1
|
Elliott P, Schunkert H, Bondue A, Behr E, Carrier L, Van Duijn C, García-Pavía P, van der Harst P, Kavousi M, Loeys B, Rocha Lopes L, Pinto Y, Di Toro A, Thum T, Kääb S, Urtis M, Arbustini E. Integration of genetic testing into diagnostic pathways for cardiomyopathies: a clinical consensus statement by the ESC Council on Cardiovascular Genomics. Eur Heart J 2024:ehae747. [PMID: 39673718 DOI: 10.1093/eurheartj/ehae747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 10/13/2024] [Indexed: 12/16/2024] Open
Abstract
In the modern era, cardiologists managing patients and families with cardiomyopathies need to be familiar with every stage of the diagnostic pathway from clinical phenotyping to the prescription and interpretation of genetic tests. This clinical consensus statement from the ESC Council for Cardiovascular Genomics aims to promote the integration of genetic testing into routine cardiac care of patients with cardiomyopathies, as recommended in the 2023 ESC guidelines for cardiomyopathies. The document describes the types of genetic tests currently available and provides advice on their prescription and for counselling after the return of genetic findings, including the approach in patients and families with variants of unknown significance.
Collapse
Affiliation(s)
- Perry Elliott
- Department of Inherited Cardiovascular Conditions, Barts Heart Centre, St Bartholomew's Hospital, London, UK
- Institute for Cardiovascular Science, University College London, London, United Kingdom
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Munich, Germany
| | - Antoine Bondue
- Department of Cardiology, Cliniques Universitaires de Bruxelles, Hôpital Académique Erasme, Brussels, Belgium
| | - Elijah Behr
- Cardiology Research Centre and Cardiovascular Academic Group, Institute of Molecular and Clinical Sciences, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Cornelia Van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pablo García-Pavía
- Hospital Universitario Puerta de Hierro Majadahonda, CIBERCV, Madrid, Spain
| | - Pim van der Harst
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bart Loeys
- Cardiogenomics, Center for Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luis Rocha Lopes
- Department of Inherited Cardiovascular Conditions, Barts Heart Centre, St Bartholomew's Hospital, London, UK
- Institute for Cardiovascular Science, University College London, London, United Kingdom
| | - Yigal Pinto
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Alessandro Di Toro
- Department of Research, Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, LMU University Hospital Munich, Munich, Germany
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Mario Urtis
- Department of Research, Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Eloisa Arbustini
- Department of Research, Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
2
|
Martínez-Barrios E, Greco A, Cruzalegui J, Cesar S, Díez-Escuté N, Cerralbo P, Chipa F, Zschaeck I, Slanovic L, Mangas A, Toro R, Brugada J, Sarquella-Brugada G, Campuzano O. Interpreting the actionable clinical role of rare variants associated with short QT syndrome. Hum Genet 2024; 143:1499-1508. [PMID: 39503779 DOI: 10.1007/s00439-024-02713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/19/2024] [Indexed: 11/21/2024]
Abstract
Genetic testing is recommended in the diagnosis of short QT syndrome. This rare inherited lethal entity is characterized by structural normal hearts with short QT intervals in the electrocardiogram. Few families diagnosed with this arrhythmogenic disease have been reported worldwide so far, impeding a comprehensive understanding of this syndrome. Unraveling the origin of the disease helps to the early identification of genetic carriers at risk. However, only rare variants with a definite deleterious role should be actionable in clinical practice. Our aim was to perform a comprehensive update and reinterpretation, according to the American College of Medical Genetics and Genomics recommendations of all rare variants currently associated with short QT syndrome. We identified 34 rare variants. Reanalysis showed that only nine variants played a deleterious role associated with a definite short QT syndrome phenotype. These variants were located in the four main genes: KCNQ1, KCNH2, KCNJ2 or SLC4A3. Additional rare variants located in other genes were associated with other conditions with phenotypic shortened QT intervals, but not definite diagnosis of short QT syndrome. Periodically updating of rare variants, especially those previously classified as unknown, helps to clarify the role of rare variants and translate genetic data into clinical practice.
Collapse
Affiliation(s)
- Estefanía Martínez-Barrios
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, 08950, Spain
- Medical Science Department, School of Medicine, Universitat de Girona, C/ Emili Grahit 77, Girona, Catalonia, 17003, Spain
| | - Andrea Greco
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, 08950, Spain
| | - José Cruzalegui
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, 08950, Spain
| | - Sergi Cesar
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, 08950, Spain
| | - Nuria Díez-Escuté
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, 08950, Spain
| | - Patricia Cerralbo
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, 08950, Spain
| | - Fredy Chipa
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, 08950, Spain
| | - Irene Zschaeck
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, 08950, Spain
| | - Leonel Slanovic
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, 08950, Spain
| | - Alipio Mangas
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, 11009, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, Cádiz, 11009, Spain
| | - Rocío Toro
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, 11009, Spain
| | - Josep Brugada
- Arrhythmias Unit, Hospital Clinic, University of Barcelona, Barcelona, 08036, Spain
- Centro Investigación Biomédica en Red-Cardiovascular (CIBERCV), Madrid, 28029, Spain
| | - Georgia Sarquella-Brugada
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain.
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, 08950, Spain.
- Medical Science Department, School of Medicine, Universitat de Girona, C/ Emili Grahit 77, Girona, Catalonia, 17003, Spain.
- Pediatrics Department, School of Medicine, Universitat de Barcelona, Barcelona, 08036, Spain.
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, Universitat de Girona, C/ Emili Grahit 77, Girona, Catalonia, 17003, Spain.
- Centro Investigación Biomédica en Red-Cardiovascular (CIBERCV), Madrid, 28029, Spain.
- Institut d'Investigació Biomèdiques de Girona (IDIBGI-CERCA), Salt, 17190, Spain.
| |
Collapse
|
3
|
Gasior T. Advances in Cardiac Imaging and Genetic Testing for Diagnosis and Risk Stratification in Cardiomyopathies: 2024 Update. J Clin Med 2024; 13:7166. [PMID: 39685624 DOI: 10.3390/jcm13237166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiomyopathies represent a diverse group of heart muscle diseases marked by structural and functional abnormalities that are not primarily caused by coronary artery disease. Recent advances in non-invasive imaging techniques, such as echocardiography, cardiac magnetic resonance, and computed tomography, have transformed diagnostic accuracy and risk stratification, reemphasizing the role of cardiac imaging in diagnosis, phenotyping, and management of these conditions. Genetic testing complements imaging by clarifying inheritance patterns, assessing sudden cardiac death risk, and informing therapeutic choices. Integrating imaging data, such as left ventricular wall thickness, fibrosis, and apical aneurysms, with genetic findings enhances decision-making for implantable cardioverter-defibrillators in high-risk patients. Emerging technologies like artificial intelligence, strain imaging, and molecular imaging, alongside genetic testing, hold the promise of further refining diagnosis and personalized treatment approaches. This article summarizes the current state and future perspectives of cardiac imaging and genetic testing for diagnosis and risk stratification in cardiomyopathies, offering practical insights for patients' management.
Collapse
Affiliation(s)
- Tomasz Gasior
- Collegium Medicum-Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland
| |
Collapse
|
4
|
Martínez-Barrios E, Greco A, Cruzalegui J, Cesar S, Díez-Escuté N, Cerralbo P, Chipa F, Zschaeck I, Fogaça-da-Mata M, Díez-López C, Arbelo E, Grassi S, Oliva A, Toro R, Sarquella-Brugada G, Campuzano O. Actionable Variants of Unknown Significance in Inherited Arrhythmogenic Syndromes: A Further Step Forward in Genetic Diagnosis. Biomedicines 2024; 12:2553. [PMID: 39595119 PMCID: PMC11591737 DOI: 10.3390/biomedicines12112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Inherited arrhythmogenic syndromes comprise a heterogenic group of genetic entities that lead to malignant arrhythmias and sudden cardiac death. Genetic testing has become crucial to understand the disease etiology and allow for the early identification of relatives at risk; however, it requires an accurate interpretation of the data to achieve a clinically actionable outcome. This is particularly challenging for the large number of rare variants obtained by current high-throughput techniques, which are mostly classified as of unknown significance. Methods: In this work, we present a new algorithm for the genetic interpretation of the remaining rare variants in order to shed light on their potential clinical implications and reduce the burden of unknown significance. Results: Our study illustrates the potential utility of our individualized comprehensive stepwise analyses focused on the rare variants associated with IAS, which are currently classified as ambiguous, to further determine their trends towards pathogenicity or benign traits. Conclusions: We advocate for personalized disease-focused population frequency data and family segregation analyses for all rare variants that remain ambiguous to further clarify their role. The current ambiguity should not influence medical decisions, but a potential deleterious role would suggest a closer clinical follow-up and frequent genetic data review for a more personalized clinical approach.
Collapse
Affiliation(s)
- Estefanía Martínez-Barrios
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.M.-B.); (A.G.); (J.C.); (S.C.); (N.D.-E.); (P.C.); (F.C.); (I.Z.); (M.F.-d.-M.); (G.S.-B.)
- Pediatric Arrhythmias, Genetic Cardiology and Sudden Death, Cardiovascular Diseases in the Development, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Greco
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.M.-B.); (A.G.); (J.C.); (S.C.); (N.D.-E.); (P.C.); (F.C.); (I.Z.); (M.F.-d.-M.); (G.S.-B.)
- Pediatric Arrhythmias, Genetic Cardiology and Sudden Death, Cardiovascular Diseases in the Development, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands;
| | - José Cruzalegui
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.M.-B.); (A.G.); (J.C.); (S.C.); (N.D.-E.); (P.C.); (F.C.); (I.Z.); (M.F.-d.-M.); (G.S.-B.)
- Pediatric Arrhythmias, Genetic Cardiology and Sudden Death, Cardiovascular Diseases in the Development, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands;
| | - Sergi Cesar
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.M.-B.); (A.G.); (J.C.); (S.C.); (N.D.-E.); (P.C.); (F.C.); (I.Z.); (M.F.-d.-M.); (G.S.-B.)
- Pediatric Arrhythmias, Genetic Cardiology and Sudden Death, Cardiovascular Diseases in the Development, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands;
| | - Nuria Díez-Escuté
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.M.-B.); (A.G.); (J.C.); (S.C.); (N.D.-E.); (P.C.); (F.C.); (I.Z.); (M.F.-d.-M.); (G.S.-B.)
- Pediatric Arrhythmias, Genetic Cardiology and Sudden Death, Cardiovascular Diseases in the Development, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands;
| | - Patricia Cerralbo
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.M.-B.); (A.G.); (J.C.); (S.C.); (N.D.-E.); (P.C.); (F.C.); (I.Z.); (M.F.-d.-M.); (G.S.-B.)
- Pediatric Arrhythmias, Genetic Cardiology and Sudden Death, Cardiovascular Diseases in the Development, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands;
| | - Fredy Chipa
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.M.-B.); (A.G.); (J.C.); (S.C.); (N.D.-E.); (P.C.); (F.C.); (I.Z.); (M.F.-d.-M.); (G.S.-B.)
- Pediatric Arrhythmias, Genetic Cardiology and Sudden Death, Cardiovascular Diseases in the Development, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands;
| | - Irene Zschaeck
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.M.-B.); (A.G.); (J.C.); (S.C.); (N.D.-E.); (P.C.); (F.C.); (I.Z.); (M.F.-d.-M.); (G.S.-B.)
- Pediatric Arrhythmias, Genetic Cardiology and Sudden Death, Cardiovascular Diseases in the Development, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands;
| | - Miguel Fogaça-da-Mata
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.M.-B.); (A.G.); (J.C.); (S.C.); (N.D.-E.); (P.C.); (F.C.); (I.Z.); (M.F.-d.-M.); (G.S.-B.)
- Pediatric Arrhythmias, Genetic Cardiology and Sudden Death, Cardiovascular Diseases in the Development, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Pediatric Cardiology Unit, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, 2790-134 Lisboa, Portugal
| | - Carles Díez-López
- Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain;
- Advanced Heart Failure and Heart Transplant Unit, Department of Cardiology, Bellvitge University Hospital, 08908 Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Elena Arbelo
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands;
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d’Investigació August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Simone Grassi
- Department of Health Sciences, Section of Forensic Medical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Antonio Oliva
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Rocío Toro
- Medicine Department, School of Medicine, University of Cádiz, 11003 Cádiz, Spain;
| | - Georgia Sarquella-Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.M.-B.); (A.G.); (J.C.); (S.C.); (N.D.-E.); (P.C.); (F.C.); (I.Z.); (M.F.-d.-M.); (G.S.-B.)
- Pediatric Arrhythmias, Genetic Cardiology and Sudden Death, Cardiovascular Diseases in the Development, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands;
- Medical Science Department, School of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Medical Science Department, School of Medicine, Universitat de Girona, 17003 Girona, Spain
- Institut d’Investigació Biomèdiques de Girona (IDIBGI), 17190 Salt, Spain
| |
Collapse
|
5
|
Urtis M, Cavaliere C, Vilardo V, Paganini C, Smirnova A, Giorgianni C, Di Toro A, Chiapparini L, Pellegrini C, Grasso M, Arbustini E. Unambiguous Interpretation of the Pathogenicity of the GLA c.547+3A>G Variant Causing Fabry Disease. Genes (Basel) 2024; 15:1212. [PMID: 39336803 PMCID: PMC11431720 DOI: 10.3390/genes15091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES This study aims to demonstrate the role of case-level American College of Medical Genetics (ACMG) criteria, such as familial segregation and pathology data, in providing conclusive evidence for the pathogenicity of ultrarare GLA variants causing Anderson-Fabry disease when gene-level and variant-level criteria provide ambiguous or discrepant results. Case/family description: A 52-year-old woman presented with new-onset shortness of breath, chest pain, and palpitations. Echocardiography revealed mild left ventricular wall thickening (14 mm) and mild diastolic dysfunction. She was the second of three siblings born to unrelated parents, both of whom died from malignancies. Family screening identified brothers, one affected 55-year-old with hypertension and asthma and one unaffected 47-year-old. The 15-year-old son of the proband complained of exercise-induced burning feet acral pain his electrocardiogram showed a short PR interval and signs of early hypertrophy. RESULTS Endomyocardial biopsies of the proband and the affected sibling demonstrated substrate accumulation (globotriaosylceramide). The anti-α-galactosidase-A immunostain showed a total loss of the enzyme in the hemizygous male and a mosaic pattern in the heterozygous female. The next-generation sequencing short-read multigene panel identified the c.547+3A>G variant in the GLA gene and excluded variants in other genes; Oxford-Nanopore long-read sequencing excluded known pathogenic deep intronic variants. A Multiplex-Ligation-dependent-Probe-Amplification assay excluded copy number variations. Based on the variant-level and gene-level ACMG criteria, the variant was classified as a Variant of Uncertain Significance or Likely Benign using different bioinformatic tools. By adding case-level functional data (endomyocardial biopsy, PS3_VeryStrong) and familial data (segregation of genotype with phenotype, PP2_Moderate), the variant was classified as Likely Pathogenic/Pathogenic. CONCLUSION ACMG case-level data can unambiguously resolve uncertain interpretations of GLA variants.
Collapse
Affiliation(s)
- Mario Urtis
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Claudia Cavaliere
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Viviana Vilardo
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chiara Paganini
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alexandra Smirnova
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Carmelina Giorgianni
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessandro Di Toro
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Luisa Chiapparini
- Neuroradiology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Carlo Pellegrini
- Clinical-Surgical, Diagnostic and Pediatric Sciences Department, University of Pavia, 27100 Pavia, Italy
- Division of Cardiac Surgery, Cardiotoracovascular Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maurizia Grasso
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Eloisa Arbustini
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
6
|
Kany S, Jurgens SJ, Rämö JT, Christophersen IE, Rienstra M, Chung MK, Olesen MS, Ackerman MJ, McNally EM, Semsarian C, Schnabel RB, Wilde AAM, Benjamin EJ, Rehm HL, Kirchhof P, Bezzina CR, Roden DM, Shoemaker MB, Ellinor PT. Genetic testing in early-onset atrial fibrillation. Eur Heart J 2024; 45:3111-3123. [PMID: 39028637 PMCID: PMC11379493 DOI: 10.1093/eurheartj/ehae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 07/21/2024] Open
Abstract
Atrial fibrillation (AF) is a globally prevalent cardiac arrhythmia with significant genetic underpinnings, as highlighted by recent large-scale genetic studies. A prominent clinical and genetic overlap exists between AF, heritable ventricular cardiomyopathies, and arrhythmia syndromes, underlining the potential of AF as an early indicator of severe ventricular disease in younger individuals. Indeed, several recent studies have demonstrated meaningful yields of rare pathogenic variants among early-onset AF patients (∼4%-11%), most notably for cardiomyopathy genes in which rare variants are considered clinically actionable. Genetic testing thus presents a promising opportunity to identify monogenetic defects linked to AF and inherited cardiac conditions, such as cardiomyopathy, and may contribute to prognosis and management in early-onset AF patients. A first step towards recognizing this monogenic contribution was taken with the Class IIb recommendation for genetic testing in AF patients aged 45 years or younger by the 2023 American College of Cardiology/American Heart Association guidelines for AF. By identifying pathogenic genetic variants known to underlie inherited cardiomyopathies and arrhythmia syndromes, a personalized care pathway can be developed, encompassing more tailored screening, cascade testing, and potentially genotype-informed prognosis and preventive measures. However, this can only be ensured by frameworks that are developed and supported by all stakeholders. Ambiguity in test results such as variants of uncertain significance remain a major challenge and as many as ∼60% of people with early-onset AF might carry such variants. Patient education (including pretest counselling), training of genetic teams, selection of high-confidence genes, and careful reporting are strategies to mitigate this. Further challenges to implementation include financial barriers, insurability issues, workforce limitations, and the need for standardized definitions in a fast-moving field. Moreover, the prevailing genetic evidence largely rests on European descent populations, underscoring the need for diverse research cohorts and international collaboration. Embracing these challenges and the potential of genetic testing may improve AF care. However, further research-mechanistic, translational, and clinical-is urgently needed.
Collapse
Affiliation(s)
- Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, 415 Main St, 02412, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital,185 Cambridge St, 02114, Boston, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, 415 Main St, 02412, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital,185 Cambridge St, 02114, Boston, MA, USA
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, 415 Main St, 02412, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital,185 Cambridge St, 02114, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Ingrid E Christophersen
- Department of Medical Research, Baerum Hospital, Vestre Viken Hospital Trust, Rud, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mina K Chung
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Heart, Vascular & Thoracic Institute, Cleveland, OH, USA
| | - Morten S Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smight Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Renate B Schnabel
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arthur A M Wilde
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Cardiology, Heart Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, theNetherlands
- European Reference Network for RARE, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart
| | - Emelia J Benjamin
- Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Heidi L Rehm
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, 25 Shattuck St, 02115, Boston, MA, USA
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Connie R Bezzina
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Benjamin Shoemaker
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, 415 Main St, 02412, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital,185 Cambridge St, 02114, Boston, MA, USA
- Harvard Medical School, 25 Shattuck St, 02115, Boston, MA, USA
- Cardiology Division, Massachusetts General Hospital, 55 Fruit St, 02114, Boston, MA, USA
| |
Collapse
|
7
|
Torbey AFM, Couto RGT, Grippa A, Maia EC, Miranda SA, Santos MACD, Peres ET, Costa OPS, Oliveira EMD, Mesquita ET. Cardiomyopathy in Children and Adolescents in the Era of Precision Medicine. Arq Bras Cardiol 2024; 121:e20230154. [PMID: 39442130 PMCID: PMC11634207 DOI: 10.36660/abc.20230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2024] [Accepted: 05/15/2024] [Indexed: 10/25/2024] Open
Abstract
In childhood and adolescence, cardiomyopathies have their own characteristics and are an important cause of heart failure, arrhythmias, sudden death, and indication for heart transplantation. Diagnosis is a challenge in daily practice due to its varied clinical presentation, heterogeneous etiologies, and limited knowledge of tools related to clinical and molecular genetics. However, it is essential to recognize the different phenotypes and prioritize the search for the etiology. Recent advances in precision medicine have made molecular diagnosis accessible, which makes it possible to individualize therapeutic approaches, stratify the prognosis, and identify individuals in the family who are at risk of developing the disease. The objective of this review is to emphasize the particularities of cardiomyopathies in pediatrics and how the individualized approach impacts the therapy and prognosis of the patient. Through a systematized approach, the five-stage protocol used in our service is presented. These stages bring together clinical evaluation for determining the morphofunctional phenotype, identification of etiology, classification, establishment of prognosis, and the search for personalized therapies.
Collapse
Affiliation(s)
- Ana Flávia Mallheiros Torbey
- Universidade Federal Fluminense, Niterói, RJ - Brasil
- Programa de Pós-Graduação em Ciências Cardiovasculares da Universidade Federal Fluminense, Niterói, RJ - Brasil
| | - Raquel Germer Toja Couto
- Universidade Federal Fluminense Hospital Universitário Antônio Pedro (EBSERH), Niterói, RJ - Brasil
| | - Aurea Grippa
- Universidade Federal Fluminense, Niterói, RJ - Brasil
| | | | | | | | | | | | | | - Evandro Tinoco Mesquita
- Universidade Federal Fluminense, Niterói, RJ - Brasil
- Programa de Pós-Graduação em Ciências Cardiovasculares da Universidade Federal Fluminense, Niterói, RJ - Brasil
- Complexo Hospitalar de Niteroi, Niterói, RJ - Brasil
| |
Collapse
|
8
|
Murphy J, Kirk CW, Lambert DM, McGorrian C, Walsh R, McVeigh TP, Prendiville T, Ward D, Galvin J, Lynch SA. Diagnostic yield from cardiac gene testing for inherited cardiac conditions and re-evaluation of pre-ACMG variants of uncertain significance. Ir J Med Sci 2024; 193:1775-1785. [PMID: 38489124 DOI: 10.1007/s11845-024-03650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Inherited cardiomyopathies (HCM, DCM, ACM) and cardiac ion channelopathies (long QT/Brugada syndromes, CPVT) are associated with significant morbidity and mortality; however, diagnosis of a familial pathogenic variant in a proband allows for subsequent cascade screening of their at-risk relatives. AIMS We investigated the diagnostic yield from cardiac gene panel testing and reviewed variants of uncertain significance from patients attending three specialist cardiogenetics services in Ireland in the years 2002 to 2020. RESULTS Reviewing molecular genetic diagnostic reports of 834 patients from 820 families, the initial diagnostic yield of pathogenic/likely pathogenic variants was 237/834 patients (28.4%), increasing to 276/834 patients (33.1%) following re-evaluation of cases with variant(s) of uncertain significance. Altogether, 42/85 patients with VUS reviewed (49.4%) had a re-classification that could change their clinical management. Females were more likely to carry pathogenic/likely pathogenic variants than males (139/374, 37.2% vs 137/460, 29.8%, respectively, p = 0.03), and the diagnostic yields were highest in the 0 to < 2 years age group (6/12, 50.0%) and amongst those tested for cardiomyopathy gene panels (13/35, 37.1%). Variants in the MYBPC3/MYH7 (87/109, 79.8%) and KCNQ1/KCNH2 (91/100, 91.0%) genes were the predominant genetic causes for hypertrophic cardiomyopathy and long QT syndrome, respectively. CONCLUSION Our study highlights the importance of collation and review of pre-ACMG genetic variants to increase diagnostic utility of genetic testing for inherited heart disease. Almost half of patients with pre-ACMG VUS reviewed had their variant re-classified to likely pathogenic/likely benign which resulted in a positive clinical impact for patients and their families.
Collapse
Affiliation(s)
- Jane Murphy
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Claire W Kirk
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Deborah M Lambert
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine McGorrian
- Family Heart Screening Clinic, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Terri P McVeigh
- Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, United Kingdom
| | - Terence Prendiville
- Department of Cardiology, Children's Health Ireland at Crumlin, Crumlin, Dublin 12, Ireland
| | - Deirdre Ward
- Centre for Cardiac Risk in the Young Persons, Tallaght University Hospital, Dublin 24, Ireland
| | - Joseph Galvin
- Family Heart Screening Clinic, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Crumlin, Dublin 12, Ireland
| |
Collapse
|
9
|
Asatryan B, Shah RA, Sharaf Dabbagh G, Landstrom AP, Darbar D, Khanji MY, Lopes LR, van Duijvenboden S, Muser D, Lee AM, Haggerty CM, Arora P, Semsarian C, Reichlin T, Somers VK, Owens AT, Petersen SE, Deo R, Munroe PB, Aung N, Chahal CAA. Predicted Deleterious Variants in Cardiomyopathy Genes Prognosticate Mortality and Composite Outcomes in the UK Biobank. JACC. HEART FAILURE 2024; 12:918-932. [PMID: 37715771 DOI: 10.1016/j.jchf.2023.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Inherited cardiomyopathies present with broad variation of phenotype. Data are limited regarding genetic screening strategies and outcomes associated with predicted deleterious variants in cardiomyopathy-associated genes in the general population. OBJECTIVES The authors aimed to determine the risk of mortality and composite cardiomyopathy-related outcomes associated with predicted deleterious variants in cardiomyopathy-associated genes in the UK Biobank. METHODS Using whole exome sequencing data, variants in dilated, hypertrophic, and arrhythmogenic right ventricular cardiomyopathy-associated genes with at least moderate evidence of disease causality according to ClinGen Expert Panel curations were annotated using REVEL (≥0.65) and ANNOVAR (predicted loss-of-function) considering gene-disease mechanisms. Genotype-positive and genotype-negative groups were compared using time-to-event analyses for the primary (all-cause mortality) and secondary outcomes (diagnosis of cardiomyopathy; composite outcome of diagnosis of cardiomyopathy, heart failure, arrhythmia, stroke, and death). RESULTS Among 200,619 participants (age at recruitment 56.46 ± 8.1 years), 5,292 (2.64%) were found to host ≥1 predicted deleterious variants in cardiomyopathy-associated genes (CMP-G+). After adjusting for age and sex, CMP-G+ individuals had higher risk for all-cause mortality (HR: 1.13 [95% CI: 1.01-1.25]; P = 0.027), increased risk for being diagnosed with cardiomyopathy later in life (HR: 5.75 [95% CI: 4.58-7.23]; P < 0.0001), and elevated risk for composite outcome (HR: 1.29 [95% CI: 1.20-1.39]; P < 0.0001) than CMP-G- individuals. The higher risk for being diagnosed with cardiomyopathy and composite outcomes in the genotype-positive subjects remained consistent across all cardiomyopathy subgroups. CONCLUSIONS Adults with predicted deleterious variants in cardiomyopathy-associated genes exhibited a slightly higher risk of mortality and a significantly increased risk of developing cardiomyopathy, and cardiomyopathy-related composite outcomes, in comparison with genotype-negative controls.
Collapse
Affiliation(s)
- Babken Asatryan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ravi A Shah
- Northwick Park Hospital, London North West University Healthcare NHS Trust, London, United Kingdom
| | - Ghaith Sharaf Dabbagh
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania, USA; University of Michigan, Division of Cardiovascular Medicine, Ann Arbor, Michigan, USA
| | - Andrew P Landstrom
- Departments of Pediatrics, Division of Cardiology, and Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Mohammed Y Khanji
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, West Smithfield, United Kingdom; NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Luis R Lopes
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, West Smithfield, United Kingdom; Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Stefan van Duijvenboden
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Daniele Muser
- Cardiac Electrophysiology, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Dipartimento Cardiotoracico, U.O.C. di Cardiologia, Presidio Ospedaliero Universitario "Santa Maria Della Misericordia," Udine, Italy
| | - Aaron Mark Lee
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, West Smithfield, United Kingdom; NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Christopher M Haggerty
- Department of Translational Data Science and Informatics, Geisinger, Danville, Pennsylvania, USA
| | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Alabama, USA
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Anjali T Owens
- Center for Inherited Cardiovascular Disease, Cardiovascular Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Steffen E Petersen
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, West Smithfield, United Kingdom; NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rajat Deo
- Center for Inherited Cardiovascular Disease, Cardiovascular Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Patricia B Munroe
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Nay Aung
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, West Smithfield, United Kingdom; NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania, USA; Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, West Smithfield, United Kingdom; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
10
|
Crea F. New light shed on Anderson-Fabry, peripartum, and early-onset cardiomyopathies. Eur Heart J 2024; 45:1379-1383. [PMID: 38643479 DOI: 10.1093/eurheartj/ehae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Affiliation(s)
- Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Gemelli Isola Hospital, Rome, Italy
| |
Collapse
|
11
|
Grasso M, Bondavalli D, Vilardo V, Cavaliere C, Gatti I, Di Toro A, Giuliani L, Urtis M, Ferrari M, Cattadori B, Serio A, Pellegrini C, Arbustini E. The new 2023 ESC guidelines for the management of cardiomyopathies: a guiding path for cardiologist decisions. Eur Heart J Suppl 2024; 26:i1-i5. [PMID: 38867869 PMCID: PMC11167974 DOI: 10.1093/eurheartjsupp/suae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In the ESC 2023 guidelines, cardiomyopathies are conservatively defined as 'myocardial disorders in which the heart muscle is structurally and functionally abnormal, in the absence of coronary artery disease, hypertension, valvular disease, and congenital heart disease sufficient to cause the observed myocardial abnormality'. They are morpho-functionally classified as hypertrophic, dilated, restrictive, and arrhythmogenic right ventricular cardiomyopathy with the addition of the left ventricular non-dilated cardiomyopathy that describes intermediate phenotypes not fulfilling standard disease definitions despite the presence of myocardial disease on cardiac imaging or tissue analysis. The new ESC guidelines provide 'a guide to the diagnostic approach to cardiomyopathies, highlight general evaluation and management issues, and signpost the reader to the relevant evidence base for the recommendations'. The recommendations and suggestions included in the document provide the tools to build up pathways tailored to specific cardiomyopathy (phenotype and cause) and define therapeutic indications, including target therapies where possible. The impact is on clinical cardiology, where disease-specific care paths can be assisted by the guidelines, and on genetics, both clinics and testing, where deep phenotyping and participated multi-disciplinary evaluation provide a unique tool for validating the pathogenicity of variants. The role of endomyocardial biopsy remains underexploited and confined to particular forms of restrictive cardiomyopathy, myocarditis, and amyloidosis. New research and development will be needed to cover the gaps between science and clinics. Finally, the opening up to disciplines such as bioinformatics, bioengineering, mathematics, and physics will support clinical cardiologists in the best governance of the novel artificial intelligence-assisted resources.
Collapse
Affiliation(s)
- Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Bondavalli
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Viviana Vilardo
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudia Cavaliere
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Gatti
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Urtis
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michela Ferrari
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia 27100, Italy
| | - Barbara Cattadori
- Cardiac Surgery, Department of Intensive Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessandra Serio
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Pellegrini
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Cardiac Surgery, Department of Intensive Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
12
|
Pérez-Serra A, Toro R, Martinez-Barrios E, Iglesias A, Fernandez-Falgueras A, Alcalde M, Coll M, Puigmulé M, del Olmo B, Picó F, Lopez L, Arbelo E, Cesar S, de Llano CT, Mangas A, Brugada J, Sarquella-Brugada G, Brugada R, Campuzano O. Implementing a New Algorithm for Reinterpretation of Ambiguous Variants in Genetic Dilated Cardiomyopathy. Int J Mol Sci 2024; 25:3807. [PMID: 38612618 PMCID: PMC11012211 DOI: 10.3390/ijms25073807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Dilated cardiomyopathy is a heterogeneous entity that leads to heart failure and malignant arrhythmias. Nearly 50% of cases are inherited; therefore, genetic analysis is crucial to unravel the cause and for the early identification of carriers at risk. A large number of variants remain classified as ambiguous, impeding an actionable clinical translation. Our goal was to perform a comprehensive update of variants previously classified with an ambiguous role, applying a new algorithm of already available tools. In a cohort of 65 cases diagnosed with dilated cardiomyopathy, a total of 125 genetic variants were classified as ambiguous. Our reanalysis resulted in the reclassification of 12% of variants from an unknown to likely benign or likely pathogenic role, due to improved population frequencies. For all the remaining ambiguous variants, we used our algorithm; 60.9% showed a potential but not confirmed deleterious role, and 24.5% showed a potential benign role. Periodically updating the population frequencies is a cheap and fast action, making it possible to clarify the role of ambiguous variants. Here, we perform a comprehensive reanalysis to help to clarify the role of most of ambiguous variants. Our specific algorithms facilitate genetic interpretation in dilated cardiomyopathy.
Collapse
Affiliation(s)
- Alexandra Pérez-Serra
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
| | - Rocío Toro
- Medicine Department, School of Medicine, Cadiz University, 11003 Cadiz, Spain; (R.T.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Estefanía Martinez-Barrios
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands; (E.M.-B.); (S.C.); (G.S.-B.)
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, 08950 Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
| | - Anna Fernandez-Falgueras
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain;
| | - Mireia Alcalde
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
| | - Mónica Coll
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
| | - Marta Puigmulé
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
| | - Bernat del Olmo
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
| | - Ferran Picó
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
| | - Laura Lopez
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands; (E.M.-B.); (S.C.); (G.S.-B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Sergi Cesar
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands; (E.M.-B.); (S.C.); (G.S.-B.)
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, 08950 Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Coloma Tiron de Llano
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain;
| | - Alipio Mangas
- Medicine Department, School of Medicine, Cadiz University, 11003 Cadiz, Spain; (R.T.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, 11009 Cadiz, Spain
| | - Josep Brugada
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands; (E.M.-B.); (S.C.); (G.S.-B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Georgia Sarquella-Brugada
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands; (E.M.-B.); (S.C.); (G.S.-B.)
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, 08950 Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain;
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain; (A.P.-S.); (A.I.); (A.F.-F.); (M.A.); (M.C.); (M.P.); (B.d.O.); (F.P.); (L.L.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
| |
Collapse
|
13
|
Cianci V, Forzese E, Sapienza D, Cianci A, Ieni A, Germanà A, Guerrera MC, Omero F, Speranza D, Cracò A, Asmundo A, Gualniera P, Mondello C. Arrhythmogenic Right Ventricular Cardiomyopathy Post-Mortem Assessment: A Systematic Review. Int J Mol Sci 2024; 25:2467. [PMID: 38473714 PMCID: PMC10931616 DOI: 10.3390/ijms25052467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder characterized by the progressive fibro-fatty replacement of the right ventricular myocardium, leading to myocardial atrophy. Although the structural changes usually affect the right ventricle, the pathology may also manifest with either isolated left ventricular myocardium or biventricular involvement. As ARVC shows an autosomal dominant pattern of inheritance with variable penetrance, the clinical presentation of the disease is highly heterogeneous, with different degrees of severity and patterns of myocardial involvement even in patients of the same familiar group with the same gene mutation: the pathology spectrum ranges from the absence of symptoms to sudden cardiac death (SCD) sustained by ventricular arrhythmias, which may, in some cases, be the first manifestation of an otherwise silent pathology. An evidence-based systematic review of the literature was conducted to evaluate the state of the art of the diagnostic techniques for the correct post-mortem identification of ARVC. The research was performed using the electronic databases PubMed and Scopus. A methodological approach to reach a correct post-mortem diagnosis of ARVC was described, analyzing the main post-mortem peculiar macroscopic, microscopic and radiological alterations. In addition, the importance of performing post-mortem genetic tests has been underlined, which may lead to the correct identification and characterization of the disease, especially in those ARVC forms where anatomopathological investigation does not show evident morphostructural damage. Furthermore, the usefulness of genetic testing is not exclusively limited to the correct diagnosis of the pathology, but is essential for promoting targeted screening programs to the deceased's family members. Nowadays, the post-mortem diagnosis of ARVC performed by forensic pathologist remains very challenging: therefore, the identification of a clear methodological approach may lead to both a reduction in under-diagnoses and to the improvement of knowledge on the disease.
Collapse
Affiliation(s)
- Vincenzo Cianci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| | - Elena Forzese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| | - Daniela Sapienza
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| | - Alessio Cianci
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy;
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy; (A.G.); (M.C.G.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy; (A.G.); (M.C.G.)
| | - Fausto Omero
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.)
| | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.)
| | - Annalisa Cracò
- Department of Biomedical Sciences and Morphological and Functional Imaging, Diagnostic and Interventional Radiology Unit, University Hospital Messina, 98125 Messina, Italy;
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| | - Patrizia Gualniera
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| | - Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| |
Collapse
|
14
|
Vokač D, Stangler Herodež Š, Krgović D, Kokalj Vokač N. The Role of Next-Generation Sequencing in the Management of Patients with Suspected Non-Ischemic Cardiomyopathy after Syncope or Termination of Sudden Arrhythmic Death. Genes (Basel) 2024; 15:72. [PMID: 38254962 PMCID: PMC10815304 DOI: 10.3390/genes15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Cardiac arrhythmias and sudden death are frequent in patients with non-ischemic cardiomyopathy and can precede heart failure or additional symptoms where malignant cardiac arrhythmias are mostly the consequence of advanced cardiomyopathy and heart failure. Finding these subgroups and making an early diagnosis could be lifesaving. In our retrospective study, we are presenting arrhythmic types of frequent cardiomyopathies where an arrhythmogenic substrate is less well defined, as in ischemic or structural heart disease. In the period of 2 years, next-generation sequencing (NGS) tests along with standard clinical tests were performed in 208 patients (67 women and 141 men; mean age, 51.2 ± 19.4 years) without ischemic or an overt structural heart disease after syncope or aborted sudden cardiac death. Genetic variants were detected in 34.4% of the study population, with a significant proportion of pathogenic variants (P) (14.4%) and variants of unknown significance (VUS) (20%). Regardless of genotype, all patients were stratified according to clinical guidelines for aggressive treatment of sudden cardiac death with an implantable cardioverter defibrillator (ICD). The P variant identified by NGS serves for an accurate diagnosis and, thus, better prevention and specific treatment of patients and their relatives. Results in our study suggest that targeted sequencing of genes associated with cardiovascular disease is an important addendum for final diagnosis, allowing the identification of a molecular genetic cause in a vast proportion of patients for a definitive diagnosis and a more specific way of treatment. VUS in this target population poses a high risk and should be considered possibly pathogenic in reanalysis.
Collapse
Affiliation(s)
- Damijan Vokač
- Department of Cardiology and Angiology, Division of Internal Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia;
| | - Špela Stangler Herodež
- Clinical Institute for Genetic Diagnostics, University Medical Centre Maribor, 2000 Maribor, Slovenia; (Š.S.H.); (D.K.)
- Medical Faculty, University of Maribor, 2000 Maribor, Slovenia
| | - Danijela Krgović
- Clinical Institute for Genetic Diagnostics, University Medical Centre Maribor, 2000 Maribor, Slovenia; (Š.S.H.); (D.K.)
- Medical Faculty, University of Maribor, 2000 Maribor, Slovenia
| | - Nadja Kokalj Vokač
- Clinical Institute for Genetic Diagnostics, University Medical Centre Maribor, 2000 Maribor, Slovenia; (Š.S.H.); (D.K.)
- Medical Faculty, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
15
|
Allouba M, Walsh R, Afify A, Hosny M, Halawa S, Galal A, Fathy M, Theotokis PI, Boraey A, Ellithy A, Buchan R, Govind R, Whiffin N, Anwer S, ElGuindy A, Ware JS, Barton PJR, Yacoub M, Aguib Y. Ethnicity, consanguinity, and genetic architecture of hypertrophic cardiomyopathy. Eur Heart J 2023; 44:5146-5158. [PMID: 37431535 PMCID: PMC10733735 DOI: 10.1093/eurheartj/ehad372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity that is partly explained by the diversity of genetic variants contributing to disease. Accurate interpretation of these variants constitutes a major challenge for diagnosis and implementing precision medicine, especially in understudied populations. The aim is to define the genetic architecture of HCM in North African cohorts with high consanguinity using ancestry-matched cases and controls. METHODS AND RESULTS Prospective Egyptian patients (n = 514) and controls (n = 400) underwent clinical phenotyping and genetic testing. Rare variants in 13 validated HCM genes were classified according to standard clinical guidelines and compared with a prospective HCM cohort of majority European ancestry (n = 684). A higher prevalence of homozygous variants was observed in Egyptian patients (4.1% vs. 0.1%, P = 2 × 10-7), with variants in the minor HCM genes MYL2, MYL3, and CSRP3 more likely to present in homozygosity than the major genes, suggesting these variants are less penetrant in heterozygosity. Biallelic variants in the recessive HCM gene TRIM63 were detected in 2.1% of patients (five-fold greater than European patients), highlighting the importance of recessive inheritance in consanguineous populations. Finally, rare variants in Egyptian HCM patients were less likely to be classified as (likely) pathogenic compared with Europeans (40.8% vs. 61.6%, P = 1.6 × 10-5) due to the underrepresentation of Middle Eastern populations in current reference resources. This proportion increased to 53.3% after incorporating methods that leverage new ancestry-matched controls presented here. CONCLUSION Studying consanguineous populations reveals novel insights with relevance to genetic testing and our understanding of the genetic architecture of HCM.
Collapse
Affiliation(s)
- Mona Allouba
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Roddy Walsh
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Alaa Afify
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Mohammed Hosny
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- Cardiology Department, Kasr Al Aini Medical School, Cairo University, Kasr Al Aini Street, Cairo 11562, Egypt
| | - Sarah Halawa
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Aya Galal
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Mariam Fathy
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Ahmed Boraey
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- Cardiology Department, Kasr Al Aini Medical School, Cairo University, Kasr Al Aini Street, Cairo 11562, Egypt
| | - Amany Ellithy
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Rachel Buchan
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
| | - Risha Govind
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- Present affiliation: Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
- Present affiliation: National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Nicola Whiffin
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- Present affiliation: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7BN, UK
| | - Shehab Anwer
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Ahmed ElGuindy
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Rd, London W12 0NN, UK
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Rd, London W12 0NN, UK
| | - Magdi Yacoub
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Harefield Heart Science Centre, Hill End Rd, Harefield, Uxbridge UB9 6JH, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
16
|
Abela M, Grech N, Debattista J, Felice T. Genetic testing in the management of inherited cardiac disorders: two cases of Filamin-C arrhythmogenic left ventricular cardiomyopathy. Eur Heart J Case Rep 2023; 7:ytad515. [PMID: 37954562 PMCID: PMC10635578 DOI: 10.1093/ehjcr/ytad515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Background Arrhythmogenic left ventricular cardiomyopathy (ALVC) is a left ventricle-dominant arrhythmogenic cardiomyopathy (ACM) subtype often associated with malignant ventricular arrhythmias, left ventricular (LV) scar and sudden cardiac death. Awareness about LV involvement is now on the rise. The diagnosis relies on structural abnormalities on cardiac magnetic resonance (CMR) imaging and known ACM-causing genetic mutations. Case summary A 28-year-old lady (Case 1) was referred for cardiac screening after her father passed away suddenly. Her paternal uncle (Case 2) had been diagnosed with supposed dilated cardiomyopathy prior to referral. Both cases were worked up extensively with an electrocardiogram (ECG), 24-h ambulatory ECG monitor, exercise testing, and CMR imaging. Investigations of Case 1 showed T-wave inversion in the infero-lateral leads and a ventricular ectopic burden of 3% on ambulatory monitoring. Cardiac magnetic resonance imaging revealed moderately reduced LV systolic function (ejection fraction of 40%) with circumferential macroscopic fibrosis. Her uncle (Case 2) also had an impaired and dilated ventricle with extensive scar on CMR. Following the recent introduction of a cardiogenetic service in our unit, both were heterozygous for a pathogenic Filamin-C variant (c.7384+1G>A). Based on CMR findings and genetic results, the diagnosis of both patients was deemed to be ALVC. After years of surveillance, Patient 1 now has an implantable cardioverter defibrillator (ICD) indication. Discussion The importance of diagnosing patients with ACM lies in the predisposition to sudden cardiac death. Gene-specific treatment algorithms in ACM may alter management strategies, including ICD implantation as primary prevention. An in-depth multidisciplinary discussion and respecting patient autonomy are key factors in any decision pertaining to ICD implantation.
Collapse
Affiliation(s)
- Mark Abela
- Department of Cardiology, Mater Dei Hospital, Triq Dun Karm, Birkirkara, Msida, MSD 2090, Malta
| | - Neil Grech
- Department of Cardiology, Mater Dei Hospital, Triq Dun Karm, Birkirkara, Msida, MSD 2090, Malta
| | - Jessica Debattista
- Department of Molecular Genetics, University of Malta, Msida, MSD 2090, Malta
| | - Tiziana Felice
- Department of Cardiology, Mater Dei Hospital, Triq Dun Karm, Birkirkara, Msida, MSD 2090, Malta
| |
Collapse
|
17
|
Josephs KS, Roberts AM, Theotokis P, Walsh R, Ostrowski PJ, Edwards M, Fleming A, Thaxton C, Roberts JD, Care M, Zareba W, Adler A, Sturm AC, Tadros R, Novelli V, Owens E, Bronicki L, Jarinova O, Callewaert B, Peters S, Lumbers T, Jordan E, Asatryan B, Krishnan N, Hershberger RE, Chahal CAA, Landstrom AP, James C, McNally EM, Judge DP, van Tintelen P, Wilde A, Gollob M, Ingles J, Ware JS. Beyond gene-disease validity: capturing structured data on inheritance, allelic requirement, disease-relevant variant classes, and disease mechanism for inherited cardiac conditions. Genome Med 2023; 15:86. [PMID: 37872640 PMCID: PMC10594882 DOI: 10.1186/s13073-023-01246-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND As the availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including secondary findings. METHODS We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. RESULTS For 36/65 gene-disease pairs, loss of function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using the CardiacG2P dataset as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. CONCLUSIONS Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is a pre-requisite for scalable genomic testing.
Collapse
Affiliation(s)
- Katherine S Josephs
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Angharad M Roberts
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Great Ormond Street Hospital, NHS Foundation Trust, London, UK
| | - Pantazis Theotokis
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Roddy Walsh
- Amsterdam University Medical Centre, University of Amsterdam, Heart Center, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Matthew Edwards
- Clinical Genetics & Genomics Lab, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andrew Fleming
- Clinical Genetics & Genomics Lab, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Melanie Care
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Division of Cardiology, Toronto General Hospital, Toronto, Canada
| | - Wojciech Zareba
- Clinical Cardiovascular Research Center, University of Rochester, Rochester, NY, USA
| | - Arnon Adler
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, and Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Valeria Novelli
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Emma Owens
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lucas Bronicki
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, CHEO, Ottawa, Ontario, Canada
| | - Olga Jarinova
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, CHEO, Ottawa, Ontario, Canada
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Stacey Peters
- Department of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Tom Lumbers
- Barts Health & University College London Hospitals NHS Trusts, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Elizabeth Jordan
- Divisions of Human Genetics and Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neesha Krishnan
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Ray E Hershberger
- Divisions of Human Genetics and Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA, USA
- Cardiac Electrophysiology and Inherited Cardiovascular Diseases, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Andrew P Landstrom
- Department of Pediatrics and Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Cynthia James
- Johns Hopkins Center for Inherited Heart Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Dept of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, SC, USA
| | - Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arthur Wilde
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Michael Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
18
|
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, Bezzina CR, Biagini E, Blom NA, de Boer RA, De Winter T, Elliott PM, Flather M, Garcia-Pavia P, Haugaa KH, Ingles J, Jurcut RO, Klaassen S, Limongelli G, Loeys B, Mogensen J, Olivotto I, Pantazis A, Sharma S, Van Tintelen JP, Ware JS, Kaski JP. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44:3503-3626. [PMID: 37622657 DOI: 10.1093/eurheartj/ehad194] [Citation(s) in RCA: 547] [Impact Index Per Article: 273.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
19
|
Hayesmoore JB, Bhuiyan ZA, Coviello DA, du Sart D, Edwards M, Iascone M, Morris-Rosendahl DJ, Sheils K, van Slegtenhorst M, Thomson KL. EMQN: Recommendations for genetic testing in inherited cardiomyopathies and arrhythmias. Eur J Hum Genet 2023; 31:1003-1009. [PMID: 37443332 PMCID: PMC10474043 DOI: 10.1038/s41431-023-01421-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Inherited cardiomyopathies and arrhythmias (ICAs) are a prevalent and clinically heterogeneous group of genetic disorders that are associated with increased risk of sudden cardiac death and heart failure. Making a genetic diagnosis can inform the management of patients and their at-risk relatives and, as such, molecular genetic testing is now considered an integral component of the clinical care pathway. However, ICAs are characterised by high genetic and allelic heterogeneity, incomplete / age-related penetrance, and variable expressivity. Therefore, despite our improved understanding of the genetic basis of these conditions, and significant technological advances over the past two decades, identifying and recognising the causative genotype remains challenging. As clinical genetic testing for ICAs becomes more widely available, it is increasingly important for clinical laboratories to consolidate existing knowledge and experience to inform and improve future practice. These recommendations have been compiled to help clinical laboratories navigate the challenges of ICAs and thereby facilitate best practice and consistency in genetic test provision for this group of disorders. General recommendations on internal and external quality control, referral, analysis, result interpretation, and reporting are described. Also included are appendices that provide specific information pertinent to genetic testing for hypertrophic, dilated, and arrhythmogenic right ventricular cardiomyopathies, long QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia.
Collapse
Affiliation(s)
- Jesse B Hayesmoore
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Zahurul A Bhuiyan
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Desirée du Sart
- Biological Sciences and Genomics, Monash University, Melbourne, VIC, Australia
| | - Matthew Edwards
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | | | - Kate L Thomson
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
20
|
Pannone L, Gauthey A, Conte G, Osei R, Campanale D, Baldi E, Berne P, Vicentini A, Vergara P, Sorgente A, Rootwelt-Norberg C, Della Rocca DG, Monaco C, Bisignani A, Miraglia V, Spolverini M, Paparella G, Overeinder I, Bala G, Almorad A, Ströker E, de Ravel T, Medeiros-Domingo A, Sieira J, Haugaa KH, Brugada P, La Meir M, Auricchio A, Chierchia GB, Van Dooren S, de Asmundis C. Genetics in Probands With Idiopathic Ventricular Fibrillation: A Multicenter Study. JACC Clin Electrophysiol 2023; 9:1296-1306. [PMID: 37227348 DOI: 10.1016/j.jacep.2023.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Different genes have been associated with idiopathic ventricular fibrillation (IVF); however, there are no studies correlating genotype with phenotype. OBJECTIVES The aim of this study was to define the genetic background of probands with IVF using large gene panel analysis and to correlate genetics with long-term clinical outcomes. METHODS All consecutive probands with a diagnosis of IVF were included in a multicenter retrospective study. All patients had: 1) IVF diagnosis throughout the follow-up; and 2) genetic analysis with a broad gene panel. All genetic variants were classified as pathogenic/likely pathogenic (P+), variants of unknown significance (VUS) or no variants (NO-V), following current guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. The primary endpoint was occurrence of ventricular arrhythmias (VA). RESULTS Forty-five consecutive patients were included. A variant was found in 12 patients, 3 P+ and 9 VUS carriers. After a mean follow-up time of 105.0 months, there were no deaths and 16 patients (35.6%) experienced a VA. NO-V patients had higher VA free survival during the follow-up, compared with both VUS (72.7% vs 55.6%, log-rank P < 0.001) and P+ (72.7% vs 0%, log-rank P = 0.013). At Cox analysis, P+ or VUS carrier status was a predictor of VA occurrence. CONCLUSIONS In probands with IVF, undergoing genetic analysis with a broad panel, the diagnostic yield for P+ is 6.7%. P+ or VUS carrier status is a predictor of VA occurrence.
Collapse
Affiliation(s)
- Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Anaïs Gauthey
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Giulio Conte
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Randy Osei
- Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Brussels, Belgium
| | - Daniela Campanale
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Enrico Baldi
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paola Berne
- Department of Cardiology, Ospedale Santissima Annunziata, University of Sassari, Sassari, Italy
| | - Alessandro Vicentini
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pasquale Vergara
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Sorgente
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Cinzia Monaco
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Bisignani
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Vincenzo Miraglia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Marcello Spolverini
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Paparella
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Ingrid Overeinder
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gezim Bala
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Erwin Ströker
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Thomy de Ravel
- Centre for Medical Genetics Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium, and European Reference Networks Guard-Heart, Brussels, Belgium
| | | | - Juan Sieira
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Kristina H Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Mark La Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Angelo Auricchio
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Sonia Van Dooren
- Centre for Medical Genetics Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium, and European Reference Networks Guard-Heart, Brussels, Belgium
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium.
| |
Collapse
|
21
|
Doh CY, Kampourakis T, Campbell KS, Stelzer JE. Basic science methods for the characterization of variants of uncertain significance in hypertrophic cardiomyopathy. Front Cardiovasc Med 2023; 10:1238515. [PMID: 37600050 PMCID: PMC10432852 DOI: 10.3389/fcvm.2023.1238515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
With the advent of next-generation whole genome sequencing, many variants of uncertain significance (VUS) have been identified in individuals suffering from inheritable hypertrophic cardiomyopathy (HCM). Unfortunately, this classification of a genetic variant results in ambiguity in interpretation, risk stratification, and clinical practice. Here, we aim to review some basic science methods to gain a more accurate characterization of VUS in HCM. Currently, many genomic data-based computational methods have been developed and validated against each other to provide a robust set of resources for researchers. With the continual improvement in computing speed and accuracy, in silico molecular dynamic simulations can also be applied in mutational studies and provide valuable mechanistic insights. In addition, high throughput in vitro screening can provide more biologically meaningful insights into the structural and functional effects of VUS. Lastly, multi-level mathematical modeling can predict how the mutations could cause clinically significant organ-level dysfunction. We discuss emerging technologies that will aid in better VUS characterization and offer a possible basic science workflow for exploring the pathogenicity of VUS in HCM. Although the focus of this mini review was on HCM, these basic science methods can be applied to research in dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (ACM), or other genetic cardiomyopathies.
Collapse
Affiliation(s)
- Chang Yoon Doh
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
22
|
Baumeier C, Harms D, Aleshcheva G, Gross U, Escher F, Schultheiss HP. Advancing Precision Medicine in Myocarditis: Current Status and Future Perspectives in Endomyocardial Biopsy-Based Diagnostics and Therapeutic Approaches. J Clin Med 2023; 12:5050. [PMID: 37568452 PMCID: PMC10419903 DOI: 10.3390/jcm12155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The diagnosis and specific and causal treatment of myocarditis and inflammatory cardiomyopathy remain a major clinical challenge. Despite the rapid development of new imaging techniques, endomyocardial biopsies remain the gold standard for accurate diagnosis of inflammatory myocardial disease. With the introduction and continued development of immunohistochemical inflammation diagnostics in combination with viral nucleic acid testing, myocarditis diagnostics have improved significantly since their introduction. Together with new technologies such as miRNA and gene expression profiling, quantification of specific immune cell markers, and determination of viral activity, diagnostic accuracy and patient prognosis will continue to improve in the future. In this review, we summarize the current knowledge on the pathogenesis and diagnosis of myocarditis and inflammatory cardiomyopathies and highlight future perspectives for more in-depth and specialized biopsy diagnostics and precision, personalized medicine approaches.
Collapse
Affiliation(s)
- Christian Baumeier
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| | - Dominik Harms
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Ganna Aleshcheva
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| | - Ulrich Gross
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| | - Felicitas Escher
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Virchow Klinikum, 13353 Berlin, Germany;
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Heinz-Peter Schultheiss
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| |
Collapse
|
23
|
Papadopoulou E, Bouzarelou D, Tsaousis G, Papathanasiou A, Vogiatzi G, Vlachopoulos C, Miliou A, Papachristou P, Prappa E, Servos G, Ritsatos K, Seretis A, Frogoudaki A, Nasioulas G. Application of next generation sequencing in cardiology: current and future precision medicine implications. Front Cardiovasc Med 2023; 10:1202381. [PMID: 37424920 PMCID: PMC10327645 DOI: 10.3389/fcvm.2023.1202381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Inherited cardiovascular diseases are highly heterogeneous conditions with multiple genetic loci involved. The application of advanced molecular tools, such as Next Generation Sequencing, has facilitated the genetic analysis of these disorders. Accurate analysis and variant identification are required to maximize the quality of the sequencing data. Therefore, the application of NGS for clinical purposes should be limited to laboratories with a high level of technological expertise and resources. In addition, appropriate gene selection and variant interpretation can result in the highest possible diagnostic yield. Implementation of genetics in cardiology is imperative for the accurate diagnosis, prognosis and management of several inherited disorders and could eventually lead to the realization of precision medicine in this field. However, genetic testing should also be accompanied by an appropriate genetic counseling procedure that clarifies the significance of the genetic analysis results for the proband and his family. In this regard, a multidisciplinary collaboration among physicians, geneticists, and bioinformaticians is imperative. In the present review, we address the current state of knowledge regarding genetic analysis strategies employed in the field of cardiogenetics. Variant interpretation and reporting guidelines are explored. Additionally, gene selection procedures are accessed, with a particular emphasis on information concerning gene-disease associations collected from international alliances such as the Gene Curation Coalition (GenCC). In this context, a novel approach to gene categorization is proposed. Moreover, a sub-analysis is conducted on the 1,502,769 variation records with submitted interpretations in the Clinical Variation (ClinVar) database, focusing on cardiology-related genes. Finally, the most recent information on genetic analysis's clinical utility is reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Georgia Vogiatzi
- Third Department of Cardiology, Sotiria Hospital, Athens, Greece
| | - Charalambos Vlachopoulos
- Unit of Inherited Cardiac Conditions and Sports Cardiology, First Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Miliou
- Unit of Inherited Cardiac Conditions and Sports Cardiology, First Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Efstathia Prappa
- Second Department of Cardiology, Arrhythmia Unit, Evangelismos General Hospital of Athens, Athens, Greece
| | - Georgios Servos
- Pediatric Cardiology Unit, “P. & A. Kyriakou” Children’s Hospital, Athens, Greece
| | - Konstantinos Ritsatos
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Aristeidis Seretis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Alexandra Frogoudaki
- Second Department of Cardiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
24
|
Andreini D, Bauce B, Limongelli G, Monosilio S, Di Lorenzo F, Angelini F, Melotti E, Monda E, Mango R, Toso E, Maestrini V. Sport activity in patients with cardiomyopathies: a review. J Cardiovasc Med (Hagerstown) 2023; 24:e116-e127. [PMID: 37186562 DOI: 10.2459/jcm.0000000000001470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Exercise has undisputable benefits and is an important therapy component for most cardiovascular diseases, with a proven role in reducing mortality. On the contrary, exercise may paradoxically trigger sudden cardiac arrest in patients with cardiomyopathies requiring refrain from competitive sports participation. The 2020 European guidelines for patients with cardiovascular disease provided indication for sports participation for patients with cardiac conditions, including cardiomyopathies. Although in some cases, the knowledge of the natural history of the disease and the risk of death during intensive exercise is more robust, in others, the evidence is scarce. Therefore, recommendations are not available for all possible scenarios with several uncertainties. In addition, many patients aspire to continue competitive sports or practise recreational activities after a diagnosis of cardiomyopathy. These aspects generate concern for the physician, who should make complex decisions, and confronts the request to design specific exercise programmes without specific indications. This article will review the available evidence on the sports-related risk of sudden cardiac death or cardiovascular events and the progression of the disease in cardiomyopathies.
Collapse
Affiliation(s)
- Daniele Andreini
- Division of Cardiology and Cardiac Imaging, IRCCS Ospedale Galeazzi Sant'Ambrogio
- Department of Biomedical and Clinical Sciences, University of Milan, Milan
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
| | - Sara Monosilio
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome
| | | | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, Città Della Salute e Della Scienza Hospital, Turin
| | - Eleonora Melotti
- Division of Cardiology and Cardiac Imaging, IRCCS Ospedale Galeazzi Sant'Ambrogio
| | - Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
| | - Ruggiero Mango
- Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Rome
- Cardiology Unit, Department of emergency and Critical Care, Tor vergata Hospital
- House of care D4, Local Health Authority Roma 2, Rome, Italy
| | - Elisabetta Toso
- Division of Cardiology, Cardiovascular and Thoracic Department, Città Della Salute e Della Scienza Hospital, Turin
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome
| |
Collapse
|
25
|
Autore C, Bariani R, Bauce B, Biagini E, Canepa M, Castelletti S, Crotti L, Limongelli G, Merlo M, Monda E, Pio Loco Detto Gava C, Parisi V, Tini G, Imazio M. From the phenotype to precision medicine: an update on the cardiomyopathies diagnostic workflow. J Cardiovasc Med (Hagerstown) 2023; 24:e178-e186. [PMID: 37186568 DOI: 10.2459/jcm.0000000000001424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cardiomyopathies are disease of the cardiac muscle largely due to genetic alterations of proteins with 'structural' or 'functional' roles within the cardiomyocyte, going from the regulation of contraction-relaxation, metabolic and energetic processes to ionic fluxes. Modifications occurring to these proteins are responsible, in the vast majority of cases, for the phenotypic manifestations of the disease, including hypertrophic, dilated, arrhythmogenic and restrictive cardiomyopathies. Secondary nonhereditary causes to be excluded include infections, toxicity from drugs or alcohol or medications, hormonal imbalance and so on. Obtaining a phenotypic definition and an etiological diagnosis is becoming increasingly relevant and feasible, thanks to the availability of new tailored treatments and the diagnostic advancements made particularly in the field of genetics. This is, for example, the case for transthyretin cardiac amyloidosis, Fabry disease or dilated cardiomyopathies due to laminopathies. For these diseases, specific medications have been developed, and a more tailored arrhythmic risk stratification guides the implantation of a defibrillator. In addition, new medications directly targeting the altered protein responsible for the phenotype are becoming available (including the myosin inhibitors mavacantem and aficamten, monoclonal antibodies against Ras-MAPK, genetic therapies for sarcoglycanopathies), thus making a precision medicine approach less unrealistic even in the field of cardiomyopathies. For these reasons, a contemporary approach to cardiomyopathies must consider diagnostic algorithms founded on the clinical suspicion of the disease and developed towards a more precise phenotypic definition and etiological diagnosis, based on a multidisciplinary methodology putting together specialists from different disciplines, facilities for advanced imaging testing and genetic and anatomopathological competencies.
Collapse
Affiliation(s)
- Camillo Autore
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome
| | - Riccardo Bariani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua
| | - Elena Biagini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy and European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Marco Canepa
- Department of Internal Medicine, Università degli Studi di Genova
- Cardiovascular Unit, IRCCS Ospedale Policlinico San Martino, Genova
| | - Silvia Castelletti
- Istituto Auxologico Italiano, IRCCS San Luca Hospital, Cardiology Department Milan
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS San Luca Hospital, Cardiology Department Milan
- University of Milano-Bicocca, Department of Medicine and Surgery, Milan
| | - Giuseppe Limongelli
- Dipartimento di Scienze Mediche Traslazionali -Università della Campania 'Luigi Vanvitelli' - Osp. Monaldi, AORN Colli, Ospedale Monaldi, Napoli
| | - Marco Merlo
- Centre for Diagnosis and Management of Cardiomyopathy, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Trieste
| | - Emanuele Monda
- Dipartimento di Scienze Mediche Traslazionali -Università della Campania 'Luigi Vanvitelli' - Osp. Monaldi, AORN Colli, Ospedale Monaldi, Napoli
| | - Carola Pio Loco Detto Gava
- Centre for Diagnosis and Management of Cardiomyopathy, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Trieste
| | - Vanda Parisi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy and European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Giacomo Tini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome
| | - Massimo Imazio
- Dipartimento Cardiotoracico, Ospedale Santa Maria della Misericordia, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| |
Collapse
|
26
|
Josephs KS, Roberts AM, Theotokis P, Walsh R, Ostrowski PJ, Edwards M, Fleming A, Thaxton C, Roberts JD, Care M, Zareba W, Adler A, Sturm AC, Tadros R, Novelli V, Owens E, Bronicki L, Jarinova O, Callewaert B, Peters S, Lumbers T, Jordan E, Asatryan B, Krishnan N, Hershberger RE, Chahal CAA, Landstrom AP, James C, McNally EM, Judge DP, van Tintelen P, Wilde A, Gollob M, Ingles J, Ware JS. Beyond gene-disease validity: capturing structured data on inheritance, allelic-requirement, disease-relevant variant classes, and disease mechanism for inherited cardiac conditions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.03.23287612. [PMID: 37066275 PMCID: PMC10104233 DOI: 10.1101/2023.04.03.23287612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Background As availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including as secondary findings. Methods We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. Results For 36/65 gene-disease pairs, loss-of-function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using CardiacG2P as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. Conclusions Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is pre-requisite for scalable genomic testing.
Collapse
Affiliation(s)
- Katherine S Josephs
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London UK
| | - Angharad M Roberts
- National Heart and Lung Institute, Imperial College London, London, UK
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Roddy Walsh
- Amsterdam University Medical Centre, University of Amsterdam, Heart Center, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Matthew Edwards
- Clinical Genetics & Genomics Lab, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London UK
| | - Andrew Fleming
- Clinical Genetics & Genomics Lab, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London UK
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Melanie Care
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Division of Cardiology, Toronto General Hospital, Toronto, Canada
| | - Wojciech Zareba
- Clinical Cardiovascular Research Center, University of Rochester, Rochester, New York, USA
| | - Arnon Adler
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amy C Sturm
- 23andMe, Sunnyvale, California, Genomic Health
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, and Faculty of Medicine, Université de Montréal
| | - Valeria Novelli
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Emma Owens
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lucas Bronicki
- CHEO Research Institute, University of Ottawa, Ontario, Canada
| | - Olga Jarinova
- CHEO Research Institute, University of Ottawa, Ontario, Canada
- Department of Genetics, CHEO, Ontario, Canada
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital
- Department of Biomolecular Medicine, Ghent University
| | - Stacey Peters
- Department of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Tom Lumbers
- Barts Health & University College London Hospitals NHS Trusts, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Elizabeth Jordan
- Division of Human Genetics, The Ohio State University, Columbus, Ohio USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neesha Krishnan
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Ray E Hershberger
- Division of Human Genetics, The Ohio State University, Columbus, Ohio USA
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA USA
- Cardiac Electrophysiology and Inherited Cardiovascular Diseases, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN USA
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Andrew P Landstrom
- Department of Pediatrics and Cell Biology, Duke University School of Medicine, Durham, North Carolina, US
| | - Cynthia James
- Johns Hopkins Center for Inherited Heart Diseases, Department of Medicine, Johns Hopkins
| | - Elizabeth M McNally
- Center for Genetic Medicine, Dept of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL US
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, SC USA
| | - Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arthur Wilde
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and arrhythmias, Amsterdam, the Netherlands
| | - Michael Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto ON Canada
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
27
|
Girolami F, Gozzini A, Pálinkás ED, Ballerini A, Tomberli A, Baldini K, Marchi A, Zampieri M, Passantino S, Porcedda G, Calabri GB, Bennati E, Spaziani G, Crotti L, Cecchi F, Favilli S, Olivotto I. Genetic Testing and Counselling in Hypertrophic Cardiomyopathy: Frequently Asked Questions. J Clin Med 2023; 12:jcm12072489. [PMID: 37048573 PMCID: PMC10095452 DOI: 10.3390/jcm12072489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Genetic counselling and genetic testing in hypertrophic cardiomyopathy (HCM) represent an integral part of the diagnostic algorithm to confirm the diagnosis, distinguish it from phenocopies, and suggest tailored therapeutic intervention strategies. Additionally, they enable cascade genetic testing in the family. With the implementation of Next Generation Sequencing technologies (NGS), the interpretation of genetic data has become more complex. In this regard, cardiologists play a central role, aiding geneticists to correctly evaluate the pathogenicity of the identified genetic alterations. In the ideal setting, geneticists and cardiologists must work side by side to diagnose HCM as well as convey the correct information to patients in response to their many questions and concerns. After a brief overview of the role of genetics in the diagnosis of HCM, we present and discuss the frequently asked questions by HCM patients throughout our 20-year genetic counselling experience. Appropriate communication between the team and the families is key to the goal of delivering the full potential of genetic testing to our patients.
Collapse
Affiliation(s)
- Francesca Girolami
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
- Correspondence:
| | - Alessia Gozzini
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Eszter Dalma Pálinkás
- Doctoral School of Clinical Medicine, University of Szeged, 6720 Szeged, Hungary
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Adelaide Ballerini
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Alessia Tomberli
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Katia Baldini
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Alberto Marchi
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Mattia Zampieri
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Silvia Passantino
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Giulio Porcedda
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | | | - Elena Bennati
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Gaia Spaziani
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Lia Crotti
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, 20100 Milan, Italy
- Department of Medicine and Surgery, University Milano Bicocca, 20126 Milan, Italy
| | - Franco Cecchi
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, 20100 Milan, Italy
| | - Silvia Favilli
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Iacopo Olivotto
- Pediatric Cardiology Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| |
Collapse
|
28
|
Nomura S, Ono M. Precision and genomic medicine for dilated and hypertrophic cardiomyopathy. Front Cardiovasc Med 2023; 10:1137498. [PMID: 36950287 PMCID: PMC10025380 DOI: 10.3389/fcvm.2023.1137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiomyopathy develops through an interaction of genetic and environmental factors. The clinical manifestations of both dilated cardiomyopathy and hypertrophic cardiomyopathy are diverse, but genetic testing defines the causative genes in about half of cases and can predict clinical prognosis. It has become clear that cardiomyopathy is caused not only by single rare variants but also by combinations of multiple common variants, and genome-wide genetic research is important for accurate disease risk assessment. Single-cell analysis research aimed at understanding the pathophysiology of cardiomyopathy is progressing rapidly, and it is expected that genomic analysis and single-cell molecular profiling will be combined to contribute to more detailed stratification of cardiomyopathy.
Collapse
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Minoru Ono
- Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Sheppard MN, Westaby J, Zullo E, Fernandez BVE, Cox S, Cox A. Sudden arrhythmic death and cardiomyopathy are important causes of sudden cardiac death in the UK: results from a national coronial autopsy database. Histopathology 2023; 82:1056-1066. [PMID: 36799099 DOI: 10.1111/his.14889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
AIMS Sudden cardiac death (SCD) is defined as natural unexpected death in witnessed cases occurring < 1 h and in unwitnessed cases as last seen alive < 24 h. SCD due to ischaemic heart disease (IHD) is frequent in older age groups; in younger people genetic cardiac causes, including channelopathies and cardiomyopathies, are more frequent. This study aimed to present the causes of SCD from a large specialist pathology registry. METHODS AND RESULTS Cases were examined macroscopically and microscopically by two expert cardiac pathologists. The hearts from 7214 SCD cases were examined between 1994 and 2021. Sudden arrhythmic death syndrome (SADS), a morphologically normal heart, which can be underlaid by cardiac channelopathies, is most common (3821, 53%) followed by the cardiomyopathies (1558, 22%), then IHD (670, 9%), valve disease (225, 3%), congenital heart disease (213, 3%) and myocarditis/sarcoidosis (206, 3%). Hypertensive heart disease (185, 3%), aortic disease (129, 2%), vascular disease (97, 1%) and conduction disease (40, 1%) occur in smaller proportions. DISCUSSION To our knowledge, this is the largest SCD cohort with autopsy findings ever reported from one country. SADS and cardiomyopathies predominate. This study highlights the importance of the autopsy in SCD, which is a significant public health concern in all age groups. Knowing the true incidence in our population will improve risk stratification and develop preventative strategies for family members. There is now a national pilot study integrating molecular autopsy and family screening into the assessment of SCD victims.
Collapse
Affiliation(s)
- Mary N Sheppard
- Cardiac Risk in the Young (CRY, UK) Cardiovascular Pathology Unit, St George's University of London, London, UK
| | - Joseph Westaby
- Cardiac Risk in the Young (CRY, UK) Cardiovascular Pathology Unit, St George's University of London, London, UK
| | - Emelia Zullo
- Cardiac Risk in the Young (CRY, UK) Cardiovascular Pathology Unit, St George's University of London, London, UK
| | - Belmira V E Fernandez
- Cardiac Risk in the Young (CRY, UK) Cardiovascular Pathology Unit, St George's University of London, London, UK
| | - Steve Cox
- Cardiac Risk in the Young (CRY, UK) Cardiovascular Pathology Unit, St George's University of London, London, UK
| | - Alison Cox
- Cardiac Risk in the Young (CRY, UK) Cardiovascular Pathology Unit, St George's University of London, London, UK
| |
Collapse
|
30
|
Poloczková H, Honek T, Chaloupka A, Opatřil L, Bakošová M, Krejčí J. News in diagnostics and treament of cardiomyopathies. VNITRNI LEKARSTVI 2023; 69:89-104. [PMID: 37072267 DOI: 10.36290/vnl.2023.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Cardiomyopathies are defined as myocardial disorders in which the heart muscle is structurally and functionaly abnormal in the absence of a disease sufficient to cause this abnormality such as coronary artery disease, hypertension, valvular or congenital heart disease. According to the phenotype expresion cardiomyopathies are divided into dilated, hypertrophic, restrictive, arrhytmogenic and unclassified cardiomyopathies (noncompaction and tako-tsubo cardiomyopathy). The same phenotypic expression may include etiologically different forms of the disease, and at the same time phenotypic expression may change in many cardiomyopathies in the course of illness. For each type of cardiomyopathy, we further distinguish the familial (genetic) form and the acquired form. The clinical manifestation of the disease includes symptoms of heart failure, with reduced, mildly reduced or preserved ejection fraction, symptoms resulting from a number of arrhythmias and extracardiac symptoms, but in some cases symptoms may not be presented for a relatively long time. The disease can lead to significant morbidity and mortality if not detected and treated early, especially in young people who are frequently affected. Significant developments in diagnostic and treatment methods have led to an improvement in the prognosis of patients with cardiomyopathies in recent years.
Collapse
|
31
|
Crea F. The frontiers of vascular biology: single-cell technologies, small non-coding RNA therapeutics, and new pharmacological targets. Eur Heart J 2022; 43:4521-4524. [PMID: 36372191 DOI: 10.1093/eurheartj/ehac631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A . Gemelli IRCCS, Rome, Italy.,Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
32
|
Urtis M, Di Toro A, Osio R, Giuliani L, Serio A, Grasso M, Fergnani V, Smirnova A, Aliberti F, Arbustini E. Genetics and clinics: together to diagnose cardiomyopathies. Eur Heart J Suppl 2022; 24:I9-I15. [DOI: 10.1093/eurheartjsupp/suac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The diagnostic paths of hereditary cardiomyopathies (CMPs) include both clinical and molecular genetics. The first step is the clinical diagnosis that guides the decisions about treatments, monitoring, prognostic stratification, and prevention of major events. The type of CMP [hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy (ARVC)] is defined by the phenotype, and the genetic testing may identify the precise cause. Furthermore, genetic testing provides a pre-clinical diagnosis in unaffected family members and the basis for prenatal diagnosis. It can contribute to risk stratification (e.g. LMNA) and can be a major diagnostic criterion (e.g. ARVC). The test can be limited to a single gene when the pre-test diagnostic hypothesis is based on proven clinical evidence (e.g. GLA for Fabry disease). Alternatively, it can be expanded from a multigene panel to a whole exome or whole genome sequencing when the pre-test hypothesis is a genetically heterogeneous disease. In the last decade, the study of larger genomic targets led to the identification of numerous gene variants not only pathogenic (clinically actionable) but also of uncertain clinical significance (not actionable). For the latter, the pillar of the genetic diagnosis is the correct interpretation of the pathogenicity of genetic variants, which is evaluated using both bioinformatics and clinical-genetic criteria about the patient and family. In this context, cardiologists play a central role in the interpretation of genetic tests, performing the deep-phenotyping of variant carriers and establishing the co-segregation of the genotype with the phenotype in families.
Collapse
Affiliation(s)
- Mario Urtis
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Alessandro Di Toro
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Roberto Osio
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
- University of Texas at Austin , Austin, TX , USA
| | - Lorenzo Giuliani
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Alessandra Serio
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Maurizia Grasso
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Viola Fergnani
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Alexandra Smirnova
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
- University of Texas at Austin , Austin, TX , USA
| | - Flaminia Aliberti
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| |
Collapse
|
33
|
van der Crabben SN, Mörner S, Lundström AC, Jonasson J, Bikker H, Amin AS, Rydberg A, Wilde AAM. Should variants of unknown significance (VUS) be disclosed to patients in cardiogenetics or not; only in case of high suspicion of pathogenicity? Eur J Hum Genet 2022; 30:1208-1210. [PMID: 36008533 PMCID: PMC9626604 DOI: 10.1038/s41431-022-01173-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/16/2022] [Accepted: 08/06/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Saskia N van der Crabben
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
- European Reference Network for rare, low-prevalence, or complex diseases of the heart (ERN GUARD-Heart), Amsterdam, the Netherlands.
| | - Stellan Mörner
- European Reference Network for rare, low-prevalence, or complex diseases of the heart (ERN GUARD-Heart), Amsterdam, the Netherlands
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anna C Lundström
- European Reference Network for rare, low-prevalence, or complex diseases of the heart (ERN GUARD-Heart), Amsterdam, the Netherlands
- Department of Clinical Science, Umeå University, Umeå, Sweden
| | - Jenni Jonasson
- European Reference Network for rare, low-prevalence, or complex diseases of the heart (ERN GUARD-Heart), Amsterdam, the Netherlands
- Department of Medical Biosciences, Mecial and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Hennie Bikker
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- European Reference Network for rare, low-prevalence, or complex diseases of the heart (ERN GUARD-Heart), Amsterdam, the Netherlands
| | - Ahmad S Amin
- European Reference Network for rare, low-prevalence, or complex diseases of the heart (ERN GUARD-Heart), Amsterdam, the Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam, the Netherlands
| | - Annika Rydberg
- European Reference Network for rare, low-prevalence, or complex diseases of the heart (ERN GUARD-Heart), Amsterdam, the Netherlands
- Department of Clinical Science, Umeå University, Umeå, Sweden
| | - Arthur A M Wilde
- European Reference Network for rare, low-prevalence, or complex diseases of the heart (ERN GUARD-Heart), Amsterdam, the Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam, the Netherlands
| |
Collapse
|
34
|
Jurcut R, Fetecău B. Genetic testing for cardiomyopathies - when science and health policies join in personalizing cardiovascular prevention. Eur J Prev Cardiol 2022; 29:1785-1788. [PMID: 35915551 DOI: 10.1093/eurjpc/zwac160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ruxandra Jurcut
- Expert Center for Rare Cardiac Genetic Diseases, Emergency Institute for Cardiovascular Diseases "Prof.dr.C.C.Iliescu", BucharestRomania.,Department of Cardiology, University of Medicine and Pharmacy "Carol Davila", BucharestRomania
| | - Bogdana Fetecău
- Expert Center for Rare Cardiac Genetic Diseases, Emergency Institute for Cardiovascular Diseases "Prof.dr.C.C.Iliescu", BucharestRomania.,Department of Cardiology, University of Medicine and Pharmacy "Carol Davila", BucharestRomania
| |
Collapse
|
35
|
Crea F. Heart failure: how to optimize guideline-directed medical therapy. Eur Heart J 2022; 43:2533-2537. [PMID: 35830972 DOI: 10.1093/eurheartj/ehac356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
36
|
Arbustini E, Urtis M, Elliott P. Interpretation of genetic variants depends on a clinically guided integration of phenotype and molecular data. Eur Heart J 2022; 43:2638-2639. [PMID: 35598036 DOI: 10.1093/eurheartj/ehac264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Urtis
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Perry Elliott
- Department of Inherited cardiovascular diseases, Barts Heart Centre St Bartholomew's Hospital, London, UK.,Institute for Cardiovascular Science, University College London, London, UK
| |
Collapse
|
37
|
Crea F. Challenges in heart failure: from actionability of genetic variants in cardiopmyopathies to new therapeutic targets. Eur Heart J 2022; 43:1887-1890. [PMID: 35596264 DOI: 10.1093/eurheartj/ehac243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
38
|
|