1
|
Argentel-Martínez L, Peñuelas-Rubio O, Herrera-Sepúlveda A, González-Aguilera J, Sudheer S, Salim LM, Lal S, Pradeep CK, Ortiz A, Sansinenea E, Hathurusinghe SHK, Shin JH, Babalola OO, Azizoglu U. Biotechnological advances in plant growth-promoting rhizobacteria for sustainable agriculture. World J Microbiol Biotechnol 2024; 41:21. [PMID: 39738995 DOI: 10.1007/s11274-024-04231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere, the soil zone surrounding plant roots, serves as a reservoir for numerous beneficial microorganisms that enhance plant productivity and crop yield, with substantial potential for application as biofertilizers. These microbes play critical roles in ecological processes such as nutrient recycling, organic matter decomposition, and mineralization. Plant growth-promoting rhizobacteria (PGPR) represent a promising tool for sustainable agriculture, enabling green management of crop health and growth, being eco-friendly alternatives to replace chemical fertilizers and pesticides. In this sense, biotechnological advancements respecting genomics and gene editing have been crucial to develop microbiome engineering which is pivotal in developing microbial consortia to improve crop production. Genome mining, which involves comprehensive analysis of the entire genome sequence data of PGPR, is crucial for identifying genes encoding valuable bacterial enzymes and metabolites. The CRISPR-Cas system, a cutting-edge genome-editing technology, has shown significant promise in beneficial microbial species. Advances in genetic engineering, particularly CRISPR-Cas, have markedly enhanced grain output, plant biomass, resistance to pests, and the sensory and nutritional quality of crops. There has been a great advance about the use of PGPR in important crops; however, there is a need to go further studying synthetic microbial communities, microbiome engineering, and gene editing approaches in field trials. This review focuses on future research directions involving several factors and topics around the use of PGPR putting special emphasis on biotechnological advances.
Collapse
Affiliation(s)
- Leandris Argentel-Martínez
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico.
| | - Ofelda Peñuelas-Rubio
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Angélica Herrera-Sepúlveda
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Jorge González-Aguilera
- Department of Agronomy, Universidad Estadual de Mato Grosso Do Sul (UEMS), Cassilândia, MS, 79540-000, Brazil
| | - Surya Sudheer
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, 51005, Tartu, Estonia
| | - Linu M Salim
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Cochin, India
| | - Sunaina Lal
- Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
| | - Chittethu Kunjan Pradeep
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Palode, Thiruvananthapuram, Kerala, 695562, India
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | | | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye.
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
2
|
Breedt G, Korsten L, Gokul JK. Influence of Soil Phosphate on Rhizobacterial Performance in Affecting Wheat Yield. Curr Microbiol 2024; 81:170. [PMID: 38734822 PMCID: PMC11088555 DOI: 10.1007/s00284-024-03685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/01/2024] [Indexed: 05/13/2024]
Abstract
As a primary nutrient in agricultural soils, phosphorus plays a crucial but growth-limiting role for plants due to its complex interactions with various soil elements. This often results in excessive phosphorus fertilizer application, posing concerns for the environment. Agri-research has therefore shifted focus to increase fertilizer-use efficiency and minimize environmental impact by leveraging plant growth-promoting rhizobacteria. This study aimed to evaluate the in-field incremental effect of inorganic phosphate concentration (up to 50 kg/ha/P) on the ability of two rhizobacterial isolates, Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29), from the previous Breedt et al. (Ann Appl Biol 171:229-236, 2017) study on maize in enhancing the yield of commercially grown Duzi® cultivar wheat. Results obtained from three seasons of field trials revealed a significant relationship between soil phosphate concentration and the isolates' effectiveness in improving wheat yield. Rhizospheric samples collected at flowering during the third season, specifically to assess phosphatase enzyme activity at the different soil phosphate levels, demonstrated a significant decrease in soil phosphatase activity when the phosphorus rate reached 75% for both isolates. Furthermore, in vitro assessments of inorganic phosphate solubilization by both isolates at five increments of tricalcium phosphate-amended Pikovskaya media found that only isolate T19 was capable of solubilizing tricalcium at concentrations exceeding 3 mg/ml. The current study demonstrates the substantial influence of inorganic phosphate on the performance of individual rhizobacterial isolates, highlighting that this is an essential consideration when optimizing these isolates to increase wheat yield in commercial cultivation.
Collapse
Affiliation(s)
- Gerhardus Breedt
- Limpopo Department of Agriculture and Rural Development, Towoomba ADC, Private Bag X1615, Bela-Bela, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Pretoria, South Africa
- Department of Science and Innovation - National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Jarishma Keriuscia Gokul
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Pretoria, South Africa.
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Private Bag X20, Pretoria, South Africa.
| |
Collapse
|
3
|
Pan H, Wei L, Zhao H, Xiao Y, Li Z, Ding H. Perception of the Biocontrol Potential and Palmitic Acid Biosynthesis Pathway of Bacillus subtilis H2 through Merging Genome Mining with Chemical Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4834-4848. [PMID: 38401001 DOI: 10.1021/acs.jafc.3c06411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Bacillus has been widely studied for its potential to protect plants from pathogens. Here, we report the whole genome sequence of Bacillus subtilis H2, which was isolated from the tea garden soil of Guiyang Forest Park. Strain H2 showed a broad spectrum of antagonistic activities against many plant fungal pathogens and bacteria pathogens, including the rice blast fungus Magnaporthe oryzae, and showed a good field control effect against rice blast. The complete genome of B. subtilis H2 contained a 4,160,635-bp circular chromosome, with an average G + C content of 43.78%. Through the genome mining of strain H2, we identified 7 known antimicrobial compound biosynthetic gene clusters (BGCs) including sporulation killing factor, surfactin, bacillaene, fengycin, bacillibactin, subtilosin A, and bacilysin. Palmitic acid (PA), a secondary metabolite, was detected and identified in the H2 strain through genome mining analysis and gas chromatography-mass spectrometry (GC-MS). Additionally, we propose, for the first time, that the type II fatty acid synthesis (FAS) pathway in Bacillus is responsible for PA biosynthesis. This finding was confirmed by studying the antimicrobial activity of PA and conducting reverse transcription-quantitative polymerase chain reaction (RT-qPCR) experiments. We also identified numerous genes associated with plant-bacteria interactions in the H2 genome, including more than 94 colonization-related genes, more than 34 antimicrobial genes, and more than 13 plant growth-promoting genes. These findings contribute to our understanding of the biocontrol mechanisms of B. subtilis H2 and have potential applications in crop disease control.
Collapse
Affiliation(s)
- Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Longfeng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Hao Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang 550004, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Haixia Ding
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Fabian B, Foster C, Asher A, Hassan K, Paulsen I, Tetu S. Identifying the suite of genes central to swimming in the biocontrol bacterium Pseudomonas protegens Pf-5. Microb Genom 2024; 10:001212. [PMID: 38546328 PMCID: PMC11004494 DOI: 10.1099/mgen.0.001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
Swimming motility is a key bacterial trait, important to success in many niches. Biocontrol bacteria, such as Pseudomonas protegens Pf-5, are increasingly used in agriculture to control crop diseases, where motility is important for colonization of the plant rhizosphere. Swimming motility typically involves a suite of flagella and chemotaxis genes, but the specific gene set employed for both regulation and biogenesis can differ substantially between organisms. Here we used transposon-directed insertion site sequencing (TraDIS), a genome-wide approach, to identify 249 genes involved in P. protegens Pf-5 swimming motility. In addition to the expected flagella and chemotaxis, we also identified a suite of additional genes important for swimming, including genes related to peptidoglycan turnover, O-antigen biosynthesis, cell division, signal transduction, c-di-GMP turnover and phosphate transport, and 27 conserved hypothetical proteins. Gene knockout mutants and TraDIS data suggest that defects in the Pst phosphate transport system lead to enhanced swimming motility. Overall, this study expands our knowledge of pseudomonad motility and highlights the utility of a TraDIS-based approach for analysing the functions of thousands of genes. This work sets a foundation for understanding how swimming motility may be related to the inconsistency in biocontrol bacteria performance in the field.
Collapse
Affiliation(s)
- B.K. Fabian
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - C. Foster
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - A. Asher
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - K.A. Hassan
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - I.T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - S.G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
5
|
Yang P, Zeng Q, Jiang W, Wang L, Zhang J, Wang Z, Wang Q, Li Y. Genome Sequencing and Characterization of Bacillus velezensis N23 as Biocontrol Agent against Plant Pathogens. Microorganisms 2024; 12:294. [PMID: 38399699 PMCID: PMC10892835 DOI: 10.3390/microorganisms12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The overuse of chemical fungicides against fungal pathogens adversely affects soil and plant health, resulting in environmental problems and food safety. Therefore, biocontrol is considered as an environmentally friendly and cost-effective green technique in environmental protection and agricultural production. We obtained a bacterial strain N23 from a contaminated plate which showed significant inhibition to anthracnose. The strain N23 was identified as Bacillus velezensis based on 16S rRNA gene, gyrA gene, and whole-genome sequence. The bacterium N23 was able to suppress the mycelial growth of numerous plant pathogenic fungi on solid media. Tomato seeds treated with strain N23 showed significantly higher germination levels than untreated ones. Moreover, strain N23 effectively reduced the lesion area of pepper anthracnose disease in planta. The gene clusters responsible for antifungal metabolites (fengycin, surfactin, and iturin) were identified in the genome sequence of N23 based on genome mining and PCR. Furthermore, methanol extracts of the bacterial culture caused significant inhibition in growth of the fungal Colletotrichum sp. and Botrytis cinerea. These findings suggested that B. velezensis N23 could be a potential biocontrol agent in agricultural production and a source of antimicrobial compounds for further exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.Y.); (Q.Z.); (W.J.); (L.W.); (J.Z.); (Z.W.); (Q.W.)
| |
Collapse
|
6
|
Naranjo HD, Rat A, De Zutter N, De Ridder E, Lebbe L, Audenaert K, Willems A. Uncovering Genomic Features and Biosynthetic Gene Clusters in Endophytic Bacteria from Roots of the Medicinal Plant Alkanna tinctoria Tausch as a Strategy To Identify Novel Biocontrol Bacteria. Microbiol Spectr 2023; 11:e0074723. [PMID: 37436171 PMCID: PMC10434035 DOI: 10.1128/spectrum.00747-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023] Open
Abstract
The world's population is increasing at a rate not seen in the past. Agriculture, providing food for this increasing population, is reaching its boundaries of space and natural resources. In addition, changing legislation and increased ecological awareness are forcing agriculture to reduce its environmental impact. This entails the replacement of agrochemicals with nature-based solutions. In this regard, the search for effective biocontrol agents that protect crops from pathogens is in the spotlight. In this study, we have investigated the biocontrol activity of endophytic bacteria isolated from the medicinal plant Alkanna tinctoria Tausch. To do so, an extensive collection of bacterial strains was initially genome sequenced and in silico screened for features related to plant stimulation and biocontrol. Based on this information, a selection of bacteria was tested in vitro for antifungal activity using direct antagonism in a plate assay and in planta with a detached-leaf assay. Bacterial strains were tested individually and in combinations to assess the best-performing treatments. The results revealed that many bacteria could produce metabolites that efficiently inhibit the proliferation of several fungi, especially Fusarium graminearum. Among these, Pseudomonas sp. strain R-71838 showed a strong antifungal effect, in both dual-culture and in planta assays, making it the most promising candidate for biocontrol application. Using microbes from medicinal plants, this study highlights the opportunities of using genomic information to speed up the screening of a taxonomically diverse set of bacteria with biocontrol properties. IMPORTANCE Phytopathogenic fungi are a major threat to global food production. The most common management practice to prevent plant infections involves the intensive use of fungicides. However, with the growing awareness of the ecological and human impacts of chemicals, there is a need for alternative strategies, such as the use of bacterial biocontrol agents. Limitations in the design of bacterial biocontrol included the need for labor-intensive and time-consuming experiments to test a wide diversity of strains and the lack of reproducibility of their activity against pathogens. Here, we show that genomic information is an effective tool to select bacteria of interest quickly. Also, we highlight that the strain Pseudomonas sp. R-71838 produced a reproducible antifungal effect both in vitro and in planta. These findings build a foundation for designing a biocontrol strategy based on Pseudomonas sp. R-71838.
Collapse
Affiliation(s)
- Henry D. Naranjo
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Angélique Rat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emmelie De Ridder
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Liesbeth Lebbe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Genomic Insights and Functional Analysis Reveal Plant Growth Promotion Traits of Paenibacillus mucilaginosus G78. Genes (Basel) 2023; 14:genes14020392. [PMID: 36833318 PMCID: PMC9956331 DOI: 10.3390/genes14020392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Paenibacillus mucilaginosus has widely been reported as a plant growth-promoting rhizobacteria (PGPR). However, the important genomic insights into plant growth promotion in this species remain undescribed. In this study, the genome of P. mucilaginosus G78 was sequenced using Illumina NovaSeq PE150. It contains 8,576,872 bp with a GC content of 58.5%, and was taxonomically characterized. Additionally, a total of 7337 genes with 143 tRNAs, 41 rRNAs, and 5 ncRNAs were identified. This strain can prohibit the growth of the plant pathogen, but also has the capability to form biofilm, solubilize phosphate, and produce IAA. Twenty-six gene clusters encoding secondary metabolites were identified, and the genotypic characterization indirectly proved its resistant ability to ampicillin, bacitracin, polymyxin and chloramphenicol. The putative exopolysaccharide biosynthesis and biofilm formation gene clusters were explored. According to the genetic features, the potential monosaccharides of its exopolysaccharides for P. mucilaginosus G78 may include glucose, mannose, galactose, fucose, that can probably be acetylated and pyruvated. Conservation of the pelADEFG compared with other 40 Paenibacillus species suggests that Pel may be specific biofilm matrix component in P. mucilaginosus. Several genes relevant to plant growth-promoting traits, i.e., IAA production and phosphate solubilization are well conserved compared with other 40 other Paenibacillus strains. The current study can benefit for understanding the plant growth-promoting traits of P. mucilaginosus as well as its potential application in agriculture as PGPR.
Collapse
|
8
|
Narayanasamy S, Thankappan S, Kumaravel S, Ragupathi S, Uthandi S. Complete genome sequence analysis of a plant growth-promoting phylloplane Bacillus altitudinis FD48 offers mechanistic insights into priming drought stress tolerance in rice. Genomics 2023; 115:110550. [PMID: 36565792 DOI: 10.1016/j.ygeno.2022.110550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Bacillus altitudinis FD48 is a multifunctional plant growth-promoting bacterium isolated from the phylloplane of rice and survives at --10 bars of osmotic potential (--1.0 MPa). It also serves as an ideal PGPM against drought stress by triggering antioxidant defense mechanisms in rice. To further unravel the genetic determinants of osmotic stress tolerance and plant growth-promoting traits, the whole genome sequence of FD48 was compared with its related strains. The whole genome analysis revealed a single chromosome with a total length of 3,752,533 bp (3.7 Mb) and an average G + C ratio of 41.19%. A total of 4029 genes were predicted, of which 3964 (98.4%) were protein-encoding genes (PEGs) and 65 (1.6%) were non-protein-coding genes. The interaction of FD48 with the host plants is associated with many chemotactic and motility-related genes. The ability of FD48 to colonize plants and maintain plant growth under adverse environmental conditions was evidenced by the presence of genes for plant nutrient acquisition, phytohormone synthesis, trehalose, choline, and glycine betaine biosynthesis, microbial volatile organic compounds (acetoin synthesis), heat and cold shock chaperones, translation elongation factor TU (Ef-Tu), siderophore production, DEAD/DEAH boxes, and non- ribosomal peptide synthase clusters (bacilysin, fengycin, and bacitracin). This study sheds light on the drought stress-resilient mechanism, metabolic pathways and potential activity, and plant growth-promoting traits of B. altitudinis FD48 at the genetic level.
Collapse
Affiliation(s)
- Shobana Narayanasamy
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sugitha Thankappan
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sowmya Kumaravel
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sridar Ragupathi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India.
| |
Collapse
|
9
|
Cao L, Zhang Q, Miao R, Lin J, Feng R, Ni Y, Li W, Yang D, Zhao X. Application of omics technology in the research on edible fungi. Curr Res Food Sci 2022; 6:100430. [PMID: 36605463 PMCID: PMC9807862 DOI: 10.1016/j.crfs.2022.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Edible fungus is a large fungus distributed all over the world and used as food and medicine. But people's understanding of edible fungi is not as much as that of ordinary crops, so people have started a number of research on edible fungi in recent years. With the development of science and technology, omics technology has gradually walked into people's vision. Omics technology has high sensitivity and wide application range, which is favored by researchers. The application of omics technology to edible fungus research is a major breakthrough, which has transferred edible fungus research from artificial cultivation to basic research. Now omics technology in edible fungi has been flexibly combined with other research methods, involving multiple studies of edible fungus, such as genetic breeding, growth and development, stress resistance, and the use of special components in edible fungus as pharmaceutical additives. It is believed that in the future, the research of edible fungi will also be brought to a deeper level with the help of omics technology. This paper introduces the application progress of modern omics technology to the study on edible fungi and mentions the application prospect of edible fungi research with the constant development of omics technology, thereby providing ideas for the follow-up in-depth research on edible fungi.
Collapse
Affiliation(s)
- Luping Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Yanqing Ni
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Wensheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Delong Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China,Corresponding author.
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China,Facility Agriculture and Equipment Research Institute, Gansu Academy of Agri-engineering Technology, Wuwei, 733006, Gansu, China,Corresponding author. Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.
| |
Collapse
|
10
|
Mahdi I, Fahsi N, Hijri M, Sobeh M. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Front Microbiol 2022; 13:999988. [PMID: 36204627 PMCID: PMC9530320 DOI: 10.3389/fmicb.2022.999988] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion.
Collapse
Affiliation(s)
- Ismail Mahdi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Nidal Fahsi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
11
|
Díaz M, Bach T, González Anta G, Agaras B, Wibberg D, Noguera F, Canciani W, Valverde C. Agronomic efficiency and genome mining analysis of the wheat-biostimulant rhizospheric bacterium Pseudomonas pergaminensis sp. nov. strain 1008 T. FRONTIERS IN PLANT SCIENCE 2022; 13:894985. [PMID: 35968096 PMCID: PMC9369656 DOI: 10.3389/fpls.2022.894985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas sp. strain 1008 was isolated from the rhizosphere of field grown wheat plants at the tillering stage in an agricultural plot near Pergamino city, Argentina. Based on its in vitro phosphate solubilizing capacity and the production of IAA, strain 1008 was formulated as an inoculant for bacterization of wheat seeds and subjected to multiple field assays within the period 2010-2017. Pseudomonas sp. strain 1008 showed a robust positive impact on the grain yield (+8% on average) across a number of campaigns, soil properties, seed genotypes, and with no significant influence of the simultaneous seed treatment with a fungicide, strongly supporting the use of this biostimulant bacterium as an agricultural input for promoting the yield of wheat. Full genome sequencing revealed that strain 1008 has the capacity to access a number of sources of inorganic and organic phosphorus, to compete for iron scavenging, to produce auxin, 2,3-butanediol and acetoin, and to metabolize GABA. Additionally, the genome of strain 1008 harbors several loci related to rhizosphere competitiveness, but it is devoid of biosynthetic gene clusters for production of typical secondary metabolites of biocontrol representatives of the Pseudomonas genus. Finally, the phylogenomic, phenotypic, and chemotaxonomic comparative analysis of strain 1008 with related taxa strongly suggests that this wheat rhizospheric biostimulant isolate is a representative of a novel species within the genus Pseudomonas, for which the name Pseudomonas pergaminensis sp. nov. (type strain 1008T = DSM 113453T = ATCC TSD-287T) is proposed.
Collapse
Affiliation(s)
- Marisa Díaz
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Teresa Bach
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Gustavo González Anta
- Escuela de Ciencias Agrarias, Exactas y Naturales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Departamento de Ciencias Naturales y Exactas, Universidad Nacional de San Antonio de Areco (UNSAdA), Buenos Aires, Argentina
- Indrasa Biotecnología S.A., Córdoba, Argentina
| | - Betina Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | | | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Balthazar C, Novinscak A, Cantin G, Joly DL, Filion M. Biocontrol Activity of Bacillus spp. and Pseudomonas spp. Against Botrytis cinerea and Other Cannabis Fungal Pathogens. PHYTOPATHOLOGY 2022; 112:549-560. [PMID: 34293909 DOI: 10.1094/phyto-03-21-0128-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gray mold caused by Botrytis cinerea is one of the most widespread and damaging diseases in cannabis crops worldwide. With challenging restrictions on pesticide use and few effective control measures, biocontrol agents are needed to manage this disease. The aim of this study was to identify bacterial biocontrol agents with wide-spectrum activity against B. cinerea and other cannabis fungal pathogens. Twelve Bacillus and Pseudomonas strains were first screened with in vitro confrontational assays against 10 culturable cannabis pathogens, namely B. cinerea, Sclerotinia sclerotiorum, Fusarium culmorum, F. sporotrichoides, F. oxysporum, Nigrospora sphaerica, N. oryzae, Alternaria alternata, Phoma sp., and Cercospora sp. Six strains displaying the highest inhibitory activity, namely Bacillus velezensis LBUM279, FZB42, LBUM1082, Bacillus subtilis LBUM979, P. synxantha LBUM223, and P. protegens Pf-5, were further assessed in planta where all, except LBUM223, significantly controlled gray mold development on cannabis leaves. Notably, LBUM279 and FZB42 reduced disease severity by at least half compared with water-treated plants and prevented lesion development and/or sporulation up to 9 days after pathogen inoculation. Genomes of LBUM279, LBUM1082, and LBUM979 were sequenced de novo and taxonomic affiliations were determined to ensure nonrelatedness with pathogenic strains. Moreover, the genomes were exempt of detrimental genes encoding major toxins and virulence factors that could otherwise pose a biosafety risk when used on crops. Eighteen gene clusters of potential biocontrol interest were also identified. To our knowledge, this is the first reported attempt to control cannabis fungal diseases in planta by direct antagonism with beneficial bacteria.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Gabrielle Cantin
- Institute of Health and Life Sciences, Collège La Cité, Ottawa, ON K1K 4R3, Canada
| | - David L Joly
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Saint-Jean-sur-Richelieu Research and Development Center, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
13
|
Kamali M, Guo D, Naeimi S, Ahmadi J. Perception of Biocontrol Potential of Bacillus inaquosorum KR2-7 against Tomato Fusarium Wilt through Merging Genome Mining with Chemical Analysis. BIOLOGY 2022; 11:biology11010137. [PMID: 35053135 PMCID: PMC8773019 DOI: 10.3390/biology11010137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary Bacillus is a bacterial genus that is widely used as a promising alternative to chemical pesticides due to its protective activity toward economically important plant pathogens. Fusarium wilt of tomato is a serious fungal disease limiting tomato production worldwide. Recently, the newly isolated B. inaquosorum strain KR2-7 considerably suppressed Fusarium wilt of tomato plants. The present study was performed to perceive potential direct and indirect biocontrol mechanisms implemented by KR2-7 against this disease through genome and chemical analysis. The potential direct biocontrol mechanisms of KR2-7 were determined through the identification of genes involved in the synthesis of antibiotically active compounds suppressing tomato Fusarium wilt. Furthermore, the indirect mechanisms of this bacterium were perceived through recognizing genes that contributed to the resource acquisition or modulation of plant hormone levels. This is the first study that aimed at the modes of actions of B. inaquosorum against Fusarium wilt of tomatoes and the results strongly indicate that strain KR2-7 could be a good candidate for microbial biopesticide formulations to be used for biological control of plant diseases and plant growth promotion. Abstract Tomato Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (Fol), is a destructive disease that threatens the agricultural production of tomatoes. In the present study, the biocontrol potential of strain KR2-7 against Fol was investigated through integrated genome mining and chemical analysis. Strain KR2-7 was identified as B. inaquosorum based on phylogenetic analysis. Through the genome mining of strain KR2-7, we identified nine antifungal and antibacterial compound biosynthetic gene clusters (BGCs) including fengycin, surfactin and Bacillomycin F, bacillaene, macrolactin, sporulation killing factor (skf), subtilosin A, bacilysin, and bacillibactin. The corresponding compounds were confirmed through MALDI-TOF-MS chemical analysis. The gene/gene clusters involved in plant colonization, plant growth promotion, and induced systemic resistance were also identified in the KR2-7 genome, and their related secondary metabolites were detected. In light of these results, the biocontrol potential of strain KR2-7 against tomato Fusarium wilt was identified. This study highlights the potential to use strain KR2-7 as a plant-growth promotion agent.
Collapse
Affiliation(s)
- Maedeh Kamali
- College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China;
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3943-6298
| | - Shahram Naeimi
- Department of Biological Control Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran 19858-13111, Iran;
| | - Jafar Ahmadi
- Department of Genetics and Plant Breeding, Imam Khomeini International University, Qazvin 34149-16818, Iran;
| |
Collapse
|
14
|
Balthazar C, Joly DL, Filion M. Exploiting Beneficial Pseudomonas spp. for Cannabis Production. Front Microbiol 2022; 12:833172. [PMID: 35095829 PMCID: PMC8795690 DOI: 10.3389/fmicb.2021.833172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Among the oldest domesticated crops, cannabis plants (Cannabis sativa L., marijuana and hemp) have been used to produce food, fiber, and drugs for thousands of years. With the ongoing legalization of cannabis in several jurisdictions worldwide, a new high-value market is emerging for the supply of marijuana and hemp products. This creates unprecedented challenges to achieve better yields and environmental sustainability, while lowering production costs. In this review, we discuss the opportunities and challenges pertaining to the use of beneficial Pseudomonas spp. bacteria as crop inoculants to improve productivity. The prevalence and diversity of naturally occurring Pseudomonas strains within the cannabis microbiome is overviewed, followed by their potential mechanisms involved in plant growth promotion and tolerance to abiotic and biotic stresses. Emphasis is placed on specific aspects relevant for hemp and marijuana crops in various production systems. Finally, factors likely to influence inoculant efficacy are provided, along with strategies to identify promising strains, overcome commercialization bottlenecks, and design adapted formulations. This work aims at supporting the development of the cannabis industry in a sustainable way, by exploiting the many beneficial attributes of Pseudomonas spp.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Faculty of Sciences, Université de Moncton, Moncton, NB, Canada
| | - David L. Joly
- Department of Biology, Faculty of Sciences, Université de Moncton, Moncton, NB, Canada
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
15
|
Saeed M, Ilyas N, Bibi F, Jayachandran K, Dattamudi S, Elgorban AM. Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118343. [PMID: 34662593 DOI: 10.1016/j.envpol.2021.118343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The biodegradation of hazardous petroleum hydrocarbons has recently received a lot of attention because of its many possible applications. Bacillus marsiflavi strain was isolated from oil contaminated soil of Rawalpindi, Pakistan. Initial sequencing was done by 16s rRNA sequencing technique. Bac 144 had shown 78% emulsification index and 72% hydrophobicity content. Further, the strain displayed production of 15.5 mg/L phosphate sloubilization and 30.25 μg/ml indole acetic acid (IAA) in vitro assay. The strain showed 65% biodegradation of crude oil within 5 days by using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Whole Genome analysis of Bac 144 was performed by PacBio sequencing and results indicated that Bacillus marsiflavi Bac144 strain consisted of size of 4,417,505bp with closest neighbor Bacillus cereus ATCC 14579. The number of the coding sequence was 4662 and number of RNAs was 141. The GC content comprised 48.1%. Various genes were detected in genome responsible for hydrocarbon degradation and plant defense mechanism. The toxic effect of petroleum hydrocarbons in soil and its mitigation with Bac 144 was tested by soil experiment with three levels of oil contamination (5%, 10% and 15%). Soil enzymatic activity such as dehydrogenase and fluorescein diacetate (FDA) increased up to 49% and 40% with inoculation of Bac 144, which was considered to be correlated with hydrocarbon degradation recorded as 46%. An increase of 20%, 14% and 9% in shoot length of plant at 5%, 10% and 15% level of oil was recorded treated with Bac 144 as compared to untreated plants. A percent increase of 14.89%, 16.85%, and 13.87% in chlorophyll, carotenoid, and proline content of plant was observed by inoculation with Bac 144 under oil stress. Significant reduction of 14% and 18%, 21% was recorded in the malondialdehyde content of plant due to inoculation of Bac 144. A considerable increase of 21.33%, 19.5%, and 24.5% in super oxide dismutase, catalase, and peroxidase dismutase activity was also observed in plants inoculated with strain Bac 144. These findings suggested that Bac-144 can be considered as efficient candidate for bioremediation of hydrocarbons.
Collapse
Affiliation(s)
- Maimona Saeed
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan.
| | - Fatima Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | | | - Sanku Dattamudi
- Earth and Environment Department, Florida International University, USA
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Zeng Q, Xie J, Li Y, Gao T, Zhang X, Wang Q. Comprehensive Genomic Analysis of the Endophytic Bacillus altitudinis Strain GLB197, a Potential Biocontrol Agent of Grape Downy Mildew. Front Genet 2021; 12:729603. [PMID: 34646305 PMCID: PMC8502975 DOI: 10.3389/fgene.2021.729603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Bacillus has been extensively studied for agricultural application as a biocontrol agent. B. altitudinis GLB197, an endophytic bacterium isolated from grape leaves, exhibits distinctive inhibition to grape downy mildew based on unknown mechanisms. To determine the genetic traits involved in the mechanism of biocontrol and host-interaction traits, the genome sequence of GLB197 was obtained and further analyzed. The genome of B. altitudinis GLB197 consisted of one plasmid and a 3,733,835-bp circular chromosome with 41.56% G + C content, containing 3,770 protein-coding genes. Phylogenetic analysis of 17 Bacillus strains using the concatenated 1,226 single-copy core genes divided into different clusters was conducted. In addition, average nucleotide identity (ANI) values indicate that the current taxonomy of some B. pumilus group strains is incorrect. Comparative analysis of B. altitudinis GLB197 proteins with other B. altitudinis strains identified 3,157 core genes. Furthermore, we found that the pan-genome of B. altitudinis is open. The genome of B. altitudinis GLB197 contains one nonribosomal peptide synthetase (NRPS) gene cluster which was annotated as lichenysin. Interestingly, the cluster in B. altitudinis has two more genes than other Bacillus strains (lgrD and lgrB). The two genes were probably obtained via horizontal gene transfer (HGT) during the evolutionary process from Brevibacillus. Taken together, these observations enable the future application of B. altitudinis GLB197 as a biocontrol agent for control of grape downy mildew and promote our understanding of the beneficial interactions between B. altitudinis GLB197 and plants.
Collapse
Affiliation(s)
- Qingchao Zeng
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yan Li
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tantan Gao
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xun Zhang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Liu H, Zeng Q, Yalimaimaiti N, Wang W, Zhang R, Yao J. Comprehensive genomic analysis of Bacillus velezensis AL7 reveals its biocontrol potential against Verticillium wilt of cotton. Mol Genet Genomics 2021; 296:1287-1298. [PMID: 34553246 DOI: 10.1007/s00438-021-01816-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
Verticilllium wilt of cotton is a devastating soil-borne disease, which is caused by Verticillium dahliae Kleb. Bacillus velezensis strain AL7 was isolated from cotton soil. This strain efficiently inhibited the growth of V. dahliae. But the mechanism of the biocontrol strain AL7 remains poorly understood. To understand the possible genetic determinants for biocontrol traits of this strain, we conducted phenotypic, phylogenetic and comparative genomics analysis. Phenotypic analysis showed that strain AL7 exhibited broad-spectrum antifungal activities. We determined that the whole genome sequence of B. velezensis AL7 is a single circular chromosome that is 3.89 Mb in size. The distribution of putative gene clusters that could benefit to biocontrol activities was found in the genome. Phylogenetic analysis of Bacillus strains by using single core-genome clearly placed strain AL7 into the B. velezensis. Meantime, we performed comparative analyses on four Bacillus strains and observed subtle differences in their genome sequences. In addition, comparative genomics analysis showed that the core genomes of B. velezensis are more abundant in genes relevant to secondary metabolism compared with B. subtilis strains. Single mutant in the biosynthetic genes of fengycin demonstrated the function of fengycin in the antagonistic activity of B. velezensis AL7. Here, we report a new biocontrol bacterium B. velezensis AL7 and fengycin contribute to the biocontrol efficacy of the strain. The results showed in the research further sustain the potential of B. velezensis AL7 for application in agriculture production and may be a worthy biocontrol strain for further studies.
Collapse
Affiliation(s)
- Haiyang Liu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Qingchao Zeng
- Beijing Advanced Innovation Center For Tree Breeding By Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Nuerziya Yalimaimaiti
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Wei Wang
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Renfu Zhang
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Ju Yao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
18
|
The fate of plant growth-promoting rhizobacteria in soilless agriculture: future perspectives. 3 Biotech 2021; 11:382. [PMID: 34350087 DOI: 10.1007/s13205-021-02941-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
The application of plant growth-promoting rhizobacteria (PGPRs) can be an excellent and eco-friendly alternative to the use of chemical fertilizers. While PGPRs are often used in traditional agriculture to facilitate yield increases, their use in soilless agriculture has been limited. Soilless agriculture is growing in popularity among commercial farmers because it eliminates soil-borne problems, and the essential strategy is to keep the system as clean as possible. However, a new trend is the inclusion of PGPRs to enhance plant development. Despite the plethora of research that has been performed to date, there remains a huge knowledge gap that needs to be addressed to facilitate the commercialization of PGPRs for sustainable soilless agriculture. Hence, the development of proper strategies and additional research and trials are required. The present review provides an update on recent developments in the use of PGPRs in soilless agriculture, examining these bacteria from different perspectives in an attempt to generate critical discussion and aid in the understanding of the interaction between soilless agriculture and PGPRs.
Collapse
|
19
|
Villa-Rodriguez E, Moreno-Ulloa A, Castro-Longoria E, Parra-Cota FI, de Los Santos-Villalobos S. Integrated omics approaches for deciphering antifungal metabolites produced by a novel Bacillus species, B. cabrialesii TE3 T, against the spot blotch disease of wheat (Triticum turgidum L. subsp. durum). Microbiol Res 2021; 251:126826. [PMID: 34298216 DOI: 10.1016/j.micres.2021.126826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Bipolaris sorokiniana is an important biotic constraint for global wheat production, causing spot blotch disease. In this work, we present a comprehensive characterization of the cell-free culture filtrate (CF) and precipitated fraction (PF) of Bacillus cabrialesii TE3T showing an effective inhibition of spot blotch. Our results indicated that CF produced by B. cabrialesii TE3T inhibits the growth of B. sorokiniana through stable metabolites (after autoclaving and proteinase K treatment). Antifungal metabolites in CF and PF were explored by an integrated genomic-metabolomic approach. Genome-mining revealed that strain TE3T contains the biosynthetic potential to produce wide spectrum antifungal (surfactin, fengycin, and rhizocticin A) and antibacterial metabolites (bacillaene, bacilysin, bacillibactin, and subtilosin A), and through bioactivity-guided LC-ESI-MS/MS approach we determined that a lipopeptide complex of surfactin and fengycin homologs was responsible for antifungal activity exhibited by B. cabrialesii TE3T against the studied phytopathogen. In addition, our results demonstrate that i) a lipopeptide complex inhibits B. sorokiniana by disrupting its cytoplasmatic membrane and ii) reduced spot blotch disease by 93 %. These findings show the potential application of metabolites produced by strain TE3T against B. sorokiniana and provide the first insight into antifungal metabolites produced by the novel Bacillus species, Bacillus cabrialesii.
Collapse
Affiliation(s)
- Eber Villa-Rodriguez
- Departamento de Ciencias Agronómicas y Veterinarias, Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P. 85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Aldo Moreno-Ulloa
- Laboratorio MS2, Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | - Ernestina Castro-Longoria
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | - Fannie I Parra-Cota
- Campo Experimental Norman E. Borlaug- INIFAP, Norman E. Borlaug Km. 12, C.P. 85000, Ciudad Obregón, Sonora, Mexico
| | - Sergio de Los Santos-Villalobos
- Departamento de Ciencias Agronómicas y Veterinarias, Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P. 85000, Col. Centro, Ciudad Obregón, Sonora, Mexico.
| |
Collapse
|
20
|
Pirttilä AM, Mohammad Parast Tabas H, Baruah N, Koskimäki JJ. Biofertilizers and Biocontrol Agents for Agriculture: How to Identify and Develop New Potent Microbial Strains and Traits. Microorganisms 2021; 9:817. [PMID: 33924411 PMCID: PMC8069042 DOI: 10.3390/microorganisms9040817] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/02/2022] Open
Abstract
Microbiological tools, biofertilizers, and biocontrol agents, which are bacteria and fungi capable of providing beneficial outcomes in crop plant growth and health, have been developed for several decades. Currently we have a selection of strains available as products for agriculture, predominantly based on plant-growth-promoting rhizobacteria (PGPR), soil, epiphytic, and mycorrhizal fungi, each having specific challenges in their production and use, with the main one being inconsistency of field performance. With the growing global concern about pollution, greenhouse gas accumulation, and increased need for plant-based foods, the demand for biofertilizers and biocontrol agents is expected to grow. What are the prospects of finding solutions to the challenges on existing tools? The inconsistent field performance could be overcome by using combinations of several different types of microbial strains, consisting various members of the full plant microbiome. However, a thorough understanding of each microbiological tool, microbial communities, and their mechanisms of action must precede the product development. In this review, we offer a brief overview of the available tools and consider various techniques and approaches that can produce information on new beneficial traits in biofertilizer and biocontrol strains. We also discuss innovative ideas on how and where to identify efficient new members for the biofertilizer and biocontrol strain family.
Collapse
Affiliation(s)
- Anna Maria Pirttilä
- Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland; (H.M.P.T.); (N.B.); (J.J.K.)
| | | | | | | |
Collapse
|
21
|
Fast Screening of Bacteria for Plant Growth Promoting Traits. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2232:61-75. [PMID: 33161540 DOI: 10.1007/978-1-0716-1040-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant Growth Promoting Bacteria (PGPB) are a group of beneficial microorganisms that can positively influence plant fitness and development by improving nutrient acquisition, influencing global plant hormone levels (direct effect), or by reducing the detrimental effects of various pathogens on plant development (indirect effect). The use of PGPB in agriculture as formulated bioinoculants is a potential approach to reduce the negative environmental impacts caused by the continuous application of chemical fertilizers and pesticides. The evaluation of a great number of bacteria in the laboratory for key traits involved in the improvement of plant fitness is a suitable strategy to find prospective candidates for bioinoculants. This chapter presents the main methods described in the literature to quickly screen potential candidates from a bacterial collection to directly and indirectly promote the plant growth.
Collapse
|
22
|
Jiménez-Gómez A, García-Estévez I, Escribano-Bailón MT, García-Fraile P, Rivas R. Bacterial Fertilizers Based on Rhizobium laguerreae and Bacillus halotolerans Enhance Cichorium endivia L. Phenolic Compound and Mineral Contents and Plant Development. Foods 2021; 10:foods10020424. [PMID: 33671987 PMCID: PMC7919373 DOI: 10.3390/foods10020424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Today there is an urgent need to find new ways to satisfy the current and growing food demand and to maintain crop protection and food safety. One of the most promising changes is the replacement of chemical fertilizers with biofertilizers, which include plant root-associated beneficial bacteria. This work describes and shows the use of B. halotolerans SCCPVE07 and R. laguerreae PEPV40 strains as efficient biofertilizers for escarole crops, horticultural species that are widely cultivated. An in silico genome study was performed where coding genes related to plant growth promoting (PGP) mechanisms or different enzymes implicated in the metabolism of phenolic compounds were identified. An efficient bacterial root colonization process was also analyzed through fluorescence microscopy. SCCPVE07 and PEPV40 promote plant development under normal conditions and saline stress. Moreover, inoculated escarole plants showed not only an increase in potassium, iron and magnesium content but also a significant improvement in protocatechuic acid, caffeic acid or kaempferol 3-O-glucuronide plant content. Our results show for the first time the beneficial effects in plant development and the food quality of escarole crops and highlight a potential and hopeful change in the current agricultural system even under saline stress, one of the major non-biological stresses.
Collapse
Affiliation(s)
- Alejandro Jiménez-Gómez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (P.G.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
- Correspondence:
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Faculty of Pharmacy, Universidad de Salamanca, 37007 Salamanca, Spain; (I.G.-E.); (M.T.E.-B.)
| | - M. Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Faculty of Pharmacy, Universidad de Salamanca, 37007 Salamanca, Spain; (I.G.-E.); (M.T.E.-B.)
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (P.G.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (P.G.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
- Associated Unit USAL-CSIC (IRNASA), 37008 Salamanca, Spain
| |
Collapse
|
23
|
Moffat AD, Elliston A, Patron NJ, Truman AW, Carrasco Lopez JA. A biofoundry workflow for the identification of genetic determinants of microbial growth inhibition. Synth Biol (Oxf) 2021; 6:ysab004. [PMID: 33623825 PMCID: PMC7889406 DOI: 10.1093/synbio/ysab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
Biofoundries integrate high-throughput software and hardware platforms with synthetic biology approaches to enable the design, execution and analyses of large-scale experiments. The unique and powerful combination of laboratory infrastructure and expertise in molecular biology and automation programming, provide flexible resources for a wide range of workflows and research areas. Here, we demonstrate the applicability of biofoundries to molecular microbiology, describing the development and application of automated workflows to identify the genetic basis of growth inhibition of the plant pathogen Streptomyces scabies by a Pseudomonas strain isolated from a potato field. Combining transposon mutagenesis with automated high-throughput antagonistic assays, the workflow accelerated the screening of 2880 mutants to correlate growth inhibition with a biosynthetic gene cluster within 2 weeks.
Collapse
Affiliation(s)
- Alaster D Moffat
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Adam Elliston
- Department of Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, UK
| | - Nicola J Patron
- Department of Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Jose A Carrasco Lopez
- Department of Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
24
|
Vieira Velloso CC, de Oliveira CA, Gomes EA, Lana UGDP, de Carvalho CG, Guimarães LJM, Pastina MM, de Sousa SM. Genome-guided insights of tropical Bacillus strains efficient in maize growth promotion. FEMS Microbiol Ecol 2020; 96:5891423. [DOI: 10.1093/femsec/fiaa157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Plant growth promoting bacteria (PGPB) are an efficient and sustainable alternative to mitigate biotic and abiotic stresses in maize. This work aimed to sequence the genome of two Bacillus strains (B116 and B119) and to evaluate their plant growth-promoting (PGP) potential in vitro and their capacity to trigger specific responses in different maize genotypes. Analysis of the genomic sequences revealed the presence of genes related to PGP activities. Both strains were able to produce biofilm and exopolysaccharides, and solubilize phosphate. The strain B119 produced higher amounts of IAA-like molecules and phytase, whereas B116 was capable to produce more acid phosphatase. Maize seedlings inoculated with either strains were submitted to polyethylene glycol-induced osmotic stress and showed an increase of thicker roots, which resulted in a higher root dry weight. The inoculation also increased the total dry weight and modified the root morphology of 16 out of 21 maize genotypes, indicating that the bacteria triggered specific responses depending on plant genotype background. Maize root remodeling was related to growth promotion mechanisms found in genomic prediction and confirmed by in vitro analysis. Overall, the genomic and phenotypic characterization brought new insights to the mechanisms of PGP in tropical Bacillus.
Collapse
Affiliation(s)
- Camila Cristina Vieira Velloso
- Universidade Federal de São João del-Rei, Rua Padre João Pimentel, 80 - Dom Bosco, São João del-Rei - MG, 36301-158, Brazil
| | - Christiane Abreu de Oliveira
- Centro Universitário de Sete Lagoas, Avenida Marechal Castelo Branco, 2765 - Santo Antonio, Sete Lagoas - MG, 35701-242, Brazil
- Embrapa Milho e Sorgo,Rodovia MG 424 Km 45, Zona Rural, Sete Lagoas - MG, 35701-970, Brazil
| | - Eliane Aparecida Gomes
- Embrapa Milho e Sorgo,Rodovia MG 424 Km 45, Zona Rural, Sete Lagoas - MG, 35701-970, Brazil
| | - Ubiraci Gomes de Paula Lana
- Centro Universitário de Sete Lagoas, Avenida Marechal Castelo Branco, 2765 - Santo Antonio, Sete Lagoas - MG, 35701-242, Brazil
- Embrapa Milho e Sorgo,Rodovia MG 424 Km 45, Zona Rural, Sete Lagoas - MG, 35701-970, Brazil
| | - Chainheny Gomes de Carvalho
- Centro Universitário de Sete Lagoas, Avenida Marechal Castelo Branco, 2765 - Santo Antonio, Sete Lagoas - MG, 35701-242, Brazil
| | | | - Maria Marta Pastina
- Universidade Federal de São João del-Rei, Rua Padre João Pimentel, 80 - Dom Bosco, São João del-Rei - MG, 36301-158, Brazil
- Embrapa Milho e Sorgo,Rodovia MG 424 Km 45, Zona Rural, Sete Lagoas - MG, 35701-970, Brazil
| | - Sylvia Morais de Sousa
- Universidade Federal de São João del-Rei, Rua Padre João Pimentel, 80 - Dom Bosco, São João del-Rei - MG, 36301-158, Brazil
- Centro Universitário de Sete Lagoas, Avenida Marechal Castelo Branco, 2765 - Santo Antonio, Sete Lagoas - MG, 35701-242, Brazil
- Embrapa Milho e Sorgo,Rodovia MG 424 Km 45, Zona Rural, Sete Lagoas - MG, 35701-970, Brazil
| |
Collapse
|
25
|
Rhizobacteriome: Promising Candidate for Conferring Drought Tolerance in Crops. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Muzio FM, Agaras BC, Masi M, Tuzi A, Evidente A, Valverde C. 7‐hydroxytropolone is the main metabolite responsible for the fungal antagonism of
Pseudomonas donghuensis
strain SVBP6. Environ Microbiol 2020; 22:2550-2563. [DOI: 10.1111/1462-2920.14925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Federico M. Muzio
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| | - Betina C. Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| |
Collapse
|
27
|
Draft Genome Sequence of Pseudomonas chlororaphis subsp. aurantiaca ARS-38, a Bacterial Strain with Plant Growth Promotion Potential, Isolated from the Rhizosphere of Cotton in Pakistan. Microbiol Resour Announc 2020; 9:9/3/e01398-19. [PMID: 31948966 PMCID: PMC6965584 DOI: 10.1128/mra.01398-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Strain ARS-38 is a potential plant growth-promoting rhizobacterium that exhibits antifungal properties. Here, we report a 6.6-Mb draft genome, which gives insight into the complete secondary metabolite production capacity and reveals genes putatively responsible for its antifungal activity, as well as genes which contribute to plant growth promotion. Strain ARS-38 is a potential plant growth-promoting rhizobacterium that exhibits antifungal properties. Here, we report a 6.6-Mb draft genome, which gives insight into the complete secondary metabolite production capacity and reveals genes putatively responsible for its antifungal activity, as well as genes which contribute to plant growth promotion.
Collapse
|
28
|
Nelkner J, Tejerizo GT, Hassa J, Lin TW, Witte J, Verwaaijen B, Winkler A, Bunk B, Spröer C, Overmann J, Grosch R, Pühler A, Schlüter AA. Genetic Potential of the Biocontrol Agent Pseudomonas brassicacearum (Formerly P. trivialis) 3Re2-7 Unraveled by Genome Sequencing and Mining, Comparative Genomics and Transcriptomics. Genes (Basel) 2019; 10:E601. [PMID: 31405015 PMCID: PMC6722718 DOI: 10.3390/genes10080601] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 01/17/2023] Open
Abstract
The genus Pseudomonas comprises many known plant-associated microbes with plant growth promotion and disease suppression properties. Genome-based studies allow the prediction of the underlying mechanisms using genome mining tools and the analysis of the genes unique for a strain by implementing comparative genomics. Here, we provide the genome sequence of the strain Pseudomonas brassicacearum 3Re2-7, formerly known as P. trivialis and P. reactans, elucidate its revised taxonomic classification, experimentally verify the gene predictions by transcriptome sequencing, describe its genetic biocontrol potential and contextualize it to other known Pseudomonas biocontrol agents. The P. brassicacearum 3Re2-7 genome comprises a circular chromosome with a size of 6,738,544 bp and a GC-content of 60.83%. 6267 genes were annotated, of which 6113 were shown to be transcribed in rich medium and/or in the presence of Rhizoctonia solani. Genome mining identified genes related to biocontrol traits such as secondary metabolite and siderophore biosynthesis, plant growth promotion, inorganic phosphate solubilization, biosynthesis of lipo- and exopolysaccharides, exoproteases, volatiles and detoxification. Core genome analysis revealed, that the 3Re2-7 genome exhibits a high collinearity with the representative genome for the species, P. brassicacearum subsp. brassicacearum NFM421. Comparative genomics allowed the identification of 105 specific genes and revealed gene clusters that might encode specialized biocontrol mechanisms of strain 3Re2-7. Moreover, we captured the transcriptome of P. brassicacearum 3Re2-7, confirming the transcription of the predicted biocontrol-related genes. The gene clusters coding for 2,4-diacetylphloroglucinol (phlABCDEFGH) and hydrogen cyanide (hcnABC) were shown to be highly transcribed. Further genes predicted to encode putative alginate production enzymes, a pyrroloquinoline quinone precursor peptide PqqA and a matrixin family metalloprotease were also found to be highly transcribed. With this study, we provide a basis to further characterize the mechanisms for biocontrol in Pseudomonas species, towards a sustainable and safe application of P. brassicacearum biocontrol agents.
Collapse
Affiliation(s)
- Johanna Nelkner
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Gonzalo Torres Tejerizo
- Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, IBBM, Universidad Nacional de La Plata, Calle 115 y 47, 1900 La Plata, Argentina
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Timo Wentong Lin
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Julian Witte
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Bart Verwaaijen
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Anika Winkler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Boyke Bunk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - And Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| |
Collapse
|
29
|
Marshall DC, Arruda BE, Silby MW. Alginate genes are required for optimal soil colonization and persistence by Pseudomonas fluorescens Pf0-1. Access Microbiol 2019; 1:e000021. [PMID: 32974516 PMCID: PMC7471777 DOI: 10.1099/acmi.0.000021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas fluorescens strains are important candidates for use as biological control agents to reduce fungal diseases on crop plants. To understand the ecological success of these bacteria and for successful and stable biological control, determination of how these bacteria colonize and persist in soil environments is critical. Here we show that P. fluorescens Pf0-1 is negatively impacted by reduced water availability in soil, but adapts and persists. A pilot transcriptomic study of Pf0-1 colonizing moist and dehydrated soil was used to identify candidate genetic loci, which could play a role in the adaptation to dehydration. Genes predicted to specify alginate production were identified and chosen for functional evaluation. Using deletion mutants, predicted alginate biosynthesis genes were shown to be important for optimal colonization of moist soil, and necessary for adaptation to reduced water availability in dried soil. Our findings extend in vitro studies of water stress into a more natural system and suggest alginate may be an essential extracellular product for the lifestyle of P. fluorescens when growing in soil.
Collapse
Affiliation(s)
- Douglas C Marshall
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Brianna E Arruda
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Mark W Silby
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| |
Collapse
|
30
|
Jahanshah G, Yan Q, Gerhardt H, Pataj Z, Lämmerhofer M, Pianet I, Josten M, Sahl HG, Silby MW, Loper JE, Gross H. Discovery of the Cyclic Lipopeptide Gacamide A by Genome Mining and Repair of the Defective GacA Regulator in Pseudomonas fluorescens Pf0-1. JOURNAL OF NATURAL PRODUCTS 2019; 82:301-308. [PMID: 30666877 DOI: 10.1021/acs.jnatprod.8b00747] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Genome mining of the Gram-negative bacterium Pseudomonas fluorescens Pf0-1 showed that the strain possesses a silent NRPS-based biosynthetic gene cluster encoding a new lipopeptide; its activation required the repair of the global regulator system. In this paper, we describe the genomics-driven discovery and characterization of the associated secondary metabolite gacamide A, a lipodepsipeptide that forms a new family of Pseudomonas lipopeptides. The compound has a moderate, narrow-spectrum antibiotic activity and facilitates bacterial surface motility.
Collapse
Affiliation(s)
- Gahzaleh Jahanshah
- Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , 72076 Tübingen , Germany
- German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| | - Qing Yan
- Department of Botany and Plant Pathology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Heike Gerhardt
- Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis , University of Tübingen , 72076 Tübingen , Germany
- UMR 5060, IRAMAT-CRP2A, Esplanade des Antilles , F-33600 Pessac , France
| | - Zoltán Pataj
- Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis , University of Tübingen , 72076 Tübingen , Germany
- UMR 5060, IRAMAT-CRP2A, Esplanade des Antilles , F-33600 Pessac , France
| | - Michael Lämmerhofer
- Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis , University of Tübingen , 72076 Tübingen , Germany
- UMR 5060, IRAMAT-CRP2A, Esplanade des Antilles , F-33600 Pessac , France
| | - Isabelle Pianet
- CESAMO-ISM, UMR 5255, CNRS , Université Bordeaux I , 351 Cours de la Libération , F-33405 Talence , France
| | - Michaele Josten
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit , University of Bonn , 53115 Bonn , Germany
- German Centre for Infection Research (DZIF) , partner site Bonn-Cologne , 53115 Bonn , Germany
| | - Hans-Georg Sahl
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit , University of Bonn , 53115 Bonn , Germany
- German Centre for Infection Research (DZIF) , partner site Bonn-Cologne , 53115 Bonn , Germany
| | - Mark W Silby
- Department of Biology , University of Massachusetts Dartmouth , North Dartmouth , Massachusetts 02747 , United States
| | - Joyce E Loper
- Department of Botany and Plant Pathology , Oregon State University , Corvallis , Oregon 97331 , United States
- Agricultural Research Service , U.S. Department of Agriculture , Corvallis , Oregon 97331 , United States
| | - Harald Gross
- Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , 72076 Tübingen , Germany
- German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| |
Collapse
|
31
|
Abreo E, Altier N. Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Sci Rep 2019; 9:46. [PMID: 30631083 PMCID: PMC6328595 DOI: 10.1038/s41598-018-37118-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Serratia marcescens is a Gram-negative bacterial species that can be found in a wide range of environments like soil, water and plant surfaces, while it is also known as an opportunistic human pathogen in hospitals and as a plant growth promoting bacteria (PGPR) in crops. We have used a pangenome-based approach, based on publicly available genomes, to apply whole genome multilocus sequence type schemes to assess whether there is an association between source and genotype, aiming at differentiating between isolates from nosocomial sources and the environment, and between strains reported as PGPR from other environmental strains. Most genomes from a nosocomial setting and environmental origin could be assigned to the proposed nosocomial or environmental MLSTs, which is indicative of an association between source and genotype. The fact that a few genomes from a nosocomial source showed an environmental MLST suggests that a minority of nosocomial strains have recently derived from the environment. PGPR strains were assigned to different environmental types and clades but only one clade comprised strains accumulating a low number of known virulence and antibiotic resistance determinants and was exclusively from environmental sources. This clade is envisaged as a group of promissory MLSTs for selecting prospective PGPR strains.
Collapse
Affiliation(s)
- Eduardo Abreo
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, INIA Uruguay, Ruta 48 Km 10, Canelones, Uruguay.
| | - Nora Altier
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, INIA Uruguay, Ruta 48 Km 10, Canelones, Uruguay
| |
Collapse
|
32
|
Draft Genome Sequence of Micromonospora sp. Strain MW-13, a Bacterial Strain with Antibacterial Properties and Plant Growth Promotion Potential Isolated from the Rhizosphere of Wheat in Iran. Microbiol Resour Announc 2019; 8:MRA01375-18. [PMID: 30643882 PMCID: PMC6328655 DOI: 10.1128/mra.01375-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/26/2018] [Indexed: 01/27/2023] Open
Abstract
Strain MW13 exhibited broad-spectrum antibacterial activity toward Gram-positive and Gram-negative pathogens. The 7.1-Mb draft genome gives insight into the complete secondary metabolite production capacity and reveals genes putatively responsible for its antibacterial activity, as well as genes which contribute to plant growth promotion.
Collapse
|
33
|
Zeng Q, Xie J, Li Y, Gao T, Xu C, Wang Q. Comparative genomic and functional analyses of four sequenced Bacillus cereus genomes reveal conservation of genes relevant to plant-growth-promoting traits. Sci Rep 2018; 8:17009. [PMID: 30451927 PMCID: PMC6242881 DOI: 10.1038/s41598-018-35300-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Some Bacillus strains function as predominant plant-growth-promoting rhizobacteria. Bacillus cereus 905 is a rod-shaped Gram-positive bacterium isolated from wheat rhizosphere and is a rhizobacterium that exhibits significant plant-growth-promoting effects. Species belonging to the genus Bacillus are observed in numerous different habitats. Several papers on B. cereus are related to pathogens that causes food-borne illness and industrial applications. However, genomic analysis of plant-associated B. cereus has yet to be reported. Here, we conducted a genomic analysis comparing strain 905 with three other B. cereus strains and investigate the genomic characteristics and evolution traits of the species in different niches. The genome sizes of four B. cereus strains range from 5.38 M to 6.40 M, and the number of protein-coding genes varies in the four strains. Comparisons of the four B. cereus strains reveal 3,998 core genes. The function of strain-specific genes are related to carbohydrate, amino acid and coenzyme metabolism and transcription. Analysis of single nucleotide polymorphisms (SNPs) indicates local diversification of the four strains. SNPs are unevenly distributed throughout the four genomes, and function interpretation of regions with high SNP density coincides with the function of strain-specific genes. Detailed analysis indicates that certain SNPs contribute to the formation of strain-specific genes. By contrast, genes related to plant-growth-promoting traits are highly conserved. This study shows the genomic differences between four strains from different niches and provides an in-depth understanding of the genome architecture of these species, thus facilitating genetic engineering and agricultural applications in the future.
Collapse
Affiliation(s)
- Qingchao Zeng
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianbo Xie
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yan Li
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Tantan Gao
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Cheng Xu
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Qi Wang
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
34
|
Matteoli FP, Passarelli-Araujo H, Reis RJA, da Rocha LO, de Souza EM, Aravind L, Olivares FL, Venancio TM. Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics 2018; 19:750. [PMID: 30326830 PMCID: PMC6192313 DOI: 10.1186/s12864-018-5130-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
Background Plant-bacteria associations have been extensively studied for their potential in increasing crop productivity in a sustainable manner. Serratia marcescens is a species of Enterobacteriaceae found in a wide range of environments, including soil. Results Here we describe the genome sequencing and assessment of plant growth-promoting abilities of S. marcescens UENF-22GI, a strain isolated from mature cattle manure vermicompost. In vitro, S. marcescens UENF-22GI is able to solubilize P and Zn, to produce indole compounds (likely IAA), to colonize hyphae and counter the growth of two phytopathogenic fungi. Inoculation of maize with this strain remarkably increased seedling growth and biomass under greenhouse conditions. The S. marcescens UENF-22GI genome has 5 Mb, assembled in 17 scaffolds comprising 4662 genes (4528 are protein-coding). No plasmids were identified. S. marcescens UENF-22GI is phylogenetically placed within a clade comprised almost exclusively of non-clinical strains. We identified genes and operons that are likely responsible for the interesting plant-growth promoting features that were experimentally described. The S. marcescens UENF-22GI genome harbors a horizontally-transferred genomic island involved in antibiotic production, antibiotic resistance, and anti-phage defense via a novel ADP-ribosyltransferase-like protein and possible modification of DNA by a deazapurine base, which likely contributes to its competitiveness against other bacteria. Conclusions Collectively, our results suggest that S. marcescens UENF-22GI is a strong candidate to be used in the enrichment of substrates for plant growth promotion or as part of bioinoculants for agriculture. Electronic supplementary material The online version of this article (10.1186/s12864-018-5130-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filipe P Matteoli
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Régis Josué A Reis
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Letícia O da Rocha
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Emanuel M de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Fabio L Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil.
| |
Collapse
|
35
|
Analysis of the genome sequence of plant beneficial strain Pseudomonas sp. RU47. J Biotechnol 2018; 281:183-192. [DOI: 10.1016/j.jbiotec.2018.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022]
|
36
|
Novinscak A, Filion M. Enhancing total lipid and stearidonic acid yields inBuglossoides arvensisthrough PGPR inoculation. J Appl Microbiol 2018; 125:203-215. [DOI: 10.1111/jam.13749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 01/08/2023]
Affiliation(s)
- A. Novinscak
- Biology Department; Université de Moncton; Moncton NB Canada
| | - M. Filion
- Biology Department; Université de Moncton; Moncton NB Canada
| |
Collapse
|
37
|
Agaras BC, Iriarte A, Valverde CF. Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6. PLoS One 2018. [PMID: 29538430 PMCID: PMC5851621 DOI: 10.1371/journal.pone.0194088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plant-growth promotion has been linked to the Pseudomonas genus since the beginning of this research field. In this work, we mined the genome of an Argentinean isolate of the recently described species P. donghuensis. Strain SVBP6, isolated from bulk soil of an agricultural plot, showed a broad antifungal activity and several other plant-probiotic activities. As this species has been recently described, and it seems like some plant-growth promoting (PGP) traits do not belong to the classical pseudomonads toolbox, we decide to explore the SVBP6 genome via an bioinformatic approach. Genome inspection confirmed our previous in vitro results about genes involved in several probiotic activities. Other genetic traits possibly involved in survival of SVBP6 in highly competitive environments, such as rhizospheres, were found. Tn5 mutagenesis revealed that the antifungal activity against the soil pathogen Macrophomina phaseolina was dependent on a functional gacS gene, from the regulatory cascade Gac-Rsm, but it was not due to volatile compounds. Altogether, our genomic analyses and in vitro tests allowed the phylogenetic assignment and provided the first insights into probiotic properties of the first P. donghuensis isolate from the Americas.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudio Fabián Valverde
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
38
|
Vater J, Herfort S, Doellinger J, Weydmann M, Borriss R, Lasch P. Genome Mining of the Lipopeptide Biosynthesis of Paenibacillus polymyxa
E681 in Combination with Mass Spectrometry: Discovery of the Lipoheptapeptide Paenilipoheptin. Chembiochem 2018; 19:744-753. [DOI: 10.1002/cbic.201700615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Joachim Vater
- Robert Koch-Institut Berlin; ZBS6 Proteomics and Spectroscopy; Seestrasse 10 13353 Berlin Germany
| | - Stefanie Herfort
- Robert Koch-Institut Berlin; ZBS6 Proteomics and Spectroscopy; Seestrasse 10 13353 Berlin Germany
| | - Joerg Doellinger
- Robert Koch-Institut Berlin; ZBS6 Proteomics and Spectroscopy; Seestrasse 10 13353 Berlin Germany
| | - Max Weydmann
- Robert Koch-Institut Berlin; ZBS6 Proteomics and Spectroscopy; Seestrasse 10 13353 Berlin Germany
| | - Rainer Borriss
- Humboldt Universität Berlin; Fachgebiet Phytomedizin; Lentzeallee 55-57 14195 Berlin Germany
- NordReet UG; Marienstrasse 27a 17489 Greifswald Germany
| | - Peter Lasch
- Robert Koch-Institut Berlin; ZBS6 Proteomics and Spectroscopy; Seestrasse 10 13353 Berlin Germany
| |
Collapse
|
39
|
Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383-412. [PMID: 31294168 PMCID: PMC6604993 DOI: 10.3934/microbiol.2017.3.383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|