1
|
Pfendler S, Ciadamidaro L, Ozaki S, Bonin A, Taberlet P, Zappelini C, Maillard F, Blaudez D, Chalot M. Differential effects of tree species identity on rhizospheric bacterial and fungal community richness and composition across multiple trace element-contaminated sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168600. [PMID: 37981137 DOI: 10.1016/j.scitotenv.2023.168600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Soil microbial communities play a key role in plant nutrition and stress tolerance. This is particularly true in sites contaminated by trace metals, which often have low fertility and stressful conditions for woody plants in particular. However, we have limited knowledge of the abiotic and biotic factors affecting the richness and composition of microbial communities inhabiting the rhizosphere of plants in contaminated sites. Using high-throughput amplicon sequencing, we studied the rhizospheric bacterial and fungal community structures of 14 woody plant families planted in three contrasting sites contaminated by metals (Pb, Cd, Zn, Mn, Fe, S). The rhizospheric bacterial communities in the given sites showed no significant difference between the various woody species but did differ significantly between sites. The Proteobacteria phylum was dominant, accounting for over 25 % of the overall relative abundance, followed by Actinobacteria, Bacteroidetes and Gemmatimonadetes. Site was also the main driver of fungal community composition, yet unlike bacteria, tree species identity significantly affected fungal communities. The Betulaceae, Salicaceae and Fagaceae families had a high proportion of Basidiomycota, particularly ectomycorrhizal fungi, and the lowest diversity and richness. The other tree families and the unplanted soil harboured a greater abundance of Ascomycota and Mucoromycota. Consequently, for both bacteria and fungi, the site effect significantly impacted their community richness and composition, while the influence of plants on the richness and composition of rhizospheric microbial communities stayed consistent across sites and was dependent on the microbial kingdom. Finally, we highlighted the importance of considering this contrasting response of plant rhizospheric microbial communities in relation to their host identity, particularly to improve assisted revegetation efforts at contaminated sites.
Collapse
Affiliation(s)
- Stéphane Pfendler
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France.
| | - Lisa Ciadamidaro
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France
| | - Shinji Ozaki
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France
| | - Aurélie Bonin
- Université Grenoble Alpes, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France
| | - Pierre Taberlet
- Université Grenoble Alpes, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France; UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | - Cyril Zappelini
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France
| | - François Maillard
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Michel Chalot
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France; Université de Lorraine, Faculté des Sciences et Technologies, F-54000 Nancy, France
| |
Collapse
|
2
|
Guidi Nissim W, Castiglione S, Guarino F, Pastore MC, Labra M. Beyond Cleansing: Ecosystem Services Related to Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1031. [PMID: 36903892 PMCID: PMC10005053 DOI: 10.3390/plants12051031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Phytotechnologies used for cleaning up urban and suburban polluted soils (i.e., brownfields) have shown some weakness in the excessive extent of the timeframe required for them to be effectively operating. This bottleneck is due to technical constraints, mainly related to both the nature of the pollutant itself (e.g., low bio-availability, high recalcitrance, etc.) and the plant (e.g., low pollution tolerance, low pollutant uptake rates, etc.). Despite the great efforts made in the last few decades to overcome these limitations, the technology is in many cases barely competitive compared with conventional remediation techniques. Here, we propose a new outlook on phytoremediation, where the main goal of decontaminating should be re-evaluated, considering additional ecosystem services (ESs) related to the establishment of a new vegetation cover on the site. The aim of this review is to raise awareness and stress the knowledge gap on the importance of ES associated with this technique, which can make phytoremediation a valuable tool to boost an actual green transition process in planning urban green spaces, thereby offering improved resilience to global climate change and a higher quality of life in cities. This review highlights that the reclamation of urban brownfields through phytoremediation may provide several regulating (i.e., urban hydrology, heat mitigation, noise reduction, biodiversity, and CO2 sequestration), provisional (i.e., bioenergy and added-value chemicals), and cultural (i.e., aesthetic, social cohesion, and health) ESs. Although future research should specifically be addressed to better support these findings, acknowledging ES is crucial for an exhaustive evaluation of phytoremediation as a sustainable and resilient technology.
Collapse
Affiliation(s)
- Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via G. Paolo II n◦ 132, 84084 Fisciano, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via G. Paolo II n◦ 132, 84084 Fisciano, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Maria Chiara Pastore
- Politecnico di Milano, Department of Architecture and Urban Studies, Via Bonardi 3, 20133 Milano, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
3
|
Hostyn G, Schwartz C, Côme JM, Ouvrard S. Assessment for combined phytoremediation and biomass production on a moderately contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59736-59750. [PMID: 35394632 DOI: 10.1007/s11356-022-19963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Once previous industrial activity has ceased, brownfields are found in urban and suburban environments and managed in different ways ranging from being left untouched to total reconversion. These situations apply to large surface areas often impacted by residual diffuse pollution. Though significant and preventing any sensitive use, residual contamination does not necessarily require treatment. Moreover, conventional treatments show their technical and economic limits in these situations and gentle remediation options such as phytomanagement might appear more relevant to the management of those sites. Thus, these sites face up two major issues: managing moderate contamination levels and providing an alternative use of economic interest. This work proposes to assess a management strategy associating the phytoremediation of organic pollution along with the production of biomass for energy generation production. A 16-week controlled growth experiment was conducted on a soil substrate moderately impacted by multiple pollution (trace elements, mainly Zn and Pb, and hydrocarbons), by associating rhizodegradation with Medicago sativa or biomass production with Robinia pseudoacacia or Alnus incana in monocultures. The effect of a microbial inoculum amendment on the performances of these treatments was also evaluated. Results showed total hydrocarbons (TH), and to a lesser extent polycyclic aromatic hydrocarbons (PAH), concentrations decreased over time, whatever the plant cover. Good biomass production yields were achieved for both tree species in comparison with the control sample, even though R. pseudoacacia seemed to perform better. Furthermore, the quality of the biomass produced was in conformity with the thresholds set by the legislation concerning its use as a renewable energy source.
Collapse
Affiliation(s)
- Guillaume Hostyn
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- GINGER BURGEAP, Département Recherche Et Développement, 19 rue de la Villette, 69425, Lyon, France
| | | | - Jean-Marie Côme
- GINGER BURGEAP, Département Recherche Et Développement, 19 rue de la Villette, 69425, Lyon, France
| | | |
Collapse
|
4
|
Grignet A, Sahraoui ALH, Teillaud S, Fontaine J, Papin A, Bert V. Phytoextraction of Zn and Cd with Arabidopsis halleri: a focus on fertilization and biological amendment as a means of increasing biomass and Cd and Zn concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22675-22686. [PMID: 34797549 DOI: 10.1007/s11356-021-17256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The current work aims to investigate the influence of fertilization (fertilizer) and fungal inoculation (Funneliformis mosseae and Serendipita indica (formerly Piriformospora indica), respectively arbuscular mycorrhizal (AMF) and endophytic fungi) on the phytoextraction potential of Arabidopsis halleri (L.) O'Kane & Al-Shehbaz (biomass yield and/or aboveground part Zn and Cd concentrations) over one life plant cycle. The mycorrhizal rates of A. halleri were measured in situ while the fungal inoculation experiments were carried out under controlled conditions. For the first time, it is demonstrated that the fertilizer used on A. halleri increased its biomass not only at the rosette stage but also at the flowering and fruiting stages. Fertilizer reduced the Zn concentration variability between developmental stages and increased the Cd concentration at fruiting stage. A. halleri roots did not show AMF colonization at any stage in our field conditions, neither in the absence nor in the presence of fertilizer, thus suggesting that A. halleri is not naturally mycorrhizal. Induced mycorrhization agreed with this result. However, S. indica has been shown to successfully colonize A. halleri roots under controlled conditions. This study confirms the benefit of using fertilizer to increase the phytoextraction potential of A. halleri. Overall, these results contribute to the future applicability of A. halleri in a phytomanagement strategy by giving information on its cultural itinerary.
Collapse
Affiliation(s)
- Arnaud Grignet
- Clean Technologies and Circular Economy Unit, SIT Department, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50 rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50 rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - Samuel Teillaud
- Clean Technologies and Circular Economy Unit, SIT Department, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France
| | - Joël Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50 rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - Arnaud Papin
- Analytical Methods and Developments for the Environment, MIV Department, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France
| | - Valérie Bert
- Clean Technologies and Circular Economy Unit, SIT Department, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France.
| |
Collapse
|
5
|
Liu W, Xue K, Hu R, Zhou J, Van Nostrand JD, Dimitrou J, Giagnoni L, Renella G. Long-Term Effects of Soil Remediation with Willow Short Rotation Coppice on Biogeographic Pattern of Microbial Functional Genes. Microorganisms 2022; 10:microorganisms10010140. [PMID: 35056589 PMCID: PMC8777967 DOI: 10.3390/microorganisms10010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
Short rotation coppice (SRC) is increasingly being adopted for bioenergy production, pollution remediation and land restoration. However, its long-term effects on soil microbial communities are poorly characterized. Here, we studied soil microbial functional genes and their biogeographic pattern under SRC with willow trees as compared to those under permanent grassland (C). GeoChip analysis showed a lower functional gene diversity in SRC than in C soil, whereas microbial ATP and respiration did not change. The SRC soil had lower relative abundances of microbial genes encoding for metal(-oid) resistance, antibiotic resistance and stress-related proteins. This indicates a more benign habitat under SRC for microbial communities after relieving heavy metal stress, consistent with the lower phytoavailability of some metals (i.e., As, Cd, Ni and Zn) and higher total organic carbon, NO3−-N and P concentrations. The microbial taxa–area relationship was valid in both soils, but the space turnover rate was higher under SRC within 0.125 m2, which was possibly linked to a more benign environment under SRC, whereas similar values were reached beyond thisarea. Overall, we concluded that SRC management can be considered as a phytotechnology that ameliorates the habitat for soil microorganisms, owing to TOC and nutrient enrichment on the long-term.
Collapse
Affiliation(s)
- Wenjing Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China;
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810001, China
- Correspondence: (K.X.); (G.R.)
| | - Runpeng Hu
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA;
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, USA; (J.Z.); (J.D.V.N.)
| | - Joy D. Van Nostrand
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, USA; (J.Z.); (J.D.V.N.)
| | - Jannis Dimitrou
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Laura Giagnoni
- Department of Civil Engineering, Architecture, Environmental and Mathematics (DICATAM), University of Brescia, via Branze 43, 25123 Brescia, Italy;
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, viale dell’Università 16, 35020 Legnaro, Italy
- Correspondence: (K.X.); (G.R.)
| |
Collapse
|
6
|
Lee SI, Choi J, Hong H, Nam JH, Strik B, Davis A, Cho Y, Ha SD, Park SH. Investigation of soil microbiome under the influence of different mulching treatments in northern highbush blueberry. AMB Express 2021; 11:134. [PMID: 34581888 PMCID: PMC8479055 DOI: 10.1186/s13568-021-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities on soil are fundamental for the long-term sustainability of agriculture ecosystems. Microbiota in soil would impact the yield and quality of blueberries since microbial communities in soil can interact with the rhizosphere of plant. This study was conducted to determine how different mulching treatments induce changes in soil microbial composition, diversity, and functional properties. A total of 150 soil samples were collected from 5 different mulch treatments (sawdust, green weed mat, sawdust topped with green weed mat, black weed mat, and sawdust topped with black weed mat) at 3 different depths (bottom, middle, and top region of 20 cm soil depth) from 2 different months (June and July 2018). A total of 8,583,839 sequencing reads and 480 operational taxonomic units (OTUs) of bacteria were identified at genus level. Eight different plant growth promoting rhizobacteria (PGPR) were detected, and the relative abundances of Bradyrhizobium, Bacillus, and Paenibacillus were more than 0.1% among all soil samples. Sampling depth and month of soil samples impacted the amount of PGPR, while there were no significant differences based on mulch type. Functional properties of bacteria were identified through PICRUSt2, which found that there is no significant difference between mulch treatment, depth, and month. The results indicated that sampling month and depth of soil impacted the relative abundance of PGPR in soil samples, but there were no significant differences of functional properties and beneficial microbial communities based on mulch type.
Collapse
|
7
|
Kidd PS, Álvarez A, Álvarez-López V, Cerdeira-Pérez A, Rodríguez-Garrido B, Prieto-Fernández Á, Chalot M. Beneficial traits of root endophytes and rhizobacteria associated with plants growing in phytomanaged soils with mixed trace metal-polycyclic aromatic hydrocarbon contamination. CHEMOSPHERE 2021; 277:130272. [PMID: 33773318 DOI: 10.1016/j.chemosphere.2021.130272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The diversity of cultivable bacteria associated with plants from phytomanaged soils with mixed trace metal (TM) and polycyclic aromatic hydrocarbon (PAH) contamination in Pierrelaye (France) was evaluated. The emphasis was on the cultivable bacterial community since the overall objective is to obtain inoculants to improve the remediation of this type of contaminated site. Root endophytic and rhizosphere soil bacterial counts were determined, and isolates were pooled by amplified rDNA restriction analysis and identified by 16S rDNA sequencing. Isolates were further characterized for the production of plant growth-promoting (PGP) substances, and resistance to TM. The selected strains were evaluated for their ability to degrade PAHs. The potential of cell-free microbial supernatant to increase the mobilisation of PAHs from the polluted soil of Pierrelaye was also evaluated. Proteobacteria and Actinobacteria dominated the collection of isolates, and differences in taxonomic diversity were observed between plant species (Populus or Zea mays) and depending on the remediation treatment (Populus inoculation with mycorrhizae or Populus intercropping with Alnus). The majority of isolates exhibited at least one of the tested PGP traits, as well as resistance to more than one TM. Several rhizosphere, endophyte and even one bulk soil isolate showed high rates of fluoranthene and pyrene reduction. The endophyte Rhizobium strain MR28 isolated from maize and degrading pyrene produced bioemulsifying molecules capable of improving the availability of PAHs from the soil of Pierrelaye. A selection of the most interesting strains was made for further re-inoculation experiments in order to assess their potential in rhizoremediation processes.
Collapse
Affiliation(s)
- Petra S Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo S/n, Santiago de Compostela, 15705, Spain
| | - Analía Álvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán, 4000, Argentina.
| | - Vanessa Álvarez-López
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo S/n, Santiago de Compostela, 15705, Spain
| | - Andrea Cerdeira-Pérez
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo S/n, Santiago de Compostela, 15705, Spain
| | - Beatriz Rodríguez-Garrido
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo S/n, Santiago de Compostela, 15705, Spain
| | - Ángeles Prieto-Fernández
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo S/n, Santiago de Compostela, 15705, Spain
| | - Michel Chalot
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000, Besançon, France; Université de Lorraine, Faculté des Sciences et Technologies, 54000, Nancy, France
| |
Collapse
|
8
|
Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil. Microorganisms 2021; 9:microorganisms9061333. [PMID: 34205382 PMCID: PMC8234821 DOI: 10.3390/microorganisms9061333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Soil fungal communities play a central role in natural systems and agroecosystems. As such, they have attracted significant research interest. However, the fungal microbiota of aromatic plants, such as clary sage (Salvia sclarea L.), remain unexplored. This is especially the case in trace element (TE)-polluted conditions and within the framework of phytomanagement approaches. The presence of high concentrations of TEs in soils can negatively affect not only microbial diversity and community composition but also plant establishment and growth. Hence, the objective of this study is to investigate the soil fungal and arbuscular mycorrhizal fungi (AMF) community composition and their changes over time in TE-polluted soils in the vicinity of a former lead smelter and under the cultivation of clary sage. We used Illumina MiSeq amplicon sequencing to evaluate the effects of in situ clary sage cultivation over two successive years, combined or not with exogenous AMF inoculation, on the rhizospheric soil and root fungal communities. We obtained 1239 and 569 fungal amplicon sequence variants (ASV), respectively, in the rhizospheric soil and roots of S. sclarea under TE-polluted conditions. Remarkably, 69 AMF species were detected at our experimental site, belonging to 12 AMF genera. Furthermore, the inoculation treatment significantly shaped the fungal communities in soil and increased the number of AMF ASVs in clary sage roots. In addition, clary sage cultivation over successive years could be one of the explanatory parameters for the inter-annual variation in both fungal and AMF communities in the soil and root biotopes. Our data provide new insights on fungal and AMF communities in the rhizospheric soil and roots of an aromatic plant, clary sage, grown in TE-polluted agricultural soil.
Collapse
|
9
|
Habiyaremye JDD, Herrmann S, Reitz T, Buscot F, Goldmann K. Balance between geographic, soil, and host tree parameters to shape soil microbiomes associated to clonal oak varies across soil zones along a European North-South transect. Environ Microbiol 2021; 23:2274-2292. [PMID: 33587815 DOI: 10.1111/1462-2920.15433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Tree root-associated microbiomes are shaped by geographic, soil physico-chemical, and host tree parameters. However, their respective impacts on microbiome variations in soils across larger spatial scales remain weakly studied. We out-planted saplings of oak clone DF159 (Quercus robur L.) as phytometer in four grassland field sites along a European North-South transect. After four years, we first compared the soil microbiomes of the tree root zone (RZ) and the tree root-free zone (RFZ). Then, we separately considered the total microbiomes of both zones, besides the microbiome with significant affinity to the RZ and compared their variability along the transect. Variations within the microbiome of the tree RFZ were shaped by geographic and soil physico-chemical changes, whereby bacteria responded more than fungi. Variations within both microbiomes of the tree RZ depended on the host tree and abiotic parameters. Based on perMANOVA and Mantel correlation tests, impacts of site specificities and geographic distance strongly decreased for the tree RZ affine microbiome. This pattern was more pronounced for fungi than bacteria. Shaping the microbiome of the soil zones in root proximity might be a mechanism mediating the acclimation of oaks to a wide range of environmental conditions across geographic regions.
Collapse
Affiliation(s)
- Jean de Dieu Habiyaremye
- Department Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany.,Department of Mathematics, Science and Physical Education, University of Rwanda, Kigali, Rwanda
| | - Sylvie Herrmann
- Department Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Thomas Reitz
- Department Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - François Buscot
- Department Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kezia Goldmann
- Department Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
| |
Collapse
|
10
|
Raveau R, Fontaine J, Hijri M, Lounès-Hadj Sahraoui A. The Aromatic Plant Clary Sage Shaped Bacterial Communities in the Roots and in the Trace Element-Contaminated Soil More Than Mycorrhizal Inoculation - A Two-Year Monitoring Field Trial. Front Microbiol 2020; 11:586050. [PMID: 33424786 PMCID: PMC7794003 DOI: 10.3389/fmicb.2020.586050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
To cope with soil contamination by trace elements (TE), phytomanagement has attracted much attention as being an eco-friendly and cost-effective green approach. In this context, aromatic plants could represent a good option not only to immobilize TE, but also to use their biomass to extract essential oils, resulting in high added-value products suitable for non-food valorization. However, the influence of aromatic plants cultivation on the bacterial community structure and functioning in the rhizosphere microbiota remains unknown. Thus, the present study aims at determining in TE-aged contaminated soil (Pb - 394 ppm, Zn - 443 ppm, and Cd - 7ppm, respectively, 11, 6, and 17 times higher than the ordinary amounts in regional agricultural soils) the effects of perennial clary sage (Salvia sclarea L.) cultivation, during two successive years of growth and inoculated with arbuscular mycorrhizal fungi, on rhizosphere bacterial diversity and community structure. Illumina MiSeq amplicon sequencing targeting bacterial 16S rRNA gene was used to assess bacterial diversity and community structure changes. Bioinformatic analysis of sequencing datasets resulted in 4691 and 2728 bacterial Amplicon Sequence Variants (ASVs) in soil and root biotopes, respectively. Our findings have shown that the cultivation of clary sage displayed a significant year-to-year effect, on both bacterial richness and community structures. We found that the abundance of plant-growth promoting rhizobacteria significantly increased in roots during the second growing season. However, we didn't observe any significant effect of mycorrhizal inoculation neither on bacterial diversity nor on community structure. Our study brings new evidence in TE-contaminated areas of the effect of a vegetation cover with clary sage cultivation on the microbial soil functioning.
Collapse
Affiliation(s)
- Robin Raveau
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Calais, France
| | - Joël Fontaine
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Calais, France
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV) de l’Université de Montréal, Montreal, QC, Canada
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Anissa Lounès-Hadj Sahraoui
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Calais, France
| |
Collapse
|
11
|
Álvarez-López V, Zappelini C, Durand A, Chalot M. Pioneer trees of Betula pendula at a red gypsum landfill harbour specific structure and composition of root-associated microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138530. [PMID: 32315851 DOI: 10.1016/j.scitotenv.2020.138530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The study of root-associated microbial communities is important to understand the natural processes involved in plant recolonisation at degraded areas. Root associated bacterial and fungal communities of woody species colonising a red gypsum landfill (a metal-enriched environment) were characterised through metabarcoding. Among trees naturally growing on the landfill, Betula pendula is the only tree species in the centre of the area, whereas companion tree species such as Populus nigra, P. tremula and Salix purpurea were present on the edges. The bacterial community was dominated by Proteobacteria (38%), Actinobacteria (35%) and Bacteroidetes (20%) and the most abundant bacterial OTU belonged to the family Streptomycetaceae. The fungal community was dominated by Ascomycota (60%) and Basidiomycota (30%) and the most abundant family was Pyronemataceae. Analysis of similarities, heatmap and hierarchical cluster analysis showed that B. pendula grown in the centre of the landfill harboured a specific microbial community, which was unique and different, not only from other tree species (Populus or Salix spp.), but also from other B. pendula growing at the edges. Our findings on relevant indicator OTUs associated to the birches located in the centre of the landfill (such as Otu00716 Catellatospora sp. (family Micromonosporaceae, phylum Actinobacteria) or Otu4_35502 Russula sp. (family Russulaceae, phylum Basidiomycota)) may have important implications for the successful revegetation of these harsh environments using microbial-based phytostabilisation approaches.
Collapse
Affiliation(s)
- Vanessa Álvarez-López
- Université de Bourgogne Franche-Comté, UMR CNRS Laboratoire Chrono-environnement, Montbéliard, France.
| | - Cyril Zappelini
- Université de Bourgogne Franche-Comté, UMR CNRS Laboratoire Chrono-environnement, Montbéliard, France
| | - Alexis Durand
- Université de Bourgogne Franche-Comté, UMR CNRS Laboratoire Chrono-environnement, Montbéliard, France
| | - Michel Chalot
- Université de Bourgogne Franche-Comté, UMR CNRS Laboratoire Chrono-environnement, Montbéliard, France; Université de Lorraine, F-54000 Nancy, France
| |
Collapse
|
12
|
Chalot M, Girardclos O, Ciadamidaro L, Zappelini C, Yung L, Durand A, Pfendler S, Lamy I, Driget V, Blaudez D. Poplar rotation coppice at a trace element-contaminated phytomanagement site: A 10-year study revealing biomass production, element export and impact on extractable elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134260. [PMID: 31683219 DOI: 10.1016/j.scitotenv.2019.134260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Growing lignocellulosic crops on marginal lands could compose a substantial proportion of future energy resources. The potential of poplar was explored, by devising a field trial of two hectares in 2007 in a metal-contaminated site to quantify the genotypic variation in the growth traits of 14 poplar genotypes grown in short-rotation coppice and to assess element transfer and export by individual genotypes. Our data led us to conclusions about the genotypic variations in poplar growth on a moderately contaminated site, with the Vesten genotype being the most productive. This genotype also accumulated the least amounts of trace elements, whereas the Trichobel genotype accumulated up to 170 mg Zn kg-1 DW in the branches, with large variation being exhibited among the genotypes for trace element (TE) accumulation. Soil element depletion occurred for a range of TEs, whereas the soil content of major nutrients and the pH remained unchanged or slightly increased after 10 years of poplar growth. The higher TE content of bark tissues compared with the wood and the higher proportion of bark in branches compared with the wood led us to recommend that only stem wood be harvested, instead of the whole tree, which will enable a reduction in the risks encountered with TE-enriched biomass in the valorization process.
Collapse
Affiliation(s)
- Michel Chalot
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-environnement, F-25250 Montbéliard, France; Université de Lorraine, F-54000 Nancy, France.
| | - Olivier Girardclos
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-environnement, F-25250 Montbéliard, France
| | - Lisa Ciadamidaro
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-environnement, F-25250 Montbéliard, France
| | - Cyril Zappelini
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-environnement, F-25250 Montbéliard, France
| | - Loic Yung
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-environnement, F-25250 Montbéliard, France
| | - Alexis Durand
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-environnement, F-25250 Montbéliard, France
| | - Stéphane Pfendler
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-environnement, F-25250 Montbéliard, France
| | - Isabelle Lamy
- INRA, AgroParisTech, UMR1402 ECOSYS, Ecotoxicology division, F-78026 Versailles cedex, France
| | - Vincent Driget
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-environnement, F-25250 Montbéliard, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| |
Collapse
|
13
|
The Effects of Different Lead Pollution Levels on Soil Microbial Quantities and Metabolic Function with/without Salix integra Thunb. Planting. FORESTS 2019. [DOI: 10.3390/f10020077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and Objectives: Salix integra Thunb., a fast-growing woody species, has been used in phytoremediation in recent years. It has the potential to accumulate high amounts of lead (Pb) in its growth, however, its effects on soil microbial community structure and function during its phytoextraction processes are not well understood, especially at different pollution levels. Materials and Methods: In our study, we set unplanted and planted Salix integra in areas with four levels of Pb treatments (0, 500, 1000, and 1500 mg/kg). After six months of planting, the rhizospheric soil, bulk soil, and unplanted soil were collected. Soil properties and microbes participating in nitrogen and phosphorus cycling were measured, following standard methods. Microbial metabolic functions were assessed using a Biolog-ECO microplate. Results: The bacteria (nitrogen-fixing bacteria, ammonifying bacteria, inorganic phosphorus-solubilizing bacteria, and nitrosobacteria) all increased in the 500 mg/kg treatment and decreased in the 1500 mg/kg treatment compared with the 0 mg/kg treatment, especially in rhizospheric soil. The microbial metabolisms decreased along with the increase of Pb levels, with the exception of the rhizospheric soil with a 500 mg/kg treatment. The metabolic patterns were relative to the pollution levels. The utilization of carbohydrates was decreased, and of amino acids or fatty acids was increased, in the 500 mg/kg treatment, while the opposite occurred in the 1500 mg/kg treatment. The values of soil properties, microbial quantities, and metabolic activities were higher in rhizospheric than bulk soil, while the differences between bulk and unplanted soil were different among the different Pb treatments. The soil properties had little effect on the microbial quantities and metabolic activities. Conclusions: S. integra planting and Pb levels had an interactive effect on the microbial community. In general, S. integra planting promoted microbial quantities and metabolic activity in rhizospheric soil. Lower Pb pollution increased microbial quantities and promoted the utilization of amino acids or fatty acids, while higher Pb concentrations decreased microbial quantities and metabolic activities, and promoted the utilization of carbohydrates.
Collapse
|
14
|
Zappelini C, Alvarez-Lopez V, Capelli N, Guyeux C, Chalot M. Streptomyces Dominate the Soil Under Betula Trees That Have Naturally Colonized a Red Gypsum Landfill. Front Microbiol 2018; 9:1772. [PMID: 30123206 PMCID: PMC6085467 DOI: 10.3389/fmicb.2018.01772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/16/2018] [Indexed: 11/13/2022] Open
Abstract
The successful restoration of well-engineered tailings storage facilities is needed to avoid mine tailings problems. This study characterized the bacterial communities from vegetated and non-vegetated soils from a red gypsum landfill resulting from the industrial extraction of titanium. A set of 275 bacteria was isolated from vegetated soil and non-vegetated soil areas and taxonomically characterized using BOX-PCR. The study also evaluated the ability of a subset of 88 isolated bacteria on their ability to produce plant growth promoting (PGP) traits [indoleacetic acid (IAA) production, phosphate solubilization, and siderophore production] and their tolerance to potentially toxic elements (PTEs). Twenty strains were chosen for further analysis to produce inoculum for birch-challenging experiments. Principal component analysis (PCA) showed that the set of pedological parameters (pH, granulometry, carbon, organic matter, and Mg content) alone explained approximately 40% of the differences between the two soils. The highest density of total culturable bacteria was found in the vegetated soil, and it was much higher than that in the non-vegetated soil. The Actinobacteria phyla dominated the culturable soil community (70% in vegetated soil and 95% in non-vegetated soil), while the phyla Firmicutes (including the genus Bacillus) and Bacteroides (including the genera Pedobacter and Olivibacter) were found only in the vegetated soil fraction. Additional genera (Rhizobium, Variovorax, and Ensifer) were found solely in the vegetated soil. The vegetated soil bacteria harbored the most beneficial PGP bacteria with 12% of the isolates showing three or more PGP traits. The strains with higher metal tolerances in our study were Phyllobacterium sp. WR140 (RO1.15), Phyllobacterium sp. WR140 (R01.34), and Streptomyces sp. (R04.15), all isolated from the vegetated soil. Among the isolates tested in challenging experiments, Phyllobacterium (R01.34) and Streptomyces sp. (R05.33) have the greatest potential to act as PGP rhizobacteria and therefore to be used in the biological restoration of tailings dumps.
Collapse
Affiliation(s)
- Cyril Zappelini
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université Bourgogne Franche-Comté, Montbéliard, France
| | - Vanessa Alvarez-Lopez
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université Bourgogne Franche-Comté, Montbéliard, France
| | - Nicolas Capelli
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université Bourgogne Franche-Comté, Montbéliard, France
| | - Christophe Guyeux
- Département d'Informatique des Systèmes Complexes, Institut FEMTO-ST (UMR 6174 CNRS), Université Bourgogne Franche-Comté, Besançon, France
| | - Michel Chalot
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université Bourgogne Franche-Comté, Montbéliard, France.,Faculté des Sciences et Technologies, Université de Lorraine, Nancy, France
| |
Collapse
|
15
|
Ashrafi S, Knapp DG, Blaudez D, Chalot M, Maciá-Vicente JG, Zagyva I, Dababat AA, Maier W, Kovács GM. Inhabiting plant roots, nematodes, and truffles-Polyphilus, a new helotialean genus with two globally distributed species. Mycologia 2018; 110:286-299. [PMID: 29771641 DOI: 10.1080/00275514.2018.1448167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fungal root endophytes, including the common group of dark septate endophytes (DSEs), represent different taxonomic groups and potentially diverse life strategies. In this study, we investigated two unidentified helotialean lineages found previously in a study of DSE fungi of semiarid grasslands, from several other sites, and collected recently from a pezizalean truffle ascoma and eggs of the cereal cyst nematode Heterodera filipjevi. The taxonomic positions and phylogenetic relationships of 21 isolates with different hosts and geographic origins were studied in detail. Four loci, namely, nuc rDNA ITS1-5.8S-ITS2 (internal transcribed spacer [ITS]), partial 28S nuc rDNA (28S), partial 18S nuc rDNA (18S), and partial RNA polymerase II second-largest subunit (RPB2), were amplified and sequenced for molecular phylogenetic analyses. Analyses of similar ITS sequences from public databases revealed two globally distributed lineages detected in several biomes from different geographic regions. The host interaction of isolates from nematodes was examined using in vitro bioassays, which revealed that the fungi could penetrate nematode cysts and colonize eggs of H. filipjevi, confirming observations from field-collected samples. This is the first report of a DSE, and we are not aware of other helotialean fungal species colonizing the eggs of a plant-parasitic nematode. Neither conidiomata and conidia nor ascomata formation was detected in any of the isolates. Based on molecular phylogenetic analyses, these isolates represent a distinct lineage within the Helotiales in the Hyaloscyphaceae. For this lineage, we propose here the new genus Polyphilus represented by two new species, P. sieberi and P. frankenii.
Collapse
Affiliation(s)
- Samad Ashrafi
- a Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut (Federal Research Centre for Cultivated Plants) , Braunschweig , Germany.,b Department of Ecological Plant Protection, Faculty of Organic Agricultural Sciences , University of Kassel , Witzenhausen , Germany
| | - Dániel G Knapp
- c Department of Plant Anatomy , Institute of Biology, Eötvös Loránd University , Pázmány Péter sétány 1/C, H-1117 Budapest , Hungary
| | - Damien Blaudez
- d Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux , Faculté des Sciences et Technologies , BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Michel Chalot
- e Université de Bourgogne Franche-Comté, CNRS UMR 6249, Laboratoire Chrono-Environnement, Pôle Universitaire du Pays de Montbéliard , 4 place Tharradin, BP 71427, F-25211, Montbéliard , France.,f Université de Lorraine , Faculté des Sciences et Technologies , BP 70239, F-54506, Vandoeuvre-lès-Nancy , France
| | - Jose G Maciá-Vicente
- g Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt , Max-von-Laue-Str. 13, 60438 Frankfurt am Main , Germany.,h Integrative Fungal Research Cluster (IPF) , Frankfurt am Main , Germany
| | - Imre Zagyva
- i Nefag Rt. Nagykunsági Forestry and Wood Industry Rt ., Szolnok , Hungary
| | - Abdelfattah A Dababat
- j CIMMYT (International Maize and Wheat Improvement Centre) , P.K.39 06511 Emek , Ankara , Turkey
| | - Wolfgang Maier
- a Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut (Federal Research Centre for Cultivated Plants) , Braunschweig , Germany
| | - Gábor M Kovács
- c Department of Plant Anatomy , Institute of Biology, Eötvös Loránd University , Pázmány Péter sétány 1/C, H-1117 Budapest , Hungary
| |
Collapse
|
16
|
Durand A, Maillard F, Alvarez-Lopez V, Guinchard S, Bertheau C, Valot B, Blaudez D, Chalot M. Bacterial diversity associated with poplar trees grown on a Hg-contaminated site: Community characterization and isolation of Hg-resistant plant growth-promoting bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1165-1177. [PMID: 29890585 DOI: 10.1016/j.scitotenv.2017.12.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/19/2023]
Abstract
Industrial waste dumps are rarely colonized by vegetation after they have been abandoned, indicating biological infertility. Revegetation of industrial tailings dumps is thus necessary to prevent wind erosion, metal leaching and has been shown to restore soil functions and ecosystem services. However, little is known about the microbial colonization and community structure of vegetated tailings following the application of restoration technologies. In this study, we investigated the rhizosphere and phyllosphere bacterial communities of a poplar tree plantation within a phytomanagement-based restoration program of a Hg-contaminated site. We used Illumina-based sequencing combined with culture-dependent approaches to describe plant-associated bacterial communities and to isolate growth-promoting bacteria (PGPB) and Hg-resistant bacteria. The genus Streptomyces was highly specific to the root community, accounting for 24.4% of the relative abundance but only representing 0.8% of the soil community, whereas OTUs from the Chloroflexi phylum were essentially detected in the soil community. Aboveground habitats were dominated by bacteria from the Deinococcus-Thermus phylum, which were not detected in belowground habitats. Leaf and stem habitats were characterized by several dominant OTUs, such as those from the phylum Firmicutes in the stems or from the genera Methylobacterium, Kineococcus, Sphingomonas and Hymenobacter in the leaves. Belowground habitats hosted more cultivable Hg-resistant bacteria than aboveground habitats and more Hg-resistant bacteria were found on the episphere than in endospheric habitats. Hg-resistant isolates exhibiting plant growth-promoting (PGP) traits, when used as inoculants of Capsicum annuum, were shown to increase its root dry biomass but not Hg concentration. The N2-fixing and Hg-resistant species Pseudomonas graminis, observed in the poplar phyllosphere, may be a key microorganism for the restoration of industrial tailings dumps.
Collapse
Affiliation(s)
- Alexis Durand
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - François Maillard
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Vanessa Alvarez-Lopez
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Sarah Guinchard
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Coralie Bertheau
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Benoit Valot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Damien Blaudez
- Université de Lorraine, UMR CNRS 7360 Laboratoire Interdisciplinaire des Environnements Continentaux, Faculté des Sciences et Technologies, BP 70239, 54506, Vandœuvre-lès-Nancy, France
| | - Michel Chalot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France; Université de Lorraine, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
17
|
Berthelot C, Blaudez D, Beguiristain T, Chalot M, Leyval C. Co-inoculation of Lolium perenne with Funneliformis mosseae and the dark septate endophyte Cadophora sp. in a trace element-polluted soil. MYCORRHIZA 2018; 28:301-314. [PMID: 29502186 DOI: 10.1007/s00572-018-0826-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
The presence of dark septate endophytes (DSEs) or arbuscular mycorrhizal fungi (AMF) in plant roots and their effects on plant fitness have been extensively described. However, little is known about their interactions when they are simultaneously colonizing a plant root, especially in trace element (TE)-polluted soils. We therefore investigated the effects of Cadophora sp. and Funneliformis mosseae on ryegrass (Lolium perenne) growth and element uptake in a Cd/Zn/Pb-polluted soil. The experiment included four treatments, i.e., inoculation with Cadophora sp., inoculation with F. mosseae, co-inoculation with Cadophora sp. and F. mosseae, and no inoculation. Ryegrass biomass and shoot Na, P, K, and Mg concentrations significantly increased following AMF inoculation as compared to non-inoculated controls. Similarly, DSE inoculation increased shoot Na concentration, whereas dual inoculation significantly decreased shoot Cd concentration. Moreover, oxidative stress determined by ryegrass leaf malondialdehyde concentration was alleviated both in the AMF and dual inoculation treatments. We used quantitative PCR and microscope observations to quantify colonization rates. They demonstrated that DSEs had no effect on AMF colonization, while AMF colonization slightly decreased DSE frequency. We also monitored fluorescein diacetate (FDA) hydrolysis and alkaline phosphatase (AP) activity in the rhizosphere soils. FDA hydrolysis remained unchanged in the three inoculated treatments, but AMF colonization increased AP activity and P mobility in the soil whereas DSE colonization did not alter AP activity. In this experiment, we unveiled the interactions between two ecologically important fungal groups likely to occur in roots which involved a decrease of oxidative stress and Cd accumulation in shoots. These results open promising perspectives on the fungal-based phytomanagement of TE-contaminated sites by the production of uncontaminated and marketable plant biomass.
Collapse
Affiliation(s)
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | | | - Michel Chalot
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-Environnement, Pôle Universitaire du Pays de Montbéliard, F-25211, Montbéliard, France
- Université de Lorraine, F-54000, Nancy, France
| | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France.
| |
Collapse
|
18
|
Schröder P, Beckers B, Daniels S, Gnädinger F, Maestri E, Marmiroli N, Mench M, Millan R, Obermeier MM, Oustriere N, Persson T, Poschenrieder C, Rineau F, Rutkowska B, Schmid T, Szulc W, Witters N, Sæbø A. Intensify production, transform biomass to energy and novel goods and protect soils in Europe-A vision how to mobilize marginal lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1101-1123. [PMID: 29132720 DOI: 10.1016/j.scitotenv.2017.10.209] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 05/27/2023]
Abstract
The rapid increase of the world population constantly demands more food production from agricultural soils. This causes conflicts, since at the same time strong interest arises on novel bio-based products from agriculture, and new perspectives for rural landscapes with their valuable ecosystem services. Agriculture is in transition to fulfill these demands. In many countries, conventional farming, influenced by post-war food requirements, has largely been transformed into integrated and sustainable farming. However, since it is estimated that agricultural production systems will have to produce food for a global population that might amount to 9.1 billion by 2050 and over 10 billion by the end of the century, we will require an even smarter use of the available land, including fallow and derelict sites. One of the biggest challenges is to reverse non-sustainable management and land degradation. Innovative technologies and principles have to be applied to characterize marginal lands, explore options for remediation and re-establish productivity. With view to the heterogeneity of agricultural lands, it is more than logical to apply specific crop management and production practices according to soil conditions. Cross-fertilizing with conservation agriculture, such a novel approach will provide (1) increased resource use efficiency by producing more with less (ensuring food security), (2) improved product quality, (3) ameliorated nutritional status in food and feed products, (4) increased sustainability, (5) product traceability and (6) minimized negative environmental impacts notably on biodiversity and ecological functions. A sustainable strategy for future agriculture should concentrate on production of food and fodder, before utilizing bulk fractions for emerging bio-based products and convert residual stage products to compost, biochar and bioenergy. The present position paper discusses recent developments to indicate how to unlock the potentials of marginal land.
Collapse
Affiliation(s)
- P Schröder
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, GmbH, COMI, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany..
| | - B Beckers
- Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - S Daniels
- Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - F Gnädinger
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, GmbH, COMI, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - E Maestri
- University of Parma, Department of Chemistry, Life Sci. Environm. Sustainability, - Parco Area delle Scienze 11A, I-43124 Parma, Italy
| | - N Marmiroli
- University of Parma, Department of Chemistry, Life Sci. Environm. Sustainability, - Parco Area delle Scienze 11A, I-43124 Parma, Italy
| | - M Mench
- UMR BIOGECO INRA 1202, Bordeaux University, France
| | - R Millan
- CIEMAT - Departamento de Medio Ambiente, Avenida Complutense 40, E-28040 Madrid, Spain
| | - M M Obermeier
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, GmbH, COMI, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - N Oustriere
- UMR BIOGECO INRA 1202, Bordeaux University, France
| | - T Persson
- NIBIO - Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway
| | | | - F Rineau
- Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - B Rutkowska
- Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - T Schmid
- CIEMAT - Departamento de Medio Ambiente, Avenida Complutense 40, E-28040 Madrid, Spain
| | - W Szulc
- Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - N Witters
- Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - A Sæbø
- NIBIO - Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway
| |
Collapse
|
19
|
Durand A, Maillard F, Foulon J, Gweon HS, Valot B, Chalot M. Environmental Metabarcoding Reveals Contrasting Belowground and Aboveground Fungal Communities from Poplar at a Hg Phytomanagement Site. MICROBIAL ECOLOGY 2017; 74:795-809. [PMID: 28451743 DOI: 10.1007/s00248-017-0984-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Characterization of microbial communities in stressful conditions at a field level is rather scarce, especially when considering fungal communities from aboveground habitats. We aimed at characterizing fungal communities from different poplar habitats at a Hg-contaminated phytomanagement site by using Illumina-based sequencing, network analysis approach, and direct isolation of Hg-resistant fungal strains. The highest diversity estimated by the Shannon index was found for soil communities, which was negatively affected by soil Hg concentration. Among the significant correlations between soil operational taxonomic units (OTUs) in the co-occurrence network, 80% were negatively correlated revealing dominance of a pattern of mutual exclusion. The fungal communities associated with Populus roots mostly consisted of OTUs from the symbiotic guild, such as members of the Thelephoraceae, thus explaining the lowest diversity found for root communities. Additionally, root communities showed the highest network connectivity index, while rarely detected OTUs from the Glomeromycetes may have a central role in the root network. Unexpectedly high richness and diversity were found for aboveground habitats, compared to the root habitat. The aboveground habitats were dominated by yeasts from the Lalaria, Davidiella, and Bensingtonia genera, not detected in belowground habitats. Leaf and stem habitats were characterized by few dominant OTUs such as those from the Dothideomycete class producing mutual exclusion with other OTUs. Aureobasidium pullulans, one of the dominating OTUs, was further isolated from the leaf habitat, in addition to Nakazawaea populi species, which were found to be Hg resistant. Altogether, these findings will provide an improved point of reference for microbial research on inoculation-based programs of tailings dumps.
Collapse
Affiliation(s)
- Alexis Durand
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 Place Tharradin, BP 71427, 25211, Montbéliard, France
| | - François Maillard
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 Place Tharradin, BP 71427, 25211, Montbéliard, France
| | - Julie Foulon
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 Place Tharradin, BP 71427, 25211, Montbéliard, France
| | - Hyun S Gweon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB, UK
| | - Benoit Valot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 Place Tharradin, BP 71427, 25211, Montbéliard, France
| | - Michel Chalot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 Place Tharradin, BP 71427, 25211, Montbéliard, France.
- Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506, Vandoeuvre-les-Nancy, France.
| |
Collapse
|
20
|
Zhang M, Huang F, Wang G, Liu X, Wen J, Zhang X, Huang Y, Xia Y. Geographic distribution of cadmium and its interaction with the microbial community in the Longjiang River: risk evaluation after a shocking pollution accident. Sci Rep 2017; 7:227. [PMID: 28331217 PMCID: PMC5427973 DOI: 10.1038/s41598-017-00280-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
A shocking Longjiang River cadmium pollution accident occurred in 2012, the effects of which on microbial communities remain unclear. Alkaline precipitation technology was applied for remediation, but concerns rose about the stability of this technology. To understand the geographic distribution of cadmium and its correlation with microbes, in this study, 39 water samples and 39 sludge samples from this river and 2 soil samples from the nearby farmland were collected for chemical and microbial analyses. The Cd concentrations of all water samples were lower than 0.005 mg/L and reached the quality standards for Chinese surface water. A ranking of sludge samples based on Cd contents showed sewage outfall > dosing sites > farmland, all of which were higher than the quality standard for soil. Alkaline precipitation technology was effective for Cd precipitation. Cd was unstable; it was constantly dissolving and being released from the sludge. The Cd content of each phase was mainly influenced by the total Cd content. Over 40,000 effective sequences were detected in each sample, and a total of 59,833 OTUs and 1,273 genera were found using Illumina MiSeq sequencing. Two phyla and 39 genera were notably positively correlated with the Cd distribution, while the cases of 10 phyla and 6 genera were the opposite.
Collapse
Affiliation(s)
- MingJiang Zhang
- National Engineering Laboratory of Biohydrometallurgy, General Research Institute for Nonferrous Metals, No. 2 Xinjiekouwai Street, Beijing, 100088, China
| | - FuKe Huang
- Institute of HeChi Scientific-Technical Information, No. 385 West Ring Road of HeChi City, GuangXi Zhuang Autonomous Region, 547000, China
| | - GuangYuan Wang
- National Engineering Laboratory of Biohydrometallurgy, General Research Institute for Nonferrous Metals, No. 2 Xinjiekouwai Street, Beijing, 100088, China
| | - XingYu Liu
- National Engineering Laboratory of Biohydrometallurgy, General Research Institute for Nonferrous Metals, No. 2 Xinjiekouwai Street, Beijing, 100088, China.
| | - JianKang Wen
- National Engineering Laboratory of Biohydrometallurgy, General Research Institute for Nonferrous Metals, No. 2 Xinjiekouwai Street, Beijing, 100088, China
| | - XiaoSheng Zhang
- Institute of HeChi Scientific-Technical Information, No. 385 West Ring Road of HeChi City, GuangXi Zhuang Autonomous Region, 547000, China
| | - YaoSi Huang
- Institute of HeChi Scientific-Technical Information, No. 385 West Ring Road of HeChi City, GuangXi Zhuang Autonomous Region, 547000, China
| | - Yu Xia
- National Engineering Laboratory of Biohydrometallurgy, General Research Institute for Nonferrous Metals, No. 2 Xinjiekouwai Street, Beijing, 100088, China
| |
Collapse
|
21
|
Baldrian P. Editorial: Special thematic issue on the ecology of soil microorganisms. FEMS Microbiol Ecol 2016; 93:fiw237. [PMID: 27915282 DOI: 10.1093/femsec/fiw237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Videnska 1083, 14220 Praha 4, Czech Republic E-mail:
| |
Collapse
|