1
|
Li J, Gong G, Zhang Y, Zheng Y, He Y, Chen M, He X, Zheng X, Gong X, Liu L, Zhou K, Zhao Z, Iv CWS, Hua Y, Li Y, Guo J. Polyphenol-Nanoengineered Monocyte Biohybrids for Targeted Cardiac Repair and Immunomodulation. Adv Healthc Mater 2025; 14:e2403595. [PMID: 39526529 DOI: 10.1002/adhm.202403595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction is one of the leading cause of cardiovascular death worldwide. Invasive interventional procedures and medications are applied to attenuate the attacks associated with ischemic heart disease by reestablishing blood flow and restoring oxygen supply. However, the overactivation of inflammatory responses and unsatisfactory drug delivery efficiency in the infarcted regions prohibit functional improvement. Here, a nanoengineered monocyte (MO)-based biohybrid system, referred to as CTAs @MOs, for the heart-targeted delivery of combinational therapeutic agents (CTAs) containing anti-inflammatory IL-10 and cardiomyogenic miR-19a to overcome the limitation of malperfusion within the infarcted myocardium through a polyphenol-mediated interfacial assembly, is reported. Systemic administration of CTAs@MOs bypasses extensive thoracotomy and intramyocardial administration risks, leading to infarcted heart-specific accumulation and sustained release of therapeutic agents, enabling immunomodulation of the proinflammatory microenvironment and promoting cardiomyocyte proliferation in sequence. Moreover, CTAs@MOs, which serve as a cellular biohybrid-based therapy, significantly improve cardiac function as evidenced by enhanced ejection fractions, increased fractional shortening, and diminished infarct sizes. This polyphenol nanoengineered biohybrid system represents a general and potent platform for the efficient treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Mei Chen
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xianglian He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xue Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - C Wyatt Shields Iv
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Colorado, 80303, USA
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
2
|
Jasiewicz NE, Mei K, Oh HM, Bonacquisti EE, Chaudhari A, Byrum C, Jensen BC, Nguyen J. In situ-crosslinked Zippersomes enhance cardiac repair by increasing accumulation and retention. Bioeng Transl Med 2024; 9:e10697. [PMID: 39545082 PMCID: PMC11558206 DOI: 10.1002/btm2.10697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 11/17/2024] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are a promising treatment for myocardial infarction (MI), but their therapeutic efficacy is limited by inefficient accumulation at the target site. A minimally invasive MSC EV therapy that enhances EV accumulation at the disease site and extends EV retention could significantly improve post-infarct cardiac regeneration. Here, we show that EVs decorated with the next-generation of high-affinity (HiA) heterodimerizing leucine zippers, termed HiA Zippersomes, amplify targetable surface areas through in situ crosslinking and exhibited ~7-fold enhanced accumulation within the infarcted myocardium in mice after 3 days and continued to be retained up to Day 21, surpassing the performance of unmodified EVs. After MI in mice, HiA Zippersomes increase the ejection fraction by 53% and 100% compared with unmodified EVs and phosphate-buffered saline (PBS), respectively. This notable improvement in cardiac function played a crucial role in restoring healthy heart performance. HiA Zippersomes also robustly decrease infarct size by 52% and 60% compared with unmodified EVs and PBS, respectively, thus representing a promising platform for minimally invasive vesicle delivery to the infarcted heart compared to intramyocardial injections.
Collapse
Affiliation(s)
- Natalie E. Jasiewicz
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Kuo‐Ching Mei
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Hannah M. Oh
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Emily E. Bonacquisti
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Ameya Chaudhari
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Camryn Byrum
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Brian C. Jensen
- McAllister Heart Institute, University of North CarolinaChapel HillNorth CarolinaUSA
- Division of Cardiology, Department of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
3
|
Achilli F, Maggiolini S, Madotto F, Bassetti B, Gentile F, Maggioni AP, Colombo GI, Pompilio G. Granulocyte colony-stimulating factor for stem cell mobilisation in acute myocardial infarction: a randomised controlled trial. Heart 2024; 110:1316-1326. [PMID: 39401872 DOI: 10.1136/heartjnl-2024-323926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/02/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND To determine whether granulocyte colony-stimulating factor (G-CSF) improves clinical outcomes after large ST-elevation myocardial infarction (STEMI) when administered early in patients with left ventricular (LV) dysfunction after successful percutaneous coronary intervention (PCI). METHODS STEM-AMI OUTCOME was designed as a prospective, multicentre, nationwide, randomised, open-label, phase III trial (ClinicalTrials.gov ID: NCT01969890) to demonstrate the efficacy and safety of early G-CSF administration in reducing 2-year cardiac mortality and morbidity in patients with STEMI with LV ejection fraction ≤45% after PCI. The primary outcome was a composite of all-cause death, recurrence of myocardial infarction and hospitalisation for heart failure. Due to low recruitment and event rates, the study was discontinued and did not achieve adequate statistical power to verify the hypothesis. RESULTS Patients were randomly allocated to G-CSF (n=260) or standard of care (SOC; n=261). No difference was found in the composite primary outcome between study groups (HR 1.20; 95% CI 0.63 to 2.28). The 2-year mortality was 2.31% in the G-CSF and 2.68% in the control group (HR 0.88; 95% CI 0.29 to 2.60). Adverse events did not differ between the G-CSF (n=65) and SOC groups (n=58; OR 1.17; 95% CI 0.78 to 1.75). In post hoc analyses on the intervention group, we observed a trend towards fewer composite primary outcomes in patients with low bone marrow (BM) cell mobilisation (n=108) versus those with high mobilisation (n=152, with peak leucocyte count >50×109/L; HR 2.86; 95% CI 0.96 to 8.56). Primary outcomes were lower in patients with severe LV systolic dysfunction at discharge treated with G-CSF than in controls (interaction β±SE, -0.08±0.04; p=0.034). CONCLUSIONS Although inconclusive, this is the largest trial in the field of cell-based cardiac repair after STEMI providing evidence of the tolerability and long-term safety of G-CSF treatment. The results prompt further studies to understand which patient can benefit most from BM cell mobilisation. TRIAL REGISTRATION NUMBER NCT01969890.
Collapse
Affiliation(s)
| | | | - Fabiana Madotto
- Dipartimento Area Emergenza-Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Beatrice Bassetti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | - Francesco Gentile
- Department of Cardiology, Hospital Bassini, Cinisello Balsamo, Italy
| | | | - Gualtiero I Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Ryabov VV, Trusov AA, Kercheva MA, Gombozhapova AE, Ilyushenkova JN, Stepanov IV, Fadeev MV, Syrkina AG, Sazonova SI. Somatostatin Receptor Type 2 as a Potential Marker of Local Myocardial Inflammation in Myocardial Infarction: Morphologic Data on Distribution in Infarcted and Normal Human Myocardium. Biomedicines 2024; 12:2178. [PMID: 39457491 PMCID: PMC11504226 DOI: 10.3390/biomedicines12102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Nuclear imaging modalities can detect somatostatin receptor type 2 (SSTR2) in vivo as a potential marker of local post-MI inflammation. SSTR2+ macrophages are thought to be the main substrate for SSTR-targeted radioimaging. However, the distribution of SSTR2+ cells in the MI patients' myocardium is unknown. Using immunohistochemistry, we investigated the distribution of SSTR2+ cells in the myocardium of patients who died during the MI inflammatory phase (n = 7) compared to the control group of individuals with fatal trauma (n = 3). Inflammatory cellular landscapes evolve in a wave front-like pattern, so we divided the myocardium into histological zones: the infarct core (IC), the border zone (BZ), the remote zone (RZ), and the peri-scar zone (PSZ). The number of SSTR2+ neutrophils (NPs), SSTR2+ monocytes/macrophages (Mos/MPs), and SSTR2+ vessels were counted. In the myocardium of the control group, SSTR2+ NPs and SSTR2+ Mos/MPs were occasional, SSTR2+ vessels were absent. In the RZ, the picture was similar to the control group, but there was a lower number of SSTR2+ Mos/MPs in the RZ. In the PSZ, SSTR2+ vessel numbers were highest in the myocardium. In the IC, the median number of SSTR2+ NPs was 200 times higher compared to the RZ or control group myocardium, which may explain the selective uptake of SSTR-targeted radiotracers in the MI area during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Vyacheslav V. Ryabov
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (M.A.K.); (A.E.G.); (A.G.S.)
| | - Andrey A. Trusov
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (M.A.K.); (A.E.G.); (A.G.S.)
| | - Maria A. Kercheva
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (M.A.K.); (A.E.G.); (A.G.S.)
| | - Aleksandra E. Gombozhapova
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (M.A.K.); (A.E.G.); (A.G.S.)
| | - Julia N. Ilyushenkova
- Nuclear Medicine Department, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (J.N.I.); (S.I.S.)
| | - Ivan V. Stepanov
- Department of Pathology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (I.V.S.); (M.V.F.)
| | - Mikhail V. Fadeev
- Department of Pathology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (I.V.S.); (M.V.F.)
| | - Anna G. Syrkina
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (M.A.K.); (A.E.G.); (A.G.S.)
| | - Svetlana I. Sazonova
- Nuclear Medicine Department, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (J.N.I.); (S.I.S.)
| |
Collapse
|
5
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
6
|
Kologrivova I, Kercheva M, Panteleev O, Ryabov V. The Role of Inflammation in the Pathogenesis of Cardiogenic Shock Secondary to Acute Myocardial Infarction: A Narrative Review. Biomedicines 2024; 12:2073. [PMID: 39335587 PMCID: PMC11428626 DOI: 10.3390/biomedicines12092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiogenic shock (CS) is one of the most serious complications of myocardial infarction (MI) with a high mortality rate. The timely and effective prevention and early suppression of this adverse event may influence the prognosis and outcome in patients with MI complicated by CS (MI CS). Despite the use of existing pharmaco-invasive options for maintaining an optimal pumping function of the heart in patients with MI CS, its mortality remains high, prompting the search for new approaches to pathogenetic therapy. This review considers the role of the systemic inflammatory response in the pathogenesis of MI CS. The primary processes involved in its initiation are described, including the progression from the onset of MI to the generalization of the inflammatory response and the development of multiple organ dysfunction. The approaches to anti-inflammatory therapy in patients with CS are discussed, and further promising research directions are outlined. In this review, we updated and summarized information on the inflammatory component of MI CS pathogenesis with a particular focus on its foundational aspects. This will facilitate the identification of specific inflammatory phenotypes and endotypes in MI CS and the development of targeted therapeutic strategies for this MI complication.
Collapse
Affiliation(s)
- Irina Kologrivova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
| | - Maria Kercheva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, Tomsk 634055, Russia
| | - Oleg Panteleev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, Tomsk 634055, Russia
| | - Vyacheslav Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, Tomsk 634055, Russia
| |
Collapse
|
7
|
Burak MF, Stanley TL, Lawson EA, Campbell SL, Lynch L, Hasty AH, Domingos AI, Dixit VD, Hotamışlıgil GS, Sheedy FJ, Dixon AE, Brinkley TE, Hill JA, Donath MY, Grinspoon SK. Adiposity, immunity, and inflammation: interrelationships in health and disease: a report from 24th Annual Harvard Nutrition Obesity Symposium, June 2023. Am J Clin Nutr 2024; 120:257-268. [PMID: 38705359 PMCID: PMC11347817 DOI: 10.1016/j.ajcnut.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The rapidly evolving field of immunometabolism explores how changes in local immune environments may affect key metabolic and cellular processes, including that of adipose tissue. Importantly, these changes may contribute to low-grade systemic inflammation. In turn, chronic low-grade inflammation affecting adipose tissue may exacerbate the outcome of metabolic diseases. Novel advances in our understanding of immunometabolic processes may critically lead to interventions to reduce disease severity and progression. An important example in this regard relates to obesity, which has a multifaceted effect on immunity, activating the proinflammatory pathways such as the inflammasome and disrupting cellular homeostasis. This multifaceted effect of obesity can be investigated through study of downstream conditions using cellular and systemic investigative techniques. To further explore this field, the National Institutes of Health P30 Nutrition Obesity Research Center at Harvard, in partnership with Harvard Medical School, assembled experts to present at its 24th Annual Symposium entitled "Adiposity, Immunity, and Inflammation: Interrelationships in Health and Disease" on 7 June, 2023. This manuscript seeks to synthesize and present key findings from the symposium, highlighting new research and novel disease-specific advances in the field. Better understanding the interaction between metabolism and immunity offers promising preventative and treatment therapies for obesity-related immunometabolic diseases.
Collapse
Affiliation(s)
- Mehmet Furkan Burak
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Takara L Stanley
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sophia L Campbell
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lydia Lynch
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, VA Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, United Kingdom
| | - Vishwa D Dixit
- Department of Pathology, Department of Comparative Medicine, Department of Immunobiology, Yale School of Medicine, and Yale Center for Research on Aging, New Haven, CT, United States
| | - Gökhan S Hotamışlıgil
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Frederick J Sheedy
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Tina E Brinkley
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marc Y Donath
- Department of Biomedicine, University of Basel, Basel, Switzerland; Clinic of Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Liu YJ, Li R, Xiao D, Yang C, Li YL, Chen JL, Wang Z, Zhao XG, Shan ZG. Incorporating machine learning and PPI networks to identify mitochondrial fission-related immune markers in abdominal aortic aneurysms. Heliyon 2024; 10:e27989. [PMID: 38590878 PMCID: PMC10999885 DOI: 10.1016/j.heliyon.2024.e27989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024] Open
Abstract
Purpose The aim of this study is to investigate abdominal aortic aneurysm (AAA), a disease characterised by inflammation and progressive vasodilatation, for novel gene-targeted therapeutic loci. Methods To do this, we used weighted co-expression network analysis (WGCNA) and differential gene analysis on samples from the GEO database. Additionally, we carried out enrichment analysis and determined that the blue module was of interest. Additionally, we performed an investigation of immune infiltration and discovered genes linked to immune evasion and mitochondrial fission. In order to screen for feature genes, we used two PPI network gene selection methods and five machine learning methods. This allowed us to identify the most featrue genes (MFGs). The expression of the MFGs in various cell subgroups was then evaluated by analysis of single cell samples from AAA. Additionally, we looked at the expression levels of the MFGs as well as the levels of inflammatory immune-related markers in cellular and animal models of AAA. Finally, we predicted potential drugs that could be targeted for the treatment of AAA. Results Our research identified 1249 up-regulated differential genes and 3653 down-regulated differential genes. Through WGCNA, we also discovered 44 genes in the blue module. By taking the point where several strategies for gene selection overlap, the MFG (ITGAL and SELL) was produced. We discovered through single cell research that the MFG were specifically expressed in T regulatory cells, NK cells, B lineage, and lymphocytes. In both animal and cellular models of AAA, the MFGs' mRNA levels rose. Conclusion We searched for the AAA novel targeted gene (ITGAL and SELL), which most likely function through lymphocytes of the B lineage, NK cells, T regulatory cells, and B lineage. This analysis gave AAA a brand-new goal to treat or prevent the disease.
Collapse
Affiliation(s)
- Yi-jiang Liu
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Rui Li
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Di Xiao
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Cui Yang
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Yan-lin Li
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Jia-lin Chen
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
| | - Zhan Wang
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Xin-guo Zhao
- Yinan County People's Hospital, Linyi, 276300, China
| | - Zhong-gui Shan
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| |
Collapse
|
9
|
Jasiewicz NE, Mei KC, Oh HM, Bonacquisti EE, Chaudhari A, Byrum C, Jensen BC, Nguyen J. In Situ-Crosslinked Zippersomes Enhance Cardiac Repair by Increasing Accumulation and Retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585030. [PMID: 38559120 PMCID: PMC10980051 DOI: 10.1101/2024.03.14.585030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are a promising treatment for myocardial infarction, but their therapeutic efficacy is limited by inefficient accumulation at the target site. A non-invasive MSC EV therapy that enhances EV accumulation at the disease site and extends EV retention could significantly improve post-infarct cardiac regeneration. Here we show that EVs decorated with the next-generation of high-affinity heterodimerizing leucine zippers, termed high-affinity (HiA) Zippersomes, amplify targetable surface areas through in situ crosslinking and exhibited ∼7-fold enhanced accumulation within the infarcted myocardium in mice after three days and continued to be retained up to day 21, surpassing the performance of unmodified EVs. After myocardial infarction in mice, high-affinity Zippersomes increase the ejection fraction by 53% and 100% compared with unmodified EVs and PBS, respectively. This notable improvement in cardiac function played a crucial role in restoring healthy heart performance. High-affinity Zippersomes also robustly decrease infarct size by 52% and 60% compared with unmodified EVs and PBS, respectively, thus representing a promising platform for non-invasive vesicle delivery to the infarcted heart. Translational Impact Statement Therapeutic delivery to the heart remains inefficient and poses a bottleneck in modern drug delivery. Surgical application and intramyocardial injection of therapeutics carry high risks for most heart attack patients. To address these limitations, we have developed a non-invasive strategy for efficient cardiac accumulation of therapeutics using in situ crosslinking. Our approach achieves high cardiac deposition of therapeutics without invasive intramyocardial injections. Patients admitted with myocardial infarction typically receive intravenous access, which would allow painless administration of Zippersomes alongside standard of care.
Collapse
|
10
|
Qi B, Li T, Luo H, Hu L, Feng R, Wang D, Peng T, Ren G, Guo D, Liu M, Wang Q, Zhang M, Li Y. Reticulon 3 deficiency ameliorates post-myocardial infarction heart failure by alleviating mitochondrial dysfunction and inflammation. MedComm (Beijing) 2024; 5:e503. [PMID: 38420163 PMCID: PMC10901281 DOI: 10.1002/mco2.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Multiple molecular mechanisms are involved in the development of heart failure (HF) after myocardial infarction (MI). However, interventions targeting these pathological processes alone remain clinically ineffective. Therefore, it is essential to identify new therapeutic targets for alleviating cardiac dysfunction after MI. Here, gain- and loss-of-function approaches were used to investigate the role of reticulon 3 (RTN3) in HF after MI. We found that RTN3 was elevated in the myocardium of patients with HF and mice with MI. Cardiomyocyte-specific RTN3 overexpression decreased systolic function in mice under physiological conditions and exacerbated the development of HF induced by MI. Conversely, RTN3 knockout alleviated cardiac dysfunction after MI. Mechanistically, RTN3 bound and mediated heat shock protein beta-1 (HSPB1) translocation from the cytosol to the endoplasmic reticulum. The reduction of cytosolic HSPB1 was responsible for the elevation of TLR4, which impaired mitochondrial function and promoted inflammation through toll-like receptor 4 (TLR4)/peroxisome proliferator-activated receptor gamma coactivator-1 alpha(PGC-1α) and TLR4/Nuclear factor-kappa B(NFκB) pathways, respectively. Furthermore, the HSPB1 inhibitor reversed the protective effect of RTN3 knockout on MI. Additionally, elevated plasma RTN3 level is associated with decreased cardiac function in patients with acute MI. This study identified RTN3 as a critical driver of HF after MI and suggests targeting RTN3 as a promising therapeutic strategy for MI and related cardiovascular diseases.
Collapse
Affiliation(s)
- Bingchao Qi
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Tiantian Li
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Haixia Luo
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Lang Hu
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Renqian Feng
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Di Wang
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Tingwei Peng
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Gaotong Ren
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Dong Guo
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Mingchuan Liu
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Qiuhe Wang
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Mingming Zhang
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Yan Li
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| |
Collapse
|
11
|
Dong Z, Hou L, Luo W, Pan LH, Li X, Tan HP, Wu RD, Lu H, Yao K, Mu MD, Gao CS, Weng XY, Ge JB. Myocardial infarction drives trained immunity of monocytes, accelerating atherosclerosis. Eur Heart J 2024; 45:669-684. [PMID: 38085922 DOI: 10.1093/eurheartj/ehad787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 09/28/2023] [Accepted: 11/16/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND AIMS Survivors of acute coronary syndromes face an elevated risk of recurrent atherosclerosis-related vascular events despite advanced medical treatments. The underlying causes remain unclear. This study aims to investigate whether myocardial infarction (MI)-induced trained immunity in monocytes could sustain proatherogenic traits and expedite atherosclerosis. METHODS Apolipoprotein-E deficient (ApoE-/-) mice and adoptive bone marrow transfer chimeric mice underwent MI or myocardial ischaemia-reperfusion (IR). A subsequent 12-week high-fat diet (HFD) regimen was implemented to elucidate the mechanism behind monocyte trained immunity. In addition, classical monocytes were analysed by flow cytometry in the blood of enrolled patients. RESULTS In MI and IR mice, blood monocytes and bone marrow-derived macrophages exhibited elevated spleen tyrosine kinase (SYK), lysine methyltransferase 5A (KMT5A), and CCHC-type zinc finger nucleic acid-binding protein (CNBP) expression upon exposure to a HFD or oxidized LDL (oxLDL) stimulation. MI-induced trained immunity was transmissible by transplantation of bone marrow to accelerate atherosclerosis in naive recipients. KMT5A specifically recruited monomethylation of Lys20 of histone H4 (H4K20me) to the gene body of SYK and synergistically transactivated SYK with CNBP. In vivo small interfering RNA (siRNA) inhibition of KMT5A or CNBP potentially slowed post-MI atherosclerosis. Sympathetic denervation with 6-hydroxydopamine reduced atherosclerosis and inflammation after MI. Classical monocytes from ST-elevation MI (STEMI) patients with advanced coronary lesions expressed higher SYK and KMT5A gene levels. CONCLUSIONS The findings underscore the crucial role of monocyte trained immunity in accelerated atherosclerosis after MI, implying that SYK in blood classical monocytes may serve as a predictive factor for the progression of atherosclerosis in STEMI patients.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lei Hou
- Institute of Cardiovascular Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, China
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai 201600, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Li-Hong Pan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiao Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hai-Peng Tan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Run-Da Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Kang Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Man-Di Mu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen-Shan Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Xin-Yu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jun-Bo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Pan W, Zhou G, Hu M, Li G, Zhang M, Yang H, Li K, Li J, Liu T, Wang Y, Jin J. Coenzyme Q10 mitigates macrophage mediated inflammation in heart following myocardial infarction via the NLRP3/IL1β pathway. BMC Cardiovasc Disord 2024; 24:76. [PMID: 38281937 PMCID: PMC10822151 DOI: 10.1186/s12872-024-03729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The protective effect of Coenzyme Q10 (CoQ10) on the cardiovascular system has been reported, however, whether it can promote early recovery of cardiac function and alleviate cardiac remodeling after myocardial infarction (MI) remains to be elucidated. Whether CoQ10 may regulate the macrophage-mediated pro-inflammatory response after MI and its potential mechanism are worth further exploration. METHODS To determine the baseline plasma levels of CoQ10 by LC-MS/MS, healthy controls and MI patients (n = 11 each) with age- and gender-matched were randomly enrolled. Additional MI patients were consecutively enrolled and randomized into the blank control (n = 59) or CoQ10 group (n = 61). Follow-ups were performed at 1- and 3-month to assess cardiac function after percutaneous coronary intervention (PCI). In the animal study, mice were orally administered CoQ10/vehicle daily and were subjected to left anterior descending coronary artery (LAD) ligation or sham operation. Echocardiography and serum BNP measured by ELISA were analyzed to evaluate cardiac function. Masson staining and WGA staining were performed to analyze the myocardial fibrosis and cardiomyocyte hypertrophy, respectively. Immunofluorescence staining was performed to assess the infiltration of IL1β/ROS-positive macrophages into the ischemic myocardium. Flow cytometry was employed to analyze the recruitment of myeloid immune cells to the ischemic myocardium post-MI. The expression of inflammatory indicators was assessed through RNA-seq, qPCR, and western blotting (WB). RESULTS Compared to controls, MI patients showed a plasma deficiency of CoQ10 (0.76 ± 0.31 vs. 0.46 ± 0.10 µg/ml). CoQ10 supplementation significantly promoted the recovery of cardiac function in MI patients at 1 and 3 months after PCI. In mice study, compared to vehicle-treated MI mice, CoQ10-treated MI mice showed a favorable trend in survival rate (42.85% vs. 61.90%), as well as significantly alleviated cardiac dysfunction, myocardial fibrosis, and cardiac hypertrophy. Notably, CoQ10 administration significantly suppressed the recruitment of pro-inflammatory CCR2+ macrophages into infarct myocardium and their mediated inflammatory response, partially by attenuating the activation of the NLR family pyrin domain containing 3 (NLRP3)/Interleukin-1 beta (IL1β) signaling pathway. CONCLUSIONS These findings suggest that CoQ10 can significantly promote early recovery of cardiac function after MI. CoQ10 may function by inhibiting the recruitment of CCR2+ macrophages and suppressing the activation of the NLRP3/IL1β pathway in macrophages. TRIAL REGISTRATION Date of registration 09/04/2021 (number: ChiCTR2100045256).
Collapse
Affiliation(s)
- Wenxu Pan
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guiquan Zhou
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Meiling Hu
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Gaoshan Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Mingle Zhang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hao Yang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kunyan Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jingwei Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ting Liu
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ying Wang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Jun Jin
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
13
|
Luo L, Li Y, Bao Z, Zhu D, Chen G, Li W, Xiao Y, Wang Z, Zhang Y, Liu H, Chen Y, Liao Y, Cheng K, Li Z. Pericardial Delivery of SDF-1α Puerarin Hydrogel Promotes Heart Repair and Electrical Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302686. [PMID: 37665792 DOI: 10.1002/adma.202302686] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Indexed: 09/06/2023]
Abstract
The stromal-derived factor 1α/chemokine receptor 4 (SDF-1α/CXCR4) axis contributes to myocardial protection after myocardial infarction (MI) by recruiting endogenous stem cells into the ischemic tissue. However, excessive inflammatory macrophages are also recruited simultaneously, aggravating myocardial damage. More seriously, the increased inflammation contributes to abnormal cardiomyocyte electrical coupling, leading to inhomogeneities in ventricular conduction and retarded conduction velocity. It is highly desirable to selectively recruit the stem cells but block the inflammation. In this work, SDF-1α-encapsulated Puerarin (PUE) hydrogel (SDF-1α@PUE) is capable of enhancing endogenous stem cell homing and simultaneously polarizing the recruited monocyte/macrophages into a repairing phenotype. Flow cytometry analysis of the treated heart tissue shows that endogenous bone marrow mesenchymal stem cells, hemopoietic stem cells, and immune cells are recruited while SDF-1α@PUE efficiently polarizes the recruited monocytes/macrophages into the M2 type. These macrophages influence the preservation of connexin 43 (Cx43) expression which modulates intercellular coupling and improves electrical conduction. Furthermore, by taking advantage of the improved "soil", the recruited stem cells mediate an improved cardiac function by preventing deterioration, promoting neovascular architecture, and reducing infarct size. These findings demonstrate a promising therapeutic platform for MI that not only facilitates heart regeneration but also reduces the risk of cardiac arrhythmias.
Collapse
Affiliation(s)
- Li Luo
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yuetong Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Ziwei Bao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Guoqin Chen
- Cardiology Department of Panyu Central Hospital and Cardiovascular Disease Institute of Panyu District, Guangzhou, 511400, P. R. China
| | - Weirun Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yingxian Xiao
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Zhenzhen Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yixin Zhang
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yanmei Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, 10032, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| |
Collapse
|
14
|
Li J, Xin Y, Wang Z, Li J, Li W, Li H. The role of cardiac resident macrophage in cardiac aging. Aging Cell 2023; 22:e14008. [PMID: 37817547 PMCID: PMC10726886 DOI: 10.1111/acel.14008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Advancements in longevity research have provided insights into the impact of cardiac aging on the structural and functional aspects of the heart. Notable changes include the gradual remodeling of the myocardium, the occurrence of left ventricular hypertrophy, and the decline in both systolic and diastolic functions. Macrophages, a type of immune cell, play a pivotal role in innate immunity by serving as vigilant agents against pathogens, facilitating wound healing, and orchestrating the development of targeted acquired immune responses. Distinct subsets of macrophages are present within the cardiac tissue and demonstrate varied functions in response to myocardial injury. The differentiation of cardiac macrophages according to their developmental origin has proven to be a valuable strategy in identifying reparative macrophage populations, which originate from embryonic cells and reside within the tissue, as well as inflammatory macrophages, which are derived from monocytes and recruited to the heart. These subsets of macrophages possess unique characteristics and perform distinct functions. This review aims to summarize the current understanding of the roles and phenotypes of cardiac macrophages in various conditions, including the steady state, aging, and other pathological conditions. Additionally, it will highlight areas that require further investigation to expand our knowledge in this field.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhaojia Wang
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular DiseaseBeijingChina
| |
Collapse
|
15
|
Qi B, Wang HY, Ma X, Chi YF, Gui C. Identification of the Key Genes of Immune Infiltration in Dilated Cardiomyopathy. Int Heart J 2023; 64:1054-1064. [PMID: 37967988 DOI: 10.1536/ihj.23-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure. In this study, we screened the immune infiltration-related genes associated with DCM to explore the potential molecular mechanisms and provide a basis for the early diagnosis and development of new immunotherapeutic targets. A dataset related to DCM was downloaded from the Gene Expression Omnibus (GEO) database. R software was applied to the genetic differential analysis of patients with DCM and healthy individuals, and the obtained differential expressed genes (DEGs) were screened for differentially expressed immune-related genes (DEIRGs) after comparison with the immune microsatellite database. Gene functional analysis established a protein interaction network (PPI). The immune infiltration in patients with DCM versus normal controls was assessed using the CIBERSORT algorithm, the hub genes were screened using the MOCDE app, and the hubs were validated in multiple datasets. A total of 246 DEGs were screened (adj. P < 0.05 and |logFC| > 0.3), and a total of 170 DEIRGs were compared. Gene Ontology analysis showed significant (adj. P < 0.05) Biological Process entries of 591, Cellular Component of 10, and Molecular Function of 39; Kyoto Encyclopedia of Genes and Genomes showed 20 significant entries, mainly focused on cytokines involved in immune-related response, etc. A protein interaction network comprising 28 hub DEGs was constructed in combination with the PPI network interactions. DEIRG was mainly distributed in the T-cell receptor pathway by immune infiltration detection analysis, and significant changes in central memory T-cells were found by analyzing T-cell-related subpathways, where INSR, HLA-B, IFITM1, and HBEGF were significantly differentially expressed. We selected 632 hospitalized patients for validation and found that INSR and HLA-B expression were associated with DCM development by Nomogram. The expression of HLA-B in peripheral blood T-cells was higher in DCM patients than in the normal group, as verified by qRT-PCR. However, the detailed mechanism needs to be further explored.
Collapse
Affiliation(s)
- Bin Qi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Hai-Yan Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Xiao Ma
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Yu-Feng Chi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Chun Gui
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| |
Collapse
|
16
|
Tsigkou V, Oikonomou E, Anastasiou A, Lampsas S, Zakynthinos GE, Kalogeras K, Katsioupa M, Kapsali M, Kourampi I, Pesiridis T, Marinos G, Vavuranakis MA, Tousoulis D, Vavuranakis M, Siasos G. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. Int J Mol Sci 2023; 24:ijms24054321. [PMID: 36901752 PMCID: PMC10001590 DOI: 10.3390/ijms24054321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Heart failure is a complex medical syndrome that is attributed to a number of risk factors; nevertheless, its clinical presentation is quite similar among the different etiologies. Heart failure displays a rapidly increasing prevalence due to the aging of the population and the success of medical treatment and devices. The pathophysiology of heart failure comprises several mechanisms, such as activation of neurohormonal systems, oxidative stress, dysfunctional calcium handling, impaired energy utilization, mitochondrial dysfunction, and inflammation, which are also implicated in the development of endothelial dysfunction. Heart failure with reduced ejection fraction is usually the result of myocardial loss, which progressively ends in myocardial remodeling. On the other hand, heart failure with preserved ejection fraction is common in patients with comorbidities such as diabetes mellitus, obesity, and hypertension, which trigger the creation of a micro-environment of chronic, ongoing inflammation. Interestingly, endothelial dysfunction of both peripheral vessels and coronary epicardial vessels and microcirculation is a common characteristic of both categories of heart failure and has been associated with worse cardiovascular outcomes. Indeed, exercise training and several heart failure drug categories display favorable effects against endothelial dysfunction apart from their established direct myocardial benefit.
Collapse
Affiliation(s)
- Vasiliki Tsigkou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-69-4770-1299
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - George E. Zakynthinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Kapsali
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Islam Kourampi
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, Tong Z, Yang Q, Wang M, Chen L, Sun P, Yang Y, Cui J, Yang M, Zhang Y, Wang D, Wu J, Zhang M, Yu B. Histone Lactylation Boosts Reparative Gene Activation Post-Myocardial Infarction. Circ Res 2022; 131:893-908. [PMID: 36268709 DOI: 10.1161/circresaha.122.320488] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inflammation resolution and cardiac repair initiation after myocardial infarction (MI) require timely activation of reparative signals. Histone lactylation confers macrophage homeostatic gene expression signatures via transcriptional regulation. However, the role of histone lactylation in the repair response post-MI remains unclear. We aimed to investigate whether histone lactylation induces reparative gene expression in monocytes early and remotely post-MI. METHODS Single-cell transcriptome data indicated that reparative genes were activated early and remotely in bone marrow and circulating monocytes before cardiac recruitment. Western blotting and immunofluorescence staining revealed increases in histone lactylation levels, including the previously identified histone H3K18 lactylation in monocyte-macrophages early post-MI. Through joint CUT&Tag and RNA-sequencing analyses, we identified Lrg1, Vegf-a, and IL-10 as histone H3K18 lactylation target genes. The increased modification and expression levels of these target genes post-MI were verified by chromatin immunoprecipitation-qPCR and reverse transcription-qPCR. RESULTS We demonstrated that histone lactylation regulates the anti-inflammatory and pro-angiogenic dual activities of monocyte-macrophages by facilitating reparative gene transcription and confirmed that histone lactylation favors a reparative environment and improves cardiac function post-MI. Furthermore, we explored the potential positive role of monocyte histone lactylation in reperfused MI. Mechanistically, we provided new evidence that monocytes undergo metabolic reprogramming in the early stage of MI and demonstrated that dysregulated glycolysis and MCT1 (monocarboxylate transporter 1)-mediated lactate transport promote histone lactylation. Finally, we revealed the catalytic effect of IL (interleukin)-1β-dependent GCN5 (general control non-depressible 5) recruitment on histone H3K18 lactylation and elucidated its potential role as an upstream regulatory element in the regulation of monocyte histone lactylation and downstream reparative gene expression post-MI. CONCLUSIONS Histone lactylation promotes early remote activation of the reparative transcriptional response in monocytes, which is essential for the establishment of immune homeostasis and timely activation of the cardiac repair process post-MI.
Collapse
Affiliation(s)
- Naixin Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Weiwei Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Xiaoqi Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Ge Mang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Jianfeng Chen
- Experimental Animal Centre (J. Chen), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiangyu Yan
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Zhonghua Tong
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Qiannan Yang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Mengdi Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Liangqi Chen
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Ping Sun
- Department of Ultrasound (P.S.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Yupeng Yang
- Guoke Biotechnology Co., Ltd., Changping District, Beijing, China (Y.Y.)
| | - Jingxuan Cui
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Mian Yang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Yafei Zhang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Dongni Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Jian Wu
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Maomao Zhang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Bo Yu
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| |
Collapse
|
18
|
Márquez-Sánchez AC, Koltsova EK. Immune and inflammatory mechanisms of abdominal aortic aneurysm. Front Immunol 2022; 13:989933. [PMID: 36275758 PMCID: PMC9583679 DOI: 10.3389/fimmu.2022.989933] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Immune-mediated infiltration and a destruction of the aortic wall during AAA development plays significant role in the pathogenesis of this disease. While various immune cells had been found in AAA, the mechanisms of their activation and function are still far from being understood. A better understanding of mechanisms regulating the development of aberrant immune cell activation in AAA is essential for the development of novel preventive and therapeutic approaches. In this review we summarize current knowledge about the role of immune cells in AAA and discuss how pathogenic immune cell activation is regulated in this disease.
Collapse
|
19
|
Ding Y, Wang F, Guo Y, Yang M, Zhang H. Integrated Analysis and Validation of Autophagy-Related Genes and Immune Infiltration in Acute Myocardial Infarction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3851551. [PMID: 36238493 PMCID: PMC9553342 DOI: 10.1155/2022/3851551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022]
Abstract
Background Acute myocardial infarction (AMI) is one of the most critical conditions of coronary heart disease with many uncertainties regarding reduction of ischemia/reperfusion injury, medical treatment strategies, and other aspects. The inflammatory immune response has a bidirectional regulatory role in AMI and plays an essential role in myocardial remodeling after AMI. The purpose of our research was tantamount to explore possible mechanisms of AMI and to analyze the relationship with the immune microenvironment. Methods We firstly analyzed the expression profile of GSE61144 and HADb to identify differentially expressed autophagy-related genes (DEARGs). Then, we performed GO, functional enrichment analysis, and constructed PPI network by Metascape. A lncRNA-miRNA-mRNA ceRNA network was built, and hub genes were extracted by Cytoscape. After that, we used CIBERSORT algorithm to estimate the proportion of immunocytes, followed by correlation analysis to find relationships between hub DEARGs and immunocyte subsets. Finally, we verified those hub genes in another dataset and cellular experiments qPCR. Results Compared with controls, we identified 44 DEARGs and then filtered the genes of MCODE by constructing PPI network for further analysis. A total of 45 lncRNAs, 24 miRNAs, 19 mRNAs, 162 lncRNA-miRNA pairs, and 37 mRNA-miRNA pairs were used to construct a ceRNA network, and 4 hub DEARGs (BCL2, MAPK1, RAF1, and PRKAR1A) were extracted. We then estimated 5 classes of immunocytes that differed between AMI and controls. According to the results of correlation analysis, these 4 hub DEARGs may play modulatory effects in immune infiltrating cells, notably in CD8+ T cells and neutrophils. Finally, the same results were verified in GSE60993 and qPCR experiments. Conclusion Our findings suggest that those hub DEARGs (BCL2, MAPK1, RAF1, and PRKAR1A) and immunocytes probably play functions in the progression of AMI, providing potential diagnostic markers and new perspectives for treatment of AMI.
Collapse
Affiliation(s)
- Yan Ding
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Feng Wang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Yousheng Guo
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Mingwei Yang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Huanji Zhang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen 518033, China
| |
Collapse
|
20
|
Prediction of Immune Infiltration Diagnostic Gene Biomarkers in Kawasaki Disease. J Immunol Res 2022; 2022:8739498. [PMID: 35755167 PMCID: PMC9232301 DOI: 10.1155/2022/8739498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Kawasaki disease (KD) is characterized by disorder of immune response with unknown etiology. Immune cells may be closely related to the onset of KD. The focus of this research was to evaluate the significance of the infiltration of immune cells for this disease and find possible diagnostic biomarkers for KD. The Gene Expression Omnibus database was utilized to retrieve two freely accessible gene expression patterns (GSE68004 and GSE18606 datasets) from human KD and control specimens. 114 KD, as well as 46 control specimens, were searched for obtaining differentially expressed genes (DEGs). Candidate biological markers were determined utilizing the support vector machine recursive feature elimination and the least absolute shrinkage and selection operator regression model analysis. To assess discriminating capacity, the area under the receiver operating characteristic curve (AUC) was computed. The GSE73461 dataset was utilized to observe the biomarkers' expression levels and diagnostic significance in KD (78 KD patients and 55 controls). CIBERSORT was employed to assess the composition profiles of the 22 subtypes of immune cell fraction in KD on the basis of combined cohorts. 37 genes were discovered. The DEGs identified were predominantly involved in arteriosclerotic cardiovascular disease, atherosclerosis, autoimmune disease of the urogenital tract, and bacterial infectious disease. Gene sets related to complement and coagulation cascades, Toll-like receptor signaling pathway, Fc gamma R-mediated phagocytosis, NOD-like receptor signaling pathway, and regulation of actin cytoskeleton underwent differential activation in KD as opposed to the controls. KD diagnostic biomarkers, including the alkaline phosphatase (ALPL), endoplasmic reticulum degradation-enhancing alpha-mannosidase-like protein 2 (EDEM2), and histone cluster 2 (HIST2H2BE), were discovered (AUC = 1.000) and verified utilizing the GSE73461 dataset (AUC = 1.000). Analyses of immune cell infiltration demonstrated that ALPL, EDEM2, and HIST2H2BE were linked to CD4 memory resting T cells, monocytes, M0 macrophages, CD8 T cells, neutrophils, and memory CD4 T cells. ALPL, EDEM2, and HIST2H2BE could be utilized as KD diagnostic indicators, and they can also deliver useful information for future research on the disease's incidence and molecular processes.
Collapse
|
21
|
Kercheva M, Ryabov V, Trusov A, Stepanov I, Kzhyshkowska J. Characteristics of the Cardiosplenic Axis in Patients with Fatal Myocardial Infarction. Life (Basel) 2022; 12:life12050673. [PMID: 35629341 PMCID: PMC9147017 DOI: 10.3390/life12050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Myocardial ischemia triggers neurohumoral activation of the cardiosplenic axis. In rodents, adverse outcomes occur upon prolonged entrance of mononuclear cells from the spleen into myocardial tissue. The purpose of this study is to assess the features of spleen structure in patients with fatal myocardial infarction (MI), the dynamics of macrophage infiltration of the spleen and its relationship with cardiac macrophage infiltration and unfavorable outcomes. Using immunohistochemistry techniques, we analyzed the macrophage infiltration of the spleen and myocardium sections collected from patients (n = 30) with fatal MI. The spleen of the patients was decreased and showed a predominance of red pulp with a high concentration of CD68+ and stabilin-1+ cells. The white pulp contained many medium and small follicles and a lower concentration of CD68+ and stabilin-1+ cells, which was comparable to that in the infarct area of the myocardium. The concentration of CD68+ and stabilin-1+ cells increased in the myocardium in the late period of MI, but did not show any dynamics in the spleen. A high number of CD68+ cells in the red pulp and reduced concentration of stabilin-1+ cells in the white pulp were associated with unfavorable post-infarction outcomes. These fundamental findings could be a basis for the development of new personalized therapeutic and diagnostic approaches for the treatment of MI and its complications.
Collapse
Affiliation(s)
- Maria Kercheva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Street, 634012 Tomsk, Russia; (V.R.); (A.T.); (I.S.)
- Central Research Laboratory, Siberian State Medical University, 2 Moscovsky Trakt, 634055 Tomsk, Russia
- Correspondence: ; Tel.: +7-(3822)-561232
| | - Vyacheslav Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Street, 634012 Tomsk, Russia; (V.R.); (A.T.); (I.S.)
- Central Research Laboratory, Siberian State Medical University, 2 Moscovsky Trakt, 634055 Tomsk, Russia
- Laboratory of Translational and Cellular Biomedicine Department, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia
| | - Andrey Trusov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Street, 634012 Tomsk, Russia; (V.R.); (A.T.); (I.S.)
| | - Ivan Stepanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Street, 634012 Tomsk, Russia; (V.R.); (A.T.); (I.S.)
| | - Julia Kzhyshkowska
- Department for Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, University of Heidelberg, 1-3 Theodor-Kutzer Ufer, 68167 Mannheim, Germany;
| |
Collapse
|
22
|
Zhang Y, Xia R, Lv M, Li Z, Jin L, Chen X, Han Y, Shi C, Jiang Y, Jin S. Machine-Learning Algorithm-Based Prediction of Diagnostic Gene Biomarkers Related to Immune Infiltration in Patients With Chronic Obstructive Pulmonary Disease. Front Immunol 2022; 13:740513. [PMID: 35350787 PMCID: PMC8957805 DOI: 10.3389/fimmu.2022.740513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/11/2022] [Indexed: 01/15/2023] Open
Abstract
Objective This study aims to identify clinically relevant diagnostic biomarkers in chronic obstructive pulmonary disease (COPD) while exploring how immune cell infiltration contributes towards COPD pathogenesis. Methods The GEO database provided two human COPD gene expression datasets (GSE38974 and GSE76925; n=134) along with the relevant controls (n=49) for differentially expressed gene (DEG) analyses. Candidate biomarkers were identified using the support vector machine recursive feature elimination (SVM-RFE) analysis and the LASSO regression model. The discriminatory ability was determined using the area under the receiver operating characteristic curve (AUC) values. These candidate biomarkers were characterized in the GSE106986 dataset (14 COPD patients and 5 controls) in terms of their respective diagnostic values and expression levels. The CIBERSORT program was used to estimate patterns of tissue infiltration of 22 types of immune cells. Furthermore, the in vivo and in vitro model of COPD was established using cigarette smoke extract (CSE) to validated the bioinformatics results. Results 80 genes were identified via DEG analysis that were primarily involved in cellular amino acid and metabolic processes, regulation of telomerase activity and phagocytosis, antigen processing and MHC class I-mediated peptide antigen presentation, and other biological processes. LASSO and SVM-RFE were used to further characterize the candidate diagnostic markers for COPD, SLC27A3, and STAU1. SLC27A3 and STAU1 were found to be diagnostic markers of COPD in the metadata cohort (AUC=0.734, AUC=0.745). Their relevance in COPD were validated in the GSE106986 dataset (AUC=0.900 AUC=0.971). Subsequent analysis of immune cell infiltration discovered an association between SLC27A3 and STAU1 with resting NK cells, plasma cells, eosinophils, activated mast cells, memory B cells, CD8+, CD4+, and helper follicular T-cells. The expressions of SLC27A3 and STAU1 were upregulated in COPD models both in vivo and in vitro. Immune infiltration activation was observed in COPD models, accompanied by the enhanced expression of SLC27A3 and STAU1. Whereas, the knockdown of SLC27A3 or STAU1 attenuated the effect of CSE on BEAS-2B cells. Conclusion STUA1 and SLC27A3 are valuable diagnostic biomarkers of COPD. COPD pathogenesis is heavily influenced by patterns of immune cell infiltration. This study provides a molecular biology insight into COPD occurrence and in exploring new therapeutic means useful in COPD.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Department of Respiratory Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Rongyao Xia
- Department of Respiratory Medicine, The Second Hospital of Harbin Medical University, Harbin, China
| | - Meiyu Lv
- Department of Respiratory Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Zhiheng Li
- Department of Medical Oncology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lingling Jin
- Department of Respiratory Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xueda Chen
- Department of Respiratory Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yaqian Han
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Chunpeng Shi
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanan Jiang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shoude Jin
- Department of Respiratory Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Koelwyn GJ, Aboumsallem JP, Moore KJ, de Boer RA. Reverse cardio-oncology: Exploring the effects of cardiovascular disease on cancer pathogenesis. J Mol Cell Cardiol 2022; 163:1-8. [PMID: 34582824 PMCID: PMC8816816 DOI: 10.1016/j.yjmcc.2021.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 02/09/2023]
Abstract
The field of cardio-oncology has emerged in response to the increased risk of cardiovascular disease (CVD) in patients with cancer. However, recent studies suggest a more complicated CVD-cancer relationship, wherein development of CVD, either prior to or following a cancer diagnosis, can also lead to increased risk of cancer and worse outcomes for patients. In this review, we describe the current evidence base, across epidemiological as well as preclinical studies, which supports the emerging concept of 'reverse-cardio oncology', or CVD-induced acceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Graeme J. Koelwyn
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada,Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver Canada
| | - Joseph Pierre Aboumsallem
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Kathryn J. Moore
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA,Corresponding authors: Rudolf A de Boer, MD, University Medical Center Groningen, Department of Cardiology, AB 31, PO Box 30.001, 9700 RB, Groningen, The Netherlands. Tel: +31 50 3612355, , Kathryn J. Moore, PhD, New York University Langone Health, 435 East 30th Street, Science Bldg 706, New York, NY, 10016, Tel: 212-263-9259,
| | - Rudolf A. de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands.,Corresponding authors: Rudolf A de Boer, MD, University Medical Center Groningen, Department of Cardiology, AB 31, PO Box 30.001, 9700 RB, Groningen, The Netherlands. Tel: +31 50 3612355, , Kathryn J. Moore, PhD, New York University Langone Health, 435 East 30th Street, Science Bldg 706, New York, NY, 10016, Tel: 212-263-9259,
| |
Collapse
|
24
|
Identification of Biomarkers Related to Immune Cell Infiltration with Gene Coexpression Network in Myocardial Infarction. DISEASE MARKERS 2021; 2021:2227067. [PMID: 34777632 PMCID: PMC8589498 DOI: 10.1155/2021/2227067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Background There is evidence that the immune system plays a key critical role in the pathogenesis of myocardial infarction (MI). However, the exact mechanisms associated with immunity have not been systematically uncovered. Methods This study used the weighted gene coexpression network analysis (WGCNA) and the CIBERSORT algorithm to analyze the MI expression data from the Gene Expression Omnibus database and then identify the module associated with immune cell infiltration. In addition, we built the coexpression network and protein-protein interactions network analysis to identify the hub genes. Furthermore, the relationship between hub genes and NK cell resting was validated by using another dataset GSE123342. Finally, receiver operating characteristic (ROC) curve analyses were used to assess the diagnostic value of verified hub genes. Results Monocytes and neutrophils were markedly increased, and T cell CD8, T cell CD4 naive, T cell CD4 memory resting, and NK cell resting were significantly decreased in MI groups compared with stable coronary artery disease (CAD) groups. The WGCNA results showed that the pink model had the highest correlation with the NK cell resting infiltration level. We identified 11 hub genes whose expression correlated to the NK cell resting infiltration level, among which, 7 hub genes (NKG7, TBX21, PRF1, CD247, KLRD1, FASLG, and EOMES) were successfully validated in GSE123342. And these 7 genes had diagnostic value to distinguish MI and stable CAD. Conclusions NKG7, TBX21, PRF1, CD247, KLRD1, FASLG, and EOMES may be a diagnostic biomarker and therapeutic target associated with NK cell resting infiltration in MI.
Collapse
|
25
|
M1 Bone Marrow-Derived Macrophage-Derived Extracellular Vesicles Inhibit Angiogenesis and Myocardial Regeneration Following Myocardial Infarction via the MALAT1/MicroRNA-25-3p/CDC42 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9959746. [PMID: 34745428 PMCID: PMC8570847 DOI: 10.1155/2021/9959746] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Myocardial infarction (MI) is a severe cardiovascular disease. Some M1 macrophage-derived extracellular vesicles (EVs) are involved in the inhibition of angiogenesis and acceleration dysfunction during MI. However, the potential mechanism of M1 phenotype bone marrow-derived macrophages- (BMMs-) EVs (M1-BMMs-EVs) in MI is largely unknown. This study sought to investigate whether M1-BMMs-EVs increased CDC42 expression and activated the MEK/ERK pathway by carrying lncRNA MALAT1 and competitively binding to miR-25-3p, thus inhibiting angiogenesis and myocardial regeneration after MI. After EV treatment, the cardiac function, infarct size, fibrosis, angiogenesis, and myocardial regeneration of MI mice and the viability, proliferation and angiogenesis of oxygen-glucose deprivation- (OGD-) treated myocardial microvascular endothelial cells (MMECs) were assessed. MALAT1 expression in MI mice, cells, and EVs was detected. MALAT1 downstream microRNAs (miRs), genes, and pathways were predicted and verified. MALAT1 and miR-25-3p were intervened to evaluate EV effects on OGD-treated cells. In MI mice, EV treatment aggravated MI and inhibited angiogenesis and myocardial regeneration. In OGD-treated cells, EV treatment suppressed cell viability, proliferation, and angiogenesis. MALAT1 was highly expressed in MI mice, OGD-treated MMECs, M1-BMMs, and EVs. Silencing MALAT1 weakened the inhibition of EV treatment on OGD-treated cells. MALAT1 sponged miR-25-3p to upregulate CDC42. miR-25-3p overexpression promoted OGD-treated cell viability, proliferation, and angiogenesis. The MEK/ERK pathway was activated after EV treatment. Collectively, M1-BMMs-EVs inhibited angiogenesis and myocardial regeneration following MI via the MALAT1/miR-25-3p/CDC42 axis and the MEK/ERK pathway activation.
Collapse
|
26
|
Imaging Inflammation in Patients and Animals: Focus on PET Imaging the Vulnerable Plaque. Cells 2021; 10:cells10102573. [PMID: 34685553 PMCID: PMC8533866 DOI: 10.3390/cells10102573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Acute coronary syndrome (ACS) describes a range of conditions associated with the rupture of high-risk or vulnerable plaque. Vulnerable atherosclerotic plaque is associated with many changes in its microenvironment which could potentially cause rapid plaque progression. Present-day PET imaging presents a plethora of radiopharmaceuticals designed to image different characteristics throughout plaque progression. Improved knowledge of atherosclerotic disease pathways has facilitated a growing number of pathophysiological targets for more innovative radiotracer design aimed at identifying at-risk vulnerable plaque and earlier intervention opportunity. This paper reviews the efficacy of PET imaging radiotracers 18F-FDG, 18F-NaF, 68Ga-DOTATATE, 64Cu-DOTATATE and 68Ga-pentixafor in plaque characterisation and risk assessment, as well as the translational potential of novel radiotracers in animal studies. Finally, we discuss our murine PET imaging experience and the challenges encountered.
Collapse
|
27
|
Świątkiewicz I, Magielski P, Kubica J. C-Reactive Protein as a Risk Marker for Post-Infarct Heart Failure over a Multi-Year Period. Int J Mol Sci 2021; 22:ijms22063169. [PMID: 33804661 PMCID: PMC8003799 DOI: 10.3390/ijms22063169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory activation during acute ST-elevation myocardial infarction (STEMI) can contribute to post-infarct heart failure (HF). This study aimed to determine prognostic value of high-sensitivity C-reactive protein concentration (CRP) for HF over a long-term follow-up in 204 patients with a first STEMI undergoing guideline-based therapies including percutaneous coronary intervention. CRP was measured at admission, 24 h (CRP24), discharge (CRPDC), and one month (CRP1M) after index hospitalization for STEMI. Within a median period of 5.6 years post-index hospitalization for STEMI, hospitalization for HF (HFH) which is a primary endpoint, occurred in 24 patients (11.8%, HF+ group). During the study, 8.3% of HF+ patients died vs. 1.7% of patients without HFH (HF- group) (p = 0.047). CRP24, CRPDC, and CRP1M were significantly higher in HF+ compared to HF- group. The median CRP1M in HF+ group was 2.57 mg/L indicating low-grade systemic inflammation, in contrast to 1.54 mg/L in HF- group. CRP1M ≥ 2 mg/L occurred in 58.3% of HF+ vs. 42.8% of HF- group (p = 0.01). Kaplan–Meier analysis showed decreased probability of survival free from HFH in patients with CRP24 (p < 0.001), CRPDC (p < 0.001), and CRP1M (p = 0.03) in quartile IV compared to lower quartiles. In multivariable analysis, CRPDC significantly improved prediction of HFH over a multi-year period post-STEMI. Persistent elevation in CRP post STEMI aids in risk stratification for long-term HF and suggests that ongoing cardiac and low-grade systemic inflammation promote HF development despite guideline-based therapies.
Collapse
Affiliation(s)
- Iwona Świątkiewicz
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (P.M.); (J.K.)
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Correspondence: ; Tel.: +1-(858)-246-2510
| | - Przemysław Magielski
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (P.M.); (J.K.)
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (P.M.); (J.K.)
| |
Collapse
|
28
|
BAYSAK E, ARICIOĞLU F. Is depression associated with the risk of cardiovascular disease or vice versa? CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.824534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Poels K, Schnitzler JG, Waissi F, Levels JHM, Stroes ESG, Daemen MJAP, Lutgens E, Pennekamp AM, De Kleijn DPV, Seijkens TTP, Kroon J. Inhibition of PFKFB3 Hampers the Progression of Atherosclerosis and Promotes Plaque Stability. Front Cell Dev Biol 2020; 8:581641. [PMID: 33282864 PMCID: PMC7688893 DOI: 10.3389/fcell.2020.581641] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Aims 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)3-mediated glycolysis is pivotal in driving macrophage- and endothelial cell activation and thereby inflammation. Once activated, these cells play a crucial role in the progression of atherosclerosis. Here, we analyzed the expression of PFKFB3 in human atherosclerotic lesions and investigated the therapeutic potential of pharmacological inhibition of PFKFB3 in experimental atherosclerosis by using the glycolytic inhibitor PFK158. Methods and Results PFKFB3 expression was higher in vulnerable human atheromatous carotid plaques when compared to stable fibrous plaques and predominantly expressed in plaque macrophages and endothelial cells. Analysis of advanced plaques of human coronary arteries revealed a positive correlation of PFKFB3 expression with necrotic core area. To further investigate the role of PFKFB3 in atherosclerotic disease progression, we treated 6-8 weeks old male Ldlr -/- mice. These mice were fed a high cholesterol diet for 13 weeks, of which they were treated for 5 weeks with the glycolytic inhibitor PFK158 to block PFKFB3 activity. The incidence of fibrous cap atheroma (advanced plaques) was reduced in PFK158-treated mice. Plaque phenotype altered markedly as both necrotic core area and intraplaque apoptosis decreased. This coincided with thickening of the fibrous cap and increased plaque stability after PFK158 treatment. Concomitantly, we observed a decrease in glycolysis in peripheral blood mononuclear cells compared to the untreated group, which alludes that changes in the intracellular metabolism of monocyte and macrophages is advantageous for plaque stabilization. Conclusion High PFKFB3 expression is associated with vulnerable atheromatous human carotid and coronary plaques. In mice, high PFKFB3 expression is also associated with a vulnerable plaque phenotype, whereas inhibition of PFKFB3 activity leads to plaque stabilization. This data implies that inhibition of inducible glycolysis may reduce inflammation, which has the ability to subsequently attenuate atherogenesis.
Collapse
Affiliation(s)
- Kikkie Poels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Johan G Schnitzler
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Farahnaz Waissi
- Division of Surgical Specialties, Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands.,Department of Cardiology Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Johannes H M Levels
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Erik S G Stroes
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Anne-Marije Pennekamp
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Dominique P V De Kleijn
- Division of Surgical Specialties, Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands.,Department of Vascular Surgery, Netherlands and Netherlands Heart Institute, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
30
|
Zhao E, Xie H, Zhang Y. Predicting Diagnostic Gene Biomarkers Associated With Immune Infiltration in Patients With Acute Myocardial Infarction. Front Cardiovasc Med 2020; 7:586871. [PMID: 33195475 PMCID: PMC7644926 DOI: 10.3389/fcvm.2020.586871] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Objective: The present study was designed to identify potential diagnostic markers for acute myocardial infarction (AMI) and determine the significance of immune cell infiltration in this pathology. Methods: Two publicly available gene expression profiles (GSE66360 and GSE48060 datasets) from human AMI and control samples were downloaded from the GEO database. Differentially expressed genes (DEGs) were screened between 80 AMI and 71 control samples. The LASSO regression model and support vector machine recursive feature elimination (SVM-RFE) analysis were performed to identify candidate biomarkers. The area under the receiver operating characteristic curve (AUC) value was obtained and used to evaluate discriminatory ability. The expression level and diagnostic value of the biomarkers in AMI were further validated in the GSE60993 dataset (17 AMI patients and 7 controls). The compositional patterns of the 22 types of immune cell fraction in AMI were estimated based on the merged cohorts using CIBERSORT. Results: A total of 27 genes were identified. The identified DEGs were mainly involved in carbohydrate binding, Kawasaki disease, atherosclerosis, and arteriosclerotic cardiovascular disease. Gene sets related to atherosclerosis signaling, primary immunodeficiency, IL-17, and TNF signaling pathways were differentially activated in AMI compared with the control. IL1R2, IRAK3, and THBD were identified as diagnostic markers of AMI (AUC = 0.877) and validated in the GSE60993 dataset (AUC = 0.941). Immune cell infiltration analysis revealed that IL1R2, IRAK3, and THBD were correlated with M2 macrophages, neutrophils, monocytes, CD4+ resting memory T cells, activated natural killer (NK) cells, and gamma delta T cells. Conclusion: IL1R2, IRAK3, and THBD can be used as diagnostic markers of AMI, and can provide new insights for future studies on the occurrence and the molecular mechanisms of AMI.
Collapse
Affiliation(s)
- Enfa Zhao
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hang Xie
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yushun Zhang
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Sintou A, Mansfield C, Iacob A, Chowdhury RA, Narodden S, Rothery SM, Podovei R, Sanchez-Alonso JL, Ferraro E, Swiatlowska P, Harding SE, Prasad S, Rosenthal N, Gorelik J, Sattler S. Mediastinal Lymphadenopathy, Class-Switched Auto-Antibodies and Myocardial Immune-Complexes During Heart Failure in Rodents and Humans. Front Cell Dev Biol 2020; 8:695. [PMID: 32850816 PMCID: PMC7426467 DOI: 10.3389/fcell.2020.00695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
Mediastinal lymphadenopathy and auto-antibodies are clinical phenomena during ischemic heart failure pointing to an autoimmune response against the heart. T and B cells have been convincingly demonstrated to be activated after myocardial infarction, a prerequisite for the generation of mature auto-antibodies. Yet, little is known about the immunoglobulin isotype repertoire thus pathological potential of anti-heart auto-antibodies during heart failure. We obtained human myocardial tissue from ischemic heart failure patients and induced experimental MI in rats. We found that anti-heart autoimmunity persists during heart failure. Rat mediastinal lymph nodes are enlarged and contain active secondary follicles with mature isotype-switched IgG2a B cells. Mature IgG2a auto-antibodies specific for cardiac antigens are present in rat heart failure serum, and IgG and complement C3 deposits are evident in heart failure tissue of both rats and human patients. Previously established myocardial inflammation, and the herein provided proof of B cell maturation in lymph nodes and myocardial deposition of mature auto-antibodies, provide all the hallmark signs of an established autoimmune response in chronic heart failure.
Collapse
Affiliation(s)
- Amalia Sintou
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alma Iacob
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Rasheda A. Chowdhury
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Salomon Narodden
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen M. Rothery
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert Podovei
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Elisa Ferraro
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pamela Swiatlowska
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sanjay Prasad
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Nadia Rosenthal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Duncan SE, Gao S, Sarhene M, Coffie JW, Linhua D, Bao X, Jing Z, Li S, Guo R, Su J, Fan G. Macrophage Activities in Myocardial Infarction and Heart Failure. Cardiol Res Pract 2020; 2020:4375127. [PMID: 32377427 PMCID: PMC7193281 DOI: 10.1155/2020/4375127] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Heart diseases remain the major cause of death worldwide. Advances in pharmacological and biomedical management have resulted in an increasing proportion of patients surviving acute heart failure (HF). However, many survivors of HF in the early stages end up increasing the disease to chronic HF (CHF). HF is an established frequent complication of myocardial infarction (MI), and numerous influences including persistent myocardial ischemia, shocked myocardium, ventricular remodeling, infarct size, and mechanical impairments, as well as hibernating myocardium trigger the development of left ventricular systolic dysfunction following MI. Macrophage population is active in inflammatory process, yet the clear understanding of the causative roles for these macrophage cells in HF development and progression is actually incomplete. Long ago, it was thought that macrophages are of importance in the heart after MI. Also, though inflammation is as a result of adverse HF in patients, but despite the fact that broad immunosuppression therapeutic target has been used in various clinical trials, no positive results have showed up, but rather, the focus on proinflammatory cytokines has proved more benefits in patients with HF. Therefore, in this review, we discuss the recent findings and new development about macrophage activations in HF, its role in the healthy heart, and some therapeutic targets for myocardial repair. We have a strong believe that there is a need to give maximum attention to cardiac resident macrophages due to the fact that they perform various tasks in wound healing, self-renewal of the heart, and tissue remodeling. Currently, it has been discovered that the study of macrophages goes far beyond its phagocytotic roles. If researchers in future confirm that macrophages play a vital role in the heart, they can be therapeutically targeted for cardiac healing.
Collapse
Affiliation(s)
- Sophia Esi Duncan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Michael Sarhene
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Joel Wake Coffie
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Deng Linhua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Xingru Bao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Zhang Jing
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Rui Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Su
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| |
Collapse
|
33
|
Abstract
A central feature of atherosclerosis, the most prevalent chronic vascular disease and root cause of myocardial infarction and stroke, is leukocyte accumulation in the arterial wall. These crucial immune cells are produced in specialized niches in the bone marrow, where a complex cell network orchestrates their production and release. A growing body of clinical studies has documented a correlation between leukocyte numbers and cardiovascular disease risk. Understanding how leukocytes are produced and how they contribute to atherosclerosis and its complications is, therefore, critical to understanding and treating the disease. In this review, we focus on the key cells and products that regulate hematopoiesis under homeostatic conditions, during atherosclerosis and after myocardial infarction.
Collapse
Affiliation(s)
- Wolfram C Poller
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
34
|
Schloss MJ, Horckmans M, Guillamat-Prats R, Hering D, Lauer E, Lenglet S, Weber C, Thomas A, Steffens S. 2-Arachidonoylglycerol mobilizes myeloid cells and worsens heart function after acute myocardial infarction. Cardiovasc Res 2020; 115:602-613. [PMID: 30295758 DOI: 10.1093/cvr/cvy242] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/06/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
AIMS Myocardial infarction (MI) leads to an enhanced release of endocannabinoids and a massive accumulation of neutrophils and monocytes within the ischaemic myocardium. These myeloid cells originate from haematopoietic precursors in the bone marrow and are rapidly mobilized in response to MI. We aimed to determine whether endocannabinoid signalling is involved in myeloid cell mobilization and cardiac recruitment after ischaemia onset. METHODS AND RESULTS Intravenous administration of endocannabinoid 2-arachidonoylglycerol (2-AG) into wild type (WT) C57BL6 mice induced a rapid increase of blood neutrophil and monocyte counts as measured by flow cytometry. This effect was blunted when using cannabinoid receptor 2 knockout mice. In response to MI induced in WT mice, the lipidomic analysis revealed significantly elevated plasma and cardiac levels of the endocannabinoid 2-AG 24 h after infarction, but no changes in anandamide, palmitoylethanolamide, and oleoylethanolamide. This was a consequence of an increased expression of 2-AG synthesizing enzyme diacylglycerol lipase and a decrease of metabolizing enzyme monoacylglycerol lipase (MAGL) in infarcted hearts, as determined by quantitative RT-PCR analysis. The opposite mRNA expression pattern was observed in bone marrow. Pharmacological blockade of MAGL with JZL184 and thus increased systemic 2-AG levels in WT mice subjected to MI resulted in elevated cardiac CXCL1, CXCL2, and MMP9 protein levels as well as higher cardiac neutrophil and monocyte counts 24 h after infarction compared with vehicle-treated mice. Increased post-MI inflammation in these mice led to an increased infarct size, an impaired ventricular scar formation assessed by histology and a worsened cardiac function in echocardiography evaluations up to 21 days. Likewise, JZL184-administration in a myocardial ischaemia-reperfusion model increased cardiac myeloid cell recruitment and resulted in a larger fibrotic scar size. CONCLUSION These findings suggest that changes in endocannabinoid gradients due to altered tissue levels contribute to myeloid cell recruitment from the bone marrow to the infarcted heart, with crucial consequences on cardiac healing and function.
Collapse
Affiliation(s)
- Maximilian J Schloss
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstr. 9, Munich, Germany
| | - Michael Horckmans
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstr. 9, Munich, Germany.,Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Raquel Guillamat-Prats
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstr. 9, Munich, Germany
| | - Daniel Hering
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstr. 9, Munich, Germany
| | - Estelle Lauer
- Unit of Toxicology, CURML, Lausanne University Hospital, Geneva University Hospitals, rue Michel-Servet 1, Geneva CH-1211, Switzerland
| | - Sebastien Lenglet
- Unit of Toxicology, CURML, Lausanne University Hospital, Geneva University Hospitals, rue Michel-Servet 1, Geneva CH-1211, Switzerland
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstr. 9, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,German Centre for Cardiovascular Research (DZHK), Partner Site, Munich Heart Alliance, Munich, Germany
| | - Aurelien Thomas
- Unit of Toxicology, CURML, Lausanne University Hospital, Geneva University Hospitals, rue Michel-Servet 1, Geneva CH-1211, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Vulliette 04, Lausanne 1000, Switzerland
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstr. 9, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
35
|
Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding. Cells 2020; 9:cells9010242. [PMID: 31963679 PMCID: PMC7016826 DOI: 10.3390/cells9010242] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Heart failure (HF) is the most rapidly growing cardiovascular health burden worldwide. HF can be classified into three groups based on the percentage of the ejection fraction (EF): heart failure with reduced EF (HFrEF), heart failure with mid-range-also called mildly reduced EF- (HFmrEF), and heart failure with preserved ejection fraction (HFpEF). HFmrEF can progress into either HFrEF or HFpEF, but its phenotype is dominated by coronary artery disease, as in HFrEF. HFrEF and HFpEF present with differences in both the development and progression of the disease secondary to changes at the cellular and molecular level. While recent medical advances have resulted in efficient and specific treatments for HFrEF, these treatments lack efficacy for HFpEF management. These differential response rates, coupled to increasing rates of HF, highlight the significant need to understand the unique pathogenesis of HFrEF and HFpEF. In this review, we summarize the differences in pathological development of HFrEF and HFpEF, focussing on disease-specific aspects of inflammation and endothelial function, cardiomyocyte hypertrophy and death, alterations in the giant spring titin, and fibrosis. We highlight the areas of difference between the two diseases with the aim of guiding research efforts for novel therapeutics in HFrEF and HFpEF.
Collapse
|
36
|
Abstract
ST-segment elevation myocardial infarction (STEMI) is the most acute manifestation of coronary artery disease and is associated with great morbidity and mortality. A complete thrombotic occlusion developing from an atherosclerotic plaque in an epicardial coronary vessel is the cause of STEMI in the majority of cases. Early diagnosis and immediate reperfusion are the most effective ways to limit myocardial ischaemia and infarct size and thereby reduce the risk of post-STEMI complications and heart failure. Primary percutaneous coronary intervention (PCI) has become the preferred reperfusion strategy in patients with STEMI; if PCI cannot be performed within 120 minutes of STEMI diagnosis, fibrinolysis therapy should be administered to dissolve the occluding thrombus. The initiation of networks to provide around-the-clock cardiac catheterization availability and the generation of standard operating procedures within hospital systems have helped to reduce the time to reperfusion therapy. Together with new advances in antithrombotic therapy and preventive measures, these developments have resulted in a decrease in mortality from STEMI. However, a substantial amount of patients still experience recurrent cardiovascular events after STEMI. New insights have been gained regarding the pathophysiology of STEMI and feed into the development of new treatment strategies.
Collapse
|
37
|
Grad E, Gutman D, Golomb M, Efraim R, Oppenheim A, Richter I, Danenberg HD, Golomb G. Monocyte Modulation by Liposomal Alendronate Improves Cardiac Healing in a Rat Model of Myocardial Infarction. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Li X, Li B, Jiang H. Identification of time‑series differentially expressed genes and pathways associated with heart failure post‑myocardial infarction using integrated bioinformatics analysis. Mol Med Rep 2019; 19:5281-5290. [PMID: 31059043 PMCID: PMC6522961 DOI: 10.3892/mmr.2019.10190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/13/2019] [Indexed: 12/31/2022] Open
Abstract
Heart failure (HF) secondary to acute myocardial infarction (AMI) is a public health concern. The current study aimed to investigate differentially expressed genes (DEGs) and their possible function in HF post-myocardial infarction. The GSE59867 dataset included microarray data from peripheral blood samples obtained from HF and non-HF patients following AMI at 4 time points (admission, discharge, and 1 and 6 months post-AMI). Time-series DEGs were analyzed using R Bioconductor. Functional enrichment analysis was performed, followed by analysis of protein-protein interactions (PPIs). A total of 108 DEGs on admission, 32 DEGs on discharge, 41 DEGs at 1 month post-AMI and 19 DEGs at 6 months post-AMI were identified. Among these DEGs, 4 genes were downregulated at all the 4 time points. These included fatty acid desaturase 2, leucine rich repeat neuronal protein 3, G-protein coupled receptor 15 and adenylate kinase 5. Functional enrichment analysis revealed that these DEGs were mainly enriched in ‘inflammatory response’, ‘immune response’, ‘toll-like receptor signaling pathway’ and ‘NF-κβ signaling pathway’. Furthermore, PPI network analysis revealed that C-X-C motif chemokine ligand 8 and interleukin 1β were hub genes. The current study identified candidate DEGs and pathways that may serve important roles in the development of HF following AMI. The results obtained in the current study may guide the development of novel therapeutic agents for HF following AMI.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bin Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
39
|
Abstract
IMPACT STATEMENT By compiling findings from recent studies, this review will garner novel insight on the dynamic and complex role of BMP signaling in diseases of inflammation, highlighting the specific roles played by both individual ligands and endogenous antagonists. Ultimately, this summary will help inform the high therapeutic value of targeting this pathway for modulating diseases of inflammation.
Collapse
Affiliation(s)
- David H Wu
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| | - Antonis K Hatzopoulos
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
40
|
Jung M, Dodsworth M, Thum T. Inflammatory cells and their non-coding RNAs as targets for treating myocardial infarction. Basic Res Cardiol 2018; 114:4. [PMID: 30523422 PMCID: PMC6290728 DOI: 10.1007/s00395-018-0712-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Myocardial infarction triggers infiltration of several types of immune cells that coordinate both innate and adaptive immune responses. These play a dual role in post-infarction cardiac remodeling by initiating and resolving inflammatory processes, which needs to occur in a timely and well-orchestrated way to ensure a reestablishment of normalized cardiac functions. Thus, therapeutic modulation of immune responses might have benefits for infarct patients. While such strategies have shown great potential in treating cancer, applications in the post-infarction context have been disappointing. One challenge has been the complexity and plasticity of immune cells and their functions in cardiac regulation and healing. The types appear in patterns that are temporally and spatially distinct, while influencing each other and the surrounding tissue. A comprehensive understanding of the immune cell repertoire and their regulatory functions following infarction is sorely needed. Processes of cardiac remodeling trigger additional genetic changes that may also play critical roles in the aftermath of cardiovascular disease. Some of these changes involve non-coding RNAs that play crucial roles in the regulation of immune cells and may, therefore, be of therapeutic interest. This review summarizes what is currently known about the functions of immune cells and non-coding RNAs during post-infarction wound healing. We address some of the challenges that remain and describe novel therapeutic approaches under development that are based on regulating immune responses through non-coding RNAs in the aftermath of the disease.
Collapse
Affiliation(s)
- Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Dodsworth
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
41
|
Matsumoto K, Obana M, Kobayashi A, Kihara M, Shioi G, Miyagawa S, Maeda M, Sakata Y, Nakayama H, Sawa Y, Fujio Y. Blockade of NKG2D/NKG2D ligand interaction attenuated cardiac remodelling after myocardial infarction. Cardiovasc Res 2018; 115:765-775. [DOI: 10.1093/cvr/cvy254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/03/2018] [Accepted: 10/10/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kotaro Matsumoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
| | - Arisa Kobayashi
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
| | - Miho Kihara
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Japan
| | - Go Shioi
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makiko Maeda
- Project Laboratory of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroyuki Nakayama
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
42
|
Hoogeveen RM, Nahrendorf M, Riksen NP, Netea MG, de Winther MPJ, Lutgens E, Nordestgaard BG, Neidhart M, Stroes ESG, Catapano AL, Bekkering S. Monocyte and haematopoietic progenitor reprogramming as common mechanism underlying chronic inflammatory and cardiovascular diseases. Eur Heart J 2018; 39:3521-3527. [PMID: 29069365 PMCID: PMC6174026 DOI: 10.1093/eurheartj/ehx581] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022] Open
Abstract
A large number of cardiovascular events are not prevented by current therapeutic regimens. In search for additional, innovative strategies, immune cells have been recognized as key players contributing to atherosclerotic plaque progression and destabilization. Particularly the role of innate immune cells is of major interest, following the recent paradigm shift that innate immunity, long considered to be incapable of learning, does exhibit immunological memory mediated via epigenetic reprogramming. Compelling evidence shows that atherosclerotic risk factors promote immune cell migration by pre-activation of circulating innate immune cells. Innate immune cell activation via metabolic and epigenetic reprogramming perpetuates a systemic low-grade inflammatory state in cardiovascular disease (CVD) that is also common in other chronic inflammatory disorders. This opens a new therapeutic area in which metabolic or epigenetic modulation of innate immune cells may result in decreased systemic chronic inflammation, alleviating CVD, and its co-morbidities.
Collapse
Affiliation(s)
- Renate M Hoogeveen
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, 55 Fruit Street Boston, MA, USA
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Pettenkoferstraße 9, Munich, Germany
| | - Børge G Nordestgaard
- The Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Ringvej 75, Herlev, Copenhagen, Denmark
| | - Michel Neidhart
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Via Balzaretti, Milano, Italy
| | - Siroon Bekkering
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Vanhaverbeke M, Veltman D, Pattyn N, De Crem N, Gillijns H, Cornelissen V, Janssens S, Sinnaeve PR. C-reactive protein during and after myocardial infarction in relation to cardiac injury and left ventricular function at follow-up. Clin Cardiol 2018; 41:1201-1206. [PMID: 29952015 PMCID: PMC6221028 DOI: 10.1002/clc.23017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/16/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background Acute myocardial infarction (MI) invokes a large inflammatory response, which contributes to myocardial repair. Hypothesis We investigated whether C‐reactive protein (CRP) measured during MI vs at 1 month follow‐up improves the prediction of left ventricular (LV) function. Methods We prospectively enrolled 131 consecutive patients with acute MI and without non‐cardiovascular causes of inflammation. We correlated admission and peak levels of CRP during hospitalization and high‐sensitivity (hs) CRP at 1 month follow‐up with markers of cardiac injury. Clinical follow‐up and echocardiography for LV function were performed at a mean of 17 months. Results Median CRP levels were 1.89 mg/L on admission with MI, peaked to 12.10 mg/L during hospitalization and dropped to 1.24 mg/L at 1 month. Although admission CRP levels only weakly correlated with ejection fraction in the acute phase of MI (coefficient −0.164, P = 0.094), peak CRP was significantly related to ejection fraction (coefficient −0.4, P < 0.001), hsTroponin T (0.389, P < 0.001), and white blood cell count (0.389, P < 0.001). hsCRP at 1 month was not related to the extent of acute cardiac injury. These findings were replicated in an independent cohort of 57 patients. Peak CRP predicted LV dysfunction at follow‐up (OR 11.0, 3.1‐39.5 per log CRP, P < 0.001), persisting after adjustment for infarct size (OR 5.1, 1.1‐23.6, P = 0.037), while hsCRP at 1 month was unrelated to LV function at follow‐up. Conclusions hsCRP 1 month post‐MI does not relate to acute cardiac injury or LV function at follow‐up, but we confirm that peak CRP is an independent predictor of LV dysfunction at follow‐up.
Collapse
Affiliation(s)
- Maarten Vanhaverbeke
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Denise Veltman
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Nele Pattyn
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Nico De Crem
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Hilde Gillijns
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Peter R Sinnaeve
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Panahi M, Papanikolaou A, Torabi A, Zhang JG, Khan H, Vazir A, Hasham MG, Cleland JGF, Rosenthal NA, Harding SE, Sattler S. Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovasc Res 2018; 114:1445-1461. [PMID: 30010800 PMCID: PMC6106100 DOI: 10.1093/cvr/cvy145] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/26/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Following a myocardial infarction (MI), the immune system helps to repair ischaemic damage and restore tissue integrity, but excessive inflammation has been implicated in adverse cardiac remodelling and development towards heart failure (HF). Pre-clinical studies suggest that timely resolution of inflammation may help prevent HF development and progression. Therapeutic attempts to prevent excessive post-MI inflammation in patients have included pharmacological interventions ranging from broad immunosuppression to immunomodulatory approaches targeting specific cell types or factors with the aim to maintain beneficial aspects of the early post-MI immune response. These include the blockade of early initiators of inflammation including reactive oxygen species and complement, inhibition of mast cell degranulation and leucocyte infiltration, blockade of inflammatory cytokines, and inhibition of adaptive B and T-lymphocytes. Herein, we provide a systematic review on post-MI immunomodulation trials and a meta-analysis of studies targeting the inflammatory cytokine Interleukin-1. Despite an enormous effort into a significant number of clinical trials on a variety of targets, a striking heterogeneity in study population, timing and type of treatment, and highly variable endpoints limits the possibility for meaningful meta-analyses. To conclude, we highlight critical considerations for future studies including (i) the therapeutic window of opportunity, (ii) immunological effects of routine post-MI medication, (iii) stratification of the highly diverse post-MI patient population, (iv) the potential benefits of combining immunomodulatory with regenerative therapies, and at last (v) the potential side effects of immunotherapies.
Collapse
Affiliation(s)
- Mona Panahi
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Angelos Papanikolaou
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Azam Torabi
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Ji-Gang Zhang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, USA
| | - Habib Khan
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Ali Vazir
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | | | - John G F Cleland
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Nadia A Rosenthal
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
- The Jackson Laboratory, 600 Main Street, Bar Harbor, USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| |
Collapse
|
45
|
Shen ZX, Yang QZ, Li C, Du LJ, Sun XN, Liu Y, Sun JY, Gu HH, Sun YM, Wang J, Duan SZ. Myeloid peroxisome proliferator-activated receptor gamma deficiency aggravates myocardial infarction in mice. Atherosclerosis 2018; 274:199-205. [PMID: 29800789 DOI: 10.1016/j.atherosclerosis.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Agonists of peroxisome proliferator-activated receptor gamma (Pparγ) have been demonstrated to reduce the risk of myocardial infarction (MI) in clinical trials and animal experiments. However, the cellular and molecular mechanisms are not completely understood. We aimed to reveal the functions of myeloid Pparγ in MI and explore the potential mechanisms in this study. METHODS Myeloid Pparγ knockout (MPGKO) mice (n = 12) and control mice (n = 8) underwent coronary artery ligation to induce MI. Another cohort of MPGKO mice and control mice underwent coronary artery ligation and were then treated with IgG or neutralizing antibodies against interleukin (IL)-1β. Infarct size was determined by TTC staining and cardiac function was measured using echocardiography. Conditioned media from GW9662- or vehicle-treated macrophages were used to treat H9C2 cardiomyocyte cell line. Gene expression was analyzed using quantitative PCR. Reactive oxygen species were measured using flow cytometry. RESULTS Myeloid Pparγ deficiency significantly increased myocardial infarct size. Cardiac hypertrophy was also exacerbated in MPGKO mice, with upregulation of β-myosin heavy chain (Mhc) and brain natriuretic peptide (Bnp) and downregulation of α-Mhc in the non-infarcted zone. Conditioned media from GW9662-treated macrophages increased expression of β-Mhc and Bnp in H9C2 cells. Echocardiographic measurements showed that MPGKO mice had worsen cardiac dysfunction after MI. Myeloid Pparγ deficiency increased gene expression of NADPH oxidase subunits (Nox2 and Nox4) in the non-infarcted zone after MI. Conditioned media from GW9662-treated macrophages increased reactive oxygen species in H9C2 cells. Expression of inflammatory genes such as IL-1β and IL-6 was upregulated in the non-infarcted zone of MPGKO mice after MI. With the injection of neutralizing antibodies against IL-1β, control mice and MPGKO mice had comparable cardiac function and expression of inflammatory genes after MI. CONCLUSIONS Myeloid Pparγ deficiency exacerbates MI, likely through increased oxidative stress and cardiac inflammation.
Collapse
Affiliation(s)
- Zhu-Xia Shen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Qing-Zhen Yang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chao Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue-Nan Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Hui-Hui Gu
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Yu-Min Sun
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Jun Wang
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
46
|
Hodgkinson CP, Pratt RE, Kirste I, Dal-Pra S, Cooke JP, Dzau VJ. Cardiomyocyte Maturation Requires TLR3 Activated Nuclear Factor Kappa B. Stem Cells 2018; 36:1198-1209. [PMID: 29676038 DOI: 10.1002/stem.2833] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/15/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
The process by which committed precursors mature into cardiomyocytes is poorly understood. We found that TLR3 inhibition blocked cardiomyocyte maturation; precursor cells committed to the cardiomyocyte lineage failed to express maturation genes and sarcomeres did not develop. Using various approaches, we found that the effects of TLR3 upon cardiomyocyte maturation were dependent upon the RelA subunit of nuclear factor kappa B (NFκB). Importantly, under conditions that promote the development of mature cardiomyocytes NFκB became significantly enriched at the promoters of cardiomyocyte maturation genes. Furthermore, activation of the TLR3-NFκB pathway enhanced cardiomyocyte maturation. This study, therefore, demonstrates that the TLR3-NFκB pathway is necessary for the maturation of committed precursors into mature cardiomyocytes. Stem Cells 2018;36:1198-1209.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Richard E Pratt
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Imke Kirste
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Sophie Dal-Pra
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - John P Cooke
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, Texas, USA
| | - Victor J Dzau
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| |
Collapse
|
47
|
A 3-gene panel improves the prediction of left ventricular dysfunction after acute myocardial infarction. Int J Cardiol 2018; 254:28-35. [PMID: 29407108 DOI: 10.1016/j.ijcard.2017.10.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Identification of patients at risk of poor outcome after acute myocardial infarction (MI) would allow tailoring healthcare to each individual. However, lack of prognostication tools renders this task challenging. Previous investigations suggested that blood transcriptome analysis may inform about prognosis after MI. We aim to independently confirm the value of gene expression profiles in the blood to predict left ventricular (LV) dysfunction after MI. METHODS AND RESULTS Five genes (LMNB1, MMP9, TGFBR1, LTBP4 and TNXB) selected from previous studies were measured in peripheral blood samples obtained at reperfusion in 449 MI patients. 79 patients had LV dysfunction as attested by an ejection fraction (EF) ≤40% at 4-month follow-up and 370 patients had a preserved LV function (EF>40%). LMNB1, MMP9 and TGFBR1 were up-regulated in patients with LV dysfunction and LTBP4 was down-regulated, as compared with patients with preserved LV function. The 5 genes were significant univariate predictors of LV dysfunction. In multivariable analyses adjusted with traditional risk factors and corrected for model overfitting, a panel of 3 genes - TNXB, TGFBR1 and LTBP4 - improved the prediction of a clinical model (p=0.00008) and provided a net reclassification index of 0.45 [0.23-0.69], p=0.0002 and an integrated discrimination improvement of 0.05 [0.02-0.09], p=0.001. Bootstrap internal validation confirmed the incremental predictive value of the 3-gene panel. CONCLUSION A 3-gene panel can aid to predict LV dysfunction after MI. Further independent validation is required before considering these findings for molecular diagnostic assay development.
Collapse
|
48
|
Du X. Post-infarct cardiac injury, protection and repair: roles of non-cardiomyocyte multicellular and acellular components. SCIENCE CHINA-LIFE SCIENCES 2018; 61:266-276. [DOI: 10.1007/s11427-017-9223-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
|
49
|
Ma Y, Mouton AJ, Lindsey ML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res 2018; 191:15-28. [PMID: 29106912 PMCID: PMC5846093 DOI: 10.1016/j.trsl.2017.10.001] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Macrophages play critical roles in homeostatic maintenance of the myocardium under normal conditions and in tissue repair after injury. In the steady-state heart, resident cardiac macrophages remove senescent and dying cells and facilitate electrical conduction. In the aging heart, the shift in macrophage phenotype to a proinflammatory subtype leads to inflammaging. Following myocardial infarction (MI), macrophages recruited to the infarct produce both proinflammatory and anti-inflammatory mediators (cytokines, chemokines, matrix metalloproteinases, and growth factors), phagocytize dead cells, and promote angiogenesis and scar formation. These diverse properties are attributed to distinct macrophage subtypes and polarization status. Infarct macrophages exhibit a proinflammatory M1 phenotype early and become polarized toward an anti-inflammatory M2 phenotype later post-MI. Although this classification system is oversimplified and needs to be refined to accommodate the multiple different macrophage subtypes that have been recently identified, general concepts on macrophage roles are independent of subtype classification. This review summarizes current knowledge about cardiac macrophage origins, roles, and phenotypes in the steady state, with aging, and after MI, as well as highlights outstanding areas of investigation.
Collapse
Affiliation(s)
- Yonggang Ma
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss
| | - Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Miss.
| |
Collapse
|
50
|
Zhang Y, Bauersachs J, Langer HF. Immune mechanisms in heart failure. Eur J Heart Fail 2017; 19:1379-1389. [DOI: 10.1002/ejhf.942] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/26/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yingying Zhang
- University Hospital, Department of Cardiology and Cardiovascular Medicine; Eberhard Karls University Tuebingen; Tuebingen Germany
- Section for Cardioimmunology; Eberhard Karls University Tuebingen; Tübingen Germany
- Affiliated Hospital of Qingdao University, Department of Cardiology and Cardiovascular Medicine; Qingdao University; Qingdao China
| | - Johann Bauersachs
- Department of Cardiology and Angiology; Hannover Medical School; Hannover Germany
| | - Harald F. Langer
- University Hospital, Department of Cardiology and Cardiovascular Medicine; Eberhard Karls University Tuebingen; Tuebingen Germany
- Section for Cardioimmunology; Eberhard Karls University Tuebingen; Tübingen Germany
| |
Collapse
|