure, as well as the lipid metabolism machinery including the delta(14)-sterol reductase, kinesin-like proteins (KIF-22/20A) and the actin-related protein 2/3 complex. Independent microscopy-based validation experiments confirmed cell-type specific morphometric responses. In conclusion, we established a robust workflow enabling the description of the adaptive potential of ovarian cancer cells to physical and chemical stressors typical for the abdominal cavity and supporting the identification of novel molecular mechanisms sustaining tumor plasticity and pharmacologic resistance.
Collapse
Affiliation(s)
- Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Patricia Bortel
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Michelle Kriz
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Department of Food Chemistry and Toxicology, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero, ; Christopher Gerner,
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero, ; Christopher Gerner,
| |
Collapse
|
21
|
Genge MG, Mokranjac D. Coordinated Translocation of Presequence-Containing Precursor Proteins Across Two Mitochondrial Membranes: Knowns and Unknowns of How TOM and TIM23 Complexes Cooperate With Each Other. Front Physiol 2022; 12:806426. [PMID: 35069261 PMCID: PMC8770809 DOI: 10.3389/fphys.2021.806426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
The vast majority of mitochondrial proteins are encoded in the nuclear genome and synthesized on cytosolic ribosomes as precursor proteins with specific mitochondrial targeting signals. Mitochondrial targeting signals are very diverse, however, about 70% of mitochondrial proteins carry cleavable, N-terminal extensions called presequences. These amphipathic helices with one positively charged and one hydrophobic surface target proteins to the mitochondrial matrix with the help of the TOM and TIM23 complexes in the outer and inner membranes, respectively. Translocation of proteins across the two mitochondrial membranes does not take place independently of each other. Rather, in the intermembrane space, where the two complexes meet, components of the TOM and TIM23 complexes form an intricate network of protein-protein interactions that mediates initially transfer of presequences and then of the entire precursor proteins from the outer to the inner mitochondrial membrane. In this Mini Review, we summarize our current understanding of how the TOM and TIM23 complexes cooperate with each other and highlight some of the future challenges and unresolved questions in the field.
Collapse
Affiliation(s)
| | - Dejana Mokranjac
- Biozentrum — Department of Cell Biology, LMU Munich, Munich, Germany
| |
Collapse
|
22
|
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis. Int J Mol Sci 2021; 23:ijms23010007. [PMID: 35008433 PMCID: PMC8745001 DOI: 10.3390/ijms23010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.
Collapse
|
23
|
Mapping protein interactions in the active TOM-TIM23 supercomplex. Nat Commun 2021; 12:5715. [PMID: 34588454 PMCID: PMC8481542 DOI: 10.1038/s41467-021-26016-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/19/2021] [Indexed: 11/10/2022] Open
Abstract
Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport. The TOM and TIM23 complexes facilitate the transport of nuclear-encoded proteins into the mitochondrial matrix. Here, the authors use a stalled client protein to purify the translocation supercomplex and gain insight into the TOM-TIM23 interface and the mechanism of protein handover from the TOM to the TIM23 complex.
Collapse
|
24
|
Chaudhuri M, Tripathi A, Gonzalez FS. Diverse Functions of Tim50, a Component of the Mitochondrial Inner Membrane Protein Translocase. Int J Mol Sci 2021; 22:7779. [PMID: 34360547 PMCID: PMC8346121 DOI: 10.3390/ijms22157779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are essential in eukaryotes. Besides producing 80% of total cellular ATP, mitochondria are involved in various cellular functions such as apoptosis, inflammation, innate immunity, stress tolerance, and Ca2+ homeostasis. Mitochondria are also the site for many critical metabolic pathways and are integrated into the signaling network to maintain cellular homeostasis under stress. Mitochondria require hundreds of proteins to perform all these functions. Since the mitochondrial genome only encodes a handful of proteins, most mitochondrial proteins are imported from the cytosol via receptor/translocase complexes on the mitochondrial outer and inner membranes known as TOMs and TIMs. Many of the subunits of these protein complexes are essential for cell survival in model yeast and other unicellular eukaryotes. Defects in the mitochondrial import machineries are also associated with various metabolic, developmental, and neurodegenerative disorders in multicellular organisms. In addition to their canonical functions, these protein translocases also help maintain mitochondrial structure and dynamics, lipid metabolism, and stress response. This review focuses on the role of Tim50, the receptor component of one of the TIM complexes, in different cellular functions, with an emphasis on the Tim50 homologue in parasitic protozoan Trypanosoma brucei.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (A.T.); (F.S.G.)
| | | | | |
Collapse
|
25
|
Sensing, signaling and surviving mitochondrial stress. Cell Mol Life Sci 2021; 78:5925-5951. [PMID: 34228161 PMCID: PMC8316193 DOI: 10.1007/s00018-021-03887-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial fidelity is a key determinant of longevity and was found to be perturbed in a multitude of disease contexts ranging from neurodegeneration to heart failure. Tight homeostatic control of the mitochondrial proteome is a crucial aspect of mitochondrial function, which is severely complicated by the evolutionary origin and resulting peculiarities of the organelle. This is, on one hand, reflected by a range of basal quality control factors such as mitochondria-resident chaperones and proteases, that assist in import and folding of precursors as well as removal of aggregated proteins. On the other hand, stress causes the activation of several additional mechanisms that counteract any damage that may threaten mitochondrial function. Countermeasures depend on the location and intensity of the stress and on a range of factors that are equipped to sense and signal the nature of the encountered perturbation. Defective mitochondrial import activates mechanisms that combat the accumulation of precursors in the cytosol and the import pore. To resolve proteotoxic stress in the organelle interior, mitochondria depend on nuclear transcriptional programs, such as the mitochondrial unfolded protein response and the integrated stress response. If organelle damage is too severe, mitochondria signal for their own destruction in a process termed mitophagy, thereby preventing further harm to the mitochondrial network and allowing the cell to salvage their biological building blocks. Here, we provide an overview of how different types and intensities of stress activate distinct pathways aimed at preserving mitochondrial fidelity.
Collapse
|
26
|
High-resolution imaging reveals compartmentalization of mitochondrial protein synthesis in cultured human cells. Proc Natl Acad Sci U S A 2021; 118:2008778118. [PMID: 33526660 PMCID: PMC8017971 DOI: 10.1073/pnas.2008778118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mitochondria from various species, the OXPHOS complexes reside mainly in the invaginated cristae membranes, as opposed to the inner boundary membrane (IBM) that parallels the mitochondrial outer membrane. However, the IBM contains dynamic contact sites enriched for translocases that import proteins from the cytosol. As the majority of OXPHOS components are imported and need to be integrated in assembly with the mtDNA-encoded components, where does intramitochondrial translation occur? Here we report: 1) a method for visualizing protein synthesis in human mitochondria at super resolution; 2) that synthesis is enriched at cristae membranes, in preference to the IBM; and 3) that sites of translation are spatially separated from RNA granules where RNA processing, maturation, and mitoribosomal assembly occur. Human mitochondria contain their own genome, mitochondrial DNA, that is expressed in the mitochondrial matrix. This genome encodes 13 vital polypeptides that are components of the multisubunit complexes that couple oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane that houses these complexes comprises the inner boundary membrane that runs parallel to the outer membrane, infoldings that form the cristae membranes, and the cristae junctions that separate the two. It is in these cristae membranes that the OXPHOS complexes have been shown to reside in various species. The majority of the OXPHOS subunits are nuclear-encoded and must therefore be imported from the cytosol through the outer membrane at contact sites with the inner boundary membrane. As the mitochondrially encoded components are also integral members of these complexes, where does protein synthesis occur? As transcription, mRNA processing, maturation, and at least part of the mitoribosome assembly process occur at the nucleoid and the spatially juxtaposed mitochondrial RNA granules, is protein synthesis also performed at the RNA granules close to these entities, or does it occur distal to these sites? We have adapted a click chemistry-based method coupled with stimulated emission depletion nanoscopy to address these questions. We report that, in human cells in culture, within the limits of our methodology, the majority of mitochondrial protein synthesis is detected at the cristae membranes and is spatially separated from the sites of RNA processing and maturation.
Collapse
|
27
|
Bausewein T, Naveed H, Liang J, Nussberger S. The structure of the TOM core complex in the mitochondrial outer membrane. Biol Chem 2021; 401:687-697. [PMID: 32142473 DOI: 10.1515/hsz-2020-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023]
Abstract
In the past three decades, significant advances have been made in providing the biochemical background of TOM (translocase of the outer mitochondrial membrane)-mediated protein translocation into mitochondria. In the light of recent cryoelectron microscopy-derived structures of TOM isolated from Neurospora crassa and Saccharomyces cerevisiae, the interpretation of biochemical and biophysical studies of TOM-mediated protein transport into mitochondria now rests on a solid basis. In this review, we compare the subnanometer structure of N. crassa TOM core complex with that of yeast. Both structures reveal remarkably well-conserved symmetrical dimers of 10 membrane protein subunits. The structural data also validate predictions of weakly stable regions in the transmembrane β-barrel domains of the protein-conducting subunit Tom40, which signal the existence of β-strands located in interfaces of protein-protein interactions.
Collapse
Affiliation(s)
- Thomas Bausewein
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438Frankfurt am Main, Germany
| | - Hammad Naveed
- National University of Computer and Emerging Sciences, Department of Computer Science, A. K. Brohi Road H-11/4, Islamabad 44000, Pakistan
| | - Jie Liang
- Richard and Loan Hill Department of Bioengineering, MC-063, University of Illinois, Chicago, IL 60607-7052, USA
| | - Stephan Nussberger
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Department of Biophysics, Pfaffenwaldring 57, D-70569Stuttgart, Germany
| |
Collapse
|
28
|
Farouk SM, Abdellatif AM, Metwally E. Outer and inner mitochondrial membrane proteins TOMM40 and TIMM50 are intensively concentrated and localized at Purkinje and pyramidal neurons in the New Zealand white rabbit brain. Anat Rec (Hoboken) 2021; 305:209-221. [PMID: 34041863 DOI: 10.1002/ar.24689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 11/05/2022]
Abstract
Mitochondria are involved in a variety of developmental processes and neurodegenerative diseases. The translocase complexes of the outer and inner mitochondrial membranes (TOM and TIM) are protein complexes involved in transporting protein precursors across mitochondrial membranes. Although rabbits are important animal models for neurodegenerative diseases, the expression of TOM and TIM complexes has yet to be examined in the rabbit brain. In the present study, we quantitatively evaluated the protein expression of the translocase of outer mitochondrial membrane 40 (TOMM40) and inner mitochondrial membrane 50 (TIMM50) complexes, two of the TOM/TIM complexes, in the cerebral, cerebellar, and hippocampal cortices of the New Zealand white rabbit brain, using immunohistochemistry. Sections from brain specimens were initially stained for cytochrome c oxidase (COX), a well-known mitochondrial marker, which was found to be homogeneously expressed in the cerebrum, but localized to the Purkinje and pyramidal neurons of the cerebellum and hippocampus, respectively. TOMM40 and TIMM50 proteins consistently revealed a similar expression pattern, although at different ratios. In the cerebrum, TOMM40 and TIMM50 immunoreactions were homogeneously distributed within the cytoplasm of various neurons. Meanwhile, Purkinje cells in the cerebellum and pyramidal neurons in the hippocampus displayed higher intensities in their cytoplasm. The specific cellular localization of TOMM40 and TIMM50 proteins in various regions of the rabbit brain suggests a distinct function of each protein in these regions. Further analysis will be required to evaluate the molecular functions of these proteins.
Collapse
Affiliation(s)
- Sameh M Farouk
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
29
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
30
|
Exploring the dermotoxicity of the mycotoxin deoxynivalenol: combined morphologic and proteomic profiling of human epidermal cells reveals alteration of lipid biosynthesis machinery and membrane structural integrity relevant for skin barrier function. Arch Toxicol 2021; 95:2201-2221. [PMID: 33890134 PMCID: PMC8166681 DOI: 10.1007/s00204-021-03042-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
Deoxynivalenol (vomitoxin, DON) is a secondary metabolite produced by Fusarium spp. fungi and it is one of the most prevalent mycotoxins worldwide. Crop infestation results not only in food and feed contamination, but also in direct dermal exposure, especially during harvest and food processing. To investigate the potential dermotoxicity of DON, epidermoid squamous cell carcinoma cells A431 were compared to primary human neonatal keratinocytes (HEKn) cells via proteome/phosphoproteome profiling. In A431 cells, 10 µM DON significantly down-regulated ribosomal proteins, as well as mitochondrial respiratory chain elements (OXPHOS regulation) and transport proteins (TOMM22; TOMM40; TOMM70A). Mitochondrial impairment was reflected in altered metabolic competence, apparently combined with interference of the lipid biosynthesis machinery. Functional effects on the cell membrane were confirmed by live cell imaging and membrane fluidity assays (0.1–10 µM DON). Moreover, a common denominator for both A431 and HEKn cells was a significant downregulation of the squalene synthase (FDFT1). In sum, proteome alterations could be traced back to the transcription factor Klf4, a crucial regulator of skin barrier function. Overall, these results describe decisive molecular events sustaining the capability of DON to impair skin barrier function. Proteome data generated in the study are fully accessible via ProteomeXchange with the accession numbers PXD011474 and PXD013613.
Collapse
|
31
|
Transmembrane Coordination of Preprotein Recognition and Motor Coupling by the Mitochondrial Presequence Receptor Tim50. Cell Rep 2021; 30:3092-3104.e4. [PMID: 32130909 DOI: 10.1016/j.celrep.2020.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/13/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial preproteins contain amino-terminal presequences directing them to the presequence translocase of the mitochondrial inner membrane (TIM23 complex). Depending on additional downstream import signals, TIM23 either inserts preproteins into the inner membrane or translocates them into the matrix. Matrix import requires the coupling of the presequence translocase-associated motor (PAM) to TIM23. The molecular mechanisms coordinating preprotein recognition by TIM23 in the intermembrane space (IMS) with PAM activation in the matrix are unknown. Here we show that subsequent to presequence recognition in the IMS, the Tim50 matrix domain facilitates the recruitment of the coupling factor Pam17. Next, the IMS domain of Tim50 promotes PAM recruitment to TIM23. Finally, the Tim50 transmembrane segment stimulates the matrix-directed import-driving force exerted by PAM. We propose that recognition of preprotein segments in the IMS and transfer of signal information across the inner membrane by Tim50 determine import motor activation.
Collapse
|
32
|
Najbauer EE, Becker S, Giller K, Zweckstetter M, Lange A, Steinem C, de Groot BL, Griesinger C, Andreas LB. Structure, gating and interactions of the voltage-dependent anion channel. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:159-172. [PMID: 33782728 PMCID: PMC8071794 DOI: 10.1007/s00249-021-01515-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The voltage-dependent anion channel (VDAC) is one of the most highly abundant proteins found in the outer mitochondrial membrane, and was one of the earliest discovered. Here we review progress in understanding VDAC function with a focus on its structure, discussing various models proposed for voltage gating as well as potential drug targets to modulate the channel's function. In addition, we explore the sensitivity of VDAC structure to variations in the membrane environment, comparing DMPC-only, DMPC with cholesterol, and near-native lipid compositions, and use magic-angle spinning NMR spectroscopy to locate cholesterol on the outside of the β-barrel. We find that the VDAC protein structure remains unchanged in different membrane compositions, including conditions with cholesterol.
Collapse
Affiliation(s)
- Eszter E Najbauer
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Senior Research Group of Translational Structural Biology in Dementia, Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut Für Molekulare Pharmakologie, 13125, Berlin, Germany
- Institut Für Biologie, Humboldt-Universität Zu Berlin, 10115, Berlin, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
33
|
Günsel U, Paz E, Gupta R, Mathes I, Azem A, Mokranjac D. InVivo Dissection of the Intrinsically Disordered Receptor Domain of Tim23. J Mol Biol 2020; 432:3326-3337. [PMID: 32277989 DOI: 10.1016/j.jmb.2020.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
In the intermembrane space (IMS) of mitochondria, the receptor domain of Tim23 has an essential role during translocation of hundreds of different proteins from the cytosol via the TOM and TIM23 complexes in the outer and inner membranes, respectively. This intrinsically disordered domain, which can even extend into the cytosol, was shown, mostly in vitro, to interact with several subunits of the TOM and TIM23 complexes. To obtain molecular understanding of this organizational hub in the IMS, we dissected the IMS domain of Tim23 in vivo. We show that the interaction surface of Tim23 with Tim50 is larger than previously thought and reveal an unexpected interaction of Tim23 with Pam17 in the IMS, impairment of which influences their interaction in the matrix. Furthermore, mutations of two conserved negatively charged residues of Tim23, close to the inner membrane, prevented dimerization of Tim23. The same mutations increased exposure of Tim23 on the mitochondrial surface, whereas dissipation of membrane potential decreased it. Our results reveal an intricate network of Tim23 interactions in the IMS, whose influence is transduced across two mitochondrial membranes, ensuring efficient translocation of proteins into mitochondria.
Collapse
Affiliation(s)
- Umut Günsel
- BMC-Physiological Chemistry, LMU Munich, 82152 Martinsried, Germany
| | - Eyal Paz
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruhita Gupta
- BMC-Physiological Chemistry, LMU Munich, 82152 Martinsried, Germany
| | | | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dejana Mokranjac
- BMC-Physiological Chemistry, LMU Munich, 82152 Martinsried, Germany.
| |
Collapse
|
34
|
Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes. Proc Natl Acad Sci U S A 2020; 117:2412-2421. [PMID: 31964824 DOI: 10.1073/pnas.1917968117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mitochondria have a characteristic ultrastructure with invaginations of the inner membrane called cristae that contain the protein complexes of the oxidative phosphorylation system. How this particular morphology of the respiratory membrane impacts energy conversion is currently unknown. One proposed role of cristae formation is to facilitate the establishment of local proton gradients to fuel ATP synthesis. Here, we determined the local pH values at defined sublocations within mitochondria of respiring yeast cells by fusing a pH-sensitive GFP to proteins residing in different mitochondrial subcompartments. Only a small proton gradient was detected over the inner membrane in wild type or cristae-lacking cells. Conversely, the obtained pH values did barely permit ATP synthesis in a reconstituted system containing purified yeast F1F0 ATP synthase, although, thermodynamically, a sufficiently high driving force was applied. At higher driving forces, where robust ATP synthesis was observed, a P-side pH value of 6 increased the ATP synthesis rate 3-fold compared to pH 7. In contrast, when ATP synthase was coreconstituted with an active proton-translocating cytochrome oxidase, ATP synthesis readily occurred at the measured, physiological pH values. Our study thus reveals that the morphology of the inner membrane does not influence the subcompartmental pH values and is not necessary for robust oxidative phosphorylation in mitochondria. Instead, it is likely that the dense packing of the oxidative phosphorylation complexes in the cristae membranes assists kinetic coupling between proton pumping and ATP synthesis.
Collapse
|
35
|
|
36
|
Mitochondrial protein translocation-associated degradation. Nature 2019; 569:679-683. [PMID: 31118508 DOI: 10.1038/s41586-019-1227-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
Mitochondrial biogenesis and functions depend on the import of precursor proteins via the 'translocase of the outer membrane' (TOM complex). Defects in protein import lead to an accumulation of mitochondrial precursor proteins that induces a range of cellular stress responses. However, constitutive quality-control mechanisms that clear trapped precursor proteins from the TOM channel under non-stress conditions have remained unknown. Here we report that in Saccharomyces cerevisiae Ubx2, which functions in endoplasmic reticulum-associated degradation, is crucial for this quality-control process. A pool of Ubx2 binds to the TOM complex to recruit the AAA ATPase Cdc48 for removal of arrested precursor proteins from the TOM channel. This mitochondrial protein translocation-associated degradation (mitoTAD) pathway continuously monitors the TOM complex under non-stress conditions to prevent clogging of the TOM channel with precursor proteins. The mitoTAD pathway ensures that mitochondria maintain their full protein-import capacity, and protects cells against proteotoxic stress induced by impaired transport of proteins into mitochondria.
Collapse
|
37
|
Callegari S, Müller T, Schulz C, Lenz C, Jans DC, Wissel M, Opazo F, Rizzoli SO, Jakobs S, Urlaub H, Rehling P, Deckers M. A MICOS-TIM22 Association Promotes Carrier Import into Human Mitochondria. J Mol Biol 2019; 431:2835-2851. [PMID: 31103774 DOI: 10.1016/j.jmb.2019.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 01/05/2023]
Abstract
Mitochondrial membrane proteins with internal targeting signals are inserted into the inner membrane by the carrier translocase (TIM22 complex). For this, precursors have to be initially directed from the TOM complex in the outer mitochondrial membrane across the intermembrane space toward the TIM22 complex. How these two translocation processes are topologically coordinated is still unresolved. Using proteomic approaches, we find that the human TIM22 complex associates with the mitochondrial contact site and cristae organizing system (MICOS) complex. This association does not appear to be conserved in yeast, whereby the yeast MICOS complex instead interacts with the presequence translocase. Using a yeast mic10Δ strain and a HEK293T MIC10 knockout cell line, we characterize the role of MICOS for protein import into the mitochondrial inner membrane and matrix. We find that a physiological cristae organization promotes efficient import via the presequence pathway in yeast, while in human mitochondria, the MICOS complex is dispensable for protein import along the presequence pathway. However, in human mitochondria, the MICOS complex is required for the efficient import of carrier proteins into the mitochondrial inner membrane. Our analyses suggest that in human mitochondria, positioning of the carrier translocase at the crista junction, and potentially in vicinity to the TOM complex, is required for efficient transport into the inner membrane.
Collapse
Affiliation(s)
- Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Tobias Müller
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Christian Schulz
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Daniel C Jans
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 11 37077 Göttingen, Germany; Clinic for Neurology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Mirjam Wissel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, von-Siebold-Strasse 3a, 37075 Göttingen, Germany; Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Silvio O Rizzoli
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, von-Siebold-Strasse 3a, 37075 Göttingen, Germany; Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 11 37077 Göttingen, Germany; Clinic for Neurology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| |
Collapse
|
38
|
Richter F, Dennerlein S, Nikolov M, Jans DC, Naumenko N, Aich A, MacVicar T, Linden A, Jakobs S, Urlaub H, Langer T, Rehling P. ROMO1 is a constituent of the human presequence translocase required for YME1L protease import. J Cell Biol 2018; 218:598-614. [PMID: 30598479 PMCID: PMC6363466 DOI: 10.1083/jcb.201806093] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/18/2018] [Accepted: 11/26/2018] [Indexed: 01/15/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells and rely on protein import from the cytosol. Richter et al. found ROMO1 as a new constituent of the human mitochondrial import machinery linking protein import to quality control and mitochondrial morphology. The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control.
Collapse
Affiliation(s)
- Frank Richter
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Miroslav Nikolov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Daniel C Jans
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany
| | - Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas MacVicar
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Langer
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany .,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
39
|
Verechshagina NA, Konstantinov YM, Kamenski PA, Mazunin IO. Import of Proteins and Nucleic Acids into Mitochondria. BIOCHEMISTRY (MOSCOW) 2018; 83:643-661. [DOI: 10.1134/s0006297918060032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Chen LJ, Li HM. Stable megadalton TOC-TIC supercomplexes as major mediators of protein import into chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:178-188. [PMID: 28745032 DOI: 10.1111/tpj.13643] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/21/2017] [Indexed: 05/12/2023]
Abstract
Preproteins are believed to be imported into chloroplasts through membrane contact sites where the translocon complexes of the outer (TOC) and inner (TIC) envelope membranes are assembled together. However, a single TOC-TIC supercomplex containing preproteins undergoing active import has not yet been directly observed. We optimized the blue native polyacrylamide gel electrophoresis (PAGE) (BN-PAGE) system to detect and resolve megadalton (MD)-sized complexes. Using this optimized system, the outer-membrane channel Toc75 from pea chloroplasts was found in at least two complexes: the 880-kD TOC complex and a previously undetected 1-MD complex. Two-dimensional BN-PAGE immunoblots further showed that Toc75, Toc159, Toc34, Tic20, Tic56 and Tic110 were all located in the 880-kD to 1.3-MD region. During active preprotein import, preproteins were transported mostly through the 1-MD complex and a smaller amount of preproteins was also detected in a complex of 1.25 MD. Antibody-shift assays showed that the 1-MD complex is a TOC-TIC supercomplex containing at least Toc75, Toc159, Toc34 and Tic110. Results from crosslinking and import with Arabidopsis chloroplasts suggest that the 1.25-MD complex is also a supercomplex. Our data provide direct evidence supporting that chloroplast preproteins are imported through TOC-TIC supercomplexes, and also provide the first size estimation of these supercomplexes. Furthermore, unlike in mitochondria where translocon supercomplexes are only transiently assembled during preprotein import, in chloroplasts at least some of the supercomplexes are preassembled stable structures.
Collapse
Affiliation(s)
- Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
41
|
Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein import machinery. Biol Chem 2017; 397:1097-1114. [PMID: 27289000 DOI: 10.1515/hsz-2016-0145] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.
Collapse
|
42
|
Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8060949. [PMID: 28680532 PMCID: PMC5478868 DOI: 10.1155/2017/8060949] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology.
Collapse
|
43
|
Isolation of Contact Sites Between Inner and Outer Mitochondrial Membranes. Methods Mol Biol 2017. [PMID: 28276012 DOI: 10.1007/978-1-4939-6824-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mitochondria are essential organelles of all eukaryotic cells. They perform a plethora of important metabolic functions and have a highly complex architecture that differs drastically between different cells and tissues. Mitochondria are delimited from the cytosol by the mitochondrial envelope that consists of the outer membrane and the inner membrane. The inner membrane is subdivided into the inner boundary membrane that runs parallel to the outer membrane and the crista membrane. Both sections of the inner membrane are linked by crista junctions. A further important architectural element of mitochondria are the contact sites between outer membrane and inner membrane. These sites were observed a long time ago by classical electron microscopy, but their molecular structure was identified only recently when it was recognized that proteins of crista junctions and proteins of the outer membrane are responsible for these strong contacts. Mitochondrial function is severely affected when contact sites are disturbed. This underlines the notion that mitochondrial architecture and function are intimately connected. In the following a method is described to generate and to isolate membrane vesicles from isolated yeast mitochondria that contain these contact sites.
Collapse
|
44
|
Abstract
Mitochondria have to import the vast majority of their proteins, which are synthesized as precursors on cytosolic ribosomes. The translocase of the outer membrane (TOM complex) forms the general entry gate for the precursor proteins, which are subsequently sorted by protein machineries into the mitochondrial subcompartments: the outer and inner membrane, the intermembrane space and the mitochondrial matrix. The transport across and into the inner membrane is driven by the membrane potential, which is generated by the respiratory chain. Recent studies revealed that the lipid composition of mitochondrial membranes is important for the biogenesis of mitochondrial proteins. Cardiolipin and phosphatidylethanolamine exhibit unexpectedly specific functions for the activity of distinct protein translocases. Both phospholipids are required for full activity of respiratory chain complexes and thus to maintain the membrane potential for protein import. In addition, cardiolipin is required to maintain structural integrity of mitochondrial protein translocases. Finally, the low sterol content in the mitochondrial outer membrane may contribute to the targeting of some outer membrane proteins with a single α-helical membrane anchor. Altogether, mitochondrial lipids modulate protein import on various levels involving precursor targeting, membrane potential generation, stability and activity of protein translocases.
Collapse
|
45
|
Schendzielorz AB, Schulz C, Lytovchenko O, Clancy A, Guiard B, Ieva R, van der Laan M, Rehling P. Two distinct membrane potential-dependent steps drive mitochondrial matrix protein translocation. J Cell Biol 2016; 216:83-92. [PMID: 28011846 PMCID: PMC5223606 DOI: 10.1083/jcb.201607066] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/30/2016] [Accepted: 11/28/2016] [Indexed: 12/03/2022] Open
Abstract
Schendzielorz et al. report that mitochondrial precursors display different dependencies on the membrane potential (Δψ) for translocation. Two distinct Δψ-dependent steps promote precursor translocation, the first driving presequence translocation and the second acting on the mature portion of the polypeptide chain. Two driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor’s hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate–driven import motor activity.
Collapse
Affiliation(s)
- Alexander Benjamin Schendzielorz
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Christian Schulz
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Oleksandr Lytovchenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Anne Clancy
- Department of Molecular Biology, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Unité Propre de Service, 31062 Toulouse, France.,Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany .,Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
46
|
Li ZY, Li QZ, Chen L, Chen BD, Zhang C, Wang X, Li WP. HPOB, an HDAC6 inhibitor, attenuates corticosterone-induced injury in rat adrenal pheochromocytoma PC12 cells by inhibiting mitochondrial GR translocation and the intrinsic apoptosis pathway. Neurochem Int 2016; 99:239-251. [PMID: 27522966 DOI: 10.1016/j.neuint.2016.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 02/05/2023]
Abstract
High levels of glucocorticoids (GCs) have been reported to damage normal hippocampal neurons, and such damage has been positively correlated with major depression (MD) and chronic stress. Our previous study showed that HDAC6 might be a potential target to regulate GC-induced glucocorticoid receptor (GR) translocation to the mitochondria and subsequent apoptosis. In the present study, we investigated the effect of HPOB, a selective HDAC6 inhibitor, on corticosterone (Cort)-induced apoptosis and explored the possible mechanism of action of HPOB in rat adrenal pheochromocytoma (PC12) cells, which possesses typical neuron features and expresses high levels of glucocorticoid receptors. We demonstrated that pre-treatment with HPOB remarkably reduced Cort-induced cytotoxicity and confirmed the anti-apoptotic effect of HPOB via the caspase-3 activity assay and H33342/PI and TUNEL double staining. Mechanistically, we demonstrated that HPOB reversed the Cort-induced elevation of GR levels in the mitochondria and blocked concomitant mitochondrial dysfunction and the intrinsic apoptosis pathway. Furthermore, HPOB was shown to attenuate expression of the multi-chaperone machinery (Hsp90-Hop-Hsp70) and cooperate with mitochondrial translocase of the outer/inner membrane (TOM/TIM) complex recruitment by triggering hyperacetylation of Hsps through HDAC6 inhibition. Considering all of these findings, the neuroprotective effect of HPOB demonstrated the crucial role of HDAC6 inhibition in reducing Cort-induced apoptosis in PC12 cells. The data further suggested that the anti-apoptotic activity of HDAC6 inhibition against the mitochondria-mediated impairment pathway might be mechanistically linked to the hyperacetylation of Hsps and consequent suppression of GR translocation to the mitochondria.
Collapse
Affiliation(s)
- Zong-Yang Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Qing-Zhong Li
- Shantou University Medical College, Shantou, 515041, China
| | - Lei Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Bao-Dong Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Ce Zhang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Xiang Wang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Wei-Ping Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China.
| |
Collapse
|
47
|
Demishtein-Zohary K, Azem A. The TIM23 mitochondrial protein import complex: function and dysfunction. Cell Tissue Res 2016; 367:33-41. [DOI: 10.1007/s00441-016-2486-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 01/16/2023]
|
48
|
Kang Y, Baker MJ, Liem M, Louber J, McKenzie M, Atukorala I, Ang CS, Keerthikumar S, Mathivanan S, Stojanovski D. Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. eLife 2016; 5. [PMID: 27554484 PMCID: PMC5016092 DOI: 10.7554/elife.17463] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/14/2016] [Indexed: 12/14/2022] Open
Abstract
The TIM22 complex mediates the import of hydrophobic carrier proteins into the mitochondrial inner membrane. While the TIM22 machinery has been well characterised in yeast, the human complex remains poorly characterised. Here, we identify Tim29 (C19orf52) as a novel, metazoan-specific subunit of the human TIM22 complex. The protein is integrated into the mitochondrial inner membrane with it's C-terminus exposed to the intermembrane space. Tim29 is required for the stability of the TIM22 complex and functions in the assembly of hTim22. Furthermore, Tim29 contacts the Translocase of the Outer Mitochondrial Membrane, TOM complex, enabling a mechanism for transport of hydrophobic carrier substrates across the aqueous intermembrane space. Identification of Tim29 highlights the significance of analysing mitochondrial import systems across phylogenetic boundaries, which can reveal novel components and mechanisms in higher organisms.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Michael James Baker
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Michael Liem
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jade Louber
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Matthew McKenzie
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Melbourne, Australia
| | - Ishara Atukorala
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Ching-Seng Ang
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Shivakumar Keerthikumar
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
49
|
Schuler MH, Di Bartolomeo F, Mårtensson CU, Daum G, Becker T. Phosphatidylcholine Affects Inner Membrane Protein Translocases of Mitochondria. J Biol Chem 2016; 291:18718-29. [PMID: 27402832 DOI: 10.1074/jbc.m116.722694] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Indexed: 01/31/2023] Open
Abstract
Two protein translocases transport precursor proteins into or across the inner mitochondrial membrane. The presequence translocase (TIM23 complex) sorts precursor proteins with a cleavable presequence either into the matrix or into the inner membrane. The carrier translocase (TIM22 complex) inserts multispanning proteins into the inner membrane. Both protein import pathways depend on the presence of a membrane potential, which is generated by the activity of the respiratory chain. The non-bilayer-forming phospholipids cardiolipin and phosphatidylethanolamine are required for the activity of the respiratory chain and therefore to maintain the membrane potential for protein import. Depletion of cardiolipin further affects the stability of the TIM23 complex. The role of bilayer-forming phospholipids like phosphatidylcholine (PC) in protein transport into the inner membrane and the matrix is unknown. Here, we report that import of presequence-containing precursors and carrier proteins is impaired in PC-deficient mitochondria. Surprisingly, depletion of PC does not affect stability and activity of respiratory supercomplexes, and the membrane potential is maintained. Instead, the dynamic TIM23 complex is destabilized when the PC levels are reduced, whereas the TIM22 complex remains intact. Our analysis further revealed that initial precursor binding to the TIM23 complex is impaired in PC-deficient mitochondria. We conclude that reduced PC levels differentially affect the TIM22 and TIM23 complexes in mitochondrial protein transport.
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine
| | - Francesca Di Bartolomeo
- the Institute for Biochemistry, Graz University of Technology, NaWi Graz, A-8010 Graz, Austria
| | - Christoph U Mårtensson
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Faculty of Biology, and
| | - Günther Daum
- the Institute for Biochemistry, Graz University of Technology, NaWi Graz, A-8010 Graz, Austria
| | - Thomas Becker
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany and
| |
Collapse
|
50
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|