1
|
Burg S, Ovaskainen O, Furneaux B, Ivanova N, Abrahamyan A, Niittynen P, Somervuo P, Abrego N. Experimental evidence that root-associated fungi improve plant growth at high altitude. Mol Ecol 2024; 33:e17376. [PMID: 38703052 DOI: 10.1111/mec.17376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Unravelling how species communities change along environmental gradients requires a dual understanding: the direct responses of the species to their abiotic surroundings and the indirect variation of these responses through biotic interactions. Here, we focus on the interactive relationships between plants and their symbiotic root-associated fungi (RAF) along stressful abiotic gradients. We investigate whether variations in RAF community composition along altitudinal gradients influence plant growth at high altitudes, where both plants and fungi face harsher abiotic conditions. We established a translocation experiment between pairs of Bistorta vivipara populations across altitudinal gradients. To separate the impact of shifting fungal communities from the overall influence of changing abiotic conditions, we used a root barrier to prevent new colonization by RAF following translocation. To characterize the RAF communities, we applied DNA barcoding to the root samples. Through the utilization of joint species distribution modelling, we assessed the relationship between changes in plant functional traits resulting from experimental treatments and the corresponding changes in the RAF communities. Our findings indicate that RAF communities influence plant responses to stressful abiotic conditions. Plants translocated from low to high altitudes grew more when they were able to associate with the resident high-altitude RAF compared to those plants that were not allowed to associate with the resident RAF. We conclude that interactions with RAF impact how plants respond to stressful abiotic conditions. Our results provide experimental support that interactions with RAF improve plant stress tolerance to altitudinal stressors such as colder temperatures and less nutrient availability.
Collapse
Affiliation(s)
- Skylar Burg
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Otso Ovaskainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Natalia Ivanova
- Canadian Centre for DNA Barcoding, Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
- Nature Metrics North America Ltd., Guelph, Ontario, Canada
| | - Arusyak Abrahamyan
- Canadian Centre for DNA Barcoding, Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
- ImmunoCeutica Inc., Guelph, Ontario, Canada
| | - Pekka Niittynen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nerea Abrego
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Hogan JA, Jusino MA, Smith ME, Corrales A, Song X, Hu YH, Yang J, Cao M, Valverde-Barrantes OJ, Baraloto C. Root-associated fungal communities are influenced more by soils than by plant-host root traits in a Chinese tropical forest. THE NEW PHYTOLOGIST 2023; 238:1849-1864. [PMID: 36808625 DOI: 10.1111/nph.18821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Forest fungal communities are shaped by the interactions between host tree root systems and the associated soil conditions. We investigated how the soil environment, root morphological traits, and root chemistry influence root-inhabiting fungal communities in three tropical forest sites of varying successional status in Xishuangbanna, China. For 150 trees of 66 species, we measured root morphology and tissue chemistry. Tree species identity was confirmed by sequencing rbcL, and root-associated fungal (RAF) communities were determined using high-throughput ITS2 sequencing. Using distance-based redundancy analysis and hierarchical variation partitioning, we quantified the relative importance of two soil variables (site average total phosphorus and available phosphorus), four root traits (dry matter content, tissue density, specific tip abundance, and forks), and three root tissue elemental concentrations (nitrogen, calcium, and manganese) on RAF community dissimilarity. The root and soil environment collectively explained 23% of RAF compositional variation. Soil phosphorus explained 76% of that variation. Twenty fungal taxa differentiated RAF communities among the three sites. Soil phosphorus most strongly affects RAF assemblages in this tropical forest. Variation in root calcium and manganese concentrations and root morphology among tree hosts, principally an architectural trade-off between dense, highly branched vs less-dense, herringbone-type root systems, are important secondary determinants.
Collapse
Affiliation(s)
- J Aaron Hogan
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Michelle A Jusino
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- USDA Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, WI, 53726, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Adriana Corrales
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111221, Colombia
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Yue-Hua Hu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Christopher Baraloto
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
3
|
Faticov M, Abdelfattah A, Hambäck P, Roslin T, Tack AJM. Different spatial structure of plant-associated fungal communities above- and belowground. Ecol Evol 2023; 13:e10065. [PMID: 37223309 PMCID: PMC10200691 DOI: 10.1002/ece3.10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/22/2023] [Indexed: 05/25/2023] Open
Abstract
The distribution and community assembly of above- and belowground microbial communities associated with individual plants remain poorly understood, despite its consequences for plant-microbe interactions and plant health. Depending on how microbial communities are structured, we can expect different effects of the microbial community on the health of individual plants and on ecosystem processes. Importantly, the relative role of different factors will likely differ with the scale examined. Here, we address the driving factors at a landscape level, where each individual unit (oak trees) is accessible to a joint species pool. This allowed to quantify the relative effect of environmental factors and dispersal on the distribution of two types of fungal communities: those associated with the leaves and those associated with the soil of Quercus robur trees in a landscape in southwestern Finland. Within each community type, we compared the role of microclimatic, phenological, and spatial variables, and across community types, we examined the degree of association between the respective communities. Most of the variation in the foliar fungal community was found within trees, whereas soil fungal community composition showed positive spatial autocorrelation up to 50 m. Microclimate, tree phenology, and tree spatial connectivity explained little variation in the foliar and soil fungal communities. Foliar and soil fungal communities differed strongly in community structure, with no significant concordance detected between them. We provide evidence that foliar and soil fungal communities assemble independent of each other and are structured by different ecological processes.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Département de biologieUniversité de SherbrookeSherbrookeQuebecCanada
| | - Ahmed Abdelfattah
- Leibniz Institute of Agricultural Engineering and Bio‐economyPotsdamGermany
| | - Peter Hambäck
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Tomas Roslin
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
4
|
Pachit P, Piapukiew J, Disyatat NR. Temporal dynamics of ectomycorrhizal fungal communities in Shorea siamensis forest fragments. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Qin Z, Zhao Z, Xia L, Ohore OE. Unraveling the ecological mechanisms of bacterial succession in epiphytic biofilms on Vallisneria natans and Hydrilla verticillata during bioremediation of phenanthrene and pyrene polluted wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115986. [PMID: 35998537 DOI: 10.1016/j.jenvman.2022.115986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
In wetland ecosystem, the microbial succession in epiphytic biofilms of submerged macrophytes remains to be fully elucidated, especially submerged macrophytes used to remediate organic pollutants contaminated sediment. Herein, 16 S rRNA gene sequencing was used to investigate the bacterial dynamics and ecological processes in the biofilms of two typical submerged macrophytes (Vallisneria natans and Hydrilla verticillata) settled in sediment polluted by polycyclic aromatic hydrocarbons (PAHs) at two growth periods. The results presented that the variations of bacterial community in the biofilms were influenced by attached surfaces (explanation ratio: 17.30%), incubation time (32.30%) and environmental factors (39.10%). Bacterial community assembly was mainly driven by dispersal limitation which triggered more positive co-occurrence associations in microbial networks, maintaining ecological stability in the process of bioremediation of PAHs. Additionally, the functional redundancy strength of bacterial community was more affected by attached surface than incubation time. The structural equation model illustrated that community assembly drove β-diversity and explained a part of ecological functions. Environmental factors, community assembly, and β-diversity jointly affected microbial networks. Overall, our study offers new insights into the microbial ecology in biofilms attached on the submerged macrophytes settled in PAH-polluted sediment, providing important information for deeply understanding submerged macrophyte-biofilm complex and promoting sustainable phytoremediation in shallow lacustrine and marshy ecosystems.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing, 210016, China
| | - Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; Organization of African Academic Doctors, Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| |
Collapse
|
6
|
Guo Y, Ji L, Wang M, Shan C, Shen F, Yang Y, He G, Purahong W, Yang L. View from the Top: Insights into the Diversity and Community Assembly of Ectomycorrhizal and Saprotrophic Fungi along an Altitudinal Gradient in Chinese Boreal Larix gmelinii-Dominated Forests. Microorganisms 2022; 10:1997. [PMID: 36296273 PMCID: PMC9607379 DOI: 10.3390/microorganisms10101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
The altitudinal patterns of soil fungi have attracted considerable attention; however, few studies have investigated the diversity and community assembly of fungal functional guilds along an altitudinal gradient. Here, we explored ectomycorrhizal (EcM) and saprotrophic (SAP) fungal diversity and community assembly along a 470 m vertical gradient (ranging from 830 to 1300 m) on Oakley Mountain, sampling bulk soils in the 0-10 cm and 10-20 cm soil layers of Larix gmelinii-dominated forests. Illumina MiSeq sequencing of the ITS genes was employed to explore the fungal community composition and diversity. The relative abundance of EcM and SAP fungi showed a divergent pattern along an altitudinal gradient, while we observed a consistent altitudinal tendency for EcM and SAP fungal diversity and community assembly. The diversity of both fungal guilds increased with increasing altitude. Altitude and soil moisture were the key factors affecting the community composition of both fungal guilds. In addition, the plant community composition significantly affected the EcM fungal community composition, whereas the dissolved organic nitrogen and ammonium nitrogen contents were the driving factors of SAP fungal community. Despite the effects of vegetation and soil factors, EcM and SAP fungal communities were mainly governed by stochastic processes (especially drift) at different altitudes and soil depths. These results shed new light on the ecology of different fungal functional guilds along an altitudinal gradient, which will provide a deeper understanding of the biogeography of soil fungi.
Collapse
Affiliation(s)
- Yi Guo
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li Ji
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, 06120 Halle (Saale), Germany
| | - Mingwei Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Chengfeng Shan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Fangyuan Shen
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yuchun Yang
- Jilin Academy of Forestry, Changchun 130033, China
| | - Gongxiu He
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, 06120 Halle (Saale), Germany
| | - Lixue Yang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
Wang X, Han Q. A Closer Examination of the 'Abundant-Center' for Ectomycorrhizal Fungal Community Associated With Picea crassifolia in China. FRONTIERS IN PLANT SCIENCE 2022; 13:759801. [PMID: 35283884 PMCID: PMC8908202 DOI: 10.3389/fpls.2022.759801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A long-standing hypothesis in biogeography predicts that a species' abundance is highest at the center of its geographical range and decreases toward its edges. In this study, we test the abundant-center hypothesis of ectomycorrhizal (ECM) fungal communities associated with Picea crassifolia, an endemic species widely distributed in northwest China. We analyzed the taxonomic richness and the relative abundance of ECM fungi in four main distribution areas, from center to edges. In total, 234 species of ECM fungi were detected, and of these, 137 species were shared among all four sites. Inocybe, Sebacina, Tomentella, and Cortinarius were the dominant genera. ECM fungal richness and biodiversity were highest at the central and lower at peripheral sites. Our results indicated that ECM fungal species richness was consistent with the abundant-center hypothesis, while the relative abundances of individual fungal genera shifted inconsistently across the plant's range.
Collapse
Affiliation(s)
- Xiaobing Wang
- School of Civil Engineering and Architecture, Xinxiang University, Xinxiang, China
| | - Qisheng Han
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
8
|
Gong S, Feng B, Jian SP, Wang GS, Ge ZW, Yang ZL. Elevation Matters More than Season in Shaping the Heterogeneity of Soil and Root Associated Ectomycorrhizal Fungal Community. Microbiol Spectr 2022; 10:e0195021. [PMID: 35019700 PMCID: PMC8754124 DOI: 10.1128/spectrum.01950-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 01/29/2023] Open
Abstract
Ectomycorrhizal (EcM) fungi play important roles in forest ecosystems, and their richness and composition can change along with elevation and season changes. However, no study has estimated the relative importance of altitudinal and seasonal heterogeneity in predicting the distribution of EcM fungal communities by simultaneously considering different sample types (root versus soil). In this study, we collected root and soil samples along a > 1,500-m elevation gradient during wet and dry seasons from Baima Snow Mountain, located in "the Mountains of Southwest China," one of the 34 biodiversity hot spots, and we analyzed them using next-generation sequencing. Regardless of the sample type, similar EcM fungal richness pattern with increasing elevation (decline in the forest zone, and an increase at the alpine meadow zone) and strong community turnovers among different elevational zones and between two seasons were detected, and changes of EcM fungal community similarity on 400-m altitude gradient were equivalent to the community turnover between dry and wet seasons. Elevation and edaphic factors were shown to have the largest effects on EcM fungal community. The heterogeneity of richness and community composition was stronger among different elevational zones than across different seasons, mainly because the elevation variations in the EcM fungal community were shaped by the combined effects of different environmental factors, while seasonal changes were mainly controlled by temperature and fast-changing soil nutrients. IMPORTANCE Altitude and season represent two important environmental gradients that shape the structure of biome, including the heterogeneity of EcM fungi. Previous studies have separately considered the influences of altitude and season on EcM fungal communities, but the relative importance of altitude and season is still unknown. The present study revealed that elevation influences the heterogeneity of EcM fungal community more than season; this may be because the variability of environmental factors is higher across different elevations than that across seasons.
Collapse
Affiliation(s)
- Sai Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bang Feng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Si-Peng Jian
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Geng Shen Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zai-Wei Ge
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhu Liang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
9
|
Badou SA, Houdanon RD, Tchan KI, Olou BA, Yorou NS. Effects of microclimate on bolete species richness and biomass in a Northern Benin woodland. Afr J Ecol 2021. [DOI: 10.1111/aje.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sylvestre A. Badou
- Research Unit Tropical Mycology and Plants‐Soil Fungi Interactions Faculty of Agronomy University of Parakou Parakou Benin
| | - Roel D. Houdanon
- Research Unit Tropical Mycology and Plants‐Soil Fungi Interactions Faculty of Agronomy University of Parakou Parakou Benin
| | - Kassim I. Tchan
- Research Unit Tropical Mycology and Plants‐Soil Fungi Interactions Faculty of Agronomy University of Parakou Parakou Benin
| | - Boris A. Olou
- Research Unit Tropical Mycology and Plants‐Soil Fungi Interactions Faculty of Agronomy University of Parakou Parakou Benin
| | - Nourou S. Yorou
- Research Unit Tropical Mycology and Plants‐Soil Fungi Interactions Faculty of Agronomy University of Parakou Parakou Benin
| |
Collapse
|
10
|
Bowman EA, Arnold AE. Drivers and implications of distance decay differ for ectomycorrhizal and foliar endophytic fungi across an anciently fragmented landscape. THE ISME JOURNAL 2021; 15:3437-3454. [PMID: 34099878 PMCID: PMC8630060 DOI: 10.1038/s41396-021-01006-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/30/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
Fungal communities associated with plants often decrease in similarity as the distance between sampling sites increases (i.e., they demonstrate distance decay). In the southwestern USA, forests occur in highlands separated from one another by warmer, drier biomes with plant and fungal communities that differ from those at higher elevations. These disjunct forests are broadly similar in climate to one another, offering an opportunity to examine drivers of distance decay in plant-associated fungi across multiple ecologically similar yet geographically disparate landscapes. We examined ectomycorrhizal and foliar endophytic fungi associated with a dominant forest tree (Pinus ponderosa) in forests across ca. 550 km of geographic distance from northwestern to southeastern Arizona (USA). Both guilds of fungi showed distance decay, but drivers differed for each: ectomycorrhizal fungi are constrained primarily by dispersal limitation, whereas foliar endophytes are constrained by specific environmental conditions. Most ectomycorrhizal fungi were found in only a single forested area, as were many endophytic fungi. Such regional-scale perspectives are needed for baseline estimates of fungal diversity associated with forest trees at a landscape scale, with attention to the sensitivity of different guilds of fungal symbionts to decreasing areas of suitable habitat, increasing disturbance, and related impacts of climate change.
Collapse
Affiliation(s)
- Elizabeth A. Bowman
- grid.134563.60000 0001 2168 186XSchool of Plant Sciences, The University of Arizona, Tucson, AZ USA
| | - A. Elizabeth Arnold
- grid.134563.60000 0001 2168 186XSchool of Plant Sciences, The University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XDepartment of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ USA
| |
Collapse
|
11
|
Park KH, Yoo S, Park MS, Kim CS, Lim YW. Different patterns of belowground fungal diversity along altitudinal gradients with respect to microhabitat and guild types. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:649-658. [PMID: 34162018 DOI: 10.1111/1758-2229.12976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Fungi are key components of belowground ecosystems with various ecological roles in forests. Although the changes in the richness and composition of belowground fungi across altitudinal gradients have been widely reported, only a few studies have focused on the microhabitat types along altitudinal gradients. Here, we analysed the effect of altitude on the ectomycorrhizal and non-ectomycorrhizal fungal communities in belowground microhabitats. We collected root and soil samples from 16 Pinus densiflora forests at various altitudes across Korea, and measured the soil properties as potential factors. Fungal communities were analysed by high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region. We found that altitude negatively affected the species richness of root-inhabiting fungi but did not influence that of soil-inhabiting fungi. In addition, the composition of ectomycorrhizal (ECM) fungi was less influenced by altitude than non-ECM fungi. Most of the soil properties did not show a significant relationship with altitude, but the effect of soil properties was different across microhabitat types and ecological roles of fungi. Our results reveal that microhabitat types and altitudinal gradients differently affect the richness and composition of fungal communities associated with P. densiflora, providing a better understanding of plant-associated fungal communities.
Collapse
Affiliation(s)
- Ki Hyeong Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Shinnam Yoo
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Myung Soo Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Chang Sun Kim
- Forest Biodiversity Division, Korea National Arboretum, Pocheon, South Korea
| | - Young Woon Lim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| |
Collapse
|
12
|
Obase K, Yamanaka S, Kinoshita A, Tamai Y, Yamanaka T. Phylogenetic placements and cultural characteristics of Tuber species isolated from ectomycorrhizas. MYCOSCIENCE 2021; 62:124-131. [PMID: 37089255 PMCID: PMC9157752 DOI: 10.47371/mycosci.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Pure cultures of Tuber were isolated from ectomycorrhizal root tips in Abies sachalinensis plantations in Hokkaido, Japan. Their phylogenetic relationships as well as vegetative hyphal characteristics on culture media were reported. Phylogenetic analysis based on the internal transcribed spacer within ribosomal DNA settled well-supported eight lineages within Puberulum, Latisporum, and Maculatum clades in Tuber. Three and one lineages were grouped with undescribed species of Puberulum clade in Japan and that of the Latisporum group in China, respectively. Two lineages were closely associated to but distinct from an undescribed species of Puberulum clade in Japan. One lineage did not group with any sequences in the International Nucleotide Sequence Database (INSD), proposing a new taxon in the Latisporum group. One lineage was grouped with T. foetidum in Maculatum clade. All strains in each lineage displayed yellowish white, thin, filamentous colonies on Melin-Norkrans agar medium. Various differences in morphological characteristics of hyphae on pure cultures of various strains were noted, but they were frequently uncommon among strains of the same taxa. Isolation from ectomycorrhizal root tips can be among the effective ways to acquire pure cultures of Tuber strains.
Collapse
Affiliation(s)
- Keisuke Obase
- Microbial Ecology Laboratory, Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute
| | - Satoshi Yamanaka
- Hokkaido Research Center, Forestry and Forest Products Research Institute
| | - Akihiko Kinoshita
- Kyushu Research Center, Forestry and Forest Products Research Institute
| | - Yutaka Tamai
- Graduate School of Agriculture, Hokkaido University
| | - Takashi Yamanaka
- Microbial Ecology Laboratory, Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute
| |
Collapse
|
13
|
Wang YL, Zhang X, Xu Y, Babalola BJ, Xiang SM, Zhao YL, Fan YJ. Fungal Diversity and Community Assembly of Ectomycorrhizal Fungi Associated With Five Pine Species in Inner Mongolia, China. Front Microbiol 2021; 12:646821. [PMID: 33796093 PMCID: PMC8008119 DOI: 10.3389/fmicb.2021.646821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Ectomycorrhizal (EM) fungi play vital roles in ensuring host plants' health, plant diversity, and the functionality of the ecosystem. However, EM fungal diversity, community composition, and underlying assembly processes in Inner Mongolia, China, where forests are typically semiarid and cold-temperate zones, attract less attention. In this study, we investigated EM fungal communities from 63 root samples of five common pine plants in Inner Mongolia across 1,900 km using Illumina Miseq sequencing of the fungal internal transcribed spacer 2 region. We evaluated the impact of host plant phylogeny, soil, climatic, and spatial variables on EM fungal diversity and community turnover. Deterministic vs. stochastic processes for EM fungal community assembly were quantified using β-nearest taxon index scores. In total, we identified 288 EM fungal operational taxonomic units (OTUs) belonging to 31 lineages, of which the most abundant lineages were Tomentella-Thelephora, Wilcoxina, Tricholoma, and Suillus-Rhizopogon. Variations in EM fungal OTU richness and community composition were significantly predicted by host phylogeny, soil (total nitrogen, phosphorus, nitrogen-phosphorus ratio, and magnesium), climate, and spatial distance, with the host plant being the most important factor. β-nearest taxon index demonstrated that both deterministic and stochastic processes jointly determined the community assembly of EM fungi, with the predominance of stochastic processes. At the Saihanwula site selected for preference analysis, all plant species (100%) presented significant preferences for EM fungi, 54% of abundant EM fungal OTUs showed significant preferences for host plants, and 26% of pairs of plant species and abundant fungal OTUs exhibited remarkably strong preferences. Overall, we inferred that the high diversity and distinctive community composition of EM fungi associated with natural pine species in Inner Mongolia and the stochastic processes prevailed in determining the community assembly of EM fungi. Our study shed light on the diversity and community assembly of EM fungi associated with common pine species in semiarid and cold temperate forests in Inner Mongolia, China, for the first time and provided a better understanding of the ecological processes underlying the community assembly of mutualistic fungi.
Collapse
Affiliation(s)
- Yong-Long Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Xuan Zhang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Si-Min Xiang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Yan-Ling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Yong-Jun Fan
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
14
|
Van Geel M, Jacquemyn H, Peeters G, van Acker K, Honnay O, Ceulemans T. Diversity and community structure of ericoid mycorrhizal fungi in European bogs and heathlands across a gradient of nitrogen deposition. THE NEW PHYTOLOGIST 2020; 228:1640-1651. [PMID: 32643808 DOI: 10.1111/nph.16789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/24/2020] [Indexed: 05/20/2023]
Abstract
Despite the ecological significance of ericoid mycorrhizal fungi, little is known about the abiotic and biotic factors driving their diversity and community composition. To determine the relative importance of abiotic and biotic filtering in structuring ericoid mycorrhizal fungal communities, we established 156 sampling plots in two highly contrasting environments but dominated by the same Ericaceae plant species: waterlogged bogs and dry heathlands. Plots were located across 25 bogs and 27 dry heathlands in seven European countries covering a gradient in nitrogen deposition and phosphorus availability. Putatively ericoid mycorrhizal fungal communities in the roots of 10 different Ericaceae species were characterized using high-throughput amplicon sequencing. Variation in ericoid mycorrhizal fungal communities was attributed to both habitat and soil variables on the one hand and host plant identity on the other. Communities differed significantly between bogs and heathlands and, in a given habitat, communities differed significantly among host plant species. Fungal richness was negatively related to nitrogen deposition in bogs and phosphorus availability in bogs and heathlands. Our results demonstrate that both abiotic and biotic filtering shapes ericoid mycorrhizal fungal communities and advocate an environmental policy minimizing excess nutrient input in these nutrient-poor ecosystems to avoid loss of ericoid mycorrhizal fungal taxa.
Collapse
Affiliation(s)
- Maarten Van Geel
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Hans Jacquemyn
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Gerrit Peeters
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Kasper van Acker
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Tobias Ceulemans
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| |
Collapse
|
15
|
Abrego N, Huotari T, Tack AJM, Lindahl BD, Tikhonov G, Somervuo P, Martin Schmidt N, Ovaskainen O, Roslin T. Higher host plant specialization of root-associated endophytes than mycorrhizal fungi along an arctic elevational gradient. Ecol Evol 2020; 10:8989-9002. [PMID: 32884673 PMCID: PMC7452766 DOI: 10.1002/ece3.6604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
How community-level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root-associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root-associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root-associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root-associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root-associated fungal communities.
Collapse
Affiliation(s)
- Nerea Abrego
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Tea Huotari
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Ayco J. M. Tack
- Department of EcologyEnvironment and Plant SciencesStockholm UniversityStockholmSweden
| | - Björn D. Lindahl
- Department of Soil and EnvironmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Gleb Tikhonov
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Computational Systems Biology groupDepartment of Computer ScienceAalto UniversityEspooFinland
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | | | - Otso Ovaskainen
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Tomas Roslin
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
16
|
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D'Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Michalčíková L, Michalová T, Mundra S, Navrátilová D, Odriozola I, Piché-Choquette S, Štursová M, Švec K, Tláskal V, Urbanová M, Vlk L, Voříšková J, Žifčáková L, Baldrian P. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 2020; 7:228. [PMID: 32661237 PMCID: PMC7359306 DOI: 10.1038/s41597-020-0567-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com . The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Daniel Morais
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Camelia Algora
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sandra Awokunle Hollá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Barbara Doreen Bahnmann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Květa Bílohnědá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vendula Brabcová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Federica D'Alò
- Laboratory of Systematic Botany and Mycology, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Zander Rainier Human
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Mayuko Jomura
- Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Kvasničková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Salvador Lladó
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Rubén López-Mondéjar
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tijana Martinović
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Mašínová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Meszárošová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Michalčíková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Michalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sunil Mundra
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Diana Navrátilová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sarah Piché-Choquette
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Karel Švec
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Michaela Urbanová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Voříšková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lucia Žifčáková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic.
| |
Collapse
|
17
|
Abrego N, Roslin T, Huotari T, Tack AJM, Lindahl BD, Tikhonov G, Somervuo P, Schmidt NM, Ovaskainen O. Accounting for environmental variation in co‐occurrence modelling reveals the importance of positive interactions in root‐associated fungal communities. Mol Ecol 2020; 29:2736-2746. [DOI: 10.1111/mec.15516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Nerea Abrego
- Department of Agricultural Sciences University of Helsinki Helsinki Finland
| | - Tomas Roslin
- Department of Agricultural Sciences University of Helsinki Helsinki Finland
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Tea Huotari
- Department of Agricultural Sciences University of Helsinki Helsinki Finland
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden
| | - Björn D. Lindahl
- Department of Soil and Environment Swedish University of Agricultural Sciences Uppsala Sweden
| | - Gleb Tikhonov
- Computational Systems Biology Group Department of Computer Science Aalto University Espoo Finland
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
| | - Niels Martin Schmidt
- Arctic Research Centre Department of Bioscience Aarhus University Roskilde Denmark
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
18
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Li XC, Lü PP, Zheng Y, Guo LD. Host plant phylogeny and geographic distance strongly structure Betulaceae-associated ectomycorrhizal fungal communities in Chinese secondary forest ecosystems. FEMS Microbiol Ecol 2020; 95:5393368. [PMID: 30889238 DOI: 10.1093/femsec/fiz037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/17/2019] [Indexed: 11/14/2022] Open
Abstract
Environmental filtering and dispersal limitation are two of the primary drivers of community assembly in ecosystems, but their effects on ectomycorrhizal (EM) fungal communities associated with wide ranges of Betulaceae taxa at a large scale are poorly documented. In this study, we examined EM fungal communities associated with 23 species from four genera (Alnus, Betula, Carpinus and Corylus) of Betulaceae in Chinese secondary forest ecosystems, using Illumina MiSeq sequencing of the ITS2 region. Effects of host plant phylogeny, soil, climate and geographic distance on EM fungal community were explored. In total, we distinguished 1738 EM fungal operational taxonomic units (OTUs) at a 97% sequence similarity level. The EM fungal communities of Alnus had significantly lower OTU richness than those associated with the other three plant genera. The EM fungal OTU richness was significantly affected by geographic distance, host plant phylogeny, soil and climate. The EM fungal community composition was significantly influenced by host plant phylogeny (12.1% of variation explained in EM fungal community), geographic distance (7.7%), soil (4.6%) and climate (1.1%). This finding highlights that environmental filtering linked to host plant phylogeny and dispersal limitation strongly influence EM fungal communities associated with Betulaceae plants in Chinese secondary forest ecosystems.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Bai Z, Yuan ZQ, Wang DM, Fang S, Ye J, Wang XG, Yuan HS. Ectomycorrhizal fungus-associated determinants jointly reflect ecological processes in a temperature broad-leaved mixed forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135475. [PMID: 31767296 DOI: 10.1016/j.scitotenv.2019.135475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Ectomycorrhizal (ECM) fungi are closely related to vegetation compositions, edaphic properties, and site-specific processes. However, the coevolutionary mechanisms underlying the spatial distributions in floristic and ECM fungal composition in the context of biotic adaptations and abiotic variances remain unclear. We combine a total of 25 ECM fungus-associated environmental variables to impose three types of composite scores and then quantify the environmental gradients of geographical site, soil chemical property and vegetation functional trait across 122 grids of 20 m × 20 m in a 25-hm2 forest plot. Significant dissimilarities in vegetational and ECM fungal abundance and composition existed along the above environmental gradients. Specifically, a contrasting floristic distribution (e.g., Betula platyphylla vs. Tilia mandshurica) existed between the northeastern and southwestern areas and was closely related to the nutrient and moisture gradients (with high levels in the west and low levels in the east). Furthermore, the ECM fungal communities were more abundant in the nutrient-poor and low-moisture environments than in the nutrient-rich and high-moisture environments, and the mixed-forest in the middle-gradient sites between the northeastern and southwestern areas harbored the highest ECM fungal diversity. These findings suggest that predictable within-site vegetation succession is closely related to ECM-associated determinants and the natural spatial heterogeneity of edaphic properties at a local scale.
Collapse
Affiliation(s)
- Zhen Bai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
| | - Zuo-Qiang Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
| | - Dong-Mei Wang
- School of pharmacy, Shenyang Pharmaceutical University, 72 Wenhua Road, Shenyang 110016, PR China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
| | - Xu-Gao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China.
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China.
| |
Collapse
|
20
|
Matsuoka S, Sugiyama Y, Tateno R, Imamura S, Kawaguchi E, Osono T. Evaluation of host effects on ectomycorrhizal fungal community compositions in a forested landscape in northern Japan. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191952. [PMID: 32257347 PMCID: PMC7062096 DOI: 10.1098/rsos.191952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/27/2020] [Indexed: 05/05/2023]
Abstract
Community compositions of ectomycorrhizal (ECM) fungi are similar within the same host taxa. However, careful interpretation is required to determine whether the combination of ECM fungi and plants is explained by the host preference for ECM fungi, or by the influence of neighbouring heterospecific hosts. In the present study, we aimed to evaluate the effects of host species on the ECM community compositions in a forested landscape (approx. 10 km) where monodominant forest stands of six ECM host species belonging to three families were patchily distributed. A total of 180 ECM operational taxonomic units (OTUs) were detected with DNA metabarcoding. Quantitative multivariate analyses revealed that the ECM community compositions were primarily structured by host species and families, regardless of the soil environments and spatial arrangements of the sampling plots. In addition, 38 ECM OTUs were only detected from particular host tree species. Furthermore, the neighbouring plots harboured similar fungal compositions, although the host species were different. The relative effect of the spatial factors on the ECM compositions was weaker than that of host species. Our results suggest that the host preference for ECM fungi is the primary determinant of ECM fungal compositions in the forested landscape.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Author for correspondence: Shunsuke Matsuoka e-mail:
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University, Kyoto 606-8502, Japan
| | - Shihomi Imamura
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Eri Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Osono
- Department of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto 610-0394, Japan
| |
Collapse
|
21
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Lü PP, Li XC, Qian X, Maitra P, Babalola BJ, Zheng Y, Guo LD. Community Assembly of Endophytic Fungi in Ectomycorrhizae of Betulaceae Plants at a Regional Scale. Front Microbiol 2020; 10:3105. [PMID: 32038548 PMCID: PMC6986194 DOI: 10.3389/fmicb.2019.03105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
The interaction between aboveground and belowground biotic communities drives community assembly of plants and soil microbiota. As an important component of belowground microorganisms, root-associated fungi play pivotal roles in biodiversity maintenance and community assembly of host plants. The Betulaceae plants form ectomycorrhizae with soil fungi and widely distribute in various ecosystems. However, the community assembly of endophytic fungi in ectomycorrhizae is less investigated at a large spatial scale. Here, we examined the endophytic fungal communities in ectomycorrhizae of 22 species in four genera belonging to Betulaceae in Chinese forest ecosystems, using Illumina Miseq sequencing of internal transcribed spacer 2 amplicons. The relative contribution of host phylogeny, climate and soil (environmental filtering) and geographic distance (dispersal limitation) on endophytic fungal community was disentangled. In total, 2,106 endophytic fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level, dominated by Leotiomycetes, Agaricomycetes, Eurotiomycetes, and Sordariomycetes. The endophytic fungal OTU richness was significantly related with host phylogeny, geographic distance, soil and climate. The endophytic fungal community composition was significantly affected by host phylogeny (19.5% of variation explained in fungal community), geographic distance (11.2%), soil (6.1%), and climate (1.4%). This finding suggests that environmental filtering by plant and abiotic variables coupled with dispersal limitation linked to geographic distance determines endophytic fungal community assembly in ectomycorrhizae of Betulaceae plants, with host phylogeny being a stronger determinant than other predictor variables at the regional scale.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Pulak Maitra
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Geographical Science, Fujian Normal University, Fuzhou, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Koizumi T, Nara K. Ectomycorrhizal fungal communities in ice-age relict forests of Pinus pumila on nine mountains correspond to summer temperature. THE ISME JOURNAL 2020; 14:189-201. [PMID: 31611652 PMCID: PMC6908592 DOI: 10.1038/s41396-019-0524-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022]
Abstract
Ectomycorrhizal (ECM) fungi are critical symbionts of major forest trees, and their communities are affected by various environmental factors including temperature. However, previous knowledge concerning temperature effects does not exclude the effects of host species and coexisting plants, which usually change with temperature, and should be rigorously tested under the same vegetation type. Herein we examined ECM fungal communities in ice-age relict forests dominated by a single host species (Pinus pumila) distributed on nine mountains across >1000 km in Japan. Direct sequencing of rDNA ITS regions identified 154 ECM fungal species from 4134 ECM root-tip samples. Gradient analyses revealed a large contribution of temperature, especially summer temperature, to ECM fungal communities. Additionally, we explored global sequence records of each fungal species to infer its potential temperature niche, and used it to estimate the temperature of the observed communities. The estimated temperature was significantly correlated with the actual temperature of the research sites, especially in summer seasons, indicating inherent temperature niches of the fungal components could determine their distribution among the sites. These results indicate that temperature is still a significant determinant in structuring ECM fungal communities after excluding the effects of host species and coexisting plants. The results also imply that the rising temperature under global warming may have been affecting soil microbes unnoticeably, while such microbial community change may have been contributing to the resilience of the same vegetation.
Collapse
Affiliation(s)
- Takahiko Koizumi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
- Department of Biosciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan.
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
23
|
Matsuoka S, Iwasaki T, Sugiyama Y, Kawaguchi E, Doi H, Osono T. Biogeographic Patterns of Ectomycorrhizal Fungal Communities Associated With Castanopsis sieboldii Across the Japanese Archipelago. Front Microbiol 2019; 10:2656. [PMID: 31798567 PMCID: PMC6868053 DOI: 10.3389/fmicb.2019.02656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/31/2019] [Indexed: 11/13/2022] Open
Abstract
Biogeographic patterns in ectomycorrhizal (ECM) fungal communities and their drivers have been elucidated, including effects of host tree species and abiotic (climatic and edaphic) conditions. At these geographic scales, genotypic diversity and composition of single host tree species change with spatial and environmental gradients, reflecting their historical dispersal events. However, whether the host genotypes can be associated with the biogeographic patterns of ECM communities remains unclear. We investigated the biogeographic pattern of ECM fungal community associated with the single host species Castanopsis sieboldii (Fagaceae), whose genotypic diversity and composition across the Japanese archipelago has already been evaluated. ECM communities were investigated in 12 mature Castanopsis-dominated forests covering almost the entire distribution range of C. sieboldii, and we quantified the effect of host genotypes on the biogeographic pattern of ECM fungal communities. Richness and community composition of ECM fungi changed with latitude and longitude; these biogeographic changes of ECM community were significantly correlated with host genotypic variables. Quantitative analyses showed a higher relative explanatory power of climatic and spatial variables than that of host genotypic variables for the biogeographic patterns in the ECM community. Our results suggest historical events of host dispersal can affect the biogeographic patterns of the ECM fungal community, while their explanation power was lower than that for climatic filtering and/or fungal dispersal.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Japan
| | - Takaya Iwasaki
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Eri Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Japan
| | - Takashi Osono
- Department of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
| |
Collapse
|
24
|
Matsuoka S, Sugiyama Y, Sato H, Katano I, Harada K, Doi H. Spatial structure of fungal DNA assemblages revealed with eDNA metabarcoding in a forest river network in western Japan. METABARCODING AND METAGENOMICS 2019. [DOI: 10.3897/mbmg.3.36335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growing evidence has revealed high diversity and spatial heterogeneity of fungal communities in local habitats of terrestrial ecosystems. Recently, the analysis of environmental DNA has been undertaken to study the biodiversity of organisms, such as animals and plants, in both aquatic and terrestrial habitats. In the present study, we investigated fungal DNA assemblages and their spatial structure using environmental DNA metabarcoding targeting the internal transcribed spacer 1 (ITS1) region of the rRNA gene cluster in habitats across different branches of rivers in forest landscapes. A total of 1,956 operational taxonomic units (OTUs) were detected. Of these, 770 were assigned as Ascomycota, 177 as Basidiomycota, and 38 as Chytridiomycota. The river water was found to contain functionally diverse OTUs of both aquatic and terrestrial fungi, such as plant decomposers and mycorrhizal fungi. These fungal DNA assemblages were more similar within, rather than between, river branches. In addition, the assemblages were more similar between spatially closer branches. This spatial structuring was significantly associated with geographic distances but not with vegetation of the catchment area and the elevation at the sampling points. Our results imply that information on the terrestrial and aquatic fungal compositions of watersheds, and therefore their spatial structure, can be obtained by investigating the fungal DNA assemblages in river water.
Collapse
|
25
|
Adamczyk M, Hagedorn F, Wipf S, Donhauser J, Vittoz P, Rixen C, Frossard A, Theurillat JP, Frey B. The Soil Microbiome of GLORIA Mountain Summits in the Swiss Alps. Front Microbiol 2019; 10:1080. [PMID: 31156590 PMCID: PMC6529532 DOI: 10.3389/fmicb.2019.01080] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 01/03/2023] Open
Abstract
While vegetation has intensively been surveyed on mountain summits, limited knowledge exists about the diversity and community structure of soil biota. Here, we study how climatic variables, vegetation, parent material, soil properties, and slope aspect affect the soil microbiome on 10 GLORIA (Global Observation Research Initiative in Alpine environments) mountain summits ranging from the lower alpine to the nival zone in Switzerland. At these summits we sampled soils from all four aspects and examined how the bacterial and fungal communities vary by using Illumina MiSeq sequencing. We found that mountain summit soils contain highly diverse microbial communities with a total of 10,406 bacterial and 6,291 fungal taxa. Bacterial α-diversity increased with increasing soil pH and decreased with increasing elevation, whereas fungal α-diversity did not change significantly. Soil pH was the strongest predictor for microbial β-diversity. Bacterial and fungal community structures exhibited a significant positive relationship with plant communities, indicating that summits with a more distinct plant composition also revealed more distinct microbial communities. The influence of elevation was stronger than aspect on the soil microbiome. Several microbial taxa responded to elevation and soil pH. Chloroflexi and Mucoromycota were significantly more abundant on summits at higher elevations, whereas the relative abundance of Basidiomycota and Agaricomycetes decreased with elevation. Most bacterial OTUs belonging to the phylum Acidobacteria were indicators for siliceous parent material and several OTUs belonging to the phylum Planctomycetes were associated with calcareous soils. The trends for fungi were less clear. Indicator OTUs belonging to the genera Mortierella and Naganishia showed a mixed response to parent material, demonstrating their ubiquitous and opportunistic behaviour in soils. Overall, fungal communities responded weakly to abiotic and biotic factors. In contrast, bacterial communities were strongly influenced by environmental changes suggesting they will be strongly affected by future climate change and associated temperature increase and an upward migration of vegetation. Our results provide the first insights into the soil microbiome of mountain summits in the European Alps that are shaped as a result of highly variable local environmental conditions and may help to predict responses of the soil biota to global climate change.
Collapse
Affiliation(s)
- Magdalene Adamczyk
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frank Hagedorn
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sonja Wipf
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Jonathan Donhauser
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pascal Vittoz
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Christian Rixen
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jean-Paul Theurillat
- Fondation J.-M. Aubert, Champex-Lac, Switzerland
- Department of Botany and Plant Biology, University of Geneva, Chambésy, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
26
|
Host Phylogenetic Relatedness and Soil Nutrients Shape Ectomycorrhizal Community Composition in Native and Exotic Pine Plantations. FORESTS 2019. [DOI: 10.3390/f10030263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exotic non-native Pinus species have been widely planted or become naturalized in many parts of the world. Pines rely on ectomycorrhizal (ECM) fungi mutualisms to overcome barriers to establishment, yet the degree to which host specificity and edaphic preferences influence ECM community composition remains poorly understood. In this study, we used high-throughput sequencing coupled with soil analyses to investigate the effect of host plant identity, spatial distance and edaphic factors on ECM community composition in young (30-year-old) native (Pinus massoniana Lamb.) and exotic (Pinus elliottii Engelm.) pine plantations in China. The ECM fungal communities comprised 43 species with the majority belonging to the Thelephoraceae and Russulaceae. Most species were found associated with both host trees while certain native ECM taxa (Suillus) showed host specificity to the native P. massoniana. ECM fungi that are known to occur exclusively with Pinus (e.g., Rhizopogon) were uncommon. We found no significant effect of host identity on ECM communities, i.e., phylogenetically related pines shared similar ECM fungal communities. Instead, ECM fungal community composition was strongly influenced by site-specific abiotic factors and dispersal. These findings reinforce the idea that taxonomic relatedness might be a factor promoting ECM colonization in exotic pines but that shifts in ECM communities may also be context-dependent.
Collapse
|
27
|
Schön ME, Nieselt K, Garnica S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS One 2018; 13:e0208493. [PMID: 30517179 PMCID: PMC6281267 DOI: 10.1371/journal.pone.0208493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Altitudinal gradients provide valuable information about the effects of environmental variables on changes in species richness and composition as well as the distribution of below ground fungal communities. Since most knowledge in this respect has been gathered on aboveground communities, we focused our study towards the characterization of belowground fungal communities associated with two different ages of Norway spruce (Picea abies) trees along an altitudinal gradient. By sequencing the internal transcribed spacer (ITS) region on the Illumina platform, we investigated the fungal communities in a floristically and geologically relatively well explored forest on the slope of Mt. Iseler of the Bavarian Alps. From fine roots and rhizosphere of a total of 90 of Norway spruce trees from 18 plots we detected 1285 taxa, with a range of 167 to 506 (average 377) taxa per plot. Fungal taxa are distributed over 96 different orders belonging to the phyla Ascomycota, Basidiomycota, Chrytridiomycota, Glomeromycota, and Mucoromycota. Overall the Agaricales (438 taxa) and Tremellales (81 taxa) belonging to the Basidiomycota and the Hypocreales (65 spp.) and Helotiales (61 taxa) belonging to the Ascomycota represented the taxon richest orders. The evaluation of our multivariate generalized mixed models indicate that the altitude has a significant influence on the composition of the fungal communities (p < 0.003) and that tree age determines community diversity (p < 0.05). A total of 47 ecological guilds were detected, of which the ectomycorrhizal and saprophytic guilds were the most taxon-rich. Our ITS amplicon Illumina sequencing approach allowed us to characterize a high fungal community diversity that would not be possible to capture with fruiting body surveys alone. We conclude that it is an invaluable tool for diverse monitoring tasks and inventorying biodiversity, especially in the detection of microorganisms developing very ephemeral and/or inconspicuous fruiting bodies or lacking them all together. Results suggest that the altitude mainly influences the community composition, whereas fungal diversity becomes higher in mature/older trees. Finally, we demonstrate that novel techniques from bacterial microbiome analyses are also useful for studying fungal diversity and community structure in a DNA metabarcoding approach, but that incomplete reference sequence databases so far limit effective identification.
Collapse
Affiliation(s)
- Max E. Schön
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Tübingen, Germany
- University of Tübingen, Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Tübingen, Germany
| | - Kay Nieselt
- University of Tübingen, Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Tübingen, Germany
| | - Sigisfredo Garnica
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Tübingen, Germany
- Universidad Austral de Chile, Instituto de Bioquímica y Microbiología, Casilla, Isla Teja, Valdivia, Chile
| |
Collapse
|
28
|
Effects of host species, environmental filtering and forest age on community assembly of ectomycorrhizal fungi in fragmented forests. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Wu BW, Gao C, Chen L, Buscot F, Goldmann K, Purahong W, Ji NN, Wang YL, Lü PP, Li XC, Guo LD. Host Phylogeny Is a Major Determinant of Fagaceae-Associated Ectomycorrhizal Fungal Community Assembly at a Regional Scale. Front Microbiol 2018; 9:2409. [PMID: 30364168 PMCID: PMC6191505 DOI: 10.3389/fmicb.2018.02409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/20/2018] [Indexed: 01/28/2023] Open
Abstract
Environmental filtering (niche process) and dispersal limitation (neutral process) are two of the primary forces driving community assembly in ecosystems, but how these processes affect the Fagaceae-associated ectomycorrhizal (EM) fungal community at regional scales is so far poorly documented. We examined the EM fungal communities of 61 plant species in six genera belonging to the Fagaceae distributed across Chinese forest ecosystems (geographic distance up to ∼3,757 km) using Illumina Miseq sequencing of ITS2 sequences. The relative effects of environmental filtering (e.g., host plant phylogeny, soil and climate) and dispersal limitation (e.g., spatial distance) on the EM fungal community were distinguished using multiple models. In total, 2,706 operational taxonomic units (OTUs) of EM fungi, corresponding to 54 fungal lineages, were recovered at a 97% sequence similarity level. The EM fungal OTU richness was significantly affected by soil pH and nutrients and by host phylogeny. The EM fungal community composition was significantly influenced by combinations of host phylogeny, spatial distance, soil and climate. Furthermore, host phylogeny had the greatest effect on EM fungal community. The study suggests that the assembly of the EM fungal community is governed by both environmental filtering and dispersal limitation, with host effect being the most important determinant at the regional scale.
Collapse
Affiliation(s)
- Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Kezia Goldmann
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Wang J, Chen C, Ye Z, Li J, Feng Y, Lu Q. Relationships Between Fungal and Plant Communities Differ Between Desert and Grassland in a Typical Dryland Region of Northwest China. Front Microbiol 2018; 9:2327. [PMID: 30333808 PMCID: PMC6176009 DOI: 10.3389/fmicb.2018.02327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
The relationships between soil fungal and plant communities in the dryland have been well documented, yet the associated difference in relationships between soil fungal and plant communities among different habitats remains unclear. Here, we explored the relationships between plant and fungal functional communities, and the dominant factors of these fungal communities in the desert and grassland. Soil fungal functional communities were assessed based on fungal ITS sequence data which were obtained from our previous study. The results showed that the total, saprotrophic and pathotrophic fungal richness were predominantly determined by plant species richness and/or soil nutrients in the desert, but by MAP or soil CN in the grassland. AM fungal richness was only significantly related to soil nutrients in two habitats. The total and saprotrophic fungal species compositions were mainly shaped by abiotic and spatial factors in the desert, but by plant and abiotic factors in the grassland. Pathotrophic fungal species composition was more strongly correlated with plant and spatial factors in the desert, but with spatial and abiotic factors in the grassland. AM fungal species composition was more strongly correlated with MAP in the grassland, but with no factors in the desert. These results provide robust evidence that the relationships between soil fungal and plant communities, and the drivers of soil fungal communities differ between the desert and grassland. Furthermore, we highlight that the linkages between soil fungal and plant communities, and the drivers of soil fungal communities may also be affected by fungal traits (e.g., functional groups).
Collapse
Affiliation(s)
- Jianming Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Chen Chen
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Ziqi Ye
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Jingwen Li
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yiming Feng
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Qi Lu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
31
|
Matsuoka S, Suzuki Y, Hobara S, Osono T. Fungal succession and decomposition of composted aquatic plants applied to soil. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Scott N, Pec GJ, Karst J, Landhäusser SM. Additive or synergistic? Early ectomycorrhizal fungal community response to mixed tree plantings in boreal forest reclamation. Oecologia 2018; 189:9-19. [PMID: 30094634 DOI: 10.1007/s00442-018-4241-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
Ectomycorrhizal fungi are an important component to ecosystem function in the boreal forest. Underlying factors influencing fungal community composition and richness, such as host identity and soil type have been studied, but interactions between these factors have been less explored. Furthermore, mixed-species stands may have additive or synergistic effects on ectomycorrhizal fungi species richness, but this effect is challenging to test on natural sites due to difficulty in finding monospecific and mixed-species stands with similar site conditions and history. Forest reclamation areas can provide an opportunity to explore some of these fundamental questions, as site conditions and history are often known and managed, with the added benefit that knowledge emerging from these studies can be used to evaluate the recovery of degraded forest landscapes. Here, we compared the richness and composition of ectomycorrhizal fungi in young single- and mixed-species stands established on a reclamation area designed to inform strategies to restore upland boreal forests disturbed by oil sands mining. Seedlings of three host tree species (Populus tremuloides, Pinus banksiana, Picea glauca) were planted in single- and mixed-species stands on three different salvaged soils (forest floor material, peat, subsoil). After four growing seasons, there was no difference in total ectomycorrhizal fungi species richness and composition in mixed- versus combined single-species stands indicating that an additive effect of host tree species prevailed early in development. However, there were compositional shifts in fungal communities across both the host tree species and the salvaged soil type, with soil type being the strongest driver.
Collapse
Affiliation(s)
- Natalie Scott
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.
| | - Gregory J Pec
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
33
|
Mori AS, Isbell F, Seidl R. β-Diversity, Community Assembly, and Ecosystem Functioning. Trends Ecol Evol 2018; 33:549-564. [PMID: 29807839 PMCID: PMC7612777 DOI: 10.1016/j.tree.2018.04.012] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022]
Abstract
Evidence is increasing for positive effects of α-diversity on ecosystem functioning. We highlight here the crucial role of β-diversity - a hitherto underexplored facet of biodiversity - for a better process-level understanding of biodiversity change and its consequences for ecosystems. A focus on β-diversity has the potential to improve predictions of natural and anthropogenic influences on diversity and ecosystem functioning. However, linking the causes and consequences of biodiversity change is complex because species assemblages in nature are shaped by many factors simultaneously, including disturbance, environmental heterogeneity, deterministic niche factors, and stochasticity. Because variability and change are ubiquitous in ecosystems, acknowledging these inherent properties of nature is an essential step for further advancing scientific knowledge of biodiversity-ecosystem functioning in theory and practice.
Collapse
Affiliation(s)
- Akira S Mori
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan.
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Rupert Seidl
- Institute of Silviculture, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, 1190 Wien, Austria
| |
Collapse
|
34
|
Koizumi T, Hattori M, Nara K. Ectomycorrhizal fungal communities in alpine relict forests of Pinus pumila on Mt. Norikura, Japan. MYCORRHIZA 2018; 28:129-145. [PMID: 29330574 DOI: 10.1007/s00572-017-0817-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Ectomycorrhizal (ECM) symbioses are indispensable for the establishment of host trees, yet available information of ECM symbiosis in alpine forests is scarce. Pinus pumila is a typical ice age relict tree species in Japan and often forms monodominant dwarf vegetation above the tree line in mountains. We studied ECM fungi colonizing P. pumila on Mt. Norikura, Japan, with reference to host developmental stages, i.e., from current-year seedlings to mature trees. ECM fungal species were identified based on rDNA ITS sequences. Ninety-two ECM fungal species were confirmed from a total of 2480 root tips examined. Species in /suillus-rhizopogon and /wilcoxina were dominant in seedling roots. ECM fungal diversity increased with host development, due to the addition of species-rich fungal lineages (/cenococcum, /cortinarius, and /russula-lactarius) in late-successional stages. Such successional pattern of ECM fungi is similar to those in temperate pine systems, suggesting the predominant role of /suillus-rhizopogon in seedling establishment, even in relict alpine habitats fragmented and isolated for a geological time period. Most of the ECM fungi detected were also recorded in Europe or North America, indicating their potential Holarctic distribution and the possibility of their comigration with P. pumila through land bridges during ice ages. In addition, we found significant effects of soil properties on ECM fungal communities, which explained 34.1% of the total variation of the fungal communities. While alpine vegetation is regarded as vulnerable to the ongoing global warming, ECM fungal communities associated with P. pumila could be altered by the edaphic change induced by the warming.
Collapse
Affiliation(s)
- Takahiko Koizumi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Masahira Hattori
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
35
|
Zhao K, Kong W, Khan A, Liu J, Guo G, Muhanmmad S, Zhang X, Dong X. Elevational diversity and distribution of ammonia-oxidizing archaea community in meadow soils on the Tibetan Plateau. Appl Microbiol Biotechnol 2017; 101:7065-7074. [PMID: 28776097 DOI: 10.1007/s00253-017-8435-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.
Collapse
Affiliation(s)
- Kang Zhao
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ajmal Khan
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinbo Liu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Guangxia Guo
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Said Muhanmmad
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Xianzhou Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaobin Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Resources Science and Technology, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
36
|
Gao C, Shi NN, Chen L, Ji NN, Wu BW, Wang YL, Xu Y, Zheng Y, Mi XC, Ma KP, Guo LD. Relationships between soil fungal and woody plant assemblages differ between ridge and valley habitats in a subtropical mountain forest. THE NEW PHYTOLOGIST 2017; 213:1874-1885. [PMID: 28164340 DOI: 10.1111/nph.14287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Elucidating interactions of above-ground and below-ground communities in different habitat types is essential for understanding biodiversity maintenance and ecosystem functioning. Using 454 pyrosequencing of ITS2 sequences we examined the relationship between subtropical mountain forest soil fungal communities, abiotic conditions, and plant communities using correlation and partial models. Ridge and valley habitats with differing fungal communities were delineated. Total, saprotrophic and pathogenic fungal richness were significantly correlated with plant species richness and/or soil nutrients and moisture in the ridge habitat, but with habitat convexity or basal area of Castanopsis eyrei in the valley habitat. Ectomycorrhizal (EM) fungal richness was significantly correlated with basal area of C. eyrei and total EM plants in the ridge and valley habitats, respectively. Total, saprotrophic, pathogenic and EM fungal compositions were significantly correlated with plant species composition and geographic distance in the ridge habitat, but with various combinations of plant species composition, plant species richness, soil C : N ratio and pH or no variables in the valley habitat. Our findings suggest that mechanisms influencing soil fungal diversity and community composition differ between ridge and valley habitats, and relationships between fungal and woody plant assemblages depend on habitat types in the subtropical forest ecosystem.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan-Nan Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Cheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ke-Ping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Santalahti M, Sun H, Jumpponen A, Pennanen T, Heinonsalo J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol Ecol 2016; 92:fiw170. [DOI: 10.1093/femsec/fiw170] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 11/14/2022] Open
|
38
|
Bauman D, Raspé O, Meerts P, Degreef J, Ilunga Muledi J, Drouet T. Multiscale assemblage of an ectomycorrhizal fungal community: the influence of host functional traits and soil properties in a 10-ha miombo forest. FEMS Microbiol Ecol 2016; 92:fiw151. [PMID: 27402715 DOI: 10.1093/femsec/fiw151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/14/2022] Open
Abstract
Ectomycorrhizal fungi (EMF) are highly diversified and dominant in a number of forest ecosystems. Nevertheless, their scales of spatial distribution and the underlying ecological processes remain poorly understood. Although most EMF are considered to be generalists regarding host identity, a preference toward functional strategies of host trees has never been tested. Here, the EMF community was characterised by DNA sequencing in a 10-ha tropical dry season forest-referred to as miombo-an understudied ecosystem from a mycorrhizal perspective. We used 36 soil parameters and 21 host functional traits (FTs) as candidate explanatory variables in spatial constrained ordinations for explaining the EMF community assemblage. Results highlighted that the community variability was explained by host FTs related to the 'leaf economics spectrum' (adjusted R(2) = 11%; SLA, leaf area, foliar Mg content), and by soil parameters (adjusted R(2) = 17%), notably total forms of micronutrients or correlated available elements (Al, N, K, P). Both FTs and soil generated patterns in the community at scales ranging from 75 to 375 m. Our results indicate that soil is more important than previously thought for EMF in miombo woodlands, and show that FTs of host species can be better predictors of symbiont distribution than taxonomical identity.
Collapse
Affiliation(s)
- David Bauman
- Laboratoire d'Écologie Végétale et Biogéochimie, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, CP 244, 1050 Brussels, Belgium
| | - Olivier Raspé
- Department of Bryophyta and Thallophyta, Botanic Garden Meise, 38 Nieuwlaan, B-1860 Meise, Belgium Fédération Wallonie-Bruxelles, Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Rue A. Lavallée 1, 1080 Brussels, Belgium
| | - Pierre Meerts
- Laboratoire d'Écologie Végétale et Biogéochimie, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, CP 244, 1050 Brussels, Belgium
| | - Jérôme Degreef
- Department of Bryophyta and Thallophyta, Botanic Garden Meise, 38 Nieuwlaan, B-1860 Meise, Belgium Fédération Wallonie-Bruxelles, Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Rue A. Lavallée 1, 1080 Brussels, Belgium
| | - Jonathan Ilunga Muledi
- Faculté des Sciences agronomiques, Université de Lubumbashi, Route Kasapa, BP 1825 Lubumbashi, The Democratic Republic of the Congo
| | - Thomas Drouet
- Laboratoire d'Écologie Végétale et Biogéochimie, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, CP 244, 1050 Brussels, Belgium
| |
Collapse
|