1
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2025; 287:33-60. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Auger C, Muzammel H, Diouf I, Schini-Kerth VB. Potential of Anthocyanin-rich Products to Prevent and Improve Endothelial Function and Senescence: Focus on Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27590-27618. [PMID: 39629614 DOI: 10.1021/acs.jafc.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Endothelial dysfunction is a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, diabetes, and aging. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors, including nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH), and vasocontracting factors, such as arachidonic acid-derived mediators generated by cyclooxygenases, and an increased level of oxidative stress. Recently, endothelial senescence was reported to be an early trigger of endothelial dysfunction. Preclinical studies indicate that polyphenol-rich food, including anthocyanin-rich products, can activate pathways promoting an increased formation of vasoprotective factors and can prevent the induction of endothelial dysfunction in endothelial cells and isolated blood vessels. Similarly, intake of anthocyanin-rich products has been associated with the prevention and/or the improvement of an endothelial dysfunction in several experimental models of cardiovascular diseases, including physiological aging. Moreover, clinical data indicate that polyphenol-rich and anthocyanin-rich products can improve endothelial function and vascular health in humans with cardiovascular diseases. The present review will discuss both experimental and clinical evidence indicating that several polyphenol-rich foods and natural products, and especially anthocyanin-rich products, can promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- University of Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, 67000 Strasbourg, France
| | - Hira Muzammel
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Ibrahima Diouf
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Valérie B Schini-Kerth
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| |
Collapse
|
3
|
Silva-Cunha M, Lacchini R, Tanus-Santos JE. Facilitating Nitrite-Derived S-Nitrosothiol Formation in the Upper Gastrointestinal Tract in the Therapy of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:691. [PMID: 38929130 PMCID: PMC11200996 DOI: 10.3390/antiox13060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often associated with impaired nitric oxide (NO) bioavailability, a critical pathophysiological alteration in CVDs and an important target for therapeutic interventions. Recent studies have revealed the potential of inorganic nitrite and nitrate as sources of NO, offering promising alternatives for managing various cardiovascular conditions. It is now becoming clear that taking advantage of enzymatic pathways involved in nitrite reduction to NO is very relevant in new therapeutics. However, recent studies have shown that nitrite may be bioactivated in the acidic gastric environment, where nitrite generates NO and a variety of S-nitrosating compounds that result in increased circulating S-nitrosothiol concentrations and S-nitrosation of tissue pharmacological targets. Moreover, transnitrosation reactions may further nitrosate other targets, resulting in improved cardiovascular function in patients with CVDs. In this review, we comprehensively address the mechanisms and relevant effects of nitrate and nitrite-stimulated gastric S-nitrosothiol formation that may promote S-nitrosation of pharmacological targets in various CVDs. Recently identified interfering factors that may inhibit these mechanisms and prevent the beneficial responses to nitrate and nitrite therapy were also taken into consideration.
Collapse
Affiliation(s)
- Mila Silva-Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil;
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| |
Collapse
|
4
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Artamonov MY, LeBaron TW, Pyatakovich FA, Minenko IA. Mesenchymal Stem Cell Priming: Potential Benefits of Administration of Molecular Hydrogen. Pharmaceuticals (Basel) 2024; 17:469. [PMID: 38675429 PMCID: PMC11054387 DOI: 10.3390/ph17040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/19/2024] [Accepted: 02/10/2024] [Indexed: 04/28/2024] Open
Abstract
Stem cell therapy has emerged as a promising avenue for regenerative medicine, offering the potential to treat a wide range of debilitating diseases and injuries. Among the various types of stem cells, mesenchymal stem cells (MSCs) have garnered significant attention due to their unique properties and therapeutic potential. In recent years, researchers have been exploring novel approaches to enhance the effectiveness of MSC-based therapies. One such approach that has gained traction is the priming of MSCs with molecular hydrogen (H2). This article delves into the fascinating world of mesenchymal stem cell priming with molecular hydrogen and the potential benefits it holds for regenerative medicine.
Collapse
Affiliation(s)
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
| | | | | |
Collapse
|
6
|
Ramírez-Carracedo R, Hernández I, Moreno-Gómez-Toledano R, Díez-Mata J, Tesoro L, González-Cucharero C, Jiménez-Guirado B, Alcharani N, Botana L, Saura M, Zamorano JL, Zaragoza C. NOS3 prevents MMP-9, and MMP-13 induced extracellular matrix proteolytic degradation through specific microRNA-targeted expression of extracellular matrix metalloproteinase inducer in hypertension-related atherosclerosis. J Hypertens 2024; 42:685-693. [PMID: 38406874 PMCID: PMC10906209 DOI: 10.1097/hjh.0000000000003679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Endothelial nitric oxide synthase (NOS3) elicits atheroprotection by preventing extracellular matrix (ECM) proteolytic degradation through inhibition of extracellular matrix metalloproteinase inducer (EMMPRIN) and collagenase MMP-13 by still unknown mechanisms. METHODS C57BL/6 mice lacking ApoE , NOS3, and/or MMP13 were fed with a high-fat diet for 6 weeks. Entire aortas were extracted and frozen to analyze protein and nucleic acid expression. Atherosclerotic plaques were detected by ultrasound imaging, Oil Red O (ORO) staining, and Western Blot. RNA-seq and RT-qPCR were performed to evaluate EMMPRIN, MMP-9, and EMMPRIN-targeting miRNAs. Mouse aortic endothelial cells (MAEC) were incubated to assess the role of active MMP-13 over MMP-9. One-way ANOVA or Kruskal-Wallis tests were performed to determine statistical differences. RESULTS Lack of NOS3 in ApoE null mice fed with a high-fat diet increased severe plaque accumulation, vessel wall widening, and high mortality, along with EMMPRIN-induced expression by upregulation of miRNAs 46a-5p and 486-5p. However, knocking out MMP-13 in ApoE/NOS3 -deficient mice was sufficient to prevent mortality (66.6 vs. 26.6%), plaque progression (23.1 vs. 8.8%), and MMP-9 expression, as confirmed in murine aortic endothelial cell (MAEC) cultures, in which MMP-9 was upregulated by incubation with active recombinant MMP-13, suggesting MMP-9 as a new target of MMP-13 in atherosclerosis. CONCLUSION We describe a novel mechanism by which the absence of NOS3 may worsen atherosclerosis through EMMPRIN-induced ECM proteolytic degradation by targeting the expression of miRNAs 146a-5p and 485-5p. Focusing on NOS3 regulation of ECM degradation could be a promising approach in the management of atherosclerosis.
Collapse
Affiliation(s)
- Rafael Ramírez-Carracedo
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)
| | - Ignacio Hernández
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos
| | - Rafael Moreno-Gómez-Toledano
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)
- Universidad de Alcalá, Unidad de Fisiología, Departamento de Biología de Sistemas, Alcalá de Henares
| | - Javier Díez-Mata
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)
| | - Laura Tesoro
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)
| | - Claudia González-Cucharero
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)
| | - Beatriz Jiménez-Guirado
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)
| | - Nunzio Alcharani
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)
| | - Laura Botana
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)
| | - Marta Saura
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos
- Universidad de Alcalá, Unidad de Fisiología, Departamento de Biología de Sistemas, Alcalá de Henares
| | - Jose L. Zamorano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Carlos Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos
| |
Collapse
|
7
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Feenstra L, Kutikhin AG, Shishkova DK, Buikema H, Zeper LW, Bourgonje AR, Krenning G, Hillebrands JL. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler Thromb Vasc Biol 2023; 43:443-455. [PMID: 36727521 PMCID: PMC9944758 DOI: 10.1161/atvbaha.122.318420] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Calciprotein particles (CPPs) are associated with the development of vascular calcifications in chronic kidney disease. The role of endothelial cells (ECs) in this process is unknown. Here, we investigated the interaction of CPPs and ECs, thereby focusing on endothelial nitric oxide metabolism and oxidative stress. METHODS CPPs were generated in calcium- and phosphate-enriched medium. Human umbilical vein endothelial cells were exposed to different concentrations of CPPs (0-100 µg/mL) for 24 or 72 hours. Ex vivo porcine coronary artery rings were used to measure endothelial cell-dependent vascular smooth muscle cell relaxation after CPP exposure. Serum samples from an early chronic kidney disease cohort (n=245) were analyzed for calcification propensity (measure for CPP formation) and nitrate and nitrite levels (NOx). RESULTS CPP exposure for 24 hours reduced eNOS (endothelial nitric oxide synthase) mRNA expression and decreased nitrite production, indicating reduced nitric oxide bioavailability. Also, 24-hour CPP exposure caused increased mitochondria-derived superoxide generation, together with nitrotyrosine protein residue formation. Long-term (72 hours) exposure of human umbilical vein endothelial cells to CPPs induced eNOS uncoupling and decreased eNOS protein expression, indicating further impairment of the nitric oxide pathway. The ex vivo porcine coronary artery model showed a significant reduction in endothelial-dependent vascular smooth muscle cell relaxation after CPP exposure. A negative association was observed between NOx levels and calcification propensity (r=-0.136; P=0.049) in sera of (early) chronic kidney disease patients. CONCLUSIONS CPPs cause endothelial cell dysfunction by impairing nitric oxide metabolism and generating oxidative stress. Our findings provide new evidence for direct effects of CPPs on ECs and pathways involved.
Collapse
Affiliation(s)
- Lian Feenstra
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anton G. Kutikhin
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., D.K.S.)
| | - Daria K. Shishkova
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., D.K.S.)
| | - Hendrik Buikema
- Department of Clinical Pharmacy and Pharmacology (H.B., G.K.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Lara W. Zeper
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (L.W.Z.)
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology (A.R.B.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Guido Krenning
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology (H.B., G.K.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
9
|
Tang X, Chen L, Wu Z, Li Y, Zeng J, Jiang W, Lv W, Wan M, Mao C, Zhou M. Lipophilic NO-Driven Nanomotors as Drug Balloon Coating for the Treatment of Atherosclerosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203238. [PMID: 35961946 DOI: 10.1002/smll.202203238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Drug-coated balloons (DCB) intervention is an important approach for the treatment of atherosclerosis (AS). However, this therapeutic approach has the drawbacks of poor drug retention and penetration at the lesion site. Here, a lipophilic drug-loaded nanomotor as a modified balloon coating for the treatment of AS is reported. First, a lipophilic nanomotor PMA-TPP/PTX loaded with drug PTX and lipophilic triphenylphosphine (TPP) compounds is synthesized. The PMA-TPP/PTX nanomotors use nitric oxide (NO) as the driving force, which is produced from the reaction between arginine on the motor substrate and excess reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in the AS microenvironment. The final in vitro and in vivo experimental results confirm that the introduction of the lipophilic drug-loaded nanomotor technology can greatly enhance the drug retention and permeability in atherosclerotic lesions. In particular, NO can also play an anti-AS role in improving endothelial cell function and reducing oxidative stress. The chemotherapeutic drug PTX loaded onto the nanomotors can inhibit cell division and proliferation, thereby exerting the effect of inhibiting vascular intimal hyperplasia, which is helpful for the multiple therapies of AS. Using nanomotor technology to solve cardiovascular diseases may be a promising research direction.
Collapse
Affiliation(s)
- Xueting Tang
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ziyu Wu
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yazhou Li
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jiaqi Zeng
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Wentao Jiang
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wenzhi Lv
- College of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210046, China
| |
Collapse
|
10
|
Kumawat VS, Kaur G. Cannabinoid 2 receptor agonist and L-arginine combination attenuates diabetic cardiomyopathy in rats via NF-ĸβ inhibition. Can J Physiol Pharmacol 2022; 100:259-271. [PMID: 34860602 DOI: 10.1139/cjpp-2021-0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-caryophyllene (BCP), a cannabinoid 2 (CB2) receptor agonist has recently been found to have cardioprotective activity as an anti-inflammatory and antioxidant molecule. L-arginine (LA), a nitric oxide (NO) donor, is a potential regulator of cardiovascular function. Considering the role of CB2 receptor activation and NO regulation in cardiovascular diseases, the combination of BCP with LA may be a possible treatment of diabetic cardiomyopathy (DCM). Hence, we investigated the efficacy of the novel combination of BCP with LA on cardiovascular inflammation and oxidative stress in diabetic rats. DCM was induced by streptozotocin (55 mg/kg) in Sprague-Dawley rats intraperitoneally. BCP, LA, and BCP with LA were administered to diabetic rats for 4 weeks. After completion of the study, hemodynamic parameters, biochemical parameters, and inflammatory cytokine levels were analyzed. Also, oxidative stress parameters, nuclear factor kappa beta (NF-ĸβ) expression, and histopathology in cardiac tissues were estimated. The combination of BCP (200 mg/kg) with LA (200 mg/kg) significantly normalized the hemodynamic parameters and decreased the glucose, cardiac markers, interleukin-6, and tumor necrosis factor-alpha levels. Treatment of BCP and LA showed a significant decrease in oxidative stress and downregulated the cardiac expression of NF-ĸβ. Thus, the combination of BCP with LA improves cardiac functions by attenuating inflammation through NF-ĸβ inhibition in DCM.
Collapse
Affiliation(s)
- Vivek S Kumawat
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| |
Collapse
|
11
|
Jeong H, Choi D, Oh Y, Heo J, Hong J. A Nanocoating Co-Localizing Nitric Oxide and Growth Factor onto Individual Endothelial Cells Reveals Synergistic Effects on Angiogenesis. Adv Healthc Mater 2022; 11:e2102095. [PMID: 34826360 DOI: 10.1002/adhm.202102095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/14/2021] [Indexed: 01/19/2023]
Abstract
The delivery of nitric oxide (NO)-an intrinsic cellular signaling molecule-is promising for disease treatment, in particular to vascular diseases, due to its endothelial-derived inherent nature. The limited diffusion distance of labile NO prompts researchers to develop various carriers and targeting methods for specific sites. In contrast to the apoptotic effect of NO, such as anticancer, delivering low NO concentration at the desired targeting area is still intricate in a physiological environment. In this study, the layer-by-layer assembled nanocoating is leveraged to develop a direct NO delivery platform to individual endothelial cells (ECs). NO can be localized to individual ECs via S-nitrosothiol-bound polyacrylic acid which is a polymer directly providing an endothelial-like constant level of NO. To increase angiogenic activation along with NO, VEGF is additionally applied to specific receptors on the cell surface. Notably, the survival and proliferation of ECs are significantly increased by a synergistic effect of NO and VEGF co-localized via nanocoating. Furthermore, the nanocoating remarkably promoted cell migration and tubule formation-prerequisites of angiogenesis. The proposed unique technology based on nanocoating demonstrates great potential for conferring desired angiogenic functions to individual ECs through efficient NO delivery.
Collapse
Affiliation(s)
- Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Daheui Choi
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Yoogyeong Oh
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
12
|
Rami AZA, Hamid AA, Anuar NNM, Aminuddin A, Ugusman A. Exploring the Relationship of Perivascular Adipose Tissue Inflammation and the Development of Vascular Pathologies. Mediators Inflamm 2022; 2022:2734321. [PMID: 35177953 PMCID: PMC8846975 DOI: 10.1155/2022/2734321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Initially thought to only provide mechanical support for the underlying blood vessels, perivascular adipose tissue (PVAT) has now emerged as a regulator of vascular function. A healthy PVAT exerts anticontractile and anti-inflammatory actions on the underlying vasculature via the release of adipocytokines such as adiponectin, nitric oxide, and omentin. However, dysfunctional PVAT produces more proinflammatory adipocytokines such as leptin, resistin, interleukin- (IL-) 6, IL-1β, and tumor necrosis factor-alpha, thus inducing an inflammatory response that contributes to the pathogenesis of vascular diseases. In this review, current knowledge on the role of PVAT inflammation in the development of vascular pathologies such as atherosclerosis and hypertension was discussed.
Collapse
Affiliation(s)
- Afifah Zahirah Abd Rami
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Längst N, Adler J, Schweigert O, Kleusberg F, Cruz Santos M, Knauer A, Sausbier M, Zeller T, Ruth P, Lukowski R. Cyclic GMP-Dependent Regulation of Vascular Tone and Blood Pressure Involves Cysteine-Rich LIM-Only Protein 4 (CRP4). Int J Mol Sci 2021; 22:9925. [PMID: 34576086 PMCID: PMC8466836 DOI: 10.3390/ijms22189925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023] Open
Abstract
The cysteine-rich LIM-only protein 4 (CRP4), a LIM-domain and zinc finger containing adapter protein, has been implicated as a downstream effector of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) pathway in multiple cell types, including vascular smooth muscle cells (VSMCs). VSMCs and nitric oxide (NO)-induced cGMP signaling through cGMP-dependent protein kinase type I (cGKI) play fundamental roles in the physiological regulation of vascular tone and arterial blood pressure (BP). However, it remains unclear whether the vasorelaxant actions attributed to the NO/cGMP axis require CRP4. This study uses mice with a targeted deletion of the CRP4 gene (CRP4 KO) to elucidate whether cGMP-elevating agents, which are well known for their vasorelaxant properties, affect vessel tone, and thus, BP through CRP4. Cinaciguat, a NO- and heme-independent activator of the NO-sensitive (soluble) guanylyl cyclase (NO-GC) and NO-releasing agents, relaxed both CRP4-proficient and -deficient aortic ring segments pre-contracted with prostaglandin F2α. However, the magnitude of relaxation was slightly, but significantly, increased in vessels lacking CRP4. Accordingly, CRP4 KO mice presented with hypotonia at baseline, as well as a greater drop in systolic BP in response to the acute administration of cinaciguat, sodium nitroprusside, and carbachol. Mechanistically, loss of CRP4 in VSMCs reduced the Ca2+-sensitivity of the contractile apparatus, possibly involving regulatory proteins, such as myosin phosphatase targeting subunit 1 (MYPT1) and the regulatory light chain of myosin (RLC). In conclusion, the present findings confirm that the adapter protein CRP4 interacts with the NO-GC/cGMP/cGKI pathway in the vasculature. CRP4 seems to be part of a negative feedback loop that eventually fine-tunes the NO-GC/cGMP axis in VSMCs to increase myofilament Ca2+ desensitization and thereby the maximal vasorelaxant effects attained by (selected) cGMP-elevating agents.
Collapse
Affiliation(s)
- Natalie Längst
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Julia Adler
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Olga Schweigert
- Cardiovascular Systems Medicine and Molecular Translation, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (O.S.); (T.Z.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Felicia Kleusberg
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Amelie Knauer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Matthias Sausbier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Tanja Zeller
- Cardiovascular Systems Medicine and Molecular Translation, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (O.S.); (T.Z.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| |
Collapse
|
14
|
Ning Z, Song Z, Wang C, Peng S, Wan X, Liu Z, Lu A. How Perturbated Metabolites in Diabetes Mellitus Affect the Pathogenesis of Hypertension? Front Physiol 2021; 12:705588. [PMID: 34483960 PMCID: PMC8416465 DOI: 10.3389/fphys.2021.705588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of hypertension (HTN) in type 2 diabetes mellitus (DM) is a common phenomenon in more than half of the diabetic patients. Since HTN constitutes a predictor of vascular complications and cardiovascular disease in type 2 DM patients, it is of significance to understand the molecular and cellular mechanisms of type 2 DM binding to HTN. This review attempts to understand the mechanism via the perspective of the metabolites. It reviewed the metabolic perturbations, the biological function of perturbated metabolites in two diseases, and the mechanism underlying metabolic perturbation that contributed to the connection of type 2 DM and HTN. DM-associated metabolic perturbations may be involved in the pathogenesis of HTN potentially in insulin, angiotensin II, sympathetic nervous system, and the energy reprogramming to address how perturbated metabolites in type 2 DM affect the pathogenesis of HTN. The recent integration of the metabolism field with microbiology and immunology may provide a wider perspective. Metabolism affects immune function and supports immune cell differentiation by the switch of energy. The diverse metabolites produced by bacteria modified the biological process in the inflammatory response of chronic metabolic diseases either. The rapidly evolving metabolomics has enabled to have a better understanding of the process of diseases, which is an important tool for providing some insight into the investigation of diseases mechanism. Metabolites served as direct modulators of biological processes were believed to assess the pathological mechanisms involved in diseases.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
15
|
Knoblauch R, Geddes CD. Plasmonic enhancement of nitric oxide generation. NANOSCALE 2021; 13:12288-12297. [PMID: 34254104 DOI: 10.1039/d1nr02126e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While the utility of reactive oxygen species in photodynamic therapies for both cancer treatments and antimicrobial applications has received much attention, the inherent potential of reactive nitrogen species (RNS) including nitric oxide (NO˙) for these applications should not be overlooked. In recent years, NO˙ donor species with numerous-including photodynamic-mechanisms have been classified with efficacy in antimicrobial and therapeutic applications. While properties of NO˙ delivery may be tuned structurally, herein we describe for the first time a method by which photodynamic NO˙ release is amplified simply by utilizing a plasmonic metal substrate. This is a process we term "metal-enhanced nitric oxide release", or ME-NO˙. Using donor agents known as brominated carbon nanodots (BrCND), also the first carbon nanodot variation classified to release NO˙ photodynamically, and the fluorescence-on probe DAF-FM, we report metal-enhanced release of NO˙ 2- to 6-fold higher than what is achieved under classical conditions. Factors affecting the plasmon-amplified photodynamic system are subsequently studied, including exposure times, excitation powers, and surface area, and consistent ME-NO˙ factors are reported from BrCND across these tunable conditions. Only probe concentration is determined to impact the detected ME-NO˙ factor, with higher concentrations resulting in improved detectability of "actual" NO˙ release enhancement. Further, principles of metal-enhanced fluorescence (MEF) are applied to achieve a faster, high-throughput experimental method with improved data resolution in ME-NO˙ detection. The results have significant implications for the improvement of not just carbon nanodot NO˙ donor agents, but a wide spectrum of photoactivated NO˙ donor systems as well.
Collapse
Affiliation(s)
- Rachael Knoblauch
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 701 East Pratt Street, Baltimore, Maryland 21202, USA.
| | | |
Collapse
|
16
|
Groner J, Goepferich A, Breunig M. Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J Control Release 2021; 333:536-559. [PMID: 33794270 DOI: 10.1016/j.jconrel.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of death in developed countries. The pathogenetic mechanism relies on a macrophage-based immune reaction to low density lipoprotein (LDL) deposition in blood vessels with dysfunctional endothelia. Thus, atherosclerosis is defined as a chronic inflammatory disease. A plethora of cardiovascular drugs have been developed and are on the market, but the major shortcoming of standard medications is that they do not address the root cause of the disease. Statins and thiazolidinediones that have recently been recognized to exert specific anti-atherosclerotic effects represent a potential breakthrough on the horizon. But their whole potential cannot be realized due to insufficient availability at the pathological site and severe off-target effects. The focus of this review will be to elaborate how both groups of drugs could immensely profit from nanoparticulate carriers. This delivery principle would allow for their accumulation in target macrophages and endothelial cells of the atherosclerotic plaque, increasing bioavailability where it is needed most. Based on the analyzed literature we conclude design criteria for the delivery of statins and thiazolidinediones with nanoparticles for anti-atherosclerotic therapy. Nanoparticles need to be below a diameter of 100 nm to accumulate in the atherosclerotic plaque and should be fabricated using biodegradable materials. Further, the thiazolidinediones or statins must be encapsulated into the particle core, because especially for thiazolidindiones the uptake into cells is prerequisite for their mechanism of action. For optimal uptake into targeted macrophages and endothelial cells, the ideal particle should present ligands on its surface which bind specifically to scavenger receptors. The impact of statins on the lectin-type oxidized LDL receptor 1 (LOX1) seems particularly promising because of its outstanding role in the inflammatory process. Using this pioneering concept, it will be possible to promote the impact of statins and thiazolidinediones on macrophages and endothelial cells and significantly enhance their anti-atherosclerotic therapeutic potential.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
17
|
Cheng K, Alhumood K, El Shaer F, De Silva R. The Role of Nicorandil in the Management of Chronic Coronary Syndromes in the Gulf Region. Adv Ther 2021; 38:925-948. [PMID: 33351175 PMCID: PMC7889547 DOI: 10.1007/s12325-020-01582-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Chronic coronary syndromes (CCS) and stable angina are a growing clinical burden worldwide. This is of particular concern in the Gulf region given its high prevalence of cardiovascular risk factors, especially diabetes mellitus and smoking. Despite recommendations on the use of first- and second-line anti-anginal medication, management challenges remain. Current guidelines for pharmacologic treatment are not determined by the range of pathophysiological mechanisms of ischaemia and consequent angina, which may occur either in isolation or co-exist. In this article, we highlight the need to improve knowledge of the epidemiology of chronic coronary syndromes in the Middle East and Gulf region, and the need for studies of stratified pharmacologic approaches to improve symptomatic angina and quality of life in the large and growing number of patients with coronary artery disease from this region. We discuss the role of nicorandil, currently recommended as a second-line anti-anginal drug in CCS patients, and suggest that this may be a particularly useful add-on therapy for patients in the Gulf region.
Collapse
Affiliation(s)
- Kevin Cheng
- Specialist Angina Service, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- Vascular Science Department, National Heart and Lung Institute, London, UK
| | | | - Fayez El Shaer
- Department of Cardiac Sciences, King Fahad Cardiac Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- National Heart Institute, Cairo, Egypt
| | - Ranil De Silva
- Specialist Angina Service, Royal Brompton and Harefield NHS Foundation Trust, London, UK.
- Vascular Science Department, National Heart and Lung Institute, London, UK.
| |
Collapse
|
18
|
Chen A, Wang H, Su Y, Zhang C, Qiu Y, Zhou Y, Wan Y, Hu B, Li Y. Exosomes: Biomarkers and Therapeutic Targets of Diabetic Vascular Complications. Front Endocrinol (Lausanne) 2021; 12:720466. [PMID: 34456875 PMCID: PMC8387814 DOI: 10.3389/fendo.2021.720466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic vascular complications (DVC) including macrovascular and microvascular lesions, have a significant impact on public health, and lead to increased patient mortality. Disordered intercellular cascades play a vital role in diabetic systemic vasculopathy. Exosomes participate in the abnormal signal transduction of local vascular cells and mediate the transmission of metabolic disorder signal molecules in distant organs and cells through the blood circulation. They can store different signaling molecules in the membrane structure and release them into the blood, urine, and tears. In recent years, the carrier value and therapeutic effect of exosomes derived from stem cells have garnered attention. Exosomes are not only a promising biomarker but also a potential target and tool for the treatment of DVC. This review explored changes in the production process of exosomes in the diabetic microenvironment and exosomes' early warning role in DVC from different systems and their pathological processes. On the basis of these findings, we discussed the future direction of exosomes in the treatment of DVC, and the current limitations of exosomes in DVC research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hu
- *Correspondence: Yanan Li, ; Bo Hu,
| | - Yanan Li
- *Correspondence: Yanan Li, ; Bo Hu,
| |
Collapse
|
19
|
Naveed M, Majeed F, Taleb A, Zubair HM, Shumzaid M, Farooq MA, Baig MMFA, Abbas M, Saeed M, Changxing L. A Review of Medicinal Plants in Cardiovascular Disorders: Benefits and Risks. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:259-286. [PMID: 32345058 DOI: 10.1142/s0192415x20500147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many cultivated and wild plants are used for the management of various diseases, specifically renal and hepatic diseases and those of the immune and cardiovascular systems. In China, medicinal plants from ancient to modern history have been used in patients with angina pectoris, congestive heart failure (CHF), systolic hypertension, arrhythmia, and venous insufficiency for centuries. The latest increase in the fame of natural products and alternative medicine has revived interest in conventional remedies that have been consumed in the management of CVD. The cardio-protective properties of the various herbs are possibly due to their anti-oxidative, antihypercholesterolemic, anti-ischemic activities, and inhibition of platelet aggregation that reduce the risk of CVD. Ethno-pharmacological and biological properties of these plants are explored, based upon published scientific literature. Although a majority of medicinal plants having a biological mechanism that linked with CVD management, to date, published literature pertaining to their promising scientific properties are still poorly understood. Compared with synthetic medicines, alternative medicines do not need scientific studies before their formal approval from the government sector and due to this purpose; their safety, as well as efficacy, still remain elusive. Taken together, we addressed all accessible evidence on alternative medicines commonly consumed in CVD management. Our comprehensive analysis of the scientific literature indicated that many TCMs are available and valuable herbal medication would be the best alternative for the management of CVD as a complementary therapy. Furthermore, practitioners should always discuss possible benefits-risks of alternative medicines with patients so that they are aware of the consumption of alternative medications.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Fatima Majeed
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Abdoh Taleb
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Hafiz Muhammad Zubair
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Muhammad Shumzaid
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Punjab Province, Lahore 54770, Pakistan
| | - Muhammad Asim Farooq
- Department of Pharmacy, School of Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing 211198, P. R. China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu Province, Nanjing 210093, P. R. China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Jiangsu Province, Nanjing 210093, P. R. China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining 810000, Qinghai Province, P. R. China
| |
Collapse
|
20
|
Malekmohammad K, Sewell RD, Rafieian-Kopaei M. Mechanisms of Medicinal Plant Activity on Nitric Oxide (NO) Bioavailability as Prospective Treatments for Atherosclerosis. Curr Pharm Des 2020; 26:2591-2601. [DOI: 10.2174/1381612826666200318152049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Background and objective:
Atherosclerosis is one of the leading causes of human morbidity globally
and reduced bioavailability of vascular nitric oxide (NO) has a critical role in the progression and development of
the atherosclerotic disease. Loss of NO bioavailability, for example via a deficiency of the substrate (L-arginine)
or cofactors for endothelial nitric oxide synthase (eNOS), invariably leads to detrimental vascular effects such as
impaired endothelial function and increased smooth muscle cell proliferation, deficiency of the substrate (Larginine)
or cofactors for eNOS. Various medicinal plants and their bioactive compounds or secondary metabolites
with fewer side effects are potentially implicated in preventing cardiovascular disease by increasing NO
bioavailability, thereby ameliorating endothelial dysfunction. In this review, we describe the most notable medicinal
plants and their bioactive compounds that may be appropriate for enhancing NO bioavailability, and
treatment of atherosclerosis.
Methods:
The material in this article was obtained from noteworthy scientific databases, including Web of Science,
PubMed, Science Direct, Scopus and Google Scholar.
Results:
Medicinal plants and their bioactive compounds influence NO production through diverse mechanisms
including the activation of the nuclear factor kappa B (NF-κB) signaling pathway, activating protein kinase C
(PKC)-α, stimulating protein tyrosine kinase (PTK), reducing the conversion of nitrite to NO via nitrate-nitrite
reduction pathways, induction of eNOS, activating the phosphatidylinositol 3-kinase (PI3K)/serine threonine
protein kinase B (AKT) (PI3K/AKT/eNOS/NO) pathway and decreasing oxidative stress.
Conclusion:
Medicinal plants and/or their constituent bioactive compounds may be considered as safe therapeutic
options for enhancing NO bioavailability and prospective preventative therapy for atherosclerosis.
Collapse
Affiliation(s)
| | - Robert D.E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, United Kingdom
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
21
|
Negre-Salvayre A, Guerby P, Gayral S, Laffargue M, Salvayre R. Role of reactive oxygen species in atherosclerosis: Lessons from murine genetic models. Free Radic Biol Med 2020; 149:8-22. [PMID: 31669759 DOI: 10.1016/j.freeradbiomed.2019.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is a multifactorial chronic and inflammatory disease of medium and large arteries, and the major cause of cardiovascular morbidity and mortality worldwide. The pathogenesis of atherosclerosis involves a number of risk factors and complex events including hypercholesterolemia, endothelial dysfunction, increased permeability to low density lipoproteins (LDL) and their sequestration on extracellular matrix in the intima of lesion-prone areas. These events promote LDL modifications, particularly by oxidation, which generates acute and chronic inflammatory responses implicated in atherogenesis and lesion progression. Reactive oxygen species (ROS) (which include both free radical and non-free radical oxygen intermediates), play a key-role at each step of atherogenesis, in endothelial dysfunction, LDL oxidation, and inflammatory events involved in the initiation and development of atherosclerosis lesions. Most advanced knowledge supporting the "oxidative theory of atherosclerosis" i.e. the nature and the cellular sources of ROS and antioxidant defences, as well as the mechanisms involved in the redox balance, is based on the use of genetically engineered animals, i.e. transgenic, genetically modified, or altered for systems producing or neutralizing ROS in the vessels. This review summarizes the results obtained from animals genetically manipulated for various sources of ROS or antioxidant defences in the vascular wall, and their relevance (advance or limitation), for understanding the place and role of ROS in atherosclerosis.
Collapse
Affiliation(s)
| | - Paul Guerby
- Inserm U-1048, Université de Toulouse, France; Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | | | | |
Collapse
|
22
|
Liu Y, Deng W, Yang L, Fu X, Wang Z, van Rijn P, Zhou Q, Yu T. Biointerface topography mediates the interplay between endothelial cells and monocytes. RSC Adv 2020; 10:13848-13854. [PMID: 35492981 PMCID: PMC9051607 DOI: 10.1039/d0ra00704h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/28/2020] [Indexed: 11/21/2022] Open
Abstract
Endothelial cell (EC) monolayers located in the inner lining of blood vessels serve as a semipermeable barrier between circulating blood and surrounding tissues. The structure and function of the EC monolayer affect the recruitment and adhesion of monocytes, which plays a pivotal role in the development of inflammation and atherosclerosis. Here we investigate the effect of material wrinkled topographies on the responses of human umbilical vein endothelial cells (HUVECs) and adhesion of monocytes to HUVECs. It is found that HUVEC responses are non-linearly mediated by surface topographies with different dimensions. Specifically, more cell elongation and better cell orientation on the wrinkled surface with a 3.5 μm amplitude and 10 μm wavelength (W10) are observed compared to other surfaces. The proliferation rate of HUVECs on the W10 surface is higher than that on other surfaces due to more 5-ethynyl-2′-deoxyuridine (EdU) detected on the W10 surface. Also, greater expression of inflammatory cytokines from HUVECs and adhesion of monocytes to HUVECs on the W10 surface is shown than other surfaces due to greater expression of p-AKT and ICAM, respectively. This study offers a new in vitro system to understand the interplay between HUVEC monolayers and monocytes mediated by aligned topographies, which may be useful for vascular repair and disease modeling for drug testing. This study offers a new in vitro system to understand the interplay between HUVEC monolayer and monocytes mediated by aligned topographies, which may be useful for vascular repair and disease modeling for drug testing.![]()
Collapse
Affiliation(s)
- Yan Liu
- Institute for Translational Medicine
- School of Basic Medicine
- Qingdao University
- Qingdao
- China
| | - Wenshuai Deng
- Department of Neurosurgery
- The Affiliated Hospital of Qingdao University
- Qingdao 266003
- China
| | - Liangliang Yang
- University of Groningen
- W. J. Kolff Institute for Biomedical Engineering and Materials Science
- Department of Biomedical Engineering
- University Medical Center Groningen
- Groningen
| | - Xiuxiu Fu
- Department of Echocardiography
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Zhibin Wang
- Department of Echocardiography
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Patrick van Rijn
- University of Groningen
- W. J. Kolff Institute for Biomedical Engineering and Materials Science
- Department of Biomedical Engineering
- University Medical Center Groningen
- Groningen
| | - Qihui Zhou
- Institute for Translational Medicine
- School of Basic Medicine
- Qingdao University
- Qingdao
- China
| | - Tao Yu
- Institute for Translational Medicine
- School of Basic Medicine
- Qingdao University
- Qingdao
- China
| |
Collapse
|
23
|
Loscalzo J. Nitric Oxide Signaling and Atherothrombosis Redux: Evidence From Experiments of Nature and Implications for Therapy. Circulation 2019; 137:233-236. [PMID: 29335284 DOI: 10.1161/circulationaha.117.032901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joseph Loscalzo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
24
|
Piktel E, Wnorowska U, Cieśluk M, Deptula P, Pogoda K, Misztalewska-Turkowicz I, Paprocka P, Niemirowicz-Laskowska K, Wilczewska AZ, Janmey PA, Bucki R. Inhibition of inflammatory response in human keratinocytes by magnetic nanoparticles functionalized with PBP10 peptide derived from the PIP2-binding site of human plasma gelsolin. J Nanobiotechnology 2019; 17:22. [PMID: 30711007 PMCID: PMC6359803 DOI: 10.1186/s12951-019-0455-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Human plasma gelsolin (pGSN) is a multifunctional actin-binding protein involved in a variety of biological processes, including neutralization of pro-inflammatory molecules such as lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and modulation of host inflammatory response. It was found that PBP10, a synthetic rhodamine B-conjugated peptide, based on the phosphoinositide-binding site of pGSN, exerts bactericidal activity against Gram-positive and Gram-negative bacteria, interacts specifically with LPS and LTA, and limits microbial-induced inflammatory effects. The therapeutic efficiency of PBP10 when immobilized on the surface of iron oxide-based magnetic nanoparticles was not evaluated, to date. RESULTS Using the human keratinocyte cell line HaCaT stimulated by bacterially-derived LPS and LTA as an in vitro model of bacterial infection, we examined the anti-inflammatory effects of nanosystems consisting of iron oxide-based magnetic nanoparticles with aminosilane (MNP@NH2) or gold shells (MNP@Au) functionalized by a set of peptides, derived from the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding site of the human plasma protein gelsolin, which also binds LPS and LTA. Our results indicate that these nanosystems can kill both Gram-positive and Gram-negative bacteria and limit the production of inflammatory mediators, including nitric oxide (NO), reactive oxygen species (ROS), and interleukin-8 (IL-8) in the response to heat-killed microbes or extracted bacterial cell wall components. The nanoparticles possess the potential to improve therapeutic efficacy and are characterized by lower toxicity and improved hemocompatibility when compared to free peptides. Atomic force microscopy (AFM) showed that these PBP10-based nanosystems prevented changes in nanomechanical properties of cells that were otherwise stimulated by LPS. CONCLUSIONS Neutralization of endotoxemia-mediated cellular effects by gelsolin-derived peptides and PBP10-containing nanosystems might be considered as potent therapeutic agents in the improved therapy of bacterial infections and microbial-induced inflammation.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Mateusz Cieśluk
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Piotr Deptula
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Katarzyna Pogoda
- IInstitute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | | | - Paulina Paprocka
- Department of Microbiology and Immunology, The Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland
| | - Katarzyna Niemirowicz-Laskowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | | | - Paul A. Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| |
Collapse
|
25
|
Changing to a Low-Polyphenol Diet Alters Vascular Biomarkers in Healthy Men after Only Two Weeks. Nutrients 2018; 10:nu10111766. [PMID: 30441880 PMCID: PMC6267476 DOI: 10.3390/nu10111766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Bioactive dietary compounds play a critical role in health maintenance. The relation between bioactive compound intake and cardiovascular health-related biomarkers has been demonstrated in several studies, although mainly with participants who have altered biochemical parameters (high blood pressure, high cholesterol, metabolic syndrome, etc.). The aim of this study was to evaluate if adopting a diet low in polyphenol-rich food for two weeks would affect vascular biomarkers in healthy men. In a crossover study, 22 healthy men were randomly assigned to their usual diet (UD), consuming healthy food rich in polyphenols, or to a low antioxidant diet (LAD), with less than two servings of fruit and vegetables per day and avoiding the intake of cocoa products, coffee and tea. As a marker of compliance, total polyphenols in urine were significantly lower after the LAD than after the UD (79 ± 43 vs. 123 ± 58 mg GAE/g creatinine). Nitric oxide levels were also reduced (52 ± 28 in LAD vs. 80 ± 34 µM in UD), although no significant changes in cellular adhesion molecules and eicosanoids were observed; however, an increasing ratio between thromboxane A2 (TXA2) and prostaglandin I2 (PGI2) was reached (p = 0.048). Thus, a slight dietary modification, reducing the consumption of polyphenol-rich food, may affect vascular biomarkers even in healthy individuals.
Collapse
|
26
|
Chernoff G, Bryan N, Park AM. Mesothelial Stem Cells and Stromal Vascular Fraction. Facial Plast Surg Clin North Am 2018; 26:487-501. [DOI: 10.1016/j.fsc.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Non-Invasive Detection of Extracellular Matrix Metalloproteinase Inducer EMMPRIN, a New Therapeutic Target against Atherosclerosis, Inhibited by Endothelial Nitric Oxide. Int J Mol Sci 2018; 19:ijms19103248. [PMID: 30347750 PMCID: PMC6214015 DOI: 10.3390/ijms19103248] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 01/12/2023] Open
Abstract
Lack of endothelial nitric oxide causes endothelial dysfunction and circulating monocyte infiltration, contributing to systemic atheroma plaque formation in arterial territories. Among the different inflammatory products, macrophage-derived foam cells and smooth muscle cells synthesize matrix metalloproteinases (MMPs), playing a pivotal role in early plaque formation and enlargement. We found increased levels of MMP-9 and MMP-13 in human endarterectomies with advanced atherosclerosis, together with significant amounts of extracellular matrix (ECM) metalloproteinase inducer EMMPRIN. To test whether the absence of NO may aggravate atherosclerosis through EMMPRIN activation, double NOS3/apoE knockout (KO) mice expressed high levels of EMMPRIN in carotid plaques, suggesting that targeting extracellular matrix degradation may represent a new mechanism by which endothelial NO prevents atherosclerosis. Based on our previous experience, by using gadolinium-enriched paramagnetic fluorescence micellar nanoparticles conjugated with AP9 (NAP9), an EMMPRIN-specific binding peptide, magnetic resonance sequences allowed non-invasive visualization of carotid EMMPRIN in NOS3/apoE over apoE control mice, in which atheroma plaques were significantly reduced. Taken together, these results point to EMMPRIN as a new therapeutic target of NO-mediated protection against atherosclerosis, and NAP9 as a non-invasive molecular tool to target atherosclerosis.
Collapse
|
28
|
Construction of a Metal-Free Electron Spin System by Encapsulation of an NO Molecule Inside an Open-Cage Fullerene C60
Derivative. Angew Chem Int Ed Engl 2018; 57:12804-12808. [DOI: 10.1002/anie.201807823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 01/20/2023]
|
29
|
Hasegawa S, Hashikawa Y, Kato T, Murata Y. Construction of a Metal-Free Electron Spin System by Encapsulation of an NO Molecule Inside an Open-Cage Fullerene C60
Derivative. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shota Hasegawa
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| | | | - Tatsuhisa Kato
- Institute for Liberal Arts and Sciences; Kyoto University; Kyoto Kyoto 605-8501 Japan
| | - Yasujiro Murata
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
30
|
Bozic J, Borovac JA, Galic T, Kurir TT, Supe-Domic D, Dogas Z. Adropin and Inflammation Biomarker Levels in Male Patients With Obstructive Sleep Apnea: A Link With Glucose Metabolism and Sleep Parameters. J Clin Sleep Med 2018; 14:1109-1118. [PMID: 29991422 DOI: 10.5664/jcsm.7204] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/23/2018] [Indexed: 01/03/2023]
Abstract
STUDY OBJECTIVES The main objectives of the study were to determine plasma adropin, systemic inflammation biomarker levels, and glucose metabolism parameters in patients with moderate and severe obstructive sleep apnea (OSA) compared to healthy controls. METHODS In this study, we included 50 male patients with OSA (25 moderate and 25 severe) and 25 age- and sex-matched control subjects. All subjects underwent fasting sampling of peripheral blood for laboratory analyses. RESULTS Adropin plasma levels were significantly lower in the severe OSA group in comparison with the moderate and control groups (4.50 ± 1.45 versus 6.55 ± 1.68 versus 8.15 ± 1.79 ng/mL, P < .001). Plasma biomarkers of systemic inflammation were significantly increased in patients with moderate OSA (interleukin [IL]-6 and tumor necrosis factor alpha [TNF-α]) and severe OSA (IL-6, TNF-α, high-sensitivity C-reactive protein) when compared with controls (P < .001). Adropin levels showed a significant negative correlation with IL-6 (r = -.419, P < .001), TNF-α (r = -.540, P < .001), fasting glucose (r = -.331, P = .004), hemoglobin A1c (r = -.438, P < .001), homeostatic model assessment insulin resistance index (r = -.213, P = .046), and polysomnographic parameters including apnea-hypopnea index (r = -.615, P < .001) and oxygen desaturation index (r = -.573, P < .001). A multivariate regression analysis showed that plasma adropin remained as a significant negative predictor of severe OSA status, when adjusted for age and body mass index and computed along with other inflammatory biomarkers in the regression model (odds ratio 0.069, 95% confidence interval 0.009-0.517, P = .009). CONCLUSIONS Plasma adropin concentrations significantly correlate with indices of disease severity in patients with OSA, suggesting that adropin potentially plays an important role in the complex pathophysiology of the disease.
Collapse
Affiliation(s)
- Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia.,Department of Neuroscience, University of Split School of Medicine, Split, Croatia
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Tea Galic
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia.,Study of Dental Medicine, University of Split School of Medicine, Split, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Daniela Supe-Domic
- Department of Medical Laboratory Diagnostics, University Hospital of Split, Split, Croatia
| | - Zoran Dogas
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia.,Sleep Medicine Center, University of Split School of Medicine, Split, Croatia.,University Hospital of Split, Split, Croatia
| |
Collapse
|
31
|
Oak MH, Auger C, Belcastro E, Park SH, Lee HH, Schini-Kerth VB. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic Biol Med 2018; 122:161-170. [PMID: 29548794 DOI: 10.1016/j.freeradbiomed.2018.03.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Epidemiological studies have indicated that regular intake of polyphenol-rich diets such as red wine and tea, are associated with a reduced risk of cardiovascular diseases. The beneficial effect of polyphenol-rich products has been attributable, at least in part, to their direct action on the endothelial function. Indeed, polyphenols from tea, grapes, cacao, berries, and plants have been shown to activate endothelial cells to increase the formation of potent vasoprotective factors including nitric oxide (NO) and to delay endothelial ageing. Moreover, intake of such polyphenol-rich products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in Humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that polyphenols are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Min-Ho Oak
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Hyun-Ho Lee
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
32
|
Nitric oxide donors for peripheral artery disease. Curr Opin Pharmacol 2018; 39:77-85. [PMID: 29587164 DOI: 10.1016/j.coph.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 01/02/2023]
|
33
|
Suganya N, Mani KP, Sireesh D, Rajaguru P, Vairamani M, Suresh T, Suzuki T, Chatterjee S, Ramkumar KM. Establishment of pancreatic microenvironment model of ER stress: Quercetin attenuates β-cell apoptosis by invoking nitric oxide-cGMP signaling in endothelial cells. J Nutr Biochem 2018; 55:142-156. [PMID: 29455095 DOI: 10.1016/j.jnutbio.2017.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 01/24/2023]
Abstract
The involvement of endoplasmic reticulum (ER) stress in endothelial dysfunction and diabetes-associated complications has been well documented. Inhibition of ER stress represents a promising therapeutic strategy to attenuate endothelial dysfunction in diabetes. Recent attention has focused on the development of small molecule inhibitors of ER stress to maintain endothelial homeostasis in diabetes. Here we have developed a reliable, robust co-culture system that allows a study on the endothelial cells and pancreatic β-cells crosstalk under ER stress and validated using a known ER stress modulator, quercetin. Furthermore, sensitizing of endothelial cells by quercetin (25 μM) confers protection of pancreatic β-cells against ER stress through nitric oxide (NO∙) signaling. In addition, increased intracellular insulin and NO∙-mediated cyclic 3',5'-guanosine monophosphate (cGMP) levels in pancreatic β-cells further confirmed the mechanism of protection under co-culture system. In addition, the potential protein targets of quercetin against ER stress in the endothelial cells were investigated through proteomic profiling and its phosphoprotein targets through Bioplex analysis. On the whole, the developed in vitro co-culture set up can serve as a platform to study the signaling network between the endothelial and pancreatic β-cells as well as provides a mechanistic insight for the validation of novel ER stress modulators.
Collapse
Affiliation(s)
- Natarajan Suganya
- SRM Research Institute, SRM University, Kattankulathur, Chennai - 603 203, India
| | - Krishna Priya Mani
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chromepet, Chennai - 600 044, India
| | - Dornadula Sireesh
- SRM Research Institute, SRM University, Kattankulathur, Chennai - 603 203, India
| | - Palanisamy Rajaguru
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli - 620 024, India
| | | | - Thiruppathi Suresh
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chromepet, Chennai - 600 044, India; Department of Biotechnology, Anna University, Chennai, India
| | | |
Collapse
|
34
|
Hung CH, Chan SH, Chu PM, Lin HC, Tsai KL. Metformin regulates oxLDL-facilitated endothelial dysfunction by modulation of SIRT1 through repressing LOX-1-modulated oxidative signaling. Oncotarget 2017; 7:10773-87. [PMID: 26885898 PMCID: PMC4905438 DOI: 10.18632/oncotarget.7387] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/31/2016] [Indexed: 12/20/2022] Open
Abstract
It is suggested that oxLDL is decisive in the initiation and development of atherosclerotic injuries. The up-regulation of oxidative stress and the generation of ROS act as key modulators in developing pro-atherosclerotic and anti-atherosclerotic processes in the human endothelial wall. In this present study, we confirmed that metformin enhanced SIRT1 and AMPK expression in human umbilical vein endothelial cells (HUVECs). Metformin also inhibited oxLDL-increased LOX-1 expression and oxLDL-collapsed AKT/eNOS levels. However, silencing SIRT1 and AMPK diminished the protective function of metformin against oxidative injuries. These results provide a new insight regarding the possible molecular mechanisms of metformin.
Collapse
Affiliation(s)
- Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University,Tainan, Taiwan.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hung Chan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Huei-Chen Lin
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University,Tainan, Taiwan
| |
Collapse
|
35
|
Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology. Biol Chem 2017; 398:1267-1293. [DOI: 10.1515/hsz-2017-0150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
AbstractDecades of chemical, biochemical and pathophysiological research have established the relevance of post-translational protein modifications induced by processes related to oxidative stress, with critical reflections on cellular signal transduction pathways. A great deal of the so-called ‘redox regulation’ of cell function is in fact mediated through reactions promoted by reactive oxygen and nitrogen species on more or less specific aminoacid residues in proteins, at various levels within the cell machinery. Modifications involving cysteine residues have received most attention, due to the critical roles they play in determining the structure/function correlates in proteins. The peculiar reactivity of these residues results in two major classes of modifications, with incorporation of NO moieties (S-nitrosation, leading to formation of proteinS-nitrosothiols) or binding of low molecular weight thiols (S-thionylation, i.e. in particularS-glutathionylation,S-cysteinylglycinylation andS-cysteinylation). A wide array of proteins have been thus analyzed in detail as far as their susceptibility to either modification or both, and the resulting functional changes have been described in a number of experimental settings. The present review aims to provide an update of available knowledge in the field, with a special focus on the respective (sometimes competing and antagonistic) roles played by proteinS-nitrosations andS-thionylations in biochemical and cellular processes specifically pertaining to pathogenesis of cardiovascular diseases.
Collapse
|
36
|
Abdelall EKA, Abdelhamid AO, Azouz AA. Synthesis and biological evaluations of new nitric oxide-anti-inflammatory drug hybrids. Bioorg Med Chem Lett 2017; 27:4358-4369. [PMID: 28844389 DOI: 10.1016/j.bmcl.2017.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 11/13/2022]
Abstract
Three novel series of nitroso derivatives (11-15), isoxazolopyrazoles (17a-c) and isoxazolo[3,4-d]pyridazines (18a-c) were prepared from the hydroxyimoyl chloride 10. In vitro COX1⧹2 inhibition activities were evaluated, both of 17b and 18a proved a promising inhibitory activity with IC50=1.12, 0.78μM in sequent. Carrageenan induced Paw edema, ulcer liability, nitric oxide (NO) release and histopathological study were determined. Most of the prepared compounds showed excellent activities. Reactions of 2-aminopyridine and enaminone with hydroxyimoyl chloride 10 were investigated and proved by 2D NMR. Molecular docking for most active compounds was operated giving a hint for compound-receptor interactions.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Abdou O Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Amany A Azouz
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
37
|
Dominguez-Rodriguez M, Drobny H, Boehm S, Salzer I. Electrophysiological Investigation of the Subcellular Fine Tuning of Sympathetic Neurons by Hydrogen Sulfide. Front Pharmacol 2017; 8:522. [PMID: 28824437 PMCID: PMC5543101 DOI: 10.3389/fphar.2017.00522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 11/20/2022] Open
Abstract
H2S is well-known as hypotensive agent, whether it is synthetized endogenously or administered systemically. Moreover, the H2S donor NaHS has been shown to inhibit vasopressor responses triggered by stimulation of preganglionic sympathetic fibers. In contradiction with this latter result, NaHS has been reported to facilitate transmission within sympathetic ganglia. To resolve this inconsistency, H2S and NaHS were applied to primary cultures of dissociated sympathetic ganglia to reveal how this gasotransmitter might act at different subcellular compartments of such neurons. At the somatodendritic region of ganglionic neurons, NaHS raised the frequency, but not the amplitudes, of cholinergic miniature postsynaptic currents via a presynaptic site of action. In addition, the H2S donor as well as H2S itself caused membrane hyperpolarization and decreased action potential firing in response to current injection. Submillimolar NaHS concentrations did not affect currents through Kυ7 channels, but did evoke currents through KATP channels. Similarly to NaHS, the KATP channel activator diazoxide led to hyperpolarization and decreased membrane excitability; the effects of both, NaHS and diazoxide, were prevented by the KATP channel blocker tolbutamide. At postganglionic sympathetic nerve terminals, H2S and NaHS enhanced noradrenaline release due to a direct action at the level of vesicle exocytosis. Taken together, H2S may facilitate transmitter release within sympathetic ganglia and at sympatho-effector junctions, but causes hyperpolarization and reduced membrane excitability in ganglionic neurons. As this latter action was due to KATP channel gating, this channel family is hereby established as another previously unrecognized determinant in the function of sympathetic ganglia.
Collapse
Affiliation(s)
- Manuel Dominguez-Rodriguez
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Helmut Drobny
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| |
Collapse
|
38
|
Bubulis A, Garalienė V, Jurėnas V, Navickas J, Giedraitis S. Effect of Low-Intensity Cavitation on the Isolated Human Thoracic Artery In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1040-1047. [PMID: 28196770 DOI: 10.1016/j.ultrasmedbio.2016.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 12/03/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Reported here are the results of an experimental study on the response to low-intensity cavitation induced by low-frequency (4-6 W/cm2, 20 kHz and 32.6 kHz) ultrasound of isolated human arterial samples taken during conventional myocardial revascularization operations. Studies have found that low-frequency ultrasound results in a significant (48%-54%) increase in isometric contraction force and does not depend on the number of exposures (10 or 20) or the time passed since the start of ultrasound (0, 10 and 20 min), but does depend on the frequency and location (internal or external) of the blood vessels for the application of ultrasound. Diltiazem (an inhibitor of slow calcium channels) and carbachol (an agonist of muscarinic receptors) used in a concentration-dependent manner did not modify the relaxation dynamics of smooth muscle affected by ultrasound. Thus, ultrasound conditioned to the augmentation of the isometric contraction force the smooth muscle of blood vessels and did not improve endothelial- and calcium channel blocker-dependent relaxation.
Collapse
|
39
|
Ustyugov AA, Aliev GM. Cardiovascular drugs and triazole based kinase inhibitors as a new strategies for the treatment of Alzheimer disease. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1429-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Sukhovershin RA, Yepuri G, Ghebremariam YT. Endothelium-Derived Nitric Oxide as an Antiatherogenic Mechanism: Implications for Therapy. Methodist Debakey Cardiovasc J 2016; 11:166-71. [PMID: 26634024 DOI: 10.14797/mdcj-11-3-166] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endothelium-derived nitric oxide (eNO) is a multifunctional signaling molecule critically involved in the maintenance of metabolic and cardiovascular homeostasis. In addition to its role as a potent endogenous vasodilator, eNO suppresses key processes in vascular lesion formation and opposes atherogenesis. This review discusses eNO as an antiatherogenic molecule and highlights factors that influence its bioavailability and therapeutic approaches to restore or enhance its levels.
Collapse
Affiliation(s)
- Roman A Sukhovershin
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Gautham Yepuri
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Yohannes T Ghebremariam
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
41
|
Yar S, Chang HC, Ardehali H. The Good Neighbor: Coping With Insulin Resistance by Modulating Adipose Tissue Endothelial Cell Function. Circ Res 2016; 118:776-8. [PMID: 26941419 DOI: 10.1161/circresaha.116.308338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sumeyye Yar
- From the Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hsiang-Chun Chang
- From the Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hossein Ardehali
- From the Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| |
Collapse
|
42
|
Subramanian D, Gupta S. Pharmacokinetic study of amaranth extract in healthy humans: A randomized trial. Nutrition 2016; 32:748-53. [DOI: 10.1016/j.nut.2015.12.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 02/05/2023]
|
43
|
Ahmad Z, Ng CT, Fong LY, Bakar NAA, Hussain NHM, Ang KP, Ee GCL, Hakim MN. Cryptotanshinone inhibits TNF-α-induced early atherogenic events in vitro. J Physiol Sci 2016; 66:213-20. [PMID: 26732386 PMCID: PMC10717559 DOI: 10.1007/s12576-015-0410-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/27/2015] [Indexed: 12/11/2022]
Abstract
Endothelial dysfunction has been implicated in the pathogenesis of atherosclerosis. Salvia miltiorrhiza (danshen) is a traditional Chinese medicine that has been effectively used to treat cardiovascular disease. Cryptotanshinone (CTS), a major lipophilic compound isolated from S. miltiorrhiza, has been reported to possess cardioprotective effects. However, the anti-atherogenic effects of CTS, particularly on tumor necrosis factor-α (TNF-α)-induced endothelial cell activation, are still unclear. This study aimed to determine the effect of CTS on TNF-α-induced increased endothelial permeability, monocyte adhesion, soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), monocyte chemoattractant protein 1 (MCP-1) and impaired nitric oxide production in human umbilical vein endothelial cells (HUVECs), all of which are early events occurring in atherogenesis. We showed that CTS significantly suppressed TNF-α-induced increased endothelial permeability, monocyte adhesion, sICAM-1, sVCAM-1 and MCP-1, and restored nitric oxide production. These observations suggest that CTS possesses anti-inflammatory properties and could be a promising treatment for the prevention of cytokine-induced early atherogenesis.
Collapse
Affiliation(s)
- Zuraini Ahmad
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , 43400, Serdang, Selangor, Malaysia.
| | - Chin Theng Ng
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , 43400, Serdang, Selangor, Malaysia
| | - Lai Yen Fong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , 43400, Serdang, Selangor, Malaysia
| | - Nurul Ain Abu Bakar
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , 43400, Serdang, Selangor, Malaysia
| | - Nor Hayuti Mohd Hussain
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , 43400, Serdang, Selangor, Malaysia
| | - Kok Pian Ang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , 43400, Serdang, Selangor, Malaysia
| | - Gwendoline Cheng Lian Ee
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Muhammad Nazrul Hakim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
44
|
Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects. Sci Rep 2015; 5:16258. [PMID: 26584637 PMCID: PMC4653649 DOI: 10.1038/srep16258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
Abstract
Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.
Collapse
|
45
|
Li L, Zhou X, Li N, Sun M, Lv J, Xu Z. Herbal drugs against cardiovascular disease: traditional medicine and modern development. Drug Discov Today 2015; 20:1074-86. [PMID: 25956424 DOI: 10.1016/j.drudis.2015.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/23/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
Abstract
Herbal products have been used as conventional medicines for thousands of years, particularly in Eastern countries. Thousands of clinical and experimental investigations have focused on the effects and mechanisms-of-action of herbal medicine in the treatment of cardiovascular diseases (CVDs). Considering the history of clinical practice and the great potentials of herb medicine and/or its ingredients, a review on this topic would be helpful. This article discusses possible effects of herbal remedies in the prevention and treatment of CVDs. Crucially, we also summarize some underlying pharmacological mechanisms for herb products in cardiovascular regulations, which might provide interesting information for further understanding the effects of herbal medicines, and boost the prospect of new herbal products against CVDs.
Collapse
Affiliation(s)
- Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China; Center for Perinatal Biology, Division of Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
46
|
Chen S, Tang Y, Qian Y, Chen R, Zhang L, Wo L, Chai H. Allicin prevents H₂O₂-induced apoptosis of HUVECs by inhibiting an oxidative stress pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:321. [PMID: 25174844 PMCID: PMC4158076 DOI: 10.1186/1472-6882-14-321] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022]
Abstract
Background Allicin, a primary ingredient of garlic, has been proposed to possess cardioprotective properties, which are commonly mediated by improved endothelial function. Methods To investigate the effect and mechanism of allicin on the apoptosis of human umbilical vein endothelial cells (HUVECs), we used Propidium iodide (PI) staining and Annexin V/ PI staining assays to establish a model of oxidative stress apoptosis induced by H2O2. MTT, RT-PCR and western-blot assays were used to detect the effects and mechanism of allicin on the model. Results PI staining, Annexin V/ PI staining assays and morphological assessment suggest that the cell death induced by 0.5 mM H2O2 is primarily apoptotic. Conversely, allicin reverses the effect of H2O2 on cell death, suggesting a role in protecting HUVECs from apoptosis. We demonstrated that H2O2 activates PARP cleavage, reduces pro-Caspase-3 levels and activates Bax expression; however, allicin inhibits each of these apoptotic signaling indicators. Allicin also reduces the levels of malondialdehyde and increases the levels of superoxide dismutase, nitric oxide release and endothelial nitric oxide synthase mRNA, but has no significant effect on inducible nitric oxide synthase mRNA levels. Conclusion These results demonstrate that allicin has powerful effects in protecting HUVECs from apoptosis and suggest that protection occurs via a mechanism involving the protection from H2O2-mediated oxidative stress.
Collapse
|
47
|
Clinical evidence demonstrating the utility of inorganic nitrate in cardiovascular health. Nitric Oxide 2014; 38:45-57. [PMID: 24650698 DOI: 10.1016/j.niox.2014.03.162] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 02/03/2023]
Abstract
The discovery of nitric oxide and its role in almost every facet of human biology opened a new avenue for treatment through manipulation of its canonical signaling and by attempts to augment endogenous nitric oxide generation through provision of substrate and co-factors to the endothelial nitric oxide synthase complex. This has been particularly so in the cardiovascular system and it is well recognized that there is reduced bioavailable nitric oxide in patients with both cardiovascular risk factors and manifest vascular disease. However, these attempts have failed to deliver the expected benefits of such an approach. Recently, an alternative pathway for nitric oxide synthesis has been elucidated that can produce authentic nitric oxide from the 1 electron reduction of inorganic nitrite. Furthermore, it has long been known that symbiotic, facultative, oral microflora can facilitate the reduction of inorganic nitrate, that is ingested in the average diet in millimolar amounts, to inorganic nitrite itself. Thus, there exists an alternative reductive pathway from nitrate, via nitrite as an intermediate, to nitric oxide that provides a novel pathway that may be amenable to therapeutic manipulation. As such, various research groups have explored the utility of manipulation of this nitrate-nitrite-nitric oxide pathway in situations in which nitric oxide is known to have a prominent role. Animal and early-phase human studies of both inorganic nitrite and nitrate supplementation have shown beneficial effects in blood pressure control, platelet function, vascular health and exercise capacity. This review considers in detail the pathways of inorganic nitrate bioactivation and the evidence of clinical utility to date on the cardiovascular system.
Collapse
|
48
|
García C, Nuñez-Anita RE, Thebault S, Arredondo Zamarripa D, Jeziorsky MC, Martínez de la Escalera G, Clapp C. Requirement of phosphorylatable endothelial nitric oxide synthase at Ser-1177 for vasoinhibin-mediated inhibition of endothelial cell migration and proliferation in vitro. Endocrine 2014; 45:263-70. [PMID: 23640371 DOI: 10.1007/s12020-013-9964-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Endothelial nitric oxide synthase (eNOS)-derived nitric oxide is a major vasorelaxing factor and a mediator of vasopermeability and angiogenesis. Vasoinhibins, a family of antiangiogenic prolactin fragments that include 16 K prolactin, block most eNOS-mediated vascular effects. Vasoinhibins activate protein phosphatase 2A, causing eNOS inactivation through dephosphorylation of eNOS at serine residue 1179 in bovine endothelial cells and thereby blocking vascular permeability. In this study, we examined whether human eNOS phosphorylation at S1177 (analogous to bovine S1179) influences other actions of vasoinhibins. Bovine umbilical vein endothelial cells were stably transfected with human wild-type eNOS (WT) or with phospho-mimetic (S1177D) or non-phosphorylatable (S1177A) eNOS mutants. Vasoinhibins inhibited the increases in eNOS activity, migration, and proliferation following the overexpression of WT eNOS but did not affect these responses in cells expressing S1177D and S1177A eNOS mutants. We conclude that eNOS inhibition by dephosphorylation of S1177 is fundamental for the inhibition of endothelial cell migration and proliferation by vasoinhibins.
Collapse
Affiliation(s)
- Celina García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, QRO, Mexico
| | | | | | | | | | | | | |
Collapse
|
49
|
Application of a nitric oxide sensor in biomedicine. BIOSENSORS-BASEL 2014; 4:1-17. [PMID: 25587407 PMCID: PMC4264366 DOI: 10.3390/bios4010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
In the present study, we describe the biochemical properties and effects of nitric oxide (NO) in intact and dysfunctional arterial and venous endothelium. Application of the NO electrochemical sensor in vivo and in vitro in erythrocytes of healthy subjects and patients with vascular disease are reviewed. The electrochemical NO sensor device applied to human umbilical venous endothelial cells (HUVECs) and the description of others NO types of sensors are also mentioned.
Collapse
|
50
|
Cattaneo MG, Cappellini E, Ragni M, Tacchini L, Scaccabarozzi D, Nisoli E, Vicentini LM. Chronic nitric oxide deprivation induces an adaptive antioxidant status in human endothelial cells. Cell Signal 2013; 25:2290-7. [DOI: 10.1016/j.cellsig.2013.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/11/2013] [Accepted: 07/25/2013] [Indexed: 01/21/2023]
|