1
|
Niecwietajewa I, Banasiewicz J, Zaremba-Wróblewski G, Majewska A. Exploring the Link Between Infections and Primary Osteoarthritis: A Next-Generation Metagenomic Sequencing Approach. Int J Mol Sci 2024; 26:20. [PMID: 39795878 PMCID: PMC11720077 DOI: 10.3390/ijms26010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
This prospective pilot study examined the association between microorganisms and knee osteoarthritis by identifying pathogens in the synovial membrane, synovial fluid, and blood samples from two patients with primary bilateral knee osteoarthritis, using metagenomic next-generation sequencing (mNGS). Intraoperatively, during routine knee arthroplasty procedures, we collected the following 12 samples from each patient: two synovial membrane samples, two synovial fluid samples, and two venous blood samples. After DNA isolation and library construction, each sample was subjected to deep whole-genome sequencing using the DNBSEQT17 platform with the read length PE150 as the default. Metagenomic sequencing data were mapped to the NCBI NT database to determine species abundance. The predominant species in all samples tested were classified under the Enterobacterales order, the most abundant being Yersinia enterocolitica. The second and third most common microorganisms detected were Escherichia coli and autotrophic, Gram-negative bacteria Synechococcus sp., which is a bioaerosol component, indicating a risk of inhalation of the toxic metabolites of this latter microorganism. This article provides an initial exploration of mNGS use to study the etiopathogenetic mechanisms of knee osteoarthritis (OA). While our analysis identified bacterial DNA, particularly from Yersinia, further cross-sectional studies in larger populations with and without OA are needed to determine the role of these agents in OA pathogenesis.
Collapse
Affiliation(s)
- Irina Niecwietajewa
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinski 5 Str., 02-004 Warsaw, Poland
| | - Jakub Banasiewicz
- Department of Trauma and Orthopedic Surgery, Czerniakowski Hospital, 19/25 Stępińska St., 00-739 Warsaw, Poland
| | - Gabriel Zaremba-Wróblewski
- Department of General, Vascular and Oncological Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinski 5 Str., 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Park H, Bulzu PA, Shabarova T, Kavagutti VS, Ghai R, Kasalický V, Jezberová J. Uncovering the genomic basis of symbiotic interactions and niche adaptations in freshwater picocyanobacteria. MICROBIOME 2024; 12:150. [PMID: 39127705 DOI: 10.1186/s40168-024-01867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Picocyanobacteria from the genera Prochlorococcus, Synechococcus, and Cyanobium are the most widespread photosynthetic organisms in aquatic ecosystems. However, their freshwater populations remain poorly explored, due to uneven and insufficient sampling across diverse inland waterbodies. RESULTS In this study, we present 170 high-quality genomes of freshwater picocyanobacteria from non-axenic cultures collected across Central Europe. In addition, we recovered 33 genomes of their potential symbiotic partners affiliated with four genera, Pseudomonas, Mesorhizobium, Acidovorax, and Hydrogenophaga. The genomic basis of symbiotic interactions involved heterotrophs benefiting from picocyanobacteria-derived nutrients while providing detoxification of ROS. The global abundance patterns of picocyanobacteria revealed ecologically significant ecotypes, associated with trophic status, temperature, and pH as key environmental factors. The adaptation of picocyanobacteria in (hyper-)eutrophic waterbodies could be attributed to their colonial lifestyles and CRISPR-Cas systems. The prevailing CRISPR-Cas subtypes in picocyanobacteria were I-G and I-E, which appear to have been acquired through horizontal gene transfer from other bacterial phyla. CONCLUSIONS Our findings provide novel insights into the population diversity, ecology, and evolutionary strategies of the most widespread photoautotrophs within freshwater ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Hongjae Park
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Paul-Adrian Bulzu
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Vinicius S Kavagutti
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jitka Jezberová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Martens N, Russnak V, Woodhouse J, Grossart HP, Schaum CE. Metabarcoding reveals potentially mixotrophic flagellates and picophytoplankton as key groups of phytoplankton in the Elbe estuary. ENVIRONMENTAL RESEARCH 2024; 252:119126. [PMID: 38734293 DOI: 10.1016/j.envres.2024.119126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
In estuaries, phytoplankton are faced with strong environmental forcing (e.g. high turbidity, salinity gradients). Taxa that appear under such conditions may play a critical role in maintaining food webs and biological carbon pumping, but knowledge about estuarine biota remains limited. This is also the case in the Elbe estuary where the lower 70 km of the water body are largely unexplored. In the present study, we investigated the phytoplankton composition in the Elbe estuary via metabarcoding. Our aim was to identify key taxa in the unmonitored reaches of this ecosystem and compare our results from the monitored area with available microscopy data. Phytoplankton communities followed distinct seasonal and spatial patterns. Community composition was similar across methods. Contributions of key classes and genera were correlated to each other (p < 0.05) when obtained from reads and biovolume (R2 = 0.59 and 0.33, respectively). Centric diatoms (e.g. Stephanodiscus) were the dominant group - comprising on average 55 % of the reads and 66-69 % of the biovolume. However, results from metabarcoding imply that microscopy underestimates the prevalence of picophytoplankton and flagellates with a potential for mixotrophy (e.g. cryptophytes). This might be due to their small size and sensitivity to fixation agents. We argue that mixotrophic flagellates are ecologically relevant in the mid to lower estuary, where, e.g., high turbidity render living conditions rather unfavorable, and skills such as phagotrophy provide fundamental advantages. Nevertheless, further findings - e.g. important taxa missing from the metabarcoding dataset - emphasize potential limitations of this method and quantitative biases can result from varying numbers of gene copies in different taxa. Further research should address these methodological issues but also shed light on the causal relationship of taxa with the environmental conditions, also with respect to active mixotrophic behavior.
Collapse
Affiliation(s)
- Nele Martens
- Institute of Marine Ecosystem and Fishery Science, Olbersweg 24, 22767, Hamburg, Germany.
| | - Vanessa Russnak
- Helmholtz-Zentrum hereon, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
| | - Jason Woodhouse
- Institute of Cell and Systems Biology of Animals, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775, Stechlin, Germany; Institute of Biochemistry and Biology, Maulbeerallee 2, 14469, Potsdam, Germany.
| | - C-Elisa Schaum
- Institute of Marine Ecosystem and Fishery Science, Olbersweg 24, 22767, Hamburg, Germany; Center for Earth System Research and Sustainability, Bundesstraße 53-55, 20146, Hamburg, Germany.
| |
Collapse
|
4
|
Prasoodanan P K V, Kumar S, Dhakan DB, Waiker P, Saxena R, Sharma VK. Metagenomic exploration of Andaman region of the Indian Ocean. Sci Rep 2024; 14:2717. [PMID: 38302544 PMCID: PMC10834444 DOI: 10.1038/s41598-024-53190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/28/2024] [Indexed: 02/03/2024] Open
Abstract
Ocean microbiome is crucial for global biogeochemical cycles and primary productivity. Despite numerous studies investigating the global ocean microbiomes, the microbiome composition of the Andaman region of the Indian Ocean remains largely unexplored. While this region harbors pristine biological diversity, the escalating anthropogenic activities along coastal habitats exert an influence on the microbial ecology and impact the aquatic ecosystems. We investigated the microbiome composition in the coastal waters of the Andaman Islands by 16S rRNA gene amplicon and metagenomic shotgun sequencing approaches and compared it with the Tara Oceans Consortium. In the coastal waters of the Andaman Islands, a significantly higher abundance and diversity of Synechococcus species was observed with a higher abundance of photosynthesis pigment-related genes to adapt to variable light conditions and nutrition. In contrast, Prochlorococcus species showed higher abundance in open ocean water samples of the Indian Ocean region, with a relatively limited functional diversity. A higher abundance of antibiotic-resistance genes was also noted in the coastal waters region. We also updated the ocean microbiome gene catalog with 93,172 unique genes from the Andaman coastal water microbiome. This study provides valuable insights into the Indian Ocean microbiome and supplements the global marine microbial ecosystem studies.
Collapse
Affiliation(s)
- Vishnu Prasoodanan P K
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sudhir Kumar
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Darshan B Dhakan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Prashant Waiker
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Rituja Saxena
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
5
|
Fakhraldeen SA, Al-Haddad S, Habibi N, Alagarsamy S, F. K. Habeebullah S, Ali AK, Al-Zakri WM. Diversity and spatiotemporal variations in bacterial and archaeal communities within Kuwaiti territorial waters of the Northwest Arabian Gulf. PLoS One 2023; 18:e0291167. [PMID: 37972047 PMCID: PMC10653540 DOI: 10.1371/journal.pone.0291167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023] Open
Abstract
Kuwaiti territorial waters of the northwest Arabian Gulf represent a unique aquatic ecosystem prone to various environmental and anthropogenic stressors that pose significant constraints on the resident biota which must withstand extreme temperatures, salinity levels, and reducing conditions, among other factors to survive. Such conditions create the ideal environment for investigations into novel functional genetic adaptations of resident organisms. Firstly, however, it is essential to identify said organisms and understand the dynamic nature of their existence. Thus, this study provides the first comprehensive analysis of bacterial and archaeal community structures in the unique waters of Kuwait located in the Northwest Arabian Gulf and analyzes their variations with respect to depth, season, and location, as well as their susceptibility to changes in abundance with respect to various physicochemical parameters. Importantly, this study is the first of its kind to utilize a shotgun metagenomics approach with sequencing performed at an average depth of 15 million paired end reads per sample, which allows for species-level community profiling and sets the framework for future functional genomic investigations. Results showed an approximately even abundance of both archaeal (42.9%) and bacterial (57.1%) communities, but significantly greater diversity among the bacterial population, which predominantly consisted of members of the Proteobacteria, Cyanobacteria, and Bacteroidetes phyla in decreasing order of abundance. Little to no significant variations as assessed by various metrics including alpha and beta diversity analyses were observed in the abundance of archaeal and bacterial populations with respect to depth down the water column. Furthermore, although variations in differential abundance of key genera were detected at each of the three sampling locations, measurements of species richness and evenness revealed negligible variation (ANOVA p<0.05) and only a moderately defined community structure (ANOSIM r2 = 0.243; p>0.001) between the various locations. Interestingly, abundance of archaeal community members showed a significant increase (log2 median ratio of RA = 2.6) while the bacterial population showed a significant decrease (log2 median ratio = -1.29) in the winter season. These findings were supported by alpha and beta diversity analyses as well (ANOSIM r2 = 0.253; p>0.01). Overall, this study provides the first in-depth analysis of both bacterial and archaeal community structures developed using a shotgun metagenomic approach in the waters of the Northwest Arabian Gulf thus providing a framework for future investigations of functional genetic adaptations developed by resident biota attempting to survive in the uniquely extreme conditions to which they are exposed.
Collapse
Affiliation(s)
- Saja A. Fakhraldeen
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sakinah Al-Haddad
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Nazima Habibi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Surendraraj Alagarsamy
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sabeena F. K. Habeebullah
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Abdulmuhsen K. Ali
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Walid M. Al-Zakri
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| |
Collapse
|
6
|
Sim ZY, Goh KC, He Y, Gin KYH. Present and future potential role of toxin-producing Synechococcus in the tropical region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165230. [PMID: 37400026 DOI: 10.1016/j.scitotenv.2023.165230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
As anthropogenic induced temperature rises and nutrient loadings increase in fresh and brackish environments, the ecological function of the phytoplankton community is expected to favour the picocyanobacteria, of the genus Synechococcus. Synechococcus is already a ubiquitous cyanobacterium found in both freshwater and marine environments, notwithstanding that the toxigenic species still remains unexplored in many freshwaters. Their fast growth rate and their ability to produce toxins make Synechococcus a potential dominant player in harmful algal blooms under climate change scenarios. This study examines the responses of a novel toxin-producing Synechococcus (i.e., one belonging to a freshwater clade; the other belonging to a brackish clade) to environmental changes that reflect climate change effects. We conducted a series of controlled experiments under present and predicted future temperatures, as well as under various N and P nutrients loadings. Our findings highlight how Synechococcus can be altered by the differing reactions to increasing temperature and nutrients, which resulted in considerable variations in cell abundance, growth rate, death rate, cellular stoichiometry and toxin production. Synechococcus had the highest growth observed at 28 °C, and further increases in temperature resulted in a decline for both fresh and brackish waters. Cellular stoichiometry was also altered, where more nitrogen (N) per cell was required, and the plasticity of N:P was more severe for the brackish clade. However, Synechococcus become more toxic under future scenario. Anatoxin-a (ATX) saw the greatest spike when temperature was at 34 °C especially under P-enrichment conditions. In contrast, Cylindrospermopsin (CYN) was promoted at the lowest tested temperature (25 °C) and under N-limitation. Overall, both temperature and external nutrients are the dominant control over Synechococcus toxins production. A model was also created to assess Synechococcus toxicity to zooplankton grazing. Zooplankton grazing was reduced by two folds under nutrient limitation, but temperature accounted for very insignificant change.
Collapse
Affiliation(s)
- Zhi Yang Sim
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Kwan Chien Goh
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Yiliang He
- National University of Singapore Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - K Y H Gin
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
7
|
Xie R, Chen F, Ma Y, Hu W, Zheng Q, Cao J, Wu Y. Network pharmacology‒based analysis of marine cyanobacteria derived bioactive compounds for application to Alzheimer's disease. Front Pharmacol 2023; 14:1249632. [PMID: 37927608 PMCID: PMC10620974 DOI: 10.3389/fphar.2023.1249632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
In recent years, the Alzheimer's disease (AD) epidemic has become one of the largest global healthcare crises. Besides, the available systemic therapies for AD are still inadequate. Due to the insufficient therapeutic options, new treatment strategies are urgently needed to achieve a satisfactory therapeutic effect. Marine bio-resources have been accepted as one of the most economically viable and sustainable sources with potential applications for drug discovery and development. In this study, a marine cyanobacteria-Synechococcus sp. XM-24 was selected as the object of research, to systematically investigate its therapeutic potential mechanisms for AD. The major active compounds derived from the Synechococcus sp. biomass were identified via pyrolysis-gas chromatography-mass spectrometry (GC-MS), and 22 compounds were identified in this strain. The most abundant chemical compounds was (E)-octadec-11-enoic acid, with the peak area of 30.6%. Follow by tridecanoic acid, 12-methyl- and hexadecanoic acid, with a peak area of 23.26% and 18.23%, respectively. GC-MS analysis also identified indolizine, isoquinoline, 3,4-dihydro- and Phthalazine, 1-methyl-, as well as alkene and alkane from the strain. After the chemical toxicity test, 10 compounds were finally collected to do the further analysis. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Based on the analysis, the 10 Synechococcus-derived active compounds could interact with 128 related anti-AD targets. Among them, epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA) and mitogen-activated protein kinase 3 (MAPK3) were the major targets. Furthermore, the compounds N-capric acid isopropyl ester, (E)-octadec-11-enoic acid, and 2H-Pyran-2,4(3H)-dione, dihydro-6-methyl- obtained higher degrees in the compounds-intersection targets network analysis, indicating these compounds may play more important role in the process of anti-AD. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these active compounds exert the anti-AD effects mainly through PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction and ras signaling pathway. Our study identified Synechococcus-derived bioactive compounds have the potential for application to AD by targeting multiple targets and related pathways, which will provide a foundation for future research on applications of marine cyanobacteria in the functional drug industry.
Collapse
Affiliation(s)
- Rui Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Chen
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jinguo Cao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
8
|
Aguilera A, Alegria Zufia J, Bas Conn L, Gurlit L, Śliwińska-Wilczewska S, Budzałek G, Lundin D, Pinhassi J, Legrand C, Farnelid H. Ecophysiological analysis reveals distinct environmental preferences in closely related Baltic Sea picocyanobacteria. Environ Microbiol 2023; 25:1674-1695. [PMID: 37655642 DOI: 10.1111/1462-2920.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/31/2023] [Indexed: 09/02/2023]
Abstract
Cluster 5 picocyanobacteria significantly contribute to primary productivity in aquatic ecosystems. Estuarine populations are highly diverse and consist of many co-occurring strains, but their physiology remains largely understudied. In this study, we characterized 17 novel estuarine picocyanobacterial strains. Phylogenetic analysis of the 16S rRNA and pigment genes (cpcB and cpeBA) uncovered multiple estuarine and freshwater-related clusters and pigment types. Assays with five representative strains (three phycocyanin rich and two phycoerythrin rich) under temperature (10-30°C), light (10-190 μmol photons m-2 s-1 ), and salinity (2-14 PSU) gradients revealed distinct growth optima and tolerance, indicating that genetic variability was accompanied by physiological diversity. Adaptability to environmental conditions was associated with differential pigment content and photosynthetic performance. Amplicon sequence variants at a coastal and an offshore station linked population dynamics with phylogenetic clusters, supporting that strains isolated in this study represent key ecotypes within the Baltic Sea picocyanobacterial community. The functional diversity found within strains with the same pigment type suggests that understanding estuarine picocyanobacterial ecology requires analysis beyond the phycocyanin and phycoerythrin divide. This new knowledge of the environmental preferences in estuarine picocyanobacteria is important for understanding and evaluating productivity in current and future ecosystems.
Collapse
Affiliation(s)
- Anabella Aguilera
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Javier Alegria Zufia
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Laura Bas Conn
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Leandra Gurlit
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Sylwia Śliwińska-Wilczewska
- Mount Allison University, Sackville, New Brunswick, Canada
- Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Gracjana Budzałek
- Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Daniel Lundin
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Hanna Farnelid
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
9
|
Jesus JG, Máguas C, Dias R, Nunes M, Pascoal P, Pereira M, Trindade H. What If Root Nodules Are a Guesthouse for a Microbiome? The Case Study of Acacia longifolia. BIOLOGY 2023; 12:1168. [PMID: 37759568 PMCID: PMC10525506 DOI: 10.3390/biology12091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Acacia longifolia is one of the most aggressive invaders worldwide whose invasion is potentiated after a fire, a common perturbation in Mediterranean climates. As a legume, this species establishes symbioses with nitrogen-fixing bacteria inside root nodules; however, the overall microbial diversity is still unclear. In this study, we addressed root nodules' structure and biodiversity through histology and Next-Generation Sequencing, targeting 16S and 25S-28S rDNA genes for bacteria and fungi, respectively. We wanted to evaluate the effect of fire in root nodules from 1-year-old saplings, by comparing unburnt and burnt sites. We found that although having the same general structure, after a fire event, nodules had a higher number of infected cells and greater starch accumulation. Starch accumulated in uninfected cells can be a possible carbon source for the microbiota. Regarding diversity, Bradyrhizobium was dominant in both sites (ca. 77%), suggesting it is the preferential partner, followed by Tardiphaga (ca. 9%), a non-rhizobial Alphaproteobacteria, and Synechococcus, a cyanobacteria (ca. 5%). However, at the burnt site, additional N-fixing bacteria were included in the top 10 genera, highlighting the importance of this process. Major differences were found in the mycobiome, which was diverse in both sites and included genera mostly described as plant endophytes. Coniochaeta was dominant in nodules from the burnt site (69%), suggesting its role as a facilitator of symbiotic associations. We highlight the presence of a large bacterial and fungal community in nodules, suggesting nodulation is not restricted to nitrogen fixation. Thus, this microbiome can be involved in facilitating A. longifolia invasive success.
Collapse
Affiliation(s)
- Joana G. Jesus
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| | - Ricardo Dias
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
- Biosystems and Integrative Sciences Institute (BioISI), 1749-016 Lisboa, Portugal
| | - Mónica Nunes
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Pedro Pascoal
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Marcelo Pereira
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Helena Trindade
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| |
Collapse
|
10
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
11
|
Genomic and Transcriptomic Insights into Salinity Tolerance-Based Niche Differentiation of Synechococcus Clades in Estuarine and Coastal Waters. mSystems 2023; 8:e0110622. [PMID: 36622156 PMCID: PMC9948718 DOI: 10.1128/msystems.01106-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cluster 5 Synechococcus is one of the most important primary producers on earth. However, ecotypes of this genus exhibit complex geographical distributions, and the genetic basis of niche partitioning is still not fully understood. Here, we report distinct distributions of subcluster 5.1 (SC5.1) and subcluster 5.2 (SC5.2) Synechococcus in estuarine waters, and we reveal that salinity is the main factor determining their distribution. Clade III (belonging to SC5.1) and CB4 (belonging to SC5.2) are dominant clades in the study region, with different ecological distributions. We further conducted physiological, genomic, and transcriptomic studies of Synechococcus strains YX04-3 and HK05, which are affiliated with clade III and CB4, respectively. Laboratory tests showed that HK05 could grow at low salinity (13 ppt), whereas the growth of YX04-3 was suppressed when salinity decreased to 13 ppt. Genomic and transcriptomic analysis suggested that euryhaline clade CB4 is capable of dealing with a sudden drop of salinity by releasing compatible solutes through mechanosensitive channels that are coded by the mscL gene, decreasing biosynthesis of organic osmolytes, and increasing expression of heat shock proteins and high light-inducible proteins to protect photosystem. Furthermore, CB4 strain HK05 exhibited a higher growth rate when growing at low salinity than at high salinity. This is likely achieved by reducing its biosynthesis of organic osmolyte activity and increasing its photosynthetic activity at low salinity, which allowed it to enhance the assimilation of inorganic carbon and nitrogen. Together, these results provide new insights regarding the ecological distribution of SC5.2 and SC5.1 ecotypes and their underlying molecular mechanisms. IMPORTANCE Synechococcus is a group of unicellular Cyanobacteria that are widely distributed in global aquatic ecosystems. Salinity is a factor that affects the distribution of microorganisms in estuarine and coastal environments. In this study, we studied the distribution pattern of Synechococcus community along the salinity gradient in a subtropical estuary. By using omic methods, we unveiled genetic traits that determine the niche partitioning of euryhaline and strictly marine Synechococcus. We also explored the strategies employed by euryhaline Synechococcus to cope with a sudden drop of salinity, and revealed possible mechanisms for the higher growth rate of euryhaline Synechococcus in low salinity conditions. This study provides new insight into the genetic basis of niche partitioning of Synechococcus clades.
Collapse
|
12
|
Te SH, Kok JWK, Luo R, You L, Sukarji NH, Goh KC, Sim ZY, Zhang D, He Y, Gin KYH. Coexistence of Synechococcus and Microcystis Blooms in a Tropical Urban Reservoir and Their Links with Microbiomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1613-1624. [PMID: 36653016 PMCID: PMC9894078 DOI: 10.1021/acs.est.2c04943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Bacteria play a crucial role in driving ecological processes in aquatic ecosystems. Studies have shown that bacteria-cyanobacteria interactions contributed significantly to phytoplankton dynamics. However, information on the contribution of bacterial communities to blooms remains scarce. Here, we tracked changes in the bacterial community during the development of a cyanobacterial bloom in an equatorial estuarine reservoir. Two forms of blooms were observed simultaneously corresponding to the lotic and lentic characteristics of the sampling sites where significant spatial variabilities in physicochemical water quality, cyanobacterial biomass, secondary metabolites, and cyanobacterial/bacterial compositions were detected. Microcystis dominated the upstream sites during peak periods and were succeeded by Synechococcus when the bloom subsided. For the main body of the reservoir, a mixed bloom featuring coccoid and filamentous cyanobacteria (Microcystis, Synechococcus, Planktothricoides, Nodosilinea, Raphidiopsis, and Prochlorothrix) was observed. Concentrations of the picocyanobacteria Synechococcus remained high throughout the study, and their positive correlations with cylindrospermopsin and anatoxin-a suggested that they could produce cyanotoxins, which pose more damaging impacts than previously supposed. Succession of different cyanobacteria (Synechococcus and Microcystis) following changes in nutrient composition and ionic strength was demonstrated. The microbiomes associated with blooms were unique to the dominant cyanobacteria. Generic and specialized bloom biomarkers for the Microcystis and downstream mixed blooms were also identified. Microscillaceae, Chthoniobacteraceae, and Roseomonas were the major heterotrophic bacteria associated with Microcystis bloom, whereas Phycisphaeraceae and Methylacidiphilaceae were the most prominent groups for the Synechococcus bloom. Collectively, bacterial community can be greatly deviated by the geological condition, monsoon season, cyanobacterial density, and dominant cyanobacteria.
Collapse
Affiliation(s)
- Shu Harn Te
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Jerome Wai Kit Kok
- Department
of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, 117576 Singapore
| | - Rong Luo
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Luhua You
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Nur Hanisah Sukarji
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Kwan Chien Goh
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Zhi Yang Sim
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Dong Zhang
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Yiliang He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
- Department
of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, 117576 Singapore
| |
Collapse
|
13
|
Galgani L, Tzempelikou E, Kalantzi I, Tsiola A, Tsapakis M, Pitta P, Esposito C, Tsotskou A, Magiopoulos I, Benavides R, Steinhoff T, Loiselle SA. Marine plastics alter the organic matter composition of the air-sea boundary layer, with influences on CO 2 exchange: a large-scale analysis method to explore future ocean scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159624. [PMID: 36280077 DOI: 10.1016/j.scitotenv.2022.159624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications in the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used six large scale mesocosms to simulate future ocean scenarios of high plastic concentration. Each mesocosm was filled with 3 m3 of seawater from the oligotrophic Sea of Crete, in the Eastern Mediterranean Sea. A known amount of standard polystyrene microbeads of 30 μm diameter was added to three replicate mesocosms, while maintaining the remaining three as plastic-free controls. Over the course of a 12-day experiment, we explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of carbohydrate-like and proteinaceous marine gel compounds in the sea-surface microlayer. Importantly, this resulted in a ∼3 % reduction in the concentration of dissolved CO2 in the underlying water. This reduction was associated to both direct and indirect impacts of microplastic pollution on the uptake of CO2 within the marine carbon cycle, by modifying the biogenic composition of the sea's boundary layer with the atmosphere.
Collapse
Affiliation(s)
- Luisa Galgani
- Environmental Spectroscopy Group, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Center for Colloids and Surface Science, Sesto Fiorentino, Italy; GEOMAR-Helmholtz Centre for Ocean Research Kiel, Germany; Harbor Branch Oceanographic Institute, Florida Atlantic University, USA.
| | - Eleni Tzempelikou
- Institute of Oceanography, Hellenic Centre for Marine Research, Anavyssos, Greece
| | - Ioanna Kalantzi
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Anastasia Tsiola
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Manolis Tsapakis
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Chiara Esposito
- Lake Ecology, Department of Ecoscience and WATEC Aarhus University Centre for Water Technology, Aarhus University, Denmark
| | - Anastasia Tsotskou
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece; University of Western Macedonia, School of Agricultural Sciences, Department of Agriculture, Florina, Greece
| | - Iordanis Magiopoulos
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | | | | | - Steven A Loiselle
- Environmental Spectroscopy Group, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Center for Colloids and Surface Science, Sesto Fiorentino, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Florence, Italy
| |
Collapse
|
14
|
Almeida PIND, Jesus HED, Pereira PHF, Vieira CED, Bianchini A, Martins CDMG, Santos HFD. The microbial profile of rivers and lagoons three years after the impact of the world's largest mining disaster (Fundão dam, Brazil). ENVIRONMENTAL RESEARCH 2023; 216:114710. [PMID: 36334830 DOI: 10.1016/j.envres.2022.114710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The collapse of the Fundão tailings dam (Minas Gerais, Brazil) was the largest environmental disaster in Brazil's history and in the world mining industry. This disaster carried approximately 55 million m3 of iron ore tailings along the rivers and the lagoons of the Doce river basin. Although multiple studies assessed the impact on microbial communities in those rivers and lagoons right after the dam rupture, it is not known whether the microbiome in those environments remains impacted years after the disaster. Assessing the microbiome is very important to evaluate impacts and evaluate the health of the environment, due to the several ecological roles played by microorganisms. Here, we evaluated the impact of the dam failure on water and sediment bacteriome and archaeome by high-throughput next-generation sequencing. Samples were taken from two rivers and six lagoons during the dry and rainy seasons approximately three years post disturbance. The results showed a large number and abundance of microbial groups associated with the presence of heavy metals and mine tailings sediments. Some of these microorganisms were also reported in large abundance in the impacted rivers shortly after the Fundão dam rupture. Among the most abundant microorganisms in the Doce River, we can highlight the bacteria hgcI clade and the archaea Nitrososphera sp. in the water, and the bacteria Anaerolineaceae sp. in the sediment. These results suggest that the microbiome of the rivers and the lagoons in the Doce river basin remains severely impacted by the Fundão tailings dam failure even three years after the disaster. The presence of those microorganisms can also help to assess the occurrence of the Fundão dam sediment in other environments.
Collapse
Affiliation(s)
- Pedro Ivo Neves de Almeida
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Hugo Emiliano de Jesus
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Pedro Henrique Freitas Pereira
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Carlos Eduardo Delfino Vieira
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG. Av. Itália, S/n, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG. Av. Itália, S/n, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Camila De Martinez Gaspar Martins
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG. Av. Itália, S/n, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Henrique Fragoso Dos Santos
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil.
| |
Collapse
|
15
|
Wei Y, Gu T, Zhang G, Qu K, Cui Z, Sun J. Exploring the dynamics of marine picophytoplankton among the Yellow Sea, Indian Ocean and Pacific Ocean: The importance of temperature and nitrogen. ENVIRONMENTAL RESEARCH 2022; 214:113870. [PMID: 35863451 DOI: 10.1016/j.envres.2022.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Marine picophytoplankton (<2 μm) are the most abundant photosynthetic group and also important contributors to global primary production. However, it is still constrained to incorporate picophytoplankton into dynamic ecosystem models, as a result of our limited understanding of their global distribution and abundance. Here, we applied a large dataset consisted of 1817 in situ observations from the Yellow Sea, Indian Ocean, and Pacific Ocean to suggest that picophytoplankton abundance and distribution had a large variability among the three distinct regions. Based on the correlation analysis, aggregated boosted tree analysis, and generalized additive model, we proposed that water temperature and dissolved inorganic nitrogen (N) were key determinants in driving the large-scale variability of marine picophytoplankton. For example, we revealed that high temperature and low N would stimulate the growth of Prochlorococcus. Therefore, these results could provide some insights into the various environmental factors which affect the dynamics of picophytoplankton, as well as the dynamic ecosystem models.
Collapse
Affiliation(s)
- Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Ting Gu
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Guicheng Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
16
|
Impact of Stagnation on the Diversity of Cyanobacteria in Drinking Water Treatment Plant Sludge. Toxins (Basel) 2022; 14:toxins14110749. [PMID: 36355999 PMCID: PMC9697381 DOI: 10.3390/toxins14110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Health-related concerns about cyanobacteria-laden sludge of drinking water treatment plants (DWTPs) have been raised in the past few years. Microscopic taxonomy, shotgun metagenomic sequencing, and microcystin (MC) measurement were applied to study the fate of cyanobacteria and cyanotoxins after controlled sludge storage (stagnation) in the dark in a full-scale drinking water treatment plant within 7 to 38 days. For four out of eight dates, cyanobacterial cell growth was observed by total taxonomic cell counts during sludge stagnation. The highest observed cell growth was 96% after 16 days of stagnation. Cell growth was dominated by potential MC producers such as Microcystis, Aphanocapsa, Chroococcus, and Dolichospermum. Shotgun metagenomic sequencing unveiled that stagnation stress shifts the cyanobacterial communities from the stress-sensitive Nostocales (e.g., Dolichospermum) order towards less compromised orders and potential MC producers such as Chroococcales (e.g., Microcystis) and Synechococcales (e.g., Synechococcus). The relative increase of cyanotoxin producers presents a health challenge when the supernatant of the stored sludge is recycled to the head of the DWTP or discharged into the source. These findings emphasize the importance of a strategy to manage cyanobacteria-laden sludge and suggest practical approaches should be adopted to control health/environmental impacts of cyanobacteria and cyanotoxins in sludge.
Collapse
|
17
|
Briddon CL, Szekeres E, Hegedüs A, Nicoară M, Chiriac C, Stockenreiter M, Drugă B. The combined impact of low temperatures and shifting phosphorus availability on the competitive ability of cyanobacteria. Sci Rep 2022; 12:16409. [PMID: 36180771 PMCID: PMC9525609 DOI: 10.1038/s41598-022-20580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
In freshwater systems, cyanobacteria are strong competitors under enhanced temperature and eutrophic conditions. Understanding their adaptive and evolutionary potential to multiple environmental states allows us to accurately predict their response to future conditions. To better understand if the combined impacts of temperature and nutrient limitation could suppress the cyanobacterial blooms, a single strain of Microcystis aeruginosa was inoculated into natural phytoplankton communities with different nutrient conditions: oligotrophic, eutrophic and eutrophic with the addition of bentophos. We found that the use of the bentophos treatment causes significant differences in prokaryotic and eukaryotic communities. This resulted in reduced biodiversity among the eukaryotes and a decline in cyanobacterial abundance suggesting phosphorus limitation had a strong impact on the community structure. The low temperature during the experiment lead to the disappearance of M. aeruginosa in all treatments and gave other phytoplankton groups a competitive advantage leading to the dominance of the eukaryotic families that have diverse morphologies and nutritional modes. These results show cyanobacteria have a reduced competitive advantage under certain temperature and nutrient limiting conditions and therefore, controlling phosphorus concentrations could be a possible mitigation strategy for managing harmful cyanobacterial blooms in a future warmer climate.
Collapse
Affiliation(s)
- Charlotte L Briddon
- Institute of Biological Research (NIRDBS), 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Edina Szekeres
- Institute of Biological Research (NIRDBS), 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Adriana Hegedüs
- Institute of Biological Research (NIRDBS), 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Maria Nicoară
- Institute of Biological Research (NIRDBS), 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Cecilia Chiriac
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005, České Budějovice, Czech Republic
| | - Maria Stockenreiter
- Department of Biology II, Experimental Aquatic Ecology, Ludwig-Maximilians-Universitӓt Müchen, Groβhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Bogdan Drugă
- Institute of Biological Research (NIRDBS), 48 Republicii Street, 400015, Cluj-Napoca, Romania.
| |
Collapse
|
18
|
Cabello-Yeves PJ, Callieri C, Picazo A, Schallenberg L, Huber P, Roda-Garcia JJ, Bartosiewicz M, Belykh OI, Tikhonova IV, Torcello-Requena A, De Prado PM, Puxty RJ, Millard AD, Camacho A, Rodriguez-Valera F, Scanlan DJ. Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates. BMC Biol 2022; 20:175. [PMID: 35941649 PMCID: PMC9361551 DOI: 10.1186/s12915-022-01379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanobacteria are the major prokaryotic primary producers occupying a range of aquatic habitats worldwide that differ in levels of salinity, making them a group of interest to study one of the major unresolved conundrums in aquatic microbiology which is what distinguishes a marine microbe from a freshwater one? We address this question using ecogenomics of a group of picocyanobacteria (cluster 5) that have recently evolved to inhabit geographically disparate salinity niches. Our analysis is made possible by the sequencing of 58 new genomes from freshwater representatives of this group that are presented here, representing a 6-fold increase in the available genomic data. RESULTS Overall, freshwater strains had larger genomes (≈2.9 Mb) and %GC content (≈64%) compared to brackish (2.69 Mb and 64%) and marine (2.5 Mb and 58.5%) isolates. Genomic novelties/differences across the salinity divide highlighted acidic proteomes and specific salt adaptation pathways in marine isolates (e.g., osmolytes/compatible solutes - glycine betaine/ggp/gpg/gmg clusters and glycerolipids glpK/glpA), while freshwater strains possessed distinct ion/potassium channels, permeases (aquaporin Z), fatty acid desaturases, and more neutral/basic proteomes. Sulfur, nitrogen, phosphorus, carbon (photosynthesis), or stress tolerance metabolism while showing distinct genomic footprints between habitats, e.g., different types of transporters, did not obviously translate into major functionality differences between environments. Brackish microbes show a mixture of marine (salt adaptation pathways) and freshwater features, highlighting their transitional nature. CONCLUSIONS The plethora of freshwater isolates provided here, in terms of trophic status preference and genetic diversity, exemplifies their ability to colonize ecologically diverse waters across the globe. Moreover, a trend towards larger and more flexible/adaptive genomes in freshwater picocyanobacteria may hint at a wider number of ecological niches in this environment compared to the relatively homogeneous marine system.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain.
| | - Cristiana Callieri
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain
| | | | - Paula Huber
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina.,Instituto Nacional de Limnología (INALI), CONICET-UNL, Ciudad Universitaria - Paraje el Pozo s/n, (3000), Santa Fé, Argentina
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain
| | - Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Olga I Belykh
- Limnological Institute, Russian Academy of Sciences, P.O. Box 278, 664033, Irkutsk, Russia
| | - Irina V Tikhonova
- Limnological Institute, Russian Academy of Sciences, P.O. Box 278, 664033, Irkutsk, Russia
| | | | | | - Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
19
|
Obieze CC, Wani GA, Shah MA, Reshi ZA, Comeau AM, Khasa DP. Anthropogenic activities and geographic locations regulate microbial diversity, community assembly and species sorting in Canadian and Indian freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154292. [PMID: 35248630 DOI: 10.1016/j.scitotenv.2022.154292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Freshwater lakes are important reservoirs and sources of drinking water globally. However, the microbiota, which supports the functionality of these ecosystems is threatened by the influx of nutrients, heavy metals and other toxic chemical substances from anthropogenic activities. The influence of these factors on the diversity, assembly mechanisms and co-occurrence patterns of bacterial communities in freshwater lakes is not clearly understood. Hence, samples were collected from six different impacted lakes in Canada and India and examined by 454-pyrosequencing technology. The trophic status of these lakes was determined using specific chemical parameters. Our results revealed that bacterial diversity and community composition was altered by both the lake water chemistry and geographic distance. Anthropogenic activities pervasively influenced species distribution. Dispersal limitation (32.3%), homogenous selection (31.8%) and drift (20%) accounted for the largest proportions of the bacterial community assembly mechanisms. Homogenous selection increased in lakes with higher nutrient concentration, while stochasticity reduced. Community functional profiles revealed that deterministic processes dominated the assembly mechanisms of phylotypes with higher potential for biodegradation, while stochasticity dominated the assembly of phylotypes with potential for antimicrobial resistance. Bacteroidota (44%) and Proteobacteria (34%) were the most abundant phyla. Co-occurrence network analysis revealed that complexity increased in more impacted lakes, while competition and the nature of anthropogenic activity contributed to species sorting. Overall, this study demonstrates that bacterial community changes in freshwater lakes are linked to anthropogenic activities, with corresponding consequences on the distribution of phylotypes of environmental and human health interest.
Collapse
Affiliation(s)
- Chinedu C Obieze
- Centre for Forest Research, Institute of Integrative Biology and Systems, Université Laval, Quebec, QC G1V0A6, Canada.
| | - Gowher A Wani
- Centre for Forest Research, Institute of Integrative Biology and Systems, Université Laval, Quebec, QC G1V0A6, Canada; Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - André M Comeau
- Integrated Microbiome Resource, Dalhousie University, Halifax, NS, Canada
| | - Damase P Khasa
- Centre for Forest Research, Institute of Integrative Biology and Systems and Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC G1V0A6, Canada
| |
Collapse
|
20
|
Effect of Culture pH on Properties of Exopolymeric Substances from Synechococcus PCC7942: Implications for Carbonate Precipitation. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The role of culture conditions on the production of exopolymeric substances (EPS) by Synechococcus strain PCC7942 was investigated. Carbonate mineral precipitation in these EPS was assessed in forced precipitation experiments. Cultures were grown in HEPES-buffered medium and non-buffered medium. The pH of buffered medium remained constant at 7.5, but in non-buffered medium it increased to 9.5 within a day and leveled off at 10.5. The cell yield at harvest was twice as high in non-buffered medium than in buffered medium. High molecular weight (>10 kDa) and low molecular weight (3–10 kDa) fractions of EPS were obtained from both cultures. The cell-specific EPS production in buffered medium was twice as high as in non-buffered medium. EPS from non-buffered cultures contained more negatively charged macromolecules and more proteins than EPS from buffered cultures. The higher protein content at elevated pH may be due to the induction of carbon-concentrating mechanisms, necessary to perform photosynthetic carbon fixation in these conditions. Forced precipitation showed smaller calcite carbonate crystals in EPS from non-buffered medium and larger minerals in polymers from buffered medium. Vaterite formed only at low EPS concentrations. Experimental results are used to conceptually model the impact of pH on the potential of cyanobacterial blooms to produce minerals. We hypothesize that in freshwater systems, small crystal production may benefit the picoplankton by minimizing the mineral ballast, and thus prolonging the residence time in the photic zone, which might result in slow sinking rates.
Collapse
|
21
|
Callieri C, Cabello-Yeves PJ, Bertoni F. The "Dark Side" of Picocyanobacteria: Life as We Do Not Know It (Yet). Microorganisms 2022; 10:546. [PMID: 35336120 PMCID: PMC8955281 DOI: 10.3390/microorganisms10030546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Picocyanobacteria of the genus Synechococcus (together with Cyanobium and Prochlorococcus) have captured the attention of microbial ecologists since their description in the 1970s. These pico-sized microorganisms are ubiquitous in aquatic environments and are known to be some of the most ancient and adaptable primary producers. Yet, it was only recently, and thanks to developments in molecular biology and in the understanding of gene sequences and genomes, that we could shed light on the depth of the connection between their evolution and the history of life on the planet. Here, we briefly review the current understanding of these small prokaryotic cells, from their physiological features to their role and dynamics in different aquatic environments, focussing particularly on the still poorly understood ability of picocyanobacteria to adapt to dark conditions. While the recent discovery of Synechococcus strains able to survive in the deep Black Sea highlights how adaptable picocyanobacteria can be, it also raises more questions-showing how much we still do not know about microbial life. Using available information from brackish Black Sea strains able to perform and survive in dark (anoxic) conditions, we illustrate how adaptation to narrow ecological niches interacts with gene evolution and metabolic capacity.
Collapse
Affiliation(s)
- Cristiana Callieri
- National Research Council (CNR), Water Research Institute (IRSA), 28922 Verbania, Italy
| | - Pedro J. Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain;
| | | |
Collapse
|
22
|
Fernandes L, Jesus H, Almeida P, Sandrini J, Bianchini A, Santos H. The influence of the Doce River mouth on the microbiome of nearby coastal areas three years after the Fundão Dam failure, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151777. [PMID: 34808168 DOI: 10.1016/j.scitotenv.2021.151777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/14/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The failure of the Fundão Dam, considered the world's largest mining disaster, released more than 55 million m3 of ore tailings into the environment. The sediment plume formed by water and tailings spread along approximately 663 km of water bodies of the Doce River basin. It reached the Atlantic Ocean sixteen days after the dam failure. However, the effects of the dam failure in the marine coastal areas years after the disaster are still unknown. This study aims to evaluate water and sediment microbial communities of nearby coastal areas three years after the Fundão Dam failure, using 16S rRNA gene amplicon sequencing. A total of 441 samples from 25 locations were collected during two different seasons (dry and rainy). The results showed that the Doce River mouth seems to divide the microbial communities from the southern and northern stations into two groups. The plume of sediments from the Doce River seems to be impacting the marine microbiome even at the furthest sampling stations. Bacterial (Anaerolineaceae, Thermodesulfovibrionia and Rhodopirellula) and Archaeal (Bathyarchaeia and Woesearchaeia) taxa, found in high abundance in the sediment of the Doce River mouth, have been previously described in high abundance in heavy metal contaminated sediments, including the Doce River itself and in mine tailing sediments. Cyanobium, found in great abundance in the water samples from the Doce River mouth, was also reported as the most abundant in the water of the Doce River after the Fundão Dam failure. Overall, the farther from the Doce River mouth the sample was, the lower the relative abundances of these taxa were. These results provide strong evidence that the sediment plume released by the Fundão Dam failure is probably impacting the marine microbiome of nearby coastal areas, even three years after the dam failure.
Collapse
Affiliation(s)
- Luanny Fernandes
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ 24210-201, Brazil
| | - Hugo Jesus
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ 24210-201, Brazil
| | - Pedro Almeida
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ 24210-201, Brazil
| | - Juliana Sandrini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS 96203-900, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS 96203-900, Brazil; Coral Vivo Institute, Rio de Janeiro, Brazil
| | - Henrique Santos
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ 24210-201, Brazil; Coral Vivo Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Metagenomic and Recombination Analyses of Antimicrobial Resistance Genes from Recreational Waters of Black Sea Coastal Areas and Other Marine Environments Unveil Extensive Evidence for Their both Intrageneric and Intergeneric Transmission across Genetically Very Diverse Microbial Communities. Mar Genomics 2021; 61:100916. [PMID: 34922301 DOI: 10.1016/j.margen.2021.100916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
Microbial communities of marine coastal recreation waters have become large reservoirs of AMR genes (ARGs), contributing to the emergence and transmission of various zoonotic, foodborne and other infections that exhibit resistance to various antibiotics. Thus, it is highly imperative to determine ARGs assemblages as well as mechanisms and trajectories of their transmission across these microbial communities for our better understanding of the evolutionary trends of AMR (AMR). In this study, using metagenomics approaches, we screened for ARGs in recreation waters of the Black Sea coastal areas of the Batumi City (Georgia). Also, a large array of the recombination detection algorithms of the SplitsTree, RDP4, and GARD was applied to elucidate genetic recombination of ARGs and trajectories of their transmission across various marine microbial communities. The metagenomics analyses of sea water samples, obtained from across the above marine sites, could identify putative ARGs encoding for multidrug resistance efflux transporters mainly from the Major Facilitator and Resistance Nodulation Division superfamilies. The data, generated by SplitsTree (fit ≥95.619; bootstrap values ≥ 95; Phi p ≤ 0.0494), RDP4 (p ≤ 0.0490), and GARD, provided strong statistical evidence not only for intrageneric recombination of these ARGs, but also for their intergeneric recombination across fairly large and diverse microbial communities of marine environment. These bacteria included both human pathogenic and nonpathogenic species, exhibiting collectively the genera of Vibrio, Aeromonas, Synechococcus, Citromicrobium, Rhodobacteraceae, Pseudoalteromonas, Altererythrobacter, Erythrobacter, Altererythrobacter, Marivivens, Xuhuaishuia, and Loktanella. The above nonpathogenic bacteria are strongly suggested to contribute to ARGs transmission in marine ecosystems.
Collapse
|
24
|
Schallenberg LA, Pearman JK, Burns CW, Wood SA. Metabarcoding Reveals Lacustrine Picocyanobacteria Respond to Environmental Change Through Adaptive Community Structuring. Front Microbiol 2021; 12:757929. [PMID: 34867882 PMCID: PMC8633389 DOI: 10.3389/fmicb.2021.757929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Picocyanobacteria (Pcy) are important yet understudied components of lake foodwebs. While phylogenetic studies of isolated strains reveal a high diversity of freshwater genotypes, little is known about abiotic drivers associated with Pcy in different lakes. Due to methodological limitations, most previous studies assess potential drivers using total cell abundances as a response, with often conflicting and inconsistent results. In the present study, we explored how picocyanobacterial communities respond to environmental change using a combination of epifluorescence microscopy and community data determined using 16S rRNA gene metabarcoding. Temporal shifts in picocyanobacterial abundance, diversity and community dynamics were assessed in relation to potential environmental drivers in five contrasting lakes over 1year. Cell abundances alone were not consistently related to environmental variables across lakes. However, the addition of metabarcoding data revealed diverse picocyanobacterial communities that differed significantly between lakes, driven by environmental variables related to trophic state. Within each lake, communities were temporally dynamic and certain amplicon sequence variants (ASVs) were strongly associated with specific environmental drivers. Rapid shifts in community structure and composition were often related to environmental changes, indicating that lacustrine Pcy can persist at high abundances through collective community adaptation. These results demonstrate that a combination of microscopy and metabarcoding enables an in-depth characterisation of picocyanobacterial communities and reveals strain-specific drivers. We recommend that future studies cease referring to picocyanobacterial as one functional group and take strain specific variability into consideration.
Collapse
Affiliation(s)
| | - John K. Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Carolyn W. Burns
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Susanna A. Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
25
|
Somogyi B, Felföldi T, Tóth LG, Bernát G, Vörös L. Photoautotrophic picoplankton - a review on their occurrence, role and diversity in Lake Balaton. Biol Futur 2021; 71:371-382. [PMID: 34554456 DOI: 10.1007/s42977-020-00030-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Occurrence of the smallest phototrophic microorganisms (photoautotrophic picoplankton, APP) in Lake Balaton was discovered in the early 1980s. This triggered a series of systematic studies on APP and resulted in the setting of a unique long-term picoplankton dataset. In this review, we intend to summarize the obtained results and to give a new insight on APP ecology and diversity in Lake Balaton. According to the results, APP dynamics depends on trophic state, temperature, nutrient, and light availability, as well as grazing pressure. APP abundance in Lake Balaton decreased to a low level (1-2 × 105 cells mL-1) as a consequence of decreasing nutrient supply (oligotrophication) during the past more than two decades, and followed a characteristic seasonal dynamics with higher abundance values from spring to autumn than in winter. Concomitantly, however, the APP contribution to both phytoplankton biomass and primary production increased (up to 70% and 40-50%, respectively) during oligotrophication. Regarding annual pattern, picocyanobacteria are dominant from spring to autumn, while in winter, picoeukaryotes are the most abundant, most likely due to the different light and temperature optima of these groups. Within picocyanobacteria, single cells and microcolonies were both observed with mid-summer dominance of the latter which correlated well with the density of cladocerans. Community-level chromatic adaptation (i.e., dominance of phycoerythrin- or phycocyanin-rich forms) of planktonic picocyanobacteria was also found as a function of underwater light quality. Sequence analysis studies of APP in Lake Balaton revealed that both picocyanobacteria and picoeukaryotes represent a diverse and dynamic community consisting several freshwater genotypes (picocyanobacteria: Synechococcus, Cyanobium; picoeukaryotes: Choricystis, Stichococcus, Mychonastes, Nannochloris, and Nannochloropsis).
Collapse
Affiliation(s)
- Boglárka Somogyi
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary.
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - László G Tóth
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Gábor Bernát
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Lajos Vörös
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| |
Collapse
|
26
|
Schallenberg LA, Pearman JK, Burns CW, Wood SA. Spatial abundance and distribution of picocyanobacterial communities in two contrasting lakes revealed using environmental DNA metabarcoding. FEMS Microbiol Ecol 2021; 97:fiab075. [PMID: 34100943 DOI: 10.1093/femsec/fiab075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
Freshwater picocyanobacteria (Pcy) are important yet understudied components of lake ecosystems. Most previous studies have relied on cell abundances to assess Pcy dynamics in largely oligotrophic lakes, while little is known about spatial diversity and dynamics across different lake types. In the present study we assessed the horizontal-spatial abundance and community structure of Pcy in two contrasting (oligotrophic and hypertrophic) New Zealand lakes using epifluorescence microscopy and 16S rRNA metabarcoding. Pcy abundance and community composition differed significantly both between and within the oligotrophic and hypertrophic lakes. While spatial variability was observed in both study lakes, these differences were particularly pronounced in the oligotrophic, morphometrically complex Lake Wanaka where cell abundances were typically higher in bays than open-water sites and community structure differed significantly between sites. Community structuring appeared to be driven by localised environmental conditions, with different factors influencing each lake. These results suggest that single spot-samples are insufficient to gain an understanding of Pcy dynamics and consequently, phytoplankton dynamics in lakes.
Collapse
Affiliation(s)
- Lena A Schallenberg
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9010, New Zealand
| | - John K Pearman
- Cawthron Institute, 98 Halifax St East, Private Bag 2, Nelson 7042, New Zealand
| | - Carolyn W Burns
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9010, New Zealand
| | - Susanna A Wood
- Cawthron Institute, 98 Halifax St East, Private Bag 2, Nelson 7042, New Zealand
| |
Collapse
|
27
|
Occurrence and diversity of viruses associated with cyanobacterial communities in a Brazilian freshwater reservoir. Braz J Microbiol 2021; 52:773-785. [PMID: 33791954 DOI: 10.1007/s42770-021-00473-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
As part of the phytoplankton of marine and freshwater environments around the world, cyanobacteria interact with viruses (cyanophages) that affect their abundance and diversity. Investigations focusing on cyanophages co-occurring with freshwater cyanobacteria are scarce, particularly in Brazil. The aim of this study was to assess the diversity of cyanophages associated with a Microcystis-dominated cyanobacterial bloom in a tropical reservoir. Samples were processed as viral fractions of water and cellular fractions, and temporal fluctuations in the abundance of Ma-LMM01-type cyanophages and their Microcystis hosts were determined by qPCR. We applied shotgun metagenomics to obtain a wider characterization of the cyanophage community. During the study period, Microcystis gene copies were quantified in all cellular fractions, and the copy number of the Ma-LMM01 phage gene tended to increase with host abundance. Metagenomic analysis demonstrated that Caudovirales was the major viral order associated with the cyanophage families Myoviridae (34-88%), Podoviridae (3-42%), and Siphoviridae (6-23%). The metagenomic analysis results confirmed the presence of Microcystis cyanophages in both viral and cellular fractions and demonstrated a high relative abundance of picocyanobacteria-related viruses and Prochlorococcus (36-52%) and Synechococcus (37-50%) phages. For other main cyanobacterial genera, no related cyanophages were identified, which was probably due to the scarce representation of cyanophage sequences in databanks. Thus, the studied reservoir hosted a diverse cyanophage community with a remarkable contribution of phages related to picoplanktonic cyanobacteria. These results provide insights that motivate future sequencing efforts to assess cyanophage diversity and recover complete genomes.
Collapse
|
28
|
Gin KYH, Sim ZY, Goh KC, Kok JWK, Te SH, Tran NH, Li W, He Y. Novel cyanotoxin-producing Synechococcus in tropical lakes. WATER RESEARCH 2021; 192:116828. [PMID: 33508721 DOI: 10.1016/j.watres.2021.116828] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Picocyanobacteria are small cyanobacteria, being about 0.8-1.5 µm in size. They are present in freshwater environments all over the world and are known to cause harmful algal blooms, although their effects are not well understood. Algal blooms are important to manage because they threaten freshwater resources, with potentially severe effects on ecological and human health. There is also increased urgency due to urbanization and climate change trends which are expected to exacerbate these bloom dynamics. These changes are expected to especially favour picocyanobacteria groups, emphasizing the need for better characterization of their effects in the environment. In this study, we report the discovery that Synechococcus sp. could produce cylindrospermopsin (CYN) and anatoxin-a (ATX). This ability had never been previously reported for this species. Their toxin genes were also partial compared to other major producers such as Raphidiopsis sp. and Anabaena sp., demonstrating potentially unique synthesis pathways that provides insight into the various mechanisms of genetic variation that drives toxin synthesis. The Synechococcus sp. strains were found to produce about 9.0 × 10-5-6.8 × 10-4 fg CYN cell-1 and 4.7 × 10-4-1.5 × 10-2 fg ATX cell-1. The potential for Synechococcus sp. to be toxic highlights a global concern due to its widespread distribution, and through environmental trends that increasingly favour its productivity within freshwater systems around the world.
Collapse
Affiliation(s)
- Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Zhi Yang Sim
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Kwan Chien Goh
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Jerome Wai Kit Kok
- Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Shu Harn Te
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Wenxuan Li
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Śliwińska-Wilczewska S, Konarzewska Z, Wiśniewska K, Konik M. Photosynthetic Pigments Changes of Three Phenotypes of Picocyanobacteria Synechococcus sp. under Different Light and Temperature Conditions. Cells 2020; 9:cells9092030. [PMID: 32899279 PMCID: PMC7563753 DOI: 10.3390/cells9092030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
It is estimated that the genus Synechococcus is responsible for about 17% of net primary production in the Global Ocean. Blooms of these organisms are observed in tropical, subtropical and even temperate zones, and they have been recorded recently even beyond the polar circle. The long-term scenarios forecast a growing expansion of Synechococcus sp. and its area of dominance. This is, among others, due to their high physiological plasticity in relation to changing environmental conditions. Three phenotypes of the genus Synechococcus sp. (Type 1, Type 2, and Type 3a) were tested in controlled laboratory conditions in order to identify their response to various irradiance (10, 55, 100 and 145 µmol photons m−2 s−1) and temperature (15, 22.5 and 30 °C) conditions. The highest total pigment content per cell was recorded at 10 μmol photons m−2 s−1 at all temperature variants with the clear dominance of phycobilins among all the pigments. In almost every variant the highest growth rate was recorded for the Type 1. The lowest growth rates were observed, in general, for the Type 3a. However, it was recognized to be less temperature sensitive in comparison to the other two types and rather light-driven with the highest plasticity and adaptation potential. The highest amounts of carotenoids were produced by Type 2 which also showed signs of the cell stress even around 55 μmol photons m−2 s−1 at 15 °C and 22.5 °C. This may imply that the Type 2 is the most susceptible to higher irradiances. Picocyanobacteria Synechococcus sp. require less light intensity to achieve the maximum rate of photosynthesis than larger algae. They also tolerate a wide range of temperatures which combined together make them gain a powerful competitive advantage. Our results will provide key information for the ecohydrodynamical model development. Thus, this work would be an important link in forecasting future changes in the occurrence of these organisms in the context of global warming.
Collapse
Affiliation(s)
- Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Avenue Piłsudskiego 46, P-81-378 Gdynia, Poland;
- Correspondence: ; Tel.: +48-58-523-68-92
| | - Zofia Konarzewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Avenue Piłsudskiego 46, P-81-378 Gdynia, Poland;
| | - Kinga Wiśniewska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Avenue Piłsudskiego 46, P-81-378 Gdynia, Poland;
| | - Marta Konik
- Department of Marine Physics, Institute of Oceanology Polish Academy of Sciences, P-81-779 Sopot, Poland;
| |
Collapse
|
30
|
Ospina-Serna J, Huber P, Odriozola M, Fermani P, Unrein F. Picocyanobacteria aggregation as a response to predation pressure: direct contact is not necessary. FEMS Microbiol Ecol 2020; 96:5899723. [DOI: 10.1093/femsec/fiaa153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
ABSTRACT
Picocyanobacteria (cells <2 µm) can be found either as single-cells (Pcy) or embedded in a mucilaginous sheath as microcolonies or colonies (CPcy). It has been demonstrated that phenotypic plasticity in picocyanobacteria (i.e. the capability of single-cells to aggregate into colonies) can be induced as a response to grazing pressure. The effect of the presence of different predators (cladocerans and rotifers) on the morphological composition of picocyanobacteria was studied in a natural community, and it was observed that the abundance of CPcy significantly increased in all treatments with zooplankton compared with the control without zooplankton. The aggregation capability was also evaluated in a single-cell strain by adding a conditioned medium of flagellates, rotifers and cladocerans. The proportion of cells forming colonies was significantly higher in all treatments with conditioned medium regardless of the predator. These results suggest that the aggregation of Pcy can be induced as a response to the predation pressure exerted by protists and different zooplankters, and also that Pcy has the capability to aggregate into CPcy even without direct contact with any predator, most probably due to the presence of an infochemical dissolved in the water that does not come from disrupted Pcy cells.
Collapse
Affiliation(s)
- Juliana Ospina-Serna
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina
| | - Paula Huber
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina
- Instituto Nacional de Limnología (INALI), CONICET-UNL. Ciudad Universitaria - Paraje el Pozo s/n, (3000) Santa Fé, Argentina
| | - Mariana Odriozola
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina
| | - Paulina Fermani
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina
| | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina
| |
Collapse
|
31
|
Di Cesare A, Dzhembekova N, Cabello-Yeves PJ, Eckert EM, Slabakova V, Slabakova N, Peneva E, Bertoni R, Corno G, Salcher MM, Kamburska L, Bertoni F, Rodriguez-Valera F, Moncheva S, Callieri C. Genomic Comparison and Spatial Distribution of Different Synechococcus Phylotypes in the Black Sea. Front Microbiol 2020; 11:1979. [PMID: 32903389 PMCID: PMC7434838 DOI: 10.3389/fmicb.2020.01979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022] Open
Abstract
Picocyanobacteria of the genus Synechococcus are major contributors to global primary production and nutrient cycles due to their oxygenic photoautotrophy, their abundance, and the extensive distribution made possible by their wide-ranging biochemical capabilities. The recent recovery and isolation of strains from the deep euxinic waters of the Black Sea encouraged us to expand our analysis of their adaptability also beyond the photic zone of aquatic environments. To this end, we quantified the total abundance and distribution of Synechococcus along the whole vertical profile of the Black Sea by flow cytometry, and analyzed the data obtained in light of key environmental factors. Furthermore, we designed phylotype-specific primers using the genomes of two new epipelagic coastal strains – first described here – and of two previously described mesopelagic strains, analyzed their presence/abundance by qPCR, and tested this parameter also in metagenomes from two stations at different depths. Together, whole genome sequencing, metagenomics and qPCR techniques provide us with a higher resolution of Synechococcus dynamics in the Black Sea. Both phylotypes analyzed are abundant and successful in epipelagic coastal waters; but while the newly described epipelagic strains are specifically adapted to this environment, the strains previously isolated in mesopelagic waters are able, in low numbers, to withstand the aphotic and oxygen depleted conditions of deep layers. This heterogeneity allows different Synechococcus phylotypes to occupy different niches and underscores the importance of a more detailed characterization of the abundance, distribution, and dynamics of individual populations of these picocyanobacteria.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Nina Dzhembekova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Ester M Eckert
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Violeta Slabakova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Nataliya Slabakova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Elisaveta Peneva
- Faculty of Physics, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Roberto Bertoni
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Gianluca Corno
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Michaela M Salcher
- Biology Centre Czech Academy of Science (CAS), Institute of Hydrobiology, Czechia
| | - Lyudmila Kamburska
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | | | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain.,Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Snejana Moncheva
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Cristiana Callieri
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| |
Collapse
|
32
|
Zemskaya TI, Cabello-Yeves PJ, Pavlova ON, Rodriguez-Valera F. Microorganisms of Lake Baikal-the deepest and most ancient lake on Earth. Appl Microbiol Biotechnol 2020; 104:6079-6090. [PMID: 32424436 DOI: 10.1007/s00253-020-10660-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Lake Baikal (Russia) is the largest (by volume) and deepest lake on Earth. The lake remains relatively pristine due to the low population density around its basin. Being very distant from any marine water body but having a remarkable number of similarities to oceans (depth, oxygen content, oligotrophy) provides a unique model of pelagic microbiota that is submitted to marine-like conditions minus the salt content of the water. It is also a model of lakes located at high latitudes and submitted to yearly ice cover (from January to April). The analysis by different approaches has indeed provided a view of the microbiota of this lake. It contains novel microbes that are closely related to marine groups not known to be present in freshwater like Chloroflexi or Pelagibacter. The deep water mass contains large communities of chemolithotrophs that use ammonia generated in the photic zone or methane from the sediments. KEY POINTS: • The chemical composition and limnic features of the deepest lake on Earth determine the vital activity of microorganisms. • The diversity, ecology, and role of individual taxa of microorganisms were studied using cultivation and molecular methods. • Data of large metagenomic datasets in the epipelagic and bathypelagic layers of the water column in southern Baikal were discussed.
Collapse
Affiliation(s)
- Tamara I Zemskaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia.
| | - Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Olga N Pavlova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
33
|
Ferreira MRS, Cleary DFR, Coelho FJRC, Gomes NCM, Huang YM, Polónia ARM, de Voogd NJ. Geographical location and habitat predict variation in prokaryotic community composition of Suberites diversicolor. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Marine lakes are unique habitats that house diverse assemblages of benthic and planktonic organisms including endemic species. In this study, we aimed to assess to what extent geographical location (Berau versus Papua) and the degree of marine lake connectivity (relatively open versus closed) to the surrounding marine environment structures the prokaryotic community composition of the sponge species Suberites diversicolor.
Methods
Sponge specimens were sampled in five marine lakes in Borneo and Papua and one open sea habitat in Taiwan.
Result
Prokaryotic communities of S. diversicolor were dominated by members assigned to the Proteobacteria (particularly Alphaproteobacteria and Gammaproteobacteria) and Cyanobacteria, which together made up from 78 to 87% of sequences in all samples. The dominant operational taxonomic units (OTUs) in most samples, OTUs 1 and 3, were both assigned to the alphaproteobacterial order Rhodospirillales with OTU-1 dominant in the marine lakes of Berau and Papua and OTU-3 in Taiwan. OTU-3 was also largely absent from Papuan samples but present in all Berau samples. Compositionally, S. diversicolor samples clustered according to geographical location with the main axis of variation separating marine lake samples collected in Berau from those collected in Papua and the second axis of variation separating open sea samples collected in Taiwan from all marine lake samples. In addition, our results suggest that the degree of lake connectivity to the open sea also influences prokaryotic composition.
Conclusion
Although previous studies have shown that sponge-associated microbial communities tend to be stable across different geographical and environmental gradients, in the present study, both geography and local environmental conditions were significant predictors of variation in prokaryotic community composition of S. diversicolor.
Collapse
|
34
|
Marmen S, Blank L, Al-Ashhab A, Malik A, Ganzert L, Lalzar M, Grossart HP, Sher D. The Role of Land Use Types and Water Chemical Properties in Structuring the Microbiomes of a Connected Lake System. Front Microbiol 2020; 11:89. [PMID: 32117119 PMCID: PMC7029742 DOI: 10.3389/fmicb.2020.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/15/2020] [Indexed: 02/04/2023] Open
Abstract
Lakes and other freshwater bodies are intimately connected to the surrounding land, yet to what extent land-use affects the quality of freshwater and the microbial communities living in various freshwater environments is largely unknown. We address this question through an analysis of the land use surrounding 46 inter-connected lakes located within seven different drainage basins in northern Germany, and the microbiomes of these lakes during early summer. Lake microbiome structure was not correlated with the specific drainage basin or by basin size, and bacterial distribution did not seem to be limited by distance. Instead, land use within the drainage basin could predict, to some extent, NO2 + NO3 concentrations in the water, which (together with temperature, chlorophyll a and total phosphorus) correlated to some extent with the water microbiome structure. Land use directly surrounding the water bodies, however, had little observable effects on water quality or the microbiome. Several microbial lineages, including Cyanobacteria and Verrucomicrobia, were differentially partitioned between the lakes. Significantly more data, including time-series measurements of land use and water chemical properties, are needed to fully understand the interaction between the environment and the organization of microbial communities.
Collapse
Affiliation(s)
- Sophi Marmen
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Lior Blank
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Rishon Lezion, Israel
| | - Ashraf Al-Ashhab
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Microbial Metagenomics Division, Dead Sea and Arava Science Center, Masada, Israel
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Lars Ganzert
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
35
|
Weisse T, Moser M. Light affects picocyanobacterial grazing and growth response of the mixotrophic flagellate Poterioochromonas malhamensis. J Microbiol 2020; 58:268-278. [PMID: 31989545 DOI: 10.1007/s12275-020-9567-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/28/2022]
Abstract
We measured the grazing and growth response of the mixotrophic chrysomonad flagellate Poterioochromonas malhamensis on four closely related picocyanobacterial strains isolated from subalpine lakes in central Europe. The picocyanobacteria represented different pigment types (phycoerythrin-rich, PE, and phycocyanin-rich, PC) and phylogenetic clusters. The grazing experiments were conducted with laboratory cultures acclimated to 10 µmol photon/m2/sec (low light, LL) and 100 µmol photon/m2/sec (moderate light, ML), either in the dark or at four different irradiances ranging from low (6 µmol photon/m2/sec) to high (1,500 µmol photon/m2/sec) light intensity. Poterioochromonas malhamensis preferred the larger, green PC-rich picocyanobacteria to the smaller, red PE-rich picocyanobacterial, and heterotrophic bacteria. The feeding and growth rates of P. malhamensis were sensitive to the actual light conditions during the experiments; the flagellate performed relatively better in the dark and at LL conditions than at high light intensity. In summary, our results found strain-specific ingestion and growth rates of the flagellate; an effect of the preculturing conditions, and, unexpectedly, a direct adverse effect of high light levels. We conclude that this flagellate may avoid exposure to high surface light intensities commonly encountered in temperate lakes during the summer.
Collapse
Affiliation(s)
- Thomas Weisse
- University of Innsbruck, Research Department for Limnology, Mondseestr. 9, A-5310, Mondsee, Austria.
| | - Michael Moser
- University of Innsbruck, Research Department for Limnology, Mondseestr. 9, A-5310, Mondsee, Austria
| |
Collapse
|
36
|
Tiberti R, Buscaglia F, Callieri C, Rogora M, Tartari G, Sommaruga R. Food Web Complexity of High Mountain Lakes is Largely Affected by Glacial Retreat. Ecosystems 2019. [DOI: 10.1007/s10021-019-00457-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Shi X, Li S, Li H, Chen F, Wu Q. The Community Structure of Picophytoplankton in Lake Fuxian, a Deep and Oligotrophic Mountain Lake. Front Microbiol 2019; 10:2016. [PMID: 31551958 PMCID: PMC6737998 DOI: 10.3389/fmicb.2019.02016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Spatial and seasonal dynamics of picophytoplankton were investigated by flow cytometry over a year in Lake Fuxian, a deep and oligotrophic mountain lake in southwest China. The contribution of picophytoplankton to the total Chl-a biomass and primary production were 50.1 and 66.1%, respectively. Picophytoplankton were mainly composed of phycoerythrin-rich picocyanobacteria (PE-cells) and photosynthetic picoeukaryotes (PPEs). PPEs were dominant in spring, reaching a maximum cell density of 3.0 × 104 cell mL–1, while PE-cells were prevalent in other seasons. PE-cell abundance was relatively similar throughout the year, except for a decrease in summer during the stratification period, when nutrient concentration was low. High-throughput sequencing results from the sorted samples revealed that Synechococcus was the major PE-cell type, while Chrysophyceae, Dinophyceae, Chlorophyceae, Eustigmatophyceae, and Prymnesiophyceae were equally important PPEs. In spring, PPEs were mainly composed of Chlorophyceae and Trebouxiophyceae, while in summer, their dominance was replaced by that of Chrysophyceae and Prymnesiophyceae. Eustigmatophyceae and Chlorophyceae became the major PPEs in autumn, and Dinophyceae became the most abundant in winter. Single cells of Microcystis were usually detected in summer in the south, suggesting the deterioration of the water quality in Lake Fuxian.
Collapse
Affiliation(s)
- Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Shengnan Li
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Feizhou Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
38
|
Piffaretti JC, Schink B, Semenza JC. Editorial to the thematic issue climate change and microbiology. FEMS Microbiol Lett 2019; 365:4990562. [PMID: 29718292 DOI: 10.1093/femsle/fny080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Bernhard Schink
- Department of Biology, Microbial Ecology, University of Konstanz, Universitaetsstr. 10, D-78457 Konstanz, Germany
| | - Jan C Semenza
- Scientific Assessment Section, European Centre for Disease Prevention and Control, Gustav III:s boulevard 40, 169 73 Solna, Sweden
| |
Collapse
|
39
|
Eraqi WA, ElRakaiby MT, Megahed SA, Yousef NH, Elshahed MS, Yassin AS. The Nile River Microbiome Reveals a Remarkably Stable Community Between Wet and Dry Seasons, and Sampling Sites, in a Large Urban Metropolis (Cairo, Egypt). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:553-564. [PMID: 30106354 DOI: 10.1089/omi.2018.0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
World freshwater supplies are in need of microbiome diversity analyses as a first step to future ecological studies, and to monitor water safety and quality. The Nile is a major north-flowing river in Africa that displays both spatial and temporal variations in its water quality. Here, we present the first microbiome analysis of the Nile River water in two seasons: (1) summer representing the wet season, and (2) winter representing the dry season, as sampled around Cairo, the capital of Egypt. Surface river water samples were collected from selected locations along the path of river, and the microbial composition was analyzed by next-generation sequencing of the 16S rRNA gene. We found a striking stability in the Nile microbiome community structure along the examined geographical urban sites and between the wet and dry seasons as evidenced by the high proportion of shared operational taxonomic unit values among all samples. The community was dominated by the Cyanobacteria (mainly Synechococcus), Actinobacteria candidate family (ACK-M1), and Proteobacteria (mainly family Comamonadaceae). Among these dominant taxa, Synechococcus exhibited seasonal driven variation in relative abundance. Other taxa were predominantly rare across all seasons and locations, including genera members of which have been implicated as pathogens such as Acinetobacter, Aeromonas, and Legionella. In addition, comparisons with data on freshwater microbiome in other world regions suggest that surface water communities in large rivers exhibit limited variation. Our results offer the first insights on microbial composition in one of the most notable rivers near a large metropolis.
Collapse
Affiliation(s)
- Walaa A Eraqi
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo, Egypt
| | - Marwa T ElRakaiby
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo, Egypt
| | - Salwa A Megahed
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo, Egypt .,2 Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) , 6th of October, Giza, Egypt
| | - Noha H Yousef
- 3 Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma
| | - Mostafa S Elshahed
- 3 Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma
| | - Aymen S Yassin
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo, Egypt
| |
Collapse
|
40
|
The mesopelagic anoxic Black Sea as an unexpected habitat for Synechococcus challenges our understanding of global "deep red fluorescence". ISME JOURNAL 2019; 13:1676-1687. [PMID: 30820035 PMCID: PMC6776005 DOI: 10.1038/s41396-019-0378-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 11/23/2022]
Abstract
The Black Sea is the largest meromictic sea with a reservoir of anoxic water extending from 100 to 1000 m depth. These deeper layers are characterised by a poorly understood fluorescence signal called “deep red fluorescence”, a chlorophyll a- (Chl a) like signal found in deep dark oceanic waters. In two cruises, we repeatedly found up to 103 cells ml−1 of picocyanobacteria at 750 m depth in these waters and isolated two phycoerythrin-rich Synechococcus sp. strains (BS55D and BS56D). Tests on BS56D revealed its high adaptability, involving the accumulation of Chl a in anoxic/dark conditions and its capacity to photosynthesise when re-exposed to light. Whole-genome sequencing of the two strains showed the presence of genes that confirms the putative ability of our strains to survive in harsh mesopelagic environments. This discovery provides new evidence to support early speculations associating the “deep red fluorescence” signal to viable picocyanobacteria populations in the deep oxygen-depleted oceans, suggesting a reconsideration of the ecological role of a viable stock of Synechococcus in dark deep waters.
Collapse
|
41
|
Rocha MIA, Recknagel F, Minoti RT, Huszar VLM, Kozlowsky-Suzuki B, Cao H, Starling FLRM, Branco CWC. Assessing the effect of abiotic variables and zooplankton on picocyanobacterial dominance in two tropical mesotrophic reservoirs by means of evolutionary computation. WATER RESEARCH 2019; 149:120-129. [PMID: 30423503 DOI: 10.1016/j.watres.2018.10.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Evolutionary computation has been applied to predict the occurrence of massive cyanobacteria proliferations; in the present study, this tool was further used to explore the factors responsible for maintaining picocyanobacterial dominance. Aiming to increase the understanding of factors that promote dominance of picocyanobacteria in tropical reservoirs, we chose two reservoirs used for water supplies located in different regions of Brazil and subjected to climate changes such as warmer winters that intensify water column stratification and prolonged dry seasons that cause water level decreases. This study focused on the diagnosis of the relationships among picocyanobacteria (1-2 μm), zooplankton and environmental variables using evolutionary computation. The integrated data analysis performed here was very successful in elucidating the dynamics of picocyanobacterial density variation influenced by both abiotic and biotic factors by the modeling approach. Relative water column stability - RWCS and electrical conductivity were highlighted as the most important environmental drivers for picocyanobacterial peaks. Hybrid Evolutionary Analysis (HEA) models for the two reservoirs indicated for the first time in the literature that rotifers, small-sized cladocerans and copepods (mainly nauplii) can directly or indirectly control picocyanobacteria in tropical mesotrophic reservoirs, depending on RWCS conditions and electrical conductivity. However, this control is modulated by pH, water transparency and water temperature thresholds.
Collapse
Affiliation(s)
- M I A Rocha
- Universidade Federal do Estado do Rio de Janeiro, Instituto de Biociências, Av. Pasteur, 458/303-Urca, Rio de Janeiro-RJ, 22290-250, Brazil.
| | - F Recknagel
- University of Adelaide, School of Biological Sciences, Seaton 5023, Adelaide, 5005, Australia
| | - R T Minoti
- Universidade de Brasília, Departamento de Engenharia Civil e Ambiental, SG-12, Campus Univ. Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - V L M Huszar
- Universidade Federal do Rio de Janeiro, Museu Nacional, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro-RJ, 20940-040, Brazil
| | - B Kozlowsky-Suzuki
- Universidade Federal do Estado do Rio de Janeiro, Instituto de Biociências, Av. Pasteur, 458/303-Urca, Rio de Janeiro-RJ, 22290-250, Brazil
| | - H Cao
- University of Adelaide, School of Biological Sciences, Seaton 5023, Adelaide, 5005, Australia
| | - F L R M Starling
- Companhia de Saneamento Ambiental do Distrito Federal, Unidade de Monitoramento e Informações de Recursos Hídricos, SAIN, A/E s/n, Plano Piloto, Brasília, DF, Brazil
| | - C W C Branco
- Universidade Federal do Estado do Rio de Janeiro, Instituto de Biociências, Av. Pasteur, 458/303-Urca, Rio de Janeiro-RJ, 22290-250, Brazil
| |
Collapse
|
42
|
Sánchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. Insights Into the Evolution of Picocyanobacteria and Phycoerythrin Genes ( mpeBA and cpeBA). Front Microbiol 2019; 10:45. [PMID: 30761097 PMCID: PMC6363710 DOI: 10.3389/fmicb.2019.00045] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
Marine picocyanobacteria, Prochlorococcus and Synechococcus, substantially contribute to marine primary production and have been the subject of extensive ecological and genomic studies. Little is known about their close relatives from freshwater and non-marine environments. Phylogenomic analyses (using 136 proteins) provide strong support for the monophyly of a clade of non-marine picocyanobacteria consisting of Cyanobium, Synechococcus and marine Sub-cluster 5.2; this clade itself is sister to marine Synechococcus and Prochlorococcus. The most basal lineage within the Syn/Pro clade, Sub-Cluster 5.3, includes marine and freshwater strains. Relaxed molecular clock (SSU, LSU) analyses show that while ancestors of the Syn/Pro clade date as far back as the end of the Pre-Cambrian, modern crown groups evolved during the Carboniferous and Triassic. Comparative genomic analyses reveal novel gene cluster arrangements involved in phycobilisome (PBS) metabolism in freshwater strains. Whilst PBS genes in marine Synechococcus are mostly found in one type of phycoerythrin (PE) rich gene cluster (Type III), strains from non-marine habitats, so far, appear to be more diverse both in terms of pigment content and gene arrangement, likely reflecting a wider range of habitats. Our phylogenetic analyses show that the PE genes (mpeBA) evolved via a duplication of the cpeBA genes in an ancestor of the marine and non-marine picocyanobacteria and of the symbiotic strains Synechococcus spongiarum. A 'primitive' Type III-like ancestor containing cpeBA and mpeBA had thus evolved prior to the divergence of the Syn/Pro clade and S. spongiarum. During the diversification of Synechococcus lineages, losses of mpeBA genes may explain the emergence of pigment cluster Types I, II, IIB, and III in both marine and non-marine habitats, with few lateral gene transfer events in specific taxa.
Collapse
Affiliation(s)
| | - Giorgio Bianchini
- School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrea Di Cesare
- Institute of Ecosystem Study–Consiglio Nazionale delle Ricerche, Verbania, Italy
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Cristiana Callieri
- Institute of Ecosystem Study–Consiglio Nazionale delle Ricerche, Verbania, Italy
| | - Nathan A. M. Chrismas
- School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| |
Collapse
|
43
|
Cabello-Yeves PJ, Picazo A, Camacho A, Callieri C, Rosselli R, Roda-Garcia JJ, Coutinho FH, Rodriguez-Valera F. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ Microbiol 2018; 20:3757-3771. [PMID: 30117250 DOI: 10.1111/1462-2920.14377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
We present two genomes of widespread freshwater picocyanobacteria isolated by extinction dilution from a Spanish oligotrophic reservoir. Based on microscopy and genomic properties, both picocyanobacteria were tentatively designated Synechococcus lacustris Tous, formerly described as a metagenome assembled genome (MAG) from the same habitat, and Cyanobium usitatum Tous, described here for the first time. Both strains were purified in unicyanobacterial cultures, and their genomes were sequenced. They are broadly distributed in freshwater systems; the first seems to be a specialist on temperate reservoirs (Tous, Amadorio, Dexter, Lake Lanier, Sparkling), and the second appears to also be abundant in cold environments including ice-covered lakes such as Lake Baikal, Lake Erie or the brackish Baltic Sea. Having complete genomes provided access to the flexible genome that does not assemble in MAGs. We found several genomic islands in both genomes, within which there were genes for nitrogen acquisition, transporters for a wide set of compounds and biosynthesis of phycobilisomes in both strains. Some of these regions of low coverage in metagenomes also included antimicrobial compounds, transposases and phage defence systems, including a novel type III CRISPR-Cas phage defence system that was only detected in Synechococcus lacustris Tous.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | | | - Riccardo Rosselli
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Felipe H Coutinho
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|