1
|
Sharma A, Choi JSY, Watson AMD, Li L, Sonntag T, Lee MKS, Murphy AJ, De Blasio M, Head GA, Ritchie RH, de Haan JB. Cardiovascular characterisation of a novel mouse model that combines hypertension and diabetes co-morbidities. Sci Rep 2023; 13:8741. [PMID: 37253814 DOI: 10.1038/s41598-023-35680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Epidemiologic data suggest that the prevalence of hypertension in patients with diabetes mellitus is ∼1.5-2.0 times greater than in matched non-diabetic patients. This co-existent disease burden exacerbates cardiac and vascular injury, leading to structural and functional changes to the myocardium, impaired cardiac function and heart failure. Oxidative stress and persistent low-grade inflammation underlie both conditions, and are identified as major contributors to pathological cardiac remodelling. There is an urgent need for effective therapies that specifically target oxidative stress and inflammation to protect against cardiac remodelling. Animal models are a valuable tool for testing emerging therapeutics, however, there is a notable lack of appropriate animal models of co-morbid diabetes and hypertension. In this study, we describe a novel preclinical mouse model combining diabetes and hypertension to investigate cardiac and vascular pathology of co-morbid disease. Type 1 diabetes was induced in spontaneously hypertensive, 8-week old, male Schlager (BPH/2) mice via 5 consecutive, daily injections of streptozotocin (55 mg/kg in citrate buffer; i.p.). Non-diabetic mice received citrate buffer only. After 10 weeks of diabetes induction, cardiac function was assessed by echocardiography prior to post-mortem evaluation of cardiomyocyte hypertrophy, interstitial fibrosis and inflammation by histology, RT-PCR and flow cytometry. We focussed on the oxidative and inflammatory stress pathways that contribute to cardiovascular remodelling. In particular, we demonstrate that markers of inflammation (monocyte chemoattractant protein; MCP-1), oxidative stress (urinary 8-isoprostanes) and fibrosis (connective tissue growth factor; CTGF) are significantly increased, whilst diastolic dysfunction, as indicated by prolonged isovolumic relaxation time (IVRT), is elevated in this diabetic and hypertensive mouse model. In summary, this pre-clinical mouse model provides researchers with a tool to test therapeutic strategies unique to co-morbid diabetes and hypertension, thereby facilitating the emergence of novel therapeutics to combat the cardiovascular consequences of these debilitating co-morbidities.
Collapse
Affiliation(s)
- Arpeeta Sharma
- Group Leader (Oxidative Stress Laboratory), Diabetic Complications Division, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Judy S Y Choi
- Group Leader (Oxidative Stress Laboratory), Diabetic Complications Division, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Anna M D Watson
- Group Leader (Oxidative Stress Laboratory), Diabetic Complications Division, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, Parkville, Australia
| | - Leila Li
- Group Leader (Oxidative Stress Laboratory), Diabetic Complications Division, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Thomas Sonntag
- Group Leader (Oxidative Stress Laboratory), Diabetic Complications Division, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Man K S Lee
- Group Leader (Oxidative Stress Laboratory), Diabetic Complications Division, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Andrew J Murphy
- Group Leader (Oxidative Stress Laboratory), Diabetic Complications Division, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Miles De Blasio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Geoffrey A Head
- Group Leader (Oxidative Stress Laboratory), Diabetic Complications Division, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Rebecca H Ritchie
- Group Leader (Oxidative Stress Laboratory), Diabetic Complications Division, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Judy B de Haan
- Group Leader (Oxidative Stress Laboratory), Diabetic Complications Division, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
- Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Hadzi-Petrushev N, Angelovski M, Mladenov M. Advanced Glycation End Products and Diabetes. CONTEMPORARY ENDOCRINOLOGY 2023:99-127. [DOI: 10.1007/978-3-031-39721-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Chen MY, Meng XF, Han YP, Yan JL, Xiao C, Qian LB. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front Endocrinol (Lausanne) 2022; 13:983713. [PMID: 36187088 PMCID: PMC9521548 DOI: 10.3389/fendo.2022.983713] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the risk, such as hypertension, obesity and diabetes mellitus, of cardiovascular diseases has been increasing explosively with the development of living conditions and the expansion of social psychological pressure. The disturbance of glucose and lipid metabolism contributes to both collapse of myocardial structure and cardiac dysfunction, which ultimately leads to diabetic cardiomyopathy. The pathogenesis of diabetic cardiomyopathy is multifactorial, including inflammatory cascade activation, oxidative/nitrative stress, and the following impaired Ca2+ handling induced by insulin resistance/hyperinsulinemia, hyperglycemia, hyperlipidemia in diabetes. Some key alterations of cellular signaling network, such as translocation of CD36 to sarcolemma, activation of NLRP3 inflammasome, up-regulation of AGE/RAGE system, and disequilibrium of micro-RNA, mediate diabetic oxidative stress/inflammation related myocardial remodeling and ventricular dysfunction in the context of glucose and lipid metabolic disturbance. Here, we summarized the detailed oxidative stress/inflammation network by which the abnormality of glucose and lipid metabolism facilitates diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants (Basel) 2022; 11:antiox11040784. [PMID: 35453469 PMCID: PMC9030255 DOI: 10.3390/antiox11040784] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes is a redox disease. Oxidative stress and chronic inflammation induce a switch of metabolic homeostatic set points, leading to glucose intolerance. Several diabetes-specific mechanisms contribute to prominent oxidative distress in the heart, resulting in the development of diabetic cardiomyopathy. Mitochondrial overproduction of reactive oxygen species in diabetic subjects is not only caused by intracellular hyperglycemia in the microvasculature but is also the result of increased fatty oxidation and lipotoxicity in cardiomyocytes. Mitochondrial overproduction of superoxide anion radicals induces, via inhibition of glyceraldehyde 3-phosphate dehydrogenase, an increased polyol pathway flux, increased formation of advanced glycation end-products (AGE) and activation of the receptor for AGE (RAGE), activation of protein kinase C isoforms, and an increased hexosamine pathway flux. These pathways not only directly contribute to diabetic cardiomyopathy but are themselves a source of additional reactive oxygen species. Reactive oxygen species and oxidative distress lead to cell dysfunction and cellular injury not only via protein oxidation, lipid peroxidation, DNA damage, and oxidative changes in microRNAs but also via activation of stress-sensitive pathways and redox regulation. Investigations in animal models of diabetic cardiomyopathy have consistently demonstrated that increased expression of the primary antioxidant enzymes attenuates myocardial pathology and improves cardiac function.
Collapse
|
5
|
Bosma KJ, Ghosh M, Andrei SR, Zhong L, Dunn JC, Ricciardi VF, Burkett JB, Hatzopoulos AK, Damron DS, Gannon M. Pharmacological modulation of prostaglandin E 2 (PGE 2 ) EP receptors improves cardiomyocyte function under hyperglycemic conditions. Physiol Rep 2022; 10:e15212. [PMID: 35403369 PMCID: PMC8995713 DOI: 10.14814/phy2.15212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023] Open
Abstract
Type 2 diabetes (T2D) affects >30 million Americans and nearly 70% of individuals with T2D will die from cardiovascular disease (CVD). Circulating levels of the inflammatory signaling lipid, prostaglandin E2 (PGE2 ), are elevated in the setting of obesity and T2D and are associated with decreased cardiac function. The EP3 and EP4 PGE2 receptors have opposing actions in several tissues, including the heart: overexpression of EP3 in cardiomyocytes impairs function, while EP4 overexpression improves function. Here we performed complementary studies in vitro with isolated cardiomyocytes and in vivo using db/db mice, a model of T2D, to analyze the effects of EP3 inhibition or EP4 activation on cardiac function. Using echocardiography, we found that 2 weeks of systemic treatment of db/db mice with 20 mg/kg of EP3 antagonist, beginning at 6 weeks of age, improves ejection fraction and fractional shortening (with no effect on heart rate). We further show that either EP3 blockade or EP4 activation enhances contractility and calcium cycling in isolated mouse cardiomyocytes cultured in both normal and high glucose. Thus, peak [Ca2+ ]I transient amplitude was increased, while time to peak [Ca2+ ]I and [Ca2+ ]I decay were decreased. These data suggest that modulation of EP3 and EP4 activity has beneficial effects on cardiomyocyte contractility and overall heart function.
Collapse
Affiliation(s)
- Karin J. Bosma
- Department of Veterans Affairs Tennessee Valley AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Monica Ghosh
- Department of Biological SciencesSchool of Biomedical SciencesKent State UniversityKentOhioUSA
| | - Spencer R. Andrei
- Department of Veterans Affairs Tennessee Valley AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Lin Zhong
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jennifer C. Dunn
- Department of Veterans Affairs Tennessee Valley AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Juliann B. Burkett
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Antonis K. Hatzopoulos
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Derek S. Damron
- Department of Biological SciencesSchool of Biomedical SciencesKent State UniversityKentOhioUSA
| | - Maureen Gannon
- Department of Veterans Affairs Tennessee Valley AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
6
|
Fusco-Allison G, Li DK, Hunter B, Jackson D, Bannon PG, Lal S, O'Sullivan JF. Optimizing the discovery and assessment of therapeutic targets in heart failure with preserved ejection fraction. ESC Heart Fail 2021; 8:3643-3655. [PMID: 34342166 PMCID: PMC8497375 DOI: 10.1002/ehf2.13504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
There is an urgent need for models that faithfully replicate heart failure with preserved ejection fraction (HFpEF), now recognized as the most common form of heart failure in the world. In vitro approaches have several shortcomings, most notably the immature nature of stem cell‐derived human cardiomyocytes [induced pluripotent stem cells (iPSC)] and the relatively short lifespan of primary cardiomyocytes. Three‐dimensional ‘organoids’ incorporating mature iPSCs with other cell types such as endothelial cells and fibroblasts are a significant advance, but lack the complexity of true myocardium. Animal models can replicate many features of human HFpEF, and rodent models are the most common, and recent attempts to incorporate haemodynamic, metabolic, and ageing contributions are encouraging. Differences relating to species, physiology, heart rate, and heart size are major limitations for rodent models. Porcine models mitigate many of these shortcomings and approximate human physiology more closely, but cost and time considerations limit their potential for widespread use. Ex vivo analysis of failing hearts from animal models offer intriguing possibilities regarding cardiac substrate utilisation, but are ultimately subject to the same constrains as the animal models from which the hearts are obtained. Ex vivo approaches using human myocardial biopsies can uncover new insights into pathobiology leveraging myocardial energetics, substrate turnover, molecular changes, and systolic/diastolic function. In collaboration with a skilled cardiothoracic surgeon, left ventricular endomyocardial biopsies can be obtained at the time of valvular surgery in HFpEF patients. Critically, these tissues maintain their disease phenotype, preserving inter‐relationship of myocardial cells and extracellular matrix. This review highlights a novel approach, where ultra‐thin myocardial tissue slices from human HFpEF hearts can be used to assess changes in myocardial structure and function. We discuss current approaches to modelling HFpEF, describe in detail the novel tissue slice model, expand on exciting opportunities this model provides, and outline ways to improve this model further.
Collapse
Affiliation(s)
- Gabrielle Fusco-Allison
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Heart Research Institute, Newtown, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Desmond K Li
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Heart Research Institute, Newtown, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Dan Jackson
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Surgery, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul G Bannon
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Surgery, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Heart Research Institute, Newtown, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
7
|
Kaur N, Guan Y, Raja R, Ruiz-Velasco A, Liu W. Mechanisms and Therapeutic Prospects of Diabetic Cardiomyopathy Through the Inflammatory Response. Front Physiol 2021; 12:694864. [PMID: 34234695 PMCID: PMC8257042 DOI: 10.3389/fphys.2021.694864] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
The incidence of heart failure (HF) continues to increase rapidly in patients with diabetes. It is marked by myocardial remodeling, including fibrosis, hypertrophy, and cell death, leading to diastolic dysfunction with or without systolic dysfunction. Diabetic cardiomyopathy (DCM) is a distinct myocardial disease in the absence of coronary artery disease. DCM is partially induced by chronic systemic inflammation, underpinned by a hostile environment due to hyperglycemia, hyperlipidemia, hyperinsulinemia, and insulin resistance. The detrimental role of leukocytes, cytokines, and chemokines is evident in the diabetic heart, yet the precise role of inflammation as a cause or consequence of DCM remains incompletely understood. Here, we provide a concise review of the inflammatory signaling mechanisms contributing to the clinical complications of diabetes-associated HF. Overall, the impact of inflammation on the onset and development of DCM suggests the potential benefits of targeting inflammatory cascades to prevent DCM. This review is tailored to outline the known effects of the current anti-diabetic drugs, anti-inflammatory therapies, and natural compounds on inflammation, which mitigate HF progression in diabetic populations.
Collapse
Affiliation(s)
| | | | | | | | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Abstract
Diabetic heart disease is a growing and important public health risk. Apart from the risk of coronary artery disease or hypertension, diabetes mellitus (DM) is a well-known risk factor for heart failure in the form of diabetic cardiomyopathy (DiaCM). Currently, DiaCM is defined as myocardial dysfunction in patients with DM in the absence of coronary artery disease and hypertension. The underlying pathomechanism of DiaCM is partially understood, but accumulating evidence suggests that metabolic derangements, oxidative stress, increased myocardial fibrosis and hypertrophy, inflammation, enhanced apoptosis, impaired intracellular calcium handling, activation of the renin-angiotensin-aldosterone system, mitochondrial dysfunction, and dysregulation of microRNAs, among other factors, are involved. Numerous animal models have been used to investigate the pathomechanisms of DiaCM. Despite some limitations, animal models for DiaCM have greatly advanced our understanding of pathomechanisms and have helped in the development of successful disease management strategies. In this review, we summarize the current pathomechanisms of DiaCM and provide animal models for DiaCM according to its pathomechanisms, which may contribute to broadening our understanding of the underlying mechanisms and facilitating the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| |
Collapse
|
10
|
Panizo S, Martínez-Arias L, Alonso-Montes C, Cannata P, Martín-Carro B, Fernández-Martín JL, Naves-Díaz M, Carrillo-López N, Cannata-Andía JB. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int J Mol Sci 2021; 22:E408. [PMID: 33401711 PMCID: PMC7795409 DOI: 10.3390/ijms22010408] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a process characterized by an excessive accumulation of the extracellular matrix as a response to different types of tissue injuries, which leads to organ dysfunction. The process can be initiated by multiple and different stimuli and pathogenic factors which trigger the cascade of reparation converging in molecular signals responsible of initiating and driving fibrosis. Though fibrosis can play a defensive role, in several circumstances at a certain stage, it can progressively become an uncontrolled irreversible and self-maintained process, named pathological fibrosis. Several systems, molecules and responses involved in the pathogenesis of the pathological fibrosis of chronic kidney disease (CKD) will be discussed in this review, putting special attention on inflammation, renin-angiotensin system (RAS), parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, microRNAs (miRs), and the vitamin D hormonal system. All of them are key factors of the core and regulatory pathways which drive fibrosis, having a great negative kidney and cardiac impact in CKD.
Collapse
Affiliation(s)
- Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Pablo Cannata
- Pathology Department, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Retic REDinREN-ISCIII, 28040 Madrid, Spain;
| | - Beatriz Martín-Carro
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - José L. Fernández-Martín
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| |
Collapse
|
11
|
Zhao W, Chen Y, Yang W, Han Y, Wang Z, Huang F, Qiu Z, Yang K, Jin W. Effects of Cardiomyocyte-Specific Deletion of STAT3-A Murine Model of Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2020; 7:613123. [PMID: 33365331 PMCID: PMC7750364 DOI: 10.3389/fcvm.2020.613123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Aims: There is a high incidence of heart failure with preserved ejection fraction (HFpEF), but the options of treatment are limited. A new animal model of HFpEF is urgently needed for in-depth research on HFpEF. Signal transducer and activator of transcription 3 (STAT3) may affect the passive stiffness of myocardium, which determines cardiac diastolic function. We hypothesized that cardiomyocyte-specific deletion of STAT3 increases cardiac passive stiffness, which results the murine features of HFpEF. Methods and Results: Cardiomyocyte-specific deletion of STAT3 (STAT3cKO) mice was generated by the Cre/FLOXp method. The STAT3cKO mice showed heavier cardiac fibrosis and cardiac hypertrophy comparing with wild-type (WT) mice. Furthermore, STAT3cKO mice showed increased serum brain natriuretic peptide (BNP) level, and growth stimulation expressed gene 2 (ST2) level. Other indicators reflecting cardiac passive stiffness and diastolic function, including end diastolic pressure volume relation, MV A value, MV E value, E/A and E/E' had different fold changes. All these changes were accompanied by decreasing levels of protein kinase G (PKG). Bioinformatic analysis of STAT3cKO mice hearts suggested cGMP-PKG signaling pathway might participate in the pathogenesis of HFpEF by means of adjusting different biological functions. Conclusions: Cardiomyocyte-specific deletion of STAT3 results in a murine HFpEF model which imitates the clinical characteristics partly by affecting cardiac PKG levels. Better understanding of the factors influencing HFpEF may finally provided innovative therapies.
Collapse
Affiliation(s)
- Weilin Zhao
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjia Chen
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbo Yang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxin Han
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyan Wang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fanyi Huang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeping Qiu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Yang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Jin
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Riehle C, Bauersachs J. Small animal models of heart failure. Cardiovasc Res 2020; 115:1838-1849. [PMID: 31243437 PMCID: PMC6803815 DOI: 10.1093/cvr/cvz161] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Heart disease is a major cause of death worldwide with increasing prevalence, which urges the development of new therapeutic strategies. Over the last few decades, numerous small animal models have been generated to mimic various pathomechanisms contributing to heart failure (HF). Despite some limitations, these animal models have greatly advanced our understanding of the pathogenesis of the different aetiologies of HF and paved the way to understanding the underlying mechanisms and development of successful treatments. These models utilize surgical techniques, genetic modifications, and pharmacological approaches. The present review discusses the strengths and limitations of commonly used small animal HF models, which continue to provide crucial insight and facilitate the development of new treatment strategies for patients with HF.
Collapse
Affiliation(s)
- Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| |
Collapse
|
13
|
Song YJ, Zhong CB, Wu W. Cardioprotective effects of melatonin: Focusing on its roles against diabetic cardiomyopathy. Biomed Pharmacother 2020; 128:110260. [PMID: 32447213 DOI: 10.1016/j.biopha.2020.110260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a pineal-produced indole known for its anti-aging, antiapoptotic and antioxidant properties. In past decades, the protective potentials of melatonin for cardiovascular diseases, such as atherosclerosis and myocardial infarction, have been widely revealed, triggering more investigations focused on other cardioprotective effects of melatonin. Recently, the roles of melatonin in diabetic cardiomyopathy (DCM) have attracted increased attention. In this regard, researchers found that melatonin attenuated cardiac fibrosis and hypertrophy, thus interrupting the development of DCM. Retinoid-related orphan receptor α is a key melatonin receptor that contributed to the cardioprotective effect of melatonin in hearts with DCM. For the downstream mechanisms, the inhibition of mammalian STE20-like kinase 1 plays a pivotal role, which exerts antiapoptotic and proautophagic effects, thus enhancing cardiac tolerance in high-glucose conditions. In addition, other signalling mechanisms, such as sirtuin-1/peroxisome proliferator-activated receptor gamma-coactivator alpha and endoplasmic reticulum-related signalling, are also involved in the protective effects of melatonin on cardiomyocytes under diabetic conditions. This review will focus on the protective signalling mechanisms regulated by melatonin and provide a better understanding of the therapeutic applications of melatonin signalling in DCM.
Collapse
Affiliation(s)
- Yan-Jun Song
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuai Fu Yuan, Beijing, 100730, PR China.
| | - Chong-Bin Zhong
- Department of Cardiology, Heart Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, PR China.
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuai Fu Yuan, Beijing, 100730, PR China.
| |
Collapse
|
14
|
Castelhano J, Ribeiro B, Sanches M, Graça B, Saraiva J, Oliveiros B, Neves C, Rodrigues T, Sereno J, Gonçalves S, Ferreira MJ, Seiça R, Matafome P, Castelo-Branco M. A rat model of enhanced glycation mimics cardiac phenotypic components of human type 2 diabetes : A translational study using MRI. J Diabetes Complications 2020; 34:107554. [PMID: 32122788 DOI: 10.1016/j.jdiacomp.2020.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The success of translational research depends on how well animal models mimic the pathophysiology of the human phenotype, and on the identification of disease mechanisms such as enhanced glycation. METHODS Here, we studied cardiac MRI and metabolic phenotypes in human type 2 diabetes (N = 106; 55 patients+51 controls) and animal models with distinct levels of fat diet and end glycation products, to model the role of these factors in the cardiac phenotype. We included four groups of rats, designed to evaluate the role of lipid load and glucotoxicity in cardiac function and to correlate these with the cardiac phenotype observed in humans. We also aimed to assess into which extent phenotypes were related to specific risk factors. RESULTS Stroke Volume (SV) and Peak Filling Rate (PFR) measures were similarly discriminative both in humans and animal models, particularly when enhanced glycation was present. Factorial analysis showed that reduction of multidimensionality into common main explanatory factors, in humans and animals, revealed components that equally explained the variance of cardiac phenotypes (87.62% and 83.75%, respectively). One of the components included, both in humans and animals, SV, PFR and peak ejection rate (PER). The other components included in both humans and animals are the following: ESV (end systolic volume), left ventricular mass (LVM) and ejection fraction (EF). These components were useful for between group discrimination. CONCLUSIONS We conclude that animal models of enhanced glycation and human type 2 diabetes share a striking similarity of cardiac phenotypic components and relation with metabolic changes, independently of fact content in the diet, which reinforces the role of glucose dysmetabolism in left ventricular dysfunction and provides a potentially useful approach for translational research in diabetes, in particular when testing new therapies early on during the natural history of this condition.
Collapse
Affiliation(s)
| | - Bruno Ribeiro
- CIBIT/ICNAS, University of Coimbra, Coimbra, Portugal
| | | | - Bruno Graça
- Coimbra University Hospital (CHUC), Coimbra, Portugal
| | - Joana Saraiva
- Coimbra University Hospital (CHUC), Coimbra, Portugal
| | - Bárbara Oliveiros
- Laboratório de Bioestatística e Informática Médica, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Christian Neves
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - José Sereno
- CIBIT/ICNAS, University of Coimbra, Coimbra, Portugal
| | | | - Maria João Ferreira
- CIBIT/ICNAS, University of Coimbra, Coimbra, Portugal; Laboratório de Bioestatística e Informática Médica, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - Paulo Matafome
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Portugal.; Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Department of Complementary Sciences, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CIBIT/ICNAS, University of Coimbra, Coimbra, Portugal; Laboratório de Bioestatística e Informática Médica, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
15
|
Lee TW, Kao YH, Chen YJ, Chao TF, Lee TI. Therapeutic potential of vitamin D in AGE/RAGE-related cardiovascular diseases. Cell Mol Life Sci 2019; 76:4103-4115. [PMID: 31250032 PMCID: PMC11105755 DOI: 10.1007/s00018-019-03204-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) are among the leading threats to human health. The advanced glycation end product (AGE) and receptor for AGE (RAGE) signaling pathway regulates the pathogenesis of CVDs, through its effects on arterial stiffness, atherosclerosis, mitochondrial dysfunction, oxidative stress, calcium homeostasis, and cytoskeletal function. Targeting the AGE/RAGE pathway is a potential therapeutic strategy for ameliorating CVDs. Vitamin D has several beneficial effects on the cardiovascular system. Experimental findings have shown that vitamin D regulates AGE/RAGE signaling and its downstream effects. This article provides a comprehensive review of the mechanistic insights into AGE/RAGE involvement in CVDs and the modulation of the AGE/RAGE signaling pathways by vitamin D.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Road, Section 3 Wenshan District, Taipei, 11696, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Road, Section 3 Wenshan District, Taipei, 11696, Taiwan.
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Contribution of Impaired Insulin Signaling to the Pathogenesis of Diabetic Cardiomyopathy. Int J Mol Sci 2019; 20:ijms20112833. [PMID: 31212580 PMCID: PMC6600234 DOI: 10.3390/ijms20112833] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) has emerged as a relevant cause of heart failure among the diabetic population. Defined as a cardiac dysfunction that develops in diabetic patients independently of other major cardiovascular risks factors, such as high blood pressure and coronary artery disease, the underlying cause of DCMremains to be unveiled. Several pathogenic factors, including glucose and lipid toxicity, mitochondrial dysfunction, increased oxidative stress, sustained activation of the renin-angiotensin system (RAS) or altered calcium homeostasis, have been shown to contribute to the structural and functional alterations that characterize diabetic hearts. However, all these pathogenic mechanisms appear to stem from the metabolic inflexibility imposed by insulin resistance or lack of insulin signaling. This results in absolute reliance on fatty acids for the synthesis of ATP and impairment of glucose oxidation. Glucose is then rerouted to other metabolic pathways, with harmful effects on cardiomyocyte function. Here, we discuss the role that impaired cardiac insulin signaling in diabetic or insulin-resistant individuals plays in the onset and progression of DCM.
Collapse
|
17
|
Riehle C, Bauersachs J. Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiol 2018; 114:2. [PMID: 30443826 PMCID: PMC6244639 DOI: 10.1007/s00395-018-0711-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus increases the risk of heart failure independent of co-existing hypertension and coronary artery disease. Although several molecular mechanisms for the development of diabetic cardiomyopathy have been identified, they are incompletely understood. The pathomechanisms are multifactorial and as a consequence, no causative treatment exists at this time to modulate or reverse the molecular changes contributing to accelerated cardiac dysfunction in diabetic patients. Numerous animal models have been generated, which serve as powerful tools to study the impact of type 1 and type 2 diabetes on the heart. Despite specific limitations of the models generated, they mimic various perturbations observed in the diabetic myocardium and continue to provide important mechanistic insight into the pathogenesis underlying diabetic cardiomyopathy. This article reviews recent studies in both diabetic patients and in these animal models, and discusses novel hypotheses to delineate the increased incidence of heart failure in diabetic patients.
Collapse
Affiliation(s)
- Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| |
Collapse
|
18
|
Wang B, Zhang Y, Sun N, Gu S, Ding F, Xu S, Zhou H, Liu Y. MRI-measured myocardial iron load in patients with severe diabetic heart failure. Clin Radiol 2018; 73:324.e1-324.e7. [DOI: 10.1016/j.crad.2017.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
|
19
|
Frati G, Schirone L, Chimenti I, Yee D, Biondi-Zoccai G, Volpe M, Sciarretta S. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res 2017; 113:378-388. [PMID: 28395009 DOI: 10.1093/cvr/cvx011] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/20/2017] [Indexed: 02/05/2023] Open
Abstract
Heart failure is a highly morbid and mortal clinical condition that represents the last stage of most cardiovascular disorders. Diabetes is strongly associated with an increased incidence of heart failure and directly promotes cardiac hypertrophy, fibrosis, and apoptosis. These changes, in turn, contribute to the development of ventricular dysfunction. The clinical condition associated with the spectrum of cardiac abnormalities induced by diabetes is termed diabetic cardiomyopathy. Myocardial inflammation has recently emerged as a pathophysiological process contributing to cardiac hypertrophy, fibrosis, and dysfunction in cardiac diseases. Myocardial inflammation is also implicated in the development of diabetic cardiomyopathy. Several molecular mechanisms link diabetes to myocardial inflammation. The NF-κB signalling pathway and the renin-angiotensin-aldosterone system are strongly activated in the diabetic heart, thereby promoting myocardial inflammation. Advanced glycation end-products and damage-associated molecular pattern molecules also represent strong triggers for inflammation. The mediators resulting from this inflammatory process modulate specific intracellular signalling mechanisms in cardiac cells that promote the development of diabetic cardiomyopathy. This review article will provide an overview of the signalling molecular mechanisms linking diabetic cardiomyopathy to myocardial inflammation.
Collapse
Affiliation(s)
- Giacomo Frati
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy
| | - Isotta Chimenti
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy
| | - Derek Yee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Giuseppe Biondi-Zoccai
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Massimo Volpe
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
20
|
Di Pino A, Mangiafico S, Urbano F, Scicali R, Scandura S, D'Agate V, Piro S, Tamburino C, Purrello F, Rabuazzo AM. HbA1c Identifies Subjects With Prediabetes and Subclinical Left Ventricular Diastolic Dysfunction. J Clin Endocrinol Metab 2017; 102:3756-3764. [PMID: 28973588 DOI: 10.1210/jc.2017-00954] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Prediabetes is associated with subclinical cardiac changes associated with heart failure development. OBJECTIVE We investigated diastolic function and its association with markers of glycation and inflammation related to cardiovascular disease in patients with prediabetes. We focused on individuals with prediabetes identified only by glycated hemoglobin A1c [HbA1c; 5.7% to 6.4% and normal fasting glucose (NFG) and normal glucose tolerance (NGT) after an oral glucose tolerance test (OGTT)]. DESIGN Cross-sectional study. SETTING Departments of Clinical and Experimental Medicine and Cardiology, University of Catania, Catania, Italy. MAIN OUTCOME MEASURES HbA1c, OGTT, Doppler echocardiography, soluble receptor for advanced glycation end products (sRAGEs), and endogenous secretory RAGE (esRAGE) were evaluated. PATIENTS We recruited 167 subjects with NFG/NGT who were stratified according to HbA1c level: controls (HbA1c <5.7%) and HbA1c prediabetes (HbA1c 5.7% to 6.4%). RESULTS Patients with HbA1c prediabetes (n = 106) showed a lower peak mitral inflow in early diastole (E wave) to late diastolic atrial filling velocity (A wave) ratio (E/A ratio) than controls (n = 61) (1.10 ± 0.24 vs 1.18 ± 0.23; P < 0.05). They showed a higher left atrium volume (LAV) (28.4 ± 5 vs 22.1 ± 3; P < 0.05) and sphericity index (SI) (0.6 ± 0.06 vs 0.5 ± 0.05; P < 0.05). After multiple regression analyses, HbA1c, sRAGE, and esRAGE were the major determinants of E/A ratio, LAV, and SI. CONCLUSIONS Subjects with HbA1c prediabetes exhibited subclinical cardiac alterations associated with sRAGE, esRAGE, and HbA1c. These subjects would not have been classified as having prediabetes on the basis of fasting glycemia or post-OGTT values.
Collapse
Affiliation(s)
- Antonino Di Pino
- Department of Clinical and Experimental Medicine, Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| | - Sarah Mangiafico
- Division of Cardiology, Ferrarotto Hospital, University of Catania, 95100 Catania, Italy
| | - Francesca Urbano
- Department of Clinical and Experimental Medicine, Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| | - Salvatore Scandura
- Division of Cardiology, Ferrarotto Hospital, University of Catania, 95100 Catania, Italy
| | - Veronica D'Agate
- Division of Cardiology, Ferrarotto Hospital, University of Catania, 95100 Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| | - Corrado Tamburino
- Division of Cardiology, Ferrarotto Hospital, University of Catania, 95100 Catania, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| | - Agata Maria Rabuazzo
- Department of Clinical and Experimental Medicine, Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| |
Collapse
|
21
|
Comparative Analysis of AGE and RAGE Levels in Human Somatic and Embryonic Stem Cells under H 2O 2-Induced Noncytotoxic Oxidative Stress Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4240136. [PMID: 29104727 PMCID: PMC5623800 DOI: 10.1155/2017/4240136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/27/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022]
Abstract
The accumulation of advanced glycation end products (AGEs) occurs in ageing and in many degenerative diseases as a final outcome of persistent oxidative stress on cells and organs. Environmental alterations taking place during early embryonic development can also lead to oxidative damage, reactive oxygen species (ROS) production, and AGE accumulation. Whether similar mechanisms act on somatic and embryonic stem cells (ESC) exposed to oxidative stress is not known; and therefore, the modelling of oxidative stress in vitro on human ESC has been the focus of this study. We compared changes in Nε-carboxymethyl-lysine (CML) advanced glycation end products and RAGE levels in hESC versus differentiated somatic cells exposed to H2O2 within the noncytotoxic range. Our data revealed that hESC accumulates CML and RAGE under oxidative stress conditions in different ways than somatic cells, being the accumulation of CML statistically significant only in somatic cells and, conversely, the RAGE increase exclusively appreciated in hESC. Then, following cardiac and neural differentiation, we observed a progressive removal of AGEs and at the same time an elevated activity of the 20S proteasome. We conclude that human ESCs constitute a unique model to study the consequence of an oxidative environment in the pluripotent cells of the embryo during the human preimplantation period.
Collapse
|
22
|
Yang D, Liu W, Ma L, Wang Y, Ma J, Jiang M, Deng X, Huang F, Yang T, Chen M. Profilin‑1 contributes to cardiac injury induced by advanced glycation end‑products in rats. Mol Med Rep 2017; 16:6634-6641. [PMID: 28901418 PMCID: PMC5865800 DOI: 10.3892/mmr.2017.7446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiac injury, including hypertrophy and fibrosis, induced by advanced glycation end products (AGEs) has an important function in the onset and development of diabetic cardiomyopathy. Profilin-1, a ubiquitously expressed and multifunctional actin-binding protein, has been reported to be an important mediator in cardiac hypertrophy and fibrosis. However, whether profilin-1 is involved in AGE-induced cardiac hypertrophy and fibrosis remains to be determined. Therefore, the present study aimed to investigate the function of profilin-1 in cardiac injury induced by AGEs. The model of cardiac injury was established by chronic tail vein injection of AGEs (50 mg/kg/day for 8 weeks) in Sprague-Dawley rats. Rats were randomly assigned to control, AGEs, AGEs + profilin-1 shRNA adenovirus vectors (AGEs + S)or AGEs + control adenovirus vectors (AGEs + V) groups. Profilin-1 shRNA adenovirus vectors were injected via the tail vein to knockdown profilin-1 expression at a dose of 3×109 plaque forming units every 4 weeks. Echocardiography was performed to measure cardiac contractile function. Cardiac tissues were stained with Masson's trichrome stain to evaluate ventricular remodeling. The serum levels of procollagen type III N-terminal peptide were detected by ELISA. The expression of profilin-1, receptor for AGEs (RAGE), Rho, p65, atrial natriuretic peptide, β-myosin heavy chain, matrix metalloproteinase (MMP)-2 and MMP-9 were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and/or western blot analysis and immunohistochemistry staining. The results demonstrated that chronic injection of exogenous AGEs led to cardiac dysfunction, hypertrophy and fibrosis, as determined by echocardiography, Masson trichrome staining and the expression of associated genes. The expression of profilin-1 was markedly increased in heart tissue at the mRNA and protein level following AGE administration, as determined by RT-qPCR and western blotting, which was further confirmed by immunohistochemistry staining. Furthermore, the expression of RAGE, Rho and p65 was also increased at the protein level. Notably, knockdown of profilin-1 expression ameliorated AGE-induced cardiac injury and reduced the expression of RAGE, Rho and p65. These results indicate an important role for profilin-1 in AGE-induced cardiac injury, which may provide a novel therapeutic target for patients with diabetic heart failure.
Collapse
Affiliation(s)
- Dafeng Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weiwei Liu
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Liping Ma
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ya Wang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jing Ma
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Minna Jiang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xu Deng
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Fang Huang
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Meifang Chen
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
23
|
Kidney, heart and brain: three organs targeted by ageing and glycation. Clin Sci (Lond) 2017; 131:1069-1092. [PMID: 28515343 DOI: 10.1042/cs20160823] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
Abstract
Advanced glycation end-product (AGE) is the generic term for a heterogeneous group of derivatives arising from a non-enzymatic reaction between reducing sugars and proteins. In recent years, evidence has accumulated that incriminates AGEs in pathogenic processes associated with both chronic hyperglycaemia and age-related diseases. Regardless of their exogenous or endogenous origin, the accumulation of AGEs and their derivatives could promote accelerated ageing by leading to protein modifications and activating several inflammatory signalling pathways via AGE-specific receptors. However, it remains to be demonstrated whether preventing the accumulation of AGEs and their effects is an important therapeutic option for successful ageing. The present review gives an overview of the current knowledge on the pathogenic role of AGEs by focusing on three AGE target organs: kidney, heart and brain. For each of these organs we concentrate on an age-related disease, each of which is a major public health issue: chronic kidney disease, heart dysfunction and neurodegenerative diseases. Even though strong connections have been highlighted between glycation and age-related pathogenesis, causal links still need to be validated. In each case, we report evidence and uncertainties suggested by animal or epidemiological studies on the possible link between pathogenesis and glycation in a chronic hyperglycaemic state, in the absence of diabetes, and with exogenous AGEs alone. Finally, we present some promising anti-AGE strategies that are currently being studied.
Collapse
|
24
|
Deluyker D, Evens L, Bito V. Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs. Amino Acids 2017; 49:1535-1541. [DOI: 10.1007/s00726-017-2464-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022]
|
25
|
Neviere R, Yu Y, Wang L, Tessier F, Boulanger E. Implication of advanced glycation end products (Ages) and their receptor (Rage) on myocardial contractile and mitochondrial functions. Glycoconj J 2016; 33:607-17. [PMID: 27277623 DOI: 10.1007/s10719-016-9679-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
|
26
|
Xia P, Deng Q, Gao J, Yu X, Zhang Y, Li J, Guan W, Hu J, Tan Q, Zhou L, Han W, Yuan Y, Yu Y. Therapeutic effects of antigen affinity-purified polyclonal anti-receptor of advanced glycation end-product (RAGE) antibodies on cholestasis-induced liver injury in rats. Eur J Pharmacol 2016; 779:102-10. [PMID: 26970185 DOI: 10.1016/j.ejphar.2016.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023]
Abstract
Cholestasis leads to acute hepatic injury, fibrosis/cirrhosis, inflammation, and duct proliferation. We investigated whether blocking receptor of advanced glycation end-products (RAGE) with polyclonal anti-RAGE antibodies (anti-RAGE) could regulate acute liver injury and fibrosis in a rat bile duct ligation (BDL) model. Male Wister rats received 0.5mg/kg rabbit anti-RAGE or an equal amount of rabbit IgG by subcutaneous injection twice a week after BDL. Samples of liver tissue and peripheral blood were collected at 14 days after BDL. Serum biochemistry and histology were used to analyze the degree of liver injury. Quantitative real-time PCR (qPCR) and immunohistochemical staining were used to further analyze liver injury. Anti-RAGE improved the gross appearance of the liver and the rat survival rate. Liver tissue histology and relevant serum biochemistry indicated that anti-RAGE attenuated liver necrosis, inflammation, liver fibrosis, and duct proliferation in the BDL model. qPCR and western blotting showed significant reductions in interleukin-1β expression levels in the liver by treatment with anti-RAGE. Anti-RAGE also significantly reduced the mRNA levels of α1(1) collagen (Col1α1) and cholesterol 7α-hydroxylase, and the ratio of tissue inhibitor of matrix metalloproteinase-1 to matrix metalloproteinases (MMPs) in the liver. In addition, anti-RAGE regulated the transcriptional level of Col1α1 and MMP-9 in transforming growth factor-β-induced activated LX-2 cells in vitro. Anti-RAGE was found to inhibit hepatic stellate cell proliferation in vivo and in vitro. Therefore, anti-RAGE can protect the liver from injury induced by BDL in rats.
Collapse
Affiliation(s)
- Peng Xia
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Qing Deng
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Jin Gao
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Xiaolan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Yang Zhang
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Jingjing Li
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Wen Guan
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Jianjun Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd., Xuhui, Shanghai 200233, China
| | - Quanhui Tan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd., Xuhui, Shanghai 200233, China
| | - Liang Zhou
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Wei Han
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Yunsheng Yuan
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China; Engineering Research Center of Cell and Therapeutic Antibody, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| |
Collapse
|
27
|
Mapanga RF, Essop MF. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. Am J Physiol Heart Circ Physiol 2016; 310:H153-73. [DOI: 10.1152/ajpheart.00206.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia.
Collapse
Affiliation(s)
- Rudo F. Mapanga
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
28
|
Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 2015; 90:84-93. [PMID: 26705059 DOI: 10.1016/j.yjmcc.2015.12.011] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Both type 1 and type 2 diabetes are associated with cardiac fibrosis that may reduce myocardial compliance, contribute to the pathogenesis of heart failure, and trigger arrhythmic events. Diabetes-associated fibrosis is mediated by activated cardiac fibroblasts, but may also involve fibrogenic actions of macrophages, cardiomyocytes and vascular cells. The molecular basis responsible for cardiac fibrosis in diabetes remains poorly understood. Hyperglycemia directly activates a fibrogenic program, leading to accumulation of advanced glycation end-products (AGEs) that crosslink extracellular matrix proteins, and transduce fibrogenic signals through reactive oxygen species generation, or through activation of Receptor for AGEs (RAGE)-mediated pathways. Pro-inflammatory cytokines and chemokines may recruit fibrogenic leukocyte subsets in the cardiac interstitium. Activation of transforming growth factor-β/Smad signaling may activate fibroblasts inducing deposition of structural extracellular matrix proteins and matricellular macromolecules. Adipokines, endothelin-1 and the renin-angiotensin-aldosterone system have also been implicated in the diabetic myocardium. This manuscript reviews our current understanding of the cellular effectors and molecular pathways that mediate fibrosis in diabetes. Based on the pathophysiologic mechanism, we propose therapeutic interventions that may attenuate the diabetes-associated fibrotic response and discuss the challenges that may hamper clinical translation.
Collapse
Affiliation(s)
- Ilaria Russo
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
29
|
Yilmaz S, Canpolat U, Aydogdu S, Abboud HE. Diabetic Cardiomyopathy; Summary of 41 Years. Korean Circ J 2015; 45:266-72. [PMID: 26240579 PMCID: PMC4521103 DOI: 10.4070/kcj.2015.45.4.266] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 03/05/2015] [Indexed: 01/04/2023] Open
Abstract
Patients with diabetes have an increased risk for development of cardiomyopathy, even in the absence of well known risk factors like coronary artery disease and hypertension. Diabetic cardiomyopathy was first recognized approximately four decades ago. To date, several pathophysiological mechanisms thought to be responsible for this new entity have also been recognized. In the presence of hyperglycemia, non-enzymatic glycosylation of several proteins, reactive oxygen species formation, and fibrosis lead to impairment of cardiac contractile functions. Impaired calcium handling, increased fatty acid oxidation, and increased neurohormonal activation also contribute to this process. Demonstration of left ventricular hypertrophy, early diastolic and late systolic dysfunction by sensitive techniques, help us to diagnose diabetic cardiomyopathy. Traditional treatment of heart failure is beneficial in diabetic cardiomyopathy, but specific strategies for prevention or treatment of cardiac dysfunction in diabetic patients has not been clarified yet. In this review we will discuss clinical and experimental studies focused on pathophysiology of diabetic cardiomyopathy, and summarize diagnostic and therapeutic approaches developed towards this entity.
Collapse
Affiliation(s)
- Samet Yilmaz
- Turkey Yuksek Ihtisas Education and Research Hospital, Cardiology Clinic, Ankara, Turkey
| | - Ugur Canpolat
- Turkey Yuksek Ihtisas Education and Research Hospital, Cardiology Clinic, Ankara, Turkey
| | - Sinan Aydogdu
- Turkey Yuksek Ihtisas Education and Research Hospital, Cardiology Clinic, Ankara, Turkey
| | - Hanna Emily Abboud
- Division of Nephrology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
30
|
Chen PM, Gregersen H, Zhao JB. Advanced glycation end-product expression is upregulated in the gastrointestinal tract of type 2 diabetic rats. World J Diabetes 2015; 6:662-672. [PMID: 25987965 PMCID: PMC4434088 DOI: 10.4239/wjd.v6.i4.662] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 03/04/2015] [Accepted: 03/18/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate changes in advanced glycation end products (AGEs) and their receptor (RAGE) expression in the gastrointestinal (GI) tract in type 2 diabetic rats.
METHODS: Eight inherited type 2 diabetic rats Goto-Kakizak (GK) and ten age-matched normal rats were used in the study. From 18 wk of age, the body weight and blood glucose were measured every week and 2 wk respectively. When the rats reached 32 wk, two-centimeter segments of esophagus, duodenum, jejunum, ileum, and colon were excised and the wet weight was measured. The segments were fixed in 10% formalin, embedded in paraffin and five micron sections were cut. The layer thickness was measured in Hematoxylin and Eosin-stained slides. AGE [N epsilon-(carboxymethyl) lysine and N epsilon-(carboxyethyl)lysine] and RAGE were detected by immunohistochemistry staining and image analysis was done using Sigmascan Pro 4.0 image analysis software.
RESULTS: The blood glucose concentration (mmol/L) at 18 wk age was highest in the GK group (8.88 ± 1.87 vs 6.90 ± 0.43, P < 0.001), a difference that continued to exist until the end of the experiment. The wet weight per unit length (mg/cm) increased in esophagus, jejunum and colon from the normal to the GK group (60.64 ± 9.96 vs 68.56 ± 11.69, P < 0.05 for esophagus; 87.01 ± 9.35 vs 105.29 ± 15.45, P < 0.01 for jejunum; 91.37 ± 7.25 vs 97.28 ± 10.90, P < 0.05 for colon). Histologically, the layer thickness of the GI tract was higher for esophagus, jejunum and colon in the GK group [full thickness (μm): 575.37 ± 69.22 vs 753.20 ± 150.41, P < 0.01 for esophagus; 813.51 ± 44.44 vs 884.81 ± 45.31, P < 0.05 for jejunum; 467.12 ± 65.92 vs 572.26 ± 93.60, P < 0.05 for colon]. In esophagus, the AGE and RAGE mainly distributed in striated muscle cells and squamous epithelial cells. The AGE distribution was much stronger in the GK group compared to the normal group both in the striated muscle layer and mucosa layer (immuno-positive area/ total measuring area %: 4.52 ± 0.89 vs 10.96 ± 1.34, P < 0.01 for muscle; 8.90 ± 2.62 vs 22.45 ± 1.26, P < 0.01 for mucosa). No visible difference was found for RAGE distribution between the two groups. In the intestine AGE and RAGE distributed in epithelial cells of villi and crypt. RAGE was also found in neurons in the myenteric and submucosal plexus. The intensity of AGE staining in mucosa of all segments and RAGE staining in neurons in all segments were strongest in the diabetes group. Significant difference for AGE was found in the epithelial cells of villi and crypt in duodenum (immuno-positive area/total measuring area %: 13.37 ± 3.51 vs 37.48 ± 8.43, P < 0.05 for villi; 0.38 ± 0.12 vs 1.87 ± 0.53, P < 0.05 for crypt) and for RAGE in neurons of all segments (e.g., for jejunum: no staining neurons% 0 vs 0, mild 36.0 ± 5.2 vs 28.7 ± 3.5, moderate 53.2 ± 4.8 vs 55.8 ± 5.4, strong 10.7 ± 1.1 vs 15.4 ± 2.0, P < 0.05). In the colon, RAGE was primarily found in neurons in the myenteric and submucosal plexus. It was stronger in the diabetes group than in the normal group (no staining neurons% 6.2 ± 0.2 vs 0.3 ± 0.04, mild 14.9 ± 2.1 vs 17.6 ± 1.5, moderate 53.1 ± 4.6 vs 44.7 ± 4.4, strong 25.6 ± 18 vs 43.6 ± 4.0, P < 0.05). In the rectum, RAGE was primarily found in the mucosa epithelial cells.
CONCLUSION: The AGE and RAGE expression was up-regulated in the GI tract of GK diabetic rats and may contribute to GI dysfunction in type 2 diabetic patients.
Collapse
|
31
|
Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:758358. [PMID: 26078817 PMCID: PMC4442299 DOI: 10.1155/2015/758358] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 11/18/2022]
Abstract
Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy.
Collapse
|
32
|
Bayraktar A, Canpolat U, Demiri E, Kunak AU, Ozer N, Aksoyek S, Ovunc K, Ozkan A, Yildiz OB, Atalar E. New insights into the mechanisms of diastolic dysfunction in patients with type 2 diabetes. SCAND CARDIOVASC J 2015; 49:142-8. [PMID: 25920390 DOI: 10.3109/14017431.2015.1039571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Little is known about the role of advanced glycation end products (AGEs) and their receptor (RAGE) in diabetic cardiovascular complications. Therefore, we aimed to evaluate the association of serum soluble RAGE (sRAGE) levels and left ventricular (LV) diastolic dysfunction in patients with type 2 diabetes. METHODS Our study consisted of 40 patients with type 2 diabetes and 40 age- and sex-matched healthy control group. Subjects with age ≥ 50 years old and any cardiovascular risk factors or conditions were excluded from the study. Serum sRAGE levels determined by enzyme-linked immunosorbent assay and LV diastolic dysfunction were evaluated according to current American Society of Echocardiography guidelines. RESULTS Baseline characteristics were similar between groups except body mass index, waist-hip ratio, and fasting glucose levels. Serum sRAGE level was significantly lower in diabetic group compared with control group (676 ± 128 vs. 1044 ± 344, p < 0.05). Diastolic dysfunction was observed in 50% of diabetic patients (40% grade I and 10% grade II). Correlation analysis showed that serum sRAGE was negatively correlated with duration of diabetes, septal E'/A', lateral E'/A', and average E/E'. In multivariate regression analysis, serum sRAGE level was strongly associated with diastolic dysfunction in patients with type 2 diabetes. CONCLUSION Our study showed that serum sRAGE level was significantly lower in type 2 diabetic patients aged < 50 years old. Also, sRAGE has negative correlation with the duration of diabetes and it was significantly associated with the presence of diastolic dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Al Bayraktar
- Cardiology Clinic, Ahi Evren Cardiovascular and Thoracic Surgery Training and Research Hospital , Trabzon , Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cavalera M, Wang J, Frangogiannis NG. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl Res 2014; 164:323-35. [PMID: 24880146 PMCID: PMC4180761 DOI: 10.1016/j.trsl.2014.05.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/28/2014] [Accepted: 05/03/2014] [Indexed: 02/09/2023]
Abstract
Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias, and sudden cardiac death in obese subjects. This review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiological alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis, and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiological alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation, and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes, and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the renin-angiotensin-aldosterone system, induction of transforming growth factor β, oxidative stress, advanced glycation end-products, endothelin 1, Rho-kinase signaling, leptin-mediated actions, and upregulation of matricellular proteins (such as thrombospondin 1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response after cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to the development of novel therapies to prevent heart failure and attenuate postinfarction cardiac remodeling in patients with obesity.
Collapse
Affiliation(s)
- Michele Cavalera
- Division of Cardiology, Department of Medicine, The Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Junhong Wang
- Division of Cardiology, Department of Medicine, The Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- Division of Cardiology, Department of Medicine, The Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
34
|
Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev 2014; 19:49-63. [PMID: 23404649 DOI: 10.1007/s10741-013-9374-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence demonstrates that advanced glycation end products (AGEs) play a pivotal role in the development and progression of diabetic heart failure, although there are numerous other factors that mediate the disease response. AGEs are generated intra- and extracellularly as a result of chronic hyperglycemia. Then, following the interaction with receptors for advanced glycation end products (RAGEs), a series of events leading to vascular and myocardial damage are elicited and sustained, which include oxidative stress, increased inflammation, and enhanced extracellular matrix accumulation resulting in diastolic and systolic dysfunction. Whereas targeting glycemic control and treating additional risk factors, such as obesity, dyslipidemia, and hypertension, are mandatory to reduce chronic complications and prolong life expectancy in diabetic patients, drug therapy tailored to reducing the deleterious effects of the AGE-RAGE interactions is being actively investigated and showing signs of promise in treating diabetic cardiomyopathy and associated heart failure. This review shall discuss the formation of AGEs in diabetic heart tissue, potential targets of glycation in the myocardium, and underlying mechanisms that lead to diabetic cardiomyopathy and heart failure along with the use of AGE inhibitors and breakers in mitigating myocardial injury.
Collapse
Affiliation(s)
- Vijaya Lakshmi Bodiga
- Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh, India
| | | | | |
Collapse
|
35
|
Yan D, Luo X, Li Y, Liu W, Deng J, Zheng N, Gao K, Huang Q, Liu J. Effects of advanced glycation end products on calcium handling in cardiomyocytes. Cardiology 2014; 129:75-83. [PMID: 25138529 DOI: 10.1159/000364779] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/22/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Advanced glycation end products (AGEs) accumulate in diabetes and the engagement of receptor for AGE (RAGE) by AGEs contributes to the pathogenesis of diabetic cardiomyopathy. This study aims to investigate the effects of AGE/RAGE on ryanodine receptor (RyR) activity and Ca(2+) handling in cardiomyocytes to elucidate the possible mechanism underlying cardiac dysfunction in diabetic cardiomypathy. METHODS AND RESULTS Confocal imaging Ca(2+) spark, the elementary Ca(2+) release event reflecting RyR activity in intact cell, as well as SR Ca(2+) content and systolic Ca(2+) transient were performed in cultured neonatal rat ventricular myocytes. The results show that 50 mg/ml AGE increased the frequency of Ca(2+) sparks by 160%, while 150 mg/ml AGE increased it by 53%. AGE decreased the amplitude, width and duration of Ca(2+) sparks. Blocking RAGE with anti-RAGE IgG completely abolished the alteration of Ca(2+) sparks. The SR Ca(2+) content indicated by the amplitude (ΔF/F0) of 20 mM caffeine-elicited Ca(2+) transient was significantly decreased by 150 mg/ml AGE. In parallel, the amplitude of systolic Ca(2+) transient evoked by 1 Hz-field stimulation was remarkably decreased by 150 mg/ml AGE. The anti-RAGE antibody completely restored the impaired SR load and systolic Ca(2+) transient. CONCLUSION AGE/RAGE signal enhanced Ca(2+) spark-mediated SR Ca(2+) leak, causing partial depletion of SR Ca(2+) content and consequently decreasing systolic Ca(2+) transient, which may contribute to contractile dysfunction in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dewen Yan
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Plante E, Menaouar A, Danalache BA, Broderick TL, Jankowski M, Gutkowska J. Treatment with brain natriuretic peptide prevents the development of cardiac dysfunction in obese diabetic db/db mice. Diabetologia 2014; 57:1257-67. [PMID: 24595856 DOI: 10.1007/s00125-014-3201-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Obesity and diabetes increase the risk of developing cardiovascular diseases and heart failure. These metabolic disorders are generally reflected by natriuretic peptide system deficiency. Since brain natriuretic peptide (BNP) is known to influence metabolism and cardioprotection, we investigated the effect of chronic exogenous BNP treatment on adverse myocardial consequences related to obesity and diabetes. METHODS Ten-week-old C57BL/KsJ-db/db obese diabetic mice (db/db) and their lean control littermates (db/+) were treated with BNP (0.6 μg kg(-1) h(-1)) or saline for 12 weeks (n = 10/group). Serial blood and tomography analysis were performed. Cardiac function was determined by echocardiography, and biochemical and histological heart and fat analyses were also performed. RESULTS BNP treatment resulted in an average increase in plasma BNP levels of 70 pg/ml. An improvement in the metabolic profile of db/db mice was observed, including a reduction in fat content, increased insulin sensitivity, improved glucose tolerance and lower blood glucose, despite increased food intake. db/db mice receiving saline displayed both early systolic and diastolic dysfunction, whereas these functional changes were prevented by BNP treatment. The cardioprotective effects of BNP were attributed to the inhibition of cardiomyocyte apoptosis, myocardial fibrosis, cardiac hypertrophy and the AGE-receptor for AGE (RAGE) system as well as normalisation of cardiac AMP-activated protein kinase and endothelial nitric oxide synthase activities. CONCLUSIONS/INTERPRETATION Our results indicate that chronic BNP treatment at low dose improves the metabolic profile and prevents the development of myocardial dysfunction in db/db mice.
Collapse
Affiliation(s)
- Eric Plante
- Cardiovascular Biochemistry Laboratory, CRCHUM (7-134), Tour Viger, 900 St-Denis St., Montreal, Quebec, H2X 0A9, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Yan L, Mathew L, Chellan B, Gardner B, Earley J, Puri TS, Hofmann Bowman MA. S100/Calgranulin-mediated inflammation accelerates left ventricular hypertrophy and aortic valve sclerosis in chronic kidney disease in a receptor for advanced glycation end products-dependent manner. Arterioscler Thromb Vasc Biol 2014; 34:1399-411. [PMID: 24855059 DOI: 10.1161/atvbaha.114.303508] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE S100A12 and fibroblast growth factor 23 are biomarkers of cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD). We tested the hypothesis that human S100/calgranulin would accelerate cardiovascular disease in mice subjected to CKD. APPROACH AND RESULTS A bacterial artificial chromosome of the human S100/calgranulin gene cluster containing the genes and regulatory elements for S100A8, S100A9, and S100A12 was expressed in C57BL/6J mouse (hBAC-S100) to generate a novel humanized mouse model. CKD was induced by ureteral ligation, and hBAC-S100 mice and wild-type mice were studied after 10 weeks of chronic uremia. hBAC-S100 mice with CKD showed increased fibroblast growth factor 23 in the hearts, left ventricular hypertrophy, diastolic dysfunction, focal cartilaginous metaplasia, and calcification of the mitral and aortic valve annulus together with aortic valve sclerosis. This phenotype was not observed in wild-type mice with CKD or in hBAC-S100 mice lacking the receptor for advanced glycation end products with CKD, suggesting that the inflammatory milieu mediated by S100/receptor for advanced glycation end products promotes pathological cardiac hypertrophy in CKD. In vitro, inflammatory stimuli including interleukin-6, tumor necrosis factor-α, lipopolysaccarides, or serum from hBAC-S100 mice upregulated fibroblast growth factor 23 mRNA and protein in primary murine neonatal and adult cardiac fibroblasts. CONCLUSIONS Myeloid-derived human S100/calgranulin is associated with the development of cardiac hypertrophy and ectopic cardiac calcification in a receptor for advanced glycation end products-dependent manner in a mouse model of CKD. We speculate that fibroblast growth factor 23 produced by cardiac fibroblasts in response to cytokines may act in a paracrine manner to accelerate left ventricular hypertrophy and diastolic dysfunction in hBAC-S100 mice with CKD.
Collapse
Affiliation(s)
- Ling Yan
- From the Department of Medicine, Cardiology (L.Y., B.C., B.G., J.E., M.A.H.B.) and Medicine, Nephrology (L.M., T.S.P.), The University of Chicago, IL
| | - Liby Mathew
- From the Department of Medicine, Cardiology (L.Y., B.C., B.G., J.E., M.A.H.B.) and Medicine, Nephrology (L.M., T.S.P.), The University of Chicago, IL
| | - Bijoy Chellan
- From the Department of Medicine, Cardiology (L.Y., B.C., B.G., J.E., M.A.H.B.) and Medicine, Nephrology (L.M., T.S.P.), The University of Chicago, IL
| | - Brandon Gardner
- From the Department of Medicine, Cardiology (L.Y., B.C., B.G., J.E., M.A.H.B.) and Medicine, Nephrology (L.M., T.S.P.), The University of Chicago, IL
| | - Judy Earley
- From the Department of Medicine, Cardiology (L.Y., B.C., B.G., J.E., M.A.H.B.) and Medicine, Nephrology (L.M., T.S.P.), The University of Chicago, IL
| | - Tipu S Puri
- From the Department of Medicine, Cardiology (L.Y., B.C., B.G., J.E., M.A.H.B.) and Medicine, Nephrology (L.M., T.S.P.), The University of Chicago, IL
| | - Marion A Hofmann Bowman
- From the Department of Medicine, Cardiology (L.Y., B.C., B.G., J.E., M.A.H.B.) and Medicine, Nephrology (L.M., T.S.P.), The University of Chicago, IL.
| |
Collapse
|
38
|
Abstract
Cardiomyopathy, the presence of cardiac dysfunction independent of ischemic heart disease and/or hypertension, is becoming a more prominent condition in our diabetic patient population. Unfortunately, we do not yet understand the mechanism(s) responsible for causing diabetic cardiomyopathy. With the recent explosion in the obesity and Type 2 diabetes epidemic, our understanding of dyslipidemia and the adverse effects of lipid surplus on cellular and organ function has grown considerably. Numerous studies now illustrate that excess lipid accumulation may exert direct toxic effects on cellular function, a term coined 'lipotoxicity'. As obesity and Type 2 diabetes are significant risk factors for cardiovascular disease, cardiac lipotoxicity may represent a significant component mediating the diabetic cardiomyopathy phenotype. Therefore, a more complete understanding of how cardiac lipotoxicity is regulated and how different lipid metabolites cause cellular dysfunction may lead to the discovery of novel targets to treat cardiomyopathy in our diabetic patient population.
Collapse
Affiliation(s)
- John R Ussher
- Lunenfeld-Tanenbaum, Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Reichek N. Left ventricular hypertrophy regression and allopurinol: more questions than answers. J Am Coll Cardiol 2013; 62:2294-6. [PMID: 23994396 DOI: 10.1016/j.jacc.2013.08.695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Nathaniel Reichek
- Cardiac Imaging Program and Research Department, St. Francis Hospital, Roslyn, New York.
| |
Collapse
|
40
|
van Lunteren E, Moyer M. Gene expression of sternohyoid and diaphragm muscles in type 2 diabetic rats. BMC Endocr Disord 2013; 13:43. [PMID: 24199937 PMCID: PMC3851765 DOI: 10.1186/1472-6823-13-43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/26/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Type 2 diabetes differs from type 1 diabetes in its pathogenesis. Type 1 diabetic diaphragm has altered gene expression which includes lipid and carbohydrate metabolism, ubiquitination and oxidoreductase activity. The objectives of the present study were to assess respiratory muscle gene expression changes in type 2 diabetes and to determine whether they are greater for the diaphragm than an upper airway muscle. METHODS Diaphragm and sternohyoid muscle from Zucker diabetic fatty (ZDF) rats were analyzed with Affymetrix gene expression arrays. RESULTS The two muscles had 97 and 102 genes, respectively, with at least ± 1.5-fold significantly changed expression with diabetes, and these were assigned to gene ontology groups based on over-representation analysis. Several significantly changed groups were common to both muscles, including lipid metabolism, carbohydrate metabolism, muscle contraction, ion transport and collagen, although the number of genes and the specific genes involved differed considerably for the two muscles. In both muscles there was a shift in metabolism gene expression from carbohydrate metabolism toward lipid metabolism, but the shift was greater and involved more genes in diabetic diaphragm than diabetic sternohyoid muscle. Groups present in only diaphragm were blood circulation and oxidoreductase activity. Groups present in only sternohyoid were immune & inflammation and response to stress & wounding, with complement genes being a prominent component. CONCLUSION Type 2 diabetes-induced gene expression changes in respiratory muscles has both similarities and differences relative to previous data on type 1 diabetes gene expression. Furthermore, the diabetic alterations in gene expression differ between diaphragm and sternohyoid.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Louis Stokes, Cleveland, USA
- Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michelle Moyer
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Louis Stokes, Cleveland, USA
| |
Collapse
|
41
|
Severin FF, Feniouk BA, Skulachev VP. Advanced glycation of cellular proteins as a possible basic component of the “master biological clock”. BIOCHEMISTRY (MOSCOW) 2013; 78:1043-7. [DOI: 10.1134/s0006297913090101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Leonardis D, Basta G, Mallamaci F, Cutrupi S, Pizzini P, Tripepi R, Tripepi G, De Caterina R, Zoccali C. Circulating soluble receptor for advanced glycation end product (sRAGE) and left ventricular hypertrophy in patients with chronic kidney disease (CKD). Nutr Metab Cardiovasc Dis 2012; 22:748-755. [PMID: 21470837 DOI: 10.1016/j.numecd.2010.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIM A decoy receptor for advanced glycation end product (soluble RAGE or sRAGE) is involved in left ventricular hypertrophy (LVH), and cardiomyopathy myocardial damage in experimental models and observational studies in patients with heart failure support the hypothesis that sRAGE attenuates the progression of heart disease and prevents death. Since sRAGE accumulates in patients with chronic kidney disease (CKD) we studied the relationship between plasma sRAGE with LVH in CKD patients. METHODS AND RESULTS We enrolled 142 patients with an average estimated glomerular filtration rate (eGFR) of 32 ml/min/1.73 m(2) and 49 healthy control individuals matched for age and gender. Plasma sRAGE was significantly higher in CKD patients than in healthy controls. Significant inverse relationships were found between sRAGE with left ventricular mass index (LVMI) and mean wall thickness (MWT) but no such associations were found in controls. A bootstrap re-sampling validation study confirmed the estimates of the link between sRAGE and these variables. On covariance analysis, the slopes of LVMI and MWT to sRAGE were significantly steeper in CKD patients than in the controls. On logistic regression analysis 1 log unit increase in sRAGE was associated with a 82% decrease in the odds for LVH in CKD patients. CONCLUSIONS sRAGE is an inverse marker of LVH in CKD patients. This association generates the hypothesis that the RAGE pathway could be a causal risk factor for LVH in this population and that blockade of this pathway by the endogenous decoy receptor sRAGE could attenuate LVH in the same population.
Collapse
Affiliation(s)
- D Leonardis
- Renal and Transplantation Unit OO.RR. and CNR-IBIM, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Receptor for advanced glycation end products (RAGE) and implications for the pathophysiology of heart failure. Curr Heart Fail Rep 2012; 9:107-16. [PMID: 22457230 DOI: 10.1007/s11897-012-0089-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is expressed in the heart in cardiomyocytes, vascular cells, fibroblasts, and in infiltrating inflammatory cells. Experiments in murine, rat, and swine models of injury suggest that RAGE and the ligands of RAGE are upregulated in key injuries to the heart, including ischemia/reperfusion injury, diabetes, and inflammation. Pharmacological antagonism of RAGE or genetic deletion of the receptor in mice is strikingly protective in models of these stresses. Data emerging from human studies suggest that measurement of levels of RAGE ligands or soluble RAGEs in plasma or serum may correlate with the degree of heart failure. Taken together, the ligand-RAGE axis is implicated in heart failure and we predict that therapeutic antagonism of RAGE might be a unique target for therapeutic intervention in this disorder.
Collapse
|
44
|
Reil JC, Hohl M, Reil GH, Granzier HL, Kratz MT, Kazakov A, Fries P, Müller A, Lenski M, Custodis F, Gräber S, Fröhlig G, Steendijk P, Neuberger HR, Böhm M. Heart rate reduction by If-inhibition improves vascular stiffness and left ventricular systolic and diastolic function in a mouse model of heart failure with preserved ejection fraction. Eur Heart J 2012; 34:2839-49. [PMID: 22833515 DOI: 10.1093/eurheartj/ehs218] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS In diabetes mellitus, heart failure with preserved ejection fraction (HFPEF) is a significant comorbidity. No therapy is available that improves cardiovascular outcomes. The aim of this study was to characterize myocardial function and ventricular-arterial coupling in a mouse model of diabetes and to analyse the effect of selective heart rate (HR) reduction by If-inhibition in this HFPEF-model. METHODS AND RESULTS Control mice, diabetic mice (db/db), and db/db mice treated for 4 weeks with the If-inhibitor ivabradine (db/db-Iva) were compared. Aortic distensibility was measured by magnetic resonance imaging. Left ventricular (LV) pressure-volume analysis was performed in isolated working hearts, with biochemical and histological characterization of the cardiac and aortic phenotype. In db/db aortic stiffness and fibrosis were significantly enhanced compared with controls and were prevented by HR reduction in db/db-Iva. Left ventricular end-systolic elastance (Ees) was increased in db/db compared with controls (6.0 ± 1.3 vs. 3.4 ± 1.2 mmHg/µL, P < 0.01), whereas other contractility markers were reduced. Heart rate reduction in db/db-Iva lowered Ees (4.0 ± 1.1 mmHg/µL, P < 0.01), and improved the other contractility parameters. In db/db active relaxation was prolonged and end-diastolic capacitance was lower compared with controls (28 ± 3 vs. 48 ± 8 μL, P < 0.01). These parameters were ameliorated by HR reduction. Neither myocardial fibrosis nor hypertrophy were detected in db/db, whereas titin N2B expression was increased and phosphorylation of phospholamban was reduced both being prevented by HR reduction in db/db-Iva. CONCLUSION In db/db, a model of HFPEF, selective HR reduction by If-inhibition improved vascular stiffness, LV contractility, and diastolic function. Therefore, If-inhibition might be a therapeutic concept for HFPEF, if confirmed in humans.
Collapse
Affiliation(s)
- Jan-Christian Reil
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Kirrberger Straße D 66421, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ramasamy R, Yan SF, Schmidt AM. The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vascul Pharmacol 2012; 57:160-7. [PMID: 22750165 DOI: 10.1016/j.vph.2012.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 02/06/2023]
Abstract
The multi-ligand receptor RAGE was discovered on account of its ability to bind and transduce the cell stress-provoking signals of advanced glycation endproducts (AGEs). The finding that RAGE also bound pro-inflammatory molecules set the stage for linking RAGE and inflammation to the pathogenesis of diabetic macro- and microvascular complications. In this review, we focus on the roles of RAGE and its ligands in diabetes complications. We recount the findings from mice, rats, swine and human subjects suggesting that RAGE action potently contributes to vascular, inflammatory and end-organ stress and damage in types 1 and 2 diabetes. We detail the efforts to track ligands and RAGE in human subjects with diabetes to address if this axis may be a biomarker reflective of the state of the diabetic complications. Lastly, we suggest specific strategies to tackle AGE-ligand-RAGE interactions as potential therapeutic targets for diabetes and its complications.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY 10016, United States
| | | | | |
Collapse
|
46
|
Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 2012; 1243:88-102. [PMID: 22211895 DOI: 10.1111/j.1749-6632.2011.06320.x] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The receptor for advanced glycation endproducts (RAGE) was first described as a signal transduction receptor for advanced glycation endproducts (AGEs), the products of nonenzymatic glycation and oxidation of proteins and lipids that accumulate in diabetes and in inflammatory foci. The discovery that RAGE was a receptor for inflammatory S100/calgranulins and high mobility group box 1 (HMGB1) set the stage for linking RAGE to both the consequences and causes of types 1 and 2 diabetes. Recent discoveries regarding the structure of RAGE as well as novel intracellular binding partner interactions advance our understanding of the mechanisms by which RAGE evokes pathological consequences and underscore strategies by which antagonism of RAGE in the clinic may be realized. Finally, recent data tracking RAGE in the clinic suggest that levels of soluble RAGEs and polymorphisms in the gene encoding RAGE may hold promise for the identification of patients who are vulnerable to the complications of diabetes and/or are receptive to therapeutic interventions designed to prevent and reverse the damage inflicted by chronic hyperglycemia, irrespective of its etiology.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
47
|
Law B, Fowlkes V, Goldsmith JG, Carver W, Goldsmith EC. Diabetes-induced alterations in the extracellular matrix and their impact on myocardial function. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:22-34. [PMID: 22221857 PMCID: PMC4045476 DOI: 10.1017/s1431927611012256] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Diabetes is an increasing public health problem that is expected to escalate in the future due to the growing incidence of obesity in the western world. While this disease is well known for its devastating effects on the kidneys and vascular system, diabetic individuals can develop cardiac dysfunction, termed diabetic cardiomyopathy, in the absence of other cardiovascular risk factors such as hypertension or atherosclerosis. While much effort has gone into understanding the effects of elevated glucose or altered insulin sensitivity on cellular components within the heart, significant changes in the cardiac extracellular matrix (ECM) have also been noted. In this review article we highlight what is currently known regarding the effects diabetes has on both the expression and chemical modification of proteins within the ECM and how the fibrotic response often observed as a consequence of this disease can contribute to reduced cardiac function.
Collapse
|
48
|
Belke DD, Severson DL. Diabetes in mice with monogenic obesity: the db/db mouse and its use in the study of cardiac consequences. Methods Mol Biol 2012; 933:47-57. [PMID: 22893400 DOI: 10.1007/978-1-62703-068-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The leptin receptor deficient db/db mouse has served as a rodent model for obesity and type 2 diabetes for more than 40 years. Diabetic features in db/db mice follow an age-dependent progression, with early insulin resistance followed by an insulin secretory defect resulting in profound hyperglycemia. Diabetic db/db mice have been utilized to assess the cardiac consequences of diabetes, specifically evidence for a distinct diabetic cardiomyopathy. The db/db model is characterized by a contractile function deficit in the heart which becomes manifest 8-10 weeks after birth. Metabolic changes include an increased reliance on fatty acids and a decreased reliance on glucose as a fuel source for oxidative metabolism within the heart. As a mouse model for type 2 diabetes, both drug treatment and transgenic manipulation have proven beneficial towards improving metabolism and contractile function. The db/db mouse model has provided a useful resource to understand and treat the type 2 diabetic condition.
Collapse
|
49
|
Raposeiras-Roubín S, Rodiño-Janeiro BK, Grigorian-Shamagian L, Moure-González M, Seoane-Blanco A, Varela-Román A, Alvarez E, González-Juanatey JR. Soluble receptor of advanced glycation end products levels are related to ischaemic aetiology and extent of coronary disease in chronic heart failure patients, independent of advanced glycation end products levels: New Roles for Soluble RAGE. Eur J Heart Fail 2010; 12:1092-100. [PMID: 20685687 DOI: 10.1093/eurjhf/hfq117] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Knowledge of the role of advanced glycation end products (AGE), their receptor (RAGE), and the receptor's soluble form (sRAGE), in heart failure (HF) is very limited. We evaluated the clinical role of the AGE-RAGE system in HF and in particular any association it might have with ischaemic aetiology. METHODS AND RESULTS We measured fluorescent AGE, glycated albumin and sRAGE in 103 patients with chronic HF. We showed that sRAGE but not AGE was related to ischaemic aetiology (1638.3 ± 207.4 ischaemic vs. 1065.1 ± 94.2 pg/mL non-ischaemic group; P =0.016) independent of age, sex, diabetes, renal function, clinical severity, or other variables (OR: 1.091; 95% CI (confidence interval): 1.032-1.153; P =0.007). Moreover, sRAGE was directly associated with extent of coronary disease (OR for three vessel disease compared with non-coronary lesions: 1.186; 95% CI: 1.065-1.322; P =0.002). We also found a correlation between sRAGE and severity of HF, which increased with New York Heart Association (NYHA) class (741.9 ± 88.9 pg/mL in class 1, 1195.9 ± 113.2 pg/mL in class II, and 1724.8 ± 245.7 pg/mL in class III (P < 0.05)) and brain natriuretic peptide (BNP) levels (667.4 ± 68.0 vs. 1344.5 ± 126.0 pg/mL for BNP < and ≥400 pg/mL, respectively). CONCLUSION sRAGE is an indicator of chronic heart failure severity and an independent marker of coronary artery disease and its severity in patients with CHF.
Collapse
Affiliation(s)
- Sergio Raposeiras-Roubín
- Cardiology Department and Coronary Unit, Clinical Hospital of Santiago de Compostela, Santiago, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Willemsen S, Hartog JW, Hummel YM, Posma JL, van Wijk LM, van Veldhuisen DJ, Voors AA. Effects of alagebrium, an advanced glycation end-product breaker, in patients with chronic heart failure: study design and baseline characteristics of the BENEFICIAL trial. Eur J Heart Fail 2010; 12:294-300. [DOI: 10.1093/eurjhf/hfp207] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Suzan Willemsen
- Department of Cardiology; University Medical Center Groningen, University of Groningen; PO Box 30.001 9700 RB Groningen The Netherlands
| | - Jasper W.L. Hartog
- Department of Cardiology; University Medical Center Groningen, University of Groningen; PO Box 30.001 9700 RB Groningen The Netherlands
| | - Yoran M. Hummel
- Department of Cardiology; University Medical Center Groningen, University of Groningen; PO Box 30.001 9700 RB Groningen The Netherlands
| | | | | | - Dirk J. van Veldhuisen
- Department of Cardiology; University Medical Center Groningen, University of Groningen; PO Box 30.001 9700 RB Groningen The Netherlands
| | - Adriaan A. Voors
- Department of Cardiology; University Medical Center Groningen, University of Groningen; PO Box 30.001 9700 RB Groningen The Netherlands
| |
Collapse
|