1
|
Yin H, Sun L, Yuan Y, Zhu Y. PPIC-labeled CAFs: Key players in neoadjuvant chemotherapy resistance for gastric cancer. Transl Oncol 2024; 48:102080. [PMID: 39116799 PMCID: PMC11362775 DOI: 10.1016/j.tranon.2024.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fourth leading cause of cancer deaths, with advanced cases having a median survival of less than one year. Neoadjuvant chemotherapy (NCT) is vital but faces drug resistance issues, partly due to cancer-associated fibroblasts (CAFs). Yet, specific CAF subpopulations contributing to resistance are poorly understood. METHODS Differentially expressed genes (DEGs) between chemosensitive and resistant GC patients were identified using GEO2R. Single-cell sequencing (scRNA-seq) identified CAF-related genes. Immunohistochemistry verified key genes in NCT-treated GC samples, analyzing their correlation with tumor regression grade (TRG) and clinicopathological characteristics. RESULTS PPIC as a gene highly expressed in CAFs was closely associated with NCT resistance in gastric cancer. Immunohistochemistry results revealed positivity for the expression of cyclophilin C (CypC), encoded by PPIC, in the 5-fluorouracil and cisplatin NCT resistant and -sensitive groups of gastric cancer patients at rates of 69.7 % (76/109) and 43.6 % (24/55), respectively (p < 0.001). The high expression of CypC in CAFs was positively correlated to tumor size (p = 0.025), T stage (p = 0.004), TNM stage (p = 0.004), and vascular invasion (p = 0.027). In cancer cells the expression of CypC was associated with OS (p = 0.026). However, in CAFs, CypC expression was not related to OS (p = 0.671). CONCLUSIONS PPIC-labeled CAF subgroups are related to NCT resistance and poor prognosis in GC and they may cause drug resistance through signaling pathways such as glucose metabolism and extracellular matrix remodeling. However, the exact mechanism behind the involvement of PPIC-labeled CAF in drug resistance of GC requires further study.
Collapse
Affiliation(s)
- Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Lili Sun
- Departments of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yanmei Zhu
- Departments of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
2
|
Zhao X, Tong D, Ferrero RL. Interleukin-18 produced by gastric epithelial cells protects against pre-neoplastic lesions in Helicobacter pylori infection in mice. Genes Immun 2024; 25:346-347. [PMID: 38245599 DOI: 10.1038/s41435-024-00253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Affiliation(s)
- Xiaohu Zhao
- Centre for Innate Immunity, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3800, Australia
| | - Dongmei Tong
- Centre for Innate Immunity, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3800, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3800, Australia.
- Department of Microbiology, Biomedicine Discovery Institute (3168), Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Chen L, Zhu Y, Huang Y, Shen K, Chen L. The association between Helicobacter pylori infection and the risk for gout in hyperuricemia patients in China - A cross-sectional study. Gut Pathog 2024; 16:24. [PMID: 38678252 PMCID: PMC11056053 DOI: 10.1186/s13099-024-00615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
PURPOSE Helicobacter pylori (H. pylori) infection has been reported to be associated with multiple metabolic diseases. However, the connection between H. pylori infection and gout has not been explored previously. Our study aimed to investigate the association of gout and H. pylori infection in hyperuricemia population in China. PATIENTS AND METHODS This cross-sectional study was performed among the subjects who underwent health checkup in our health promotion center from January 1, 2020 to December 31, 2021. A total of 53,629 subjects with a mean age of 44.2 years were included in this study. H. pylori infection was defined as a positive [13]C-urea breath test. The effect of H. pylori infection on gout was assessed by multiple logistic regression analysis. RESULTS 720 subjects with gout and 15,077 subjects with asymptomatic hyperuricemia (> 420 µmol/L in male and > 360 µmol/L in female) were enrolled. The prevalence rates of H. pylori infection, hyperuricemia and gout were 26.3%, 29.5%, 1.3%, respectively. The prevalence rate of H. pylori infection was significantly higher in subjects with gout than in those with asymptomatic hyperuricemia (35.0% vs. 27.2%; P<0.001). Multiple logistic regression analysis showed that H. pylori infection was associated with an increased risk of gout independent of serum uric acid level in hyperuricemia population (odds ratio [OR]: 1.320, 95% confidence interval [CI]: 1.124-1.550, P = 0.001). CONCLUSION H. pylori infection is positively associated with higher risk of gout in hyperuricemia population. The causal relationship and potential mechanism between H. pylori infection and gout warrants further investigation.
Collapse
Affiliation(s)
- Lin Chen
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang, China
| | - Yue Zhu
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang, China
| | - Yilin Huang
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang, China
| | - Keqing Shen
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang, China
| | - Liying Chen
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang, China.
| |
Collapse
|
4
|
Gu Y, Xu Y, Wang P, Zhao Y, Wan C. Research progress on molecular mechanism of pyroptosis caused by Helicobacter pylori in gastric cancer. Ann Med Surg (Lond) 2024; 86:2016-2022. [PMID: 38576917 PMCID: PMC10990316 DOI: 10.1097/ms9.0000000000001802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy worldwide. Helicobacter pylori (H. pylori), a Gram-negative spiral bacterium, has the ability to colonize and persist in the human gastric mucosa. Persistent H. pylori infection has been identified as a major risk factor for ~80% of GC cases. The interplay between H. pylori pathogenicity, genetic background, and environmental factors collectively contribute to GC transformation. Eradicating H. pylori infection is beneficial in reducing the recurrence of gastric cancer and residual cancer. However, the underlying molecular mechanisms involved in GC remain incompletely understood. Additionally, H. pylori reshapes the immune microenvironment within the stomach which may compromise immunotherapy efficacy in infected individuals. Clinical eradication of H. pylori infection still faces numerous challenges. In this review, the authors summarize recent research progress on elucidating the molecular mechanisms underlying H. pylori infection in GC development. Notably, CagA protein-a carcinogenic virulence factor predominantly expressed by Asian strains of H. pylori-induces inflammation and excessive ROS production within gastric mucosa cells. Dysregulation of multiple pyroptosis signalling pathways can lead to malignant transformation of these cells. MiRNA-1290 plays a crucial role in GC initiation and progression while serving as an indicator for disease progression dynamics. Pyroptosis exhibits dual roles both promoting carcinogenesis and inhibiting tumour growth; thus it holds potential clinical applications for drug-resistant GC treatment strategies. Furthermore, pyroptosis may play a regulatory role within the immune system during gastric cancer development. Lastly, the authors provide an overview on current concepts regarding pyroptosis as well as insights into miRNA-1290's pathogenicity and clinical value within immune mechanisms associated with GC, aiming to serve as reference material for researchers.
Collapse
Affiliation(s)
- Yulan Gu
- Department of Oncology, Affiliated Changshu Hospital of Nantong University
| | - Yeqiong Xu
- General Medical research center of Changshu Medicine Examination Institute, Changshu
| | - Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu
| | - Yu Zhao
- Department of Clinical Medicine, Qixiu Campus Medical College of Nantong University, Nantong, China
| | - Chuandan Wan
- General Medical research center of Changshu Medicine Examination Institute, Changshu
| |
Collapse
|
5
|
Xiao QY, Wang RL, Wu HJ, Kuang WB, Meng WW, Cheng Z. Effect of Helicobacter Pylori Infection on Glucose Metabolism, Lipid Metabolism and Inflammatory Cytokines in Nonalcoholic Fatty Liver Disease Patients. J Multidiscip Healthc 2024; 17:1127-1135. [PMID: 38500481 PMCID: PMC10946400 DOI: 10.2147/jmdh.s453429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Objective To probe into the influence of Helicobacter pylori (Hp) infection on glucose metabolism, lipid metabolism, and inflammatory cytokines in patients with nonalcoholic fatty liver disease (MASLD). Methods A total of 140 MASLD patients admitted to our Hospital between June 2020 and May 2021 were selected as the research objects. Based on the presence or absence of Hp infection, they were divided into the study group (73 cases with infection) and control group (67 cases without infection). Glucose metabolism indicators [fasting blood glucose (FBG), 2-hour postprandial glucose (2hPG), fasting insulin (FINS), glycated hemoglobin (HbAlc)], lipid metabolism indicators [total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C)], and inflammatory indicators [interleukin-37 (IL-37), interleukin-18 (IL-18)] were measured and compared between the two groups. Results In terms of glucose metabolism indicators, the study group exhibited higher levels of FBG (5.84±0.49 vs 5.40±0.51, t=2.535, P=0.012), 2hPG (7.26±1.30 vs 6.50±1.53, t=3.321, P<0.001), and FINS (11.13±4.13 vs 9.12±3.72, t=3.224, P<0.001), and Insulin resistance index (HOMA-IR) (2.97±0.35 VS 2.13±0.54, t=3.761, P<0.001) and a lower level of HbAlc (5.25±0.56 vs 6.12±0.57, t=5.473, P<0.001) compared to the control group. Regarding lipid metabolism indicators, the study group exhibited higher levels of TC (5.64±1.49 vs 5.01±1.32, t=3.332, P<0.001), TG (1.89±0.34 vs 1.32±0.43, t=3.411, P<0.001), and LDL-C (3.31±0.43 vs 2.12±0.29, t=4.142, P<0.001), and a lower level of HDL-C (1.45±0.21 vs 1.78±0.42, t=4.347, P<0.001) compared to the control group. As for the inflammatory indicators, the study group exhibited higher levels of IL-37 (45.56±6.02 vs 34.02±3.28, t=9.332, P<0.001) and IL-18 (73.57±5.82 vs 60.34±4.84, t=10.141, P<0.001) compared to the control group. Conclusion It is crucial to place appropriate emphasis on the impact of Hp infection on the glucose metabolism, lipid metabolism, and inflammatory response in MASLD patients, warranting careful consideration during the treatment of these patients.
Collapse
Affiliation(s)
- Qing-Yu Xiao
- Department of Blood Transfusion, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, 518108, China
| | - Ren-Ling Wang
- Department of Oncology, Kaiping Central Hospital, Jiangmen City, Guangdong Province, 529399, People’s Republic of China
| | - Hai-Jun Wu
- Department of Blood Transfusion, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, 518108, China
| | - Wen-Bin Kuang
- Department of Laboratory, Longhua District Central Hospital, Shenzhen, 518110, People’s Republic of China
| | - Wei-Wei Meng
- Department of Laboratory, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, 518108, China
| | - Zhen Cheng
- Guantian Community Healthcare Center, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, Guangdong province, 518100, People’s Republic of China
| |
Collapse
|
6
|
Zhou Y, Yu S, Zhang W. NOD-like Receptor Signaling Pathway in Gastrointestinal Inflammatory Diseases and Cancers. Int J Mol Sci 2023; 24:14511. [PMID: 37833958 PMCID: PMC10572711 DOI: 10.3390/ijms241914511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are intracellular proteins with a central role in innate and adaptive immunity. As a member of pattern recognition receptors (PRRs), NLRs sense specific pathogen-associated molecular patterns, trigger numerous signaling pathways and lead to the secretion of various cytokines. In recent years, cumulative studies have revealed the significant impacts of NLRs in gastrointestinal (GI) inflammatory diseases and cancers. Deciphering the role and molecular mechanism of the NLR signaling pathways may provide new opportunities for the development of therapeutic strategies related to GI inflammatory diseases and GI cancers. This review presents the structures and signaling pathways of NLRs, summarizes the recent advances regarding NLR signaling in GI inflammatory diseases and GI cancers and describes comprehensive therapeutic strategies based on this signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Sah DK, Arjunan A, Lee B, Jung YD. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants (Basel) 2023; 12:1712. [PMID: 37760015 PMCID: PMC10525271 DOI: 10.3390/antiox12091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and makes up a significant component of the global cancer burden. Helicobacter pylori (H. pylori) is the most influential risk factor for GC, with the International Agency for Research on Cancer classifying it as a Class I carcinogen for GC. H. pylori has been shown to persist in stomach acid for decades, causing damage to the stomach's mucosal lining, altering gastric hormone release patterns, and potentially altering gastric function. Epidemiological studies have shown that eliminating H. pylori reduces metachronous cancer. Evidence shows that various molecular alterations are present in gastric cancer and precancerous lesions associated with an H. pylori infection. However, although H. pylori can cause oxidative stress-induced gastric cancer, with antioxidants potentially being a treatment for GC, the exact mechanism underlying GC etiology is not fully understood. This review provides an overview of recent research exploring the pathophysiology of H. pylori-induced oxidative stress that can cause cancer and the antioxidant supplements that can reduce or even eliminate GC occurrence.
Collapse
Affiliation(s)
| | | | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|
8
|
Tran LS, Ying L, D'Costa K, Wray-McCann G, Kerr G, Le L, Allison CC, Ferrand J, Chaudhry H, Emery J, De Paoli A, Colon N, Creed S, Kaparakis-Liaskos M, Como J, Dowling JK, Johanesen PA, Kufer TA, Pedersen JS, Mansell A, Philpott DJ, Elgass KD, Abud HE, Nachbur U, Croker BA, Masters SL, Ferrero RL. NOD1 mediates interleukin-18 processing in epithelial cells responding to Helicobacter pylori infection in mice. Nat Commun 2023; 14:3804. [PMID: 37365163 DOI: 10.1038/s41467-023-39487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
The interleukin-1 family members, IL-1β and IL-18, are processed into their biologically active forms by multi-protein complexes, known as inflammasomes. Although the inflammasome pathways that mediate IL-1β processing in myeloid cells have been defined, those involved in IL-18 processing, particularly in non-myeloid cells, are still not well understood. Here we report that the host defence molecule NOD1 regulates IL-18 processing in mouse epithelial cells in response to the mucosal pathogen, Helicobacter pylori. Specifically, NOD1 in epithelial cells mediates IL-18 processing and maturation via interactions with caspase-1, instead of the canonical inflammasome pathway involving RIPK2, NF-κB, NLRP3 and ASC. NOD1 activation and IL-18 then help maintain epithelial homoeostasis to mediate protection against pre-neoplastic changes induced by gastric H. pylori infection in vivo. Our findings thus demonstrate a function for NOD1 in epithelial cell production of bioactive IL-18 and protection against H. pylori-induced pathology.
Collapse
Affiliation(s)
- L S Tran
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - L Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - K D'Costa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - G Wray-McCann
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - G Kerr
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - L Le
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - C C Allison
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - J Ferrand
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - H Chaudhry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - J Emery
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - A De Paoli
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - N Colon
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - S Creed
- Monash Micro Imaging, Monash University, Melbourne, VIC, Australia
| | - M Kaparakis-Liaskos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - J Como
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - J K Dowling
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - P A Johanesen
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - T A Kufer
- Department of Immunology, University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
| | | | - A Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - D J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - K D Elgass
- Monash Micro Imaging, Monash University, Melbourne, VIC, Australia
| | - H E Abud
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - U Nachbur
- Cell Signalling and Cell Death Division, WEHI, Melbourne, VIC, Australia
| | - B A Croker
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Inflammation Division, WEHI, Melbourne, VIC, Australia
| | - S L Masters
- Inflammation Division, WEHI, Melbourne, VIC, Australia
| | - R L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
- Inflammation Division, WEHI, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Du Y, Chen L, Qiao H, Zhang L, Yang L, Zhang P, Wang J, Zhang C, Jiang W, Xu R, Zhang X. Hydrogen-Rich Saline-A Novel Neuroprotective Agent in a Mouse Model of Experimental Cerebral Ischemia via the ROS-NLRP3 Inflammasome Signaling Pathway In Vivo and In Vitro. Brain Sci 2023; 13:939. [PMID: 37371417 DOI: 10.3390/brainsci13060939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Our previous research revealed that inflammation plays an important role in the pathophysiology of cerebral ischemia. The function of the NOD-like receptor protein 3 (NLRP3) inflammasome is to activate the inflammatory process. Recent findings suggest that reactive oxygen species (ROS) are essential secondary messengers that activate the NLRP3 inflammasome. Hydrogen-rich saline (HS) has attracted attention for its anti-inflammatory properties. However, the protective effect and possible mechanism of HSin brain ischemia have not been well elucidated. METHODS To test the therapeutic effect of HS, we established a mouse model of distal middle cerebral artery occlusion (dMCAO) and an in vitro model of BV2 cells induced by lipopolysaccharide (LPS). The ROS scavenger N-acetylcysteine (NAC) was used to investigate the underlying mechanisms of HS. RESULTS HS significantly improved neurological function, reduced infarct volume, and increased cerebral blood flow in a dMCAO mouse model. ROS, NLRP3, Caspase-1, and IL-1β expression increased after cerebral ischemia, and this was reversed by HS treatment. In BV2 cells, the application of NAC further demonstrated that HS could effectively inhibit the expression of the ROS-activated NLRP3 inflammasome. CONCLUSIONS HS, as a novel therapeutic option, could exert protect the brain by inhibiting the activation of the ROS-NLRP3 signaling pathway after cerebral ischemia.
Collapse
Affiliation(s)
- Yuanyuan Du
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Linyu Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Huimin Qiao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Lan Yang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Jing Wang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Wei Jiang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| |
Collapse
|
10
|
Dawson RE, Deswaerte V, West AC, Sun E, Wray‐McCann G, Livis T, Kumar B, Rodriguez E, Gabay C, Ferrero RL, Jenkins BJ. The cytosolic DNA sensor AIM2 promotes Helicobacter-induced gastric pathology via the inflammasome. Immunol Cell Biol 2023; 101:444-457. [PMID: 36967659 PMCID: PMC10952813 DOI: 10.1111/imcb.12641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Helicobacter pylori (H. pylori) infection can trigger chronic gastric inflammation perpetuated by overactivation of the innate immune system, leading to a cascade of precancerous lesions culminating in gastric cancer. However, key regulators of innate immunity that promote H. pylori-induced gastric pathology remain ill-defined. The innate immune cytosolic DNA sensor absent in melanoma 2 (AIM2) contributes to the pathogenesis of numerous autoimmune and chronic inflammatory diseases, as well as cancers including gastric cancer. We therefore investigated whether AIM2 contributed to the pathogenesis of Helicobacter-induced gastric disease. Here, we reveal that AIM2 messenger RNA and protein expression levels are elevated in H. pylori-positive versus H. pylori-negative human gastric biopsies. Similarly, chronic Helicobacter felis infection in wild-type mice augmented Aim2 gene expression levels compared with uninfected controls. Notably, gastric inflammation and hyperplasia were less severe in H. felis-infected Aim2-/- versus wild-type mice, evidenced by reductions in gastric immune cell infiltrates, mucosal thickness and proinflammatory cytokine and chemokine release. In addition, H. felis-driven proliferation and apoptosis in both gastric epithelial and immune cells were largely attenuated in Aim2-/- stomachs. These observations in Aim2-/- mouse stomachs correlated with decreased levels of inflammasome activity (caspase-1 cleavage) and the mature inflammasome effector cytokine, interleukin-1β. Taken together, this work uncovers a pathogenic role for the AIM2 inflammasome in Helicobacter-induced gastric disease, and furthers our understanding of the host immune response to a common pathogen and the complex and varying roles of AIM2 at different stages of cancerous and precancerous gastric disease.
Collapse
Affiliation(s)
- Ruby E Dawson
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Alison C West
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Ekimei Sun
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Georgie Wray‐McCann
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Thaleia Livis
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Beena Kumar
- Department of Anatomical PathologyMonash HealthClaytonVICAustralia
| | - Emiliana Rodriguez
- Pathology and Immunology DepartmentCMU/University of GenevaGenevaSwitzerland
| | - Cem Gabay
- Pathology and Immunology DepartmentCMU/University of GenevaGenevaSwitzerland
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| |
Collapse
|
11
|
Sun CC, Li L, Tao HQ, Jiang ZC, Wang L, Wang HJ. The role of NLRP3 inflammasome in digestive system malignancy. Front Cell Dev Biol 2022; 10:1051612. [PMID: 36619871 PMCID: PMC9816811 DOI: 10.3389/fcell.2022.1051612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Digestive system malignancies, the most common types of cancer and a major cause of death in the worldwide, are generally characterized by high morbidity, insidious symptoms and poor prognosis. NLRP3 inflammasome, the most studied inflammasome member, is considered to be crucial in tumorigenesis. In this paper, we reviewed its pro-tumorigenic and anti-tumorigenic properties in different types of digestive system malignancy depending on the types of cells, tissues and organs involved, which would provide promising avenue for exploring new anti-cancer therapies.
Collapse
Affiliation(s)
- Cen-Cen Sun
- Basic Medical Experimental Teaching Center, Zhejiang University, Hangzhou, China
| | - Li Li
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hou-Quan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhi-Chen Jiang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Wang
- Center for Plastic and Reconstructive Surgery, Department of Hand and Reconstruction Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hui-Ju Wang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Dual Role of Chitin as the Double Edged Sword in Controlling the NLRP3 Inflammasome Driven Gastrointestinal and Gynaecological Tumours. Mar Drugs 2022; 20:md20070452. [PMID: 35877745 PMCID: PMC9323176 DOI: 10.3390/md20070452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 01/04/2023] Open
Abstract
The role of NLRP3 in the tumour microenvironment is elusive. In some cancers, the activation of NLRP3 causes a worse prognosis and in some cancers, NLRP3 increases chances of survivability. However, in many cases where NLRP3 has a protumorigenic role, inhibition of NLRP3 would be a crucial step in therapy. Consequently, activation of NLRP3 would be of essence when inflammation is required. Although many ways of inhibiting and activating NLRP3 in cancers have been discussed before, not a lot of focus has been given to chitin and chitosan in this context. The availability of these marine compounds and their versatility in dealing with inflammation needs to be investigated further in relation with cancers, along with other natural extracts. In this review, the effects of NLRP3 on gastrointestinal and gynaecological cancers and the impact of different natural extracts on NLRP3s with special emphasis on chitin and chitosan is discussed. A research gap in using chitin derivatives as anti/pro-inflammatory agents in cancer treatment has been highlighted.
Collapse
|
13
|
Bai C, Zhu Y, Dong Q, Zhang Y. Chronic intermittent hypoxia induces the pyroptosis of renal tubular epithelial cells by activating the NLRP3 inflammasome. Bioengineered 2022; 13:7528-7540. [PMID: 35263214 PMCID: PMC8973594 DOI: 10.1080/21655979.2022.2047394] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a respiratory disorder and chronic intermittent hypoxia (CIH) is an important pathological characteristic of OSAS. Injuries on renal tubular epithelial cells were observed under the condition of CIH. Pyroptosis is a programmed mode of cell death following cell apoptosis and cell necrosis, which is mediated by NLRP3 signaling. The present study aims to investigate the effects of CIH on the pyroptosis of renal tubular epithelial cells and the underlying mechanism. Firstly, CIH was induced in two renal tubular epithelial cell lines, HK-2 cells and TCMK-1 cells. As the aggravation of hypoxia, an increasing trend of elevated apoptotic rate was observed in HK-2 cells and TCMK-1 cells, accompanied by the excessive release of ROS and LDH, and upregulation of NLRP3. Subsequently, the CIH model was established on rats. The pathological analysis results indicated that in CIH rats, the glomerular bottom membrane and mesangium were slightly thickened and edema was observed in the renal tubule epithelium. More serious injury was observed in the moderate intermittent hypoxia group. The expression level of IL-1β and IL-18 was promoted as the aggravation of hypoxia, accompanied by the elevated production of LDH and ROS. The expression level of cleaved Caspase-1, Caspase-1, GSDMD, TLR4, MyD88, NF-κB, p-NF-κB, and NLRP3 was found significantly upregulated as the aggravation of hypoxia. Lastly, the pathological changes in rats induced by CIH were dramatically abolished by MCC950, a specific inhibitor of NLRP3. Collectively, CIH triggered the pyroptosis of renal tubular epithelial cells by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chunyan Bai
- Division of Geriatrics, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yingfei Zhu
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Qiaoliang Dong
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yuwei Zhang
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
14
|
Churchill MJ, Mitchell PS, Rauch I. Epithelial Pyroptosis in Host Defense. J Mol Biol 2022; 434:167278. [PMID: 34627788 PMCID: PMC10010195 DOI: 10.1016/j.jmb.2021.167278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/28/2022]
Abstract
Pyroptosis is a lytic form of cell death that is executed by a family of pore-forming proteins called gasdermins (GSDMs). GSDMs are activated upon proteolysis by host proteases including the proinflammatory caspases downstream of inflammasome activation. In myeloid cells, GSDM pore formation serves two primary functions in host defense: the selective release of processed cytokines to initiate inflammatory responses, and cell death, which eliminates a replicative niche of the pathogen. Barrier epithelia also undergo pyroptosis. However, unique mechanisms are required for the removal of pyroptotic epithelial cells to maintain epithelial barrier integrity. In the following review, we discuss the role of epithelial inflammasomes and pyroptosis in host defense against pathogens. We use the well-established role of inflammasomes in intestinal epithelia to highlight principles of epithelial pyroptosis in host defense of barrier tissues, and discuss how these principles might be shared or distinctive across other epithelial sites.
Collapse
Affiliation(s)
- Madeline J Churchill
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA
| | | | - Isabella Rauch
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
15
|
Innate Immune Responses in Pediatric Patients with Gastritis—A Trademark of Infection or Chronic Inflammation? CHILDREN 2022; 9:children9020121. [PMID: 35204842 PMCID: PMC8870386 DOI: 10.3390/children9020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
The aim of this study was to define the relationship between several environmental, laboratory, and genetic factors, i.e., TLR2 and NLRP3 polymorphisms, and Helicobacter pylori (H. pylori) infection in children, by comparing three different groups of pediatric subjects: H. pylori-induced gastritis, non-H. pylori gastritis, and healthy controls. Our final study sample included 269 children, which were divided into three groups according to the histopathological exam: group 1 with 51 children with H. pylori-induced gastritis, group 2 with 103 children with H. pylori-negative gastritis, and group 3 (control group) with 115 children without any histopathological changes. All children underwent a thorough anamnesis, clinical exam, laboratory tests, and upper digestive endoscopy with gastric biopsy for rapid urease test, histopathological exam, and genetic analysis of TLR2 rs3804099, TLR2 rs3804100, and NLRP3 rs10754558 gene polymorphisms. We noticed a significant association between living conditions and the type of gastritis (p < 0.0001). Both rapid urease and serological tests were significantly associated with the presence of H. pylori (p < 0.0001). The CT variant genotype of TLR2 rs380499 was significantly associated with neutrophil count (p = 0.0325). We noticed a significant association between the CC variant genotype of NLRP3 rs10754558 and leucocytes, neutrophils, eosinophils, as well as ALT (p = 0.0185, p = 0.0379, p = 0.0483, p = 0.0356). Based on these findings, we state that poor living conditions and rural areas represent risk factors for H. pylori infection. The rapid urease test is a reliable diagnostic tool for this infection. CT and TT carriers of TLR2 rs3804099, as well as CC carriers of NLRP3 rs10754558, might display a more severe degree of systemic inflammation.
Collapse
|
16
|
Abstract
The intimate involvement of pathogens with the heightened risk for developing certain cancers is an area of research that has captured a great deal of attention over the last 10 years. One firmly established paradigm that highlights this aspect of disease progression is in the instance of Helicobacter pylori infection and the contribution it makes in elevating the risk for developing gastric cancer. Whilst the molecular mechanisms that pinpoint the contribution that this microorganism inflicts towards host cells during gastric cancer initiation have come into greater focus, another picture that has also emerged is one that implicates the host's immune system, and the chronic inflammation that can arise therefrom, as being a central contributory factor in disease progression. Consequently, when taken with the underlying role that the extracellular matrix plays in the development of most cancers, and how this dynamic can be modulated by proteases expressed from the tumor or inflammatory cells, a complex and detailed relationship shared between the individual cellular components and their surroundings is coming into focus. In this review article, we draw attention to the emerging role played by the cathepsin proteases in modulating the stage-specific progression of Helicobacter pylori-initiated gastric cancer and the underlying immune response, while highlighting the therapeutic significance of this dynamic and how it may be amenable for novel intervention strategies within a basic research or clinical setting.
Collapse
|
17
|
Yang H, Hu B. Immunological Perspective: Helicobacter pylori Infection and Gastritis. Mediators Inflamm 2022; 2022:2944156. [PMID: 35300405 PMCID: PMC8923794 DOI: 10.1155/2022/2944156] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a spiral-shaped gram-negative bacterium. Its infection is mainly transmitted via oral-oral and fecal-oral routes usually during early childhood. It can achieve persistent colonization by manipulating the host immune responses, which also causes mucosal damage and inflammation. H. pylori gastritis is an infectious disease and results in chronic gastritis of different severity in near all patients with infection. It may develop from acute/chronic inflammation, chronic atrophic gastritis, intestinal metaplasia, dysplasia, and intraepithelial neoplasia, eventually to gastric cancer. This review attempts to cover recent studies which provide important insights into how H. pylori causes chronic inflammation and what the characteristic is, which will immunologically explain H. pylori gastritis.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Miller AK, Tavera G, Dominguez RL, Camargo MC, Waterboer T, Wilson KT, Williams SM, Morgan DR. Ornithine decarboxylase (ODC1) gene variant (rs2302615) is associated with gastric cancer independently of Helicobacter pylori CagA serostatus. Oncogene 2021; 40:5963-5969. [PMID: 34376808 PMCID: PMC8692072 DOI: 10.1038/s41388-021-01981-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The primary cause of gastric cancer is chronic infection with Helicobacter pylori (H. pylori), particularly the high-risk genotype cagA, and risk modification by human genetic variants. We studied 94 variants in 54 genes for association with gastric cancer, including rs2302615 in ornithine decarboxylase (ODC1), which may affect response to chemoprevention with the ODC inhibitor, eflornithine (difluoromethylornithine; DFMO). Our population-based, case-control study included 1366 individuals (664 gastric cancer cases and 702 controls) from Western Honduras, a high incidence region of Latin America. CagA seropositivity was strongly associated with cancer (OR = 3.6; 95% CI: 2.6, 5.1). The ODC1 variant rs2302615 was associated with gastric cancer (OR = 1.36; p = 0.018) in a model adjusted for age, sex, and CagA serostatus. Two additional single nucleotide polymorphisms (SNPs) in CASP1 (rs530537) and TLR4 (rs1927914) genes were also associated with gastric cancer in univariate models as well as models adjusted for age, sex, and CagA serostatus. The ODC1 SNP association with gastric cancer was stronger in individuals who carried the TT genotype at the associating TLR4 polymorphism, rs1927914 (OR = 1.77; p = 1.85 × 10-3). In conclusion, the ODC1 variant, rs2302615, is associated with gastric cancer and supports chemoprevention trials with DFMO, particularly in individuals homozygous for the T allele at rs1927914.
Collapse
Affiliation(s)
- Anna K Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gloria Tavera
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ricardo L Dominguez
- Hospital de Occidente, Ministry of Health, Santa Rosa de Copan, Copan, Honduras
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Keith T Wilson
- Vanderbilt University Medical Center, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Scott M Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Douglas R Morgan
- UAB Division of Gastroenterology and Hepatology, The University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
19
|
Choi HR, Lim H, Lee JH, Park H, Kim HP. Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives. Biomol Ther (Seoul) 2021; 29:410-418. [PMID: 33653970 PMCID: PMC8255143 DOI: 10.4062/biomolther.2020.192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5- trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.
Collapse
Affiliation(s)
- Hye Ri Choi
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Haeil Park
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
20
|
Al-Eitan LN, Almomani FA, Al-Khatib SM. Association of CYP2C19, TNF-α, NOD1, NOD2, and PPARγ polymorphisms with peptic ulcer disease enhanced by Helicobacter pylori infection. Saudi Med J 2021; 42:21-29. [PMID: 33399167 PMCID: PMC7989310 DOI: 10.15537/smj.2021.1.25654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To assess the correlation between a number of genetic variations of CYP2C19, TNF-α, NOD1, NOD2, and PPARγ genes with the severity of Helicobacter pylori (H. pylori) infections and peptic ulcers (PU). METHODS A retrospective cross-sectional design was used in this study. Formalin-fixed paraffin-embedded (FFPE) tissue was used to extract genomic DNA that was collected from Jordanian patients who visited endoscopy clinics between 2014 to 2018 at the King Abdullah University Hospital (KAUH), Irbid, Jordan. Genotyping of the studied single nucleotide polymorphisms (SNPs) were applied using the sequencing protocol. Results: A total of 251 patients (mean age: 42.12 ± 16.09 years) and healthy controls (mean age: 52.76 ± 19.45 years) were enrolled in this study. This study showed no significant association between patients and the studied polymorphisms except for rs2075820 of the NOD1 (p=0.0046). It is hypothesized that the heterozygous genotype (TC); 44.8% in patients versus 61.3% in controls has a decreased risk of peptic ulcers (OR: 0.49). The alleles frequency association was insignificant in all studied SNPs with a p-value more than 0.05. CONCLUSION This study provided evidence regarding the association of the rs2075820 with H. pylori infections. The other studied SNPs were not statistically significant.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Biotechnology & Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan. E-mail.
| | | | | |
Collapse
|
21
|
Targeting the NLRP3 Inflammasome as a New Therapeutic Option for Overcoming Cancer. Cancers (Basel) 2021; 13:cancers13102297. [PMID: 34064909 PMCID: PMC8151587 DOI: 10.3390/cancers13102297] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.
Collapse
|
22
|
Shan C, Miao S, Liu C, Zhang B, Zhao W, Wang H, Yang W, Cha J, Zhao R, Xiao P, Gao H. Induction of macrophage pyroptosis-related factors by pathogenic E. coli high pathogenicity island (HPI) in Yunnan Saba pigs. BMC Vet Res 2021; 17:114. [PMID: 33678162 PMCID: PMC7938518 DOI: 10.1186/s12917-021-02824-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/26/2021] [Indexed: 11/12/2022] Open
Abstract
Background Pyroptosis plays a pivotal role in the pathogenesis of many inflammatory diseases. The molecular mechanism by which pyroptosis is induced in macrophages following infection with pathogenic E. coli high pathogenicity island (HPI) will be evaluated in our study. Results After infection with the HPI+/HPI− strains and LPS, decreased macrophage cell membrane permeability and integrity were demonstrated with propidium iodide (PI) staining and the lactate dehydrogenase (LDH) assay. HPI+/HPI−-infection was accompanied by upregulated expression levels of NLRP3, ASC, caspase-1, IL-1β, IL-18 and GSDMD, with significantly higher levels detected in the HPI+ group compared to those in the HPI− group (P < 0.01 or P < 0.05). HPI+ strain is more pathogenic than HPI− strain. Conclusion Our findings indicate that pathogenic E. coli HPI infection of Saba pigs causes pyroptosis of macrophages characterized by upregulated expression of pyroptosis key factors in the NLRP3/ASC/caspase-1 signaling pathway, direct cell membrane pore formation, and secretion of the inflammatory factor IL-1β and IL-18 downstream of NLRP3 and caspase-1 activation to enhance the inflammatory response.
Collapse
Affiliation(s)
- Chunlan Shan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shushu Miao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Chaoying Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Bo Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Weiwei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hao Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinlong Cha
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Ru Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
23
|
Chen LJ, Zhi X, Zhang KK, Wang LB, Li JH, Liu JL, Xu LL, Yoshida JS, Xie XL, Wang Q. Escalating dose-multiple binge methamphetamine treatment elicits neurotoxicity, altering gut microbiota and fecal metabolites in mice. Food Chem Toxicol 2021; 148:111946. [PMID: 33359793 DOI: 10.1016/j.fct.2020.111946] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Methamphetamine (METH) is an addictive and illegal psychostimulant drug that can cause multiple organ dysfunction, especially in the central nervous system (CNS). Gut microbiota have been implicated in development of various CNS-related diseases, via the gut-brain axis (GBA). However, effect of METH in the alteration of gut microbiota and fecal metabolites is unclear, whereas the relationship with METH-induced neurotoxicity remains unknown. In the current study, we investigated effect of METH on neurotoxicity in striatum and colonic damage by exposing BALB/c mice to an escalating dose-multiple binge regimen, and then analyzed protein expression using Western blot analysis. We further detected and sequenced the 16 S rRNA gene in fecal samples, and performed ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based metabolomics to analyze gut microbes and fecal metabolites. Exposure to METH significantly downregulated tyrosine hydroxylase (TH) proteins, but upregulated MAOA, Beclin1, Atg5, and LC3-Ⅱ. METH up-regulated inflammation-related factors, such as caspase1, TNF-α and IL-18, by activating the toll-like receptors 4 (TLR4)/myeloid differentiation factor 88 (Myd88)/nuclear factor κB (NF-κB) pathway and reduced occludin protein expression. In addition, METH exposure changed α and β diversities of gut microbiota. Specifically, METH exposure elevated relative abundances of pathogenic bacteria, but reduced those of probiotics. Metabolomics, combined with enrichment analyses revealed that METH exposure altered fecal metabolites. Our findings suggest that METH exposure induced autophagy in the CNS, elevated intestinal autophagy flora, leading to accumulation of fecal metabolites in the autophagy pathway, and causing enteritis. Moreover, METH promoted intestinal inflammation by increasing the relative abundance of the pathogenic bacteria in the intestinal tract, and reduced intestinal TJ protein expression.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Algood HMS. T Cell Cytokines Impact Epithelial Cell Responses during Helicobacter pylori Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:1421-1428. [PMID: 32152211 DOI: 10.4049/jimmunol.1901307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022]
Abstract
The goal of this Brief Review is to highlight literature that demonstrates how cytokines made by T lymphocytes impact the gastric epithelium, especially during Helicobacter pylori infection. These cytokines effect many of the diverse functions of the epithelium and the epithelium's interactions with H. pylori The focal point of this Brief Review will be on how T cell cytokines impact antimicrobial function and barrier function and how T cell cytokines influence the development and progression of cancer. Furthermore, the modulation of epithelial-derived chemokines by H. pylori infection will be discussed.
Collapse
Affiliation(s)
- Holly M Scott Algood
- Veterans Affairs Tennessee Valley Healthcare Services, Nashville, TN 37212; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212; and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37212
| |
Collapse
|
25
|
Poli G, Fabi C, Bellet MM, Costantini C, Nunziangeli L, Romani L, Brancorsini S. Epigenetic Mechanisms of Inflammasome Regulation. Int J Mol Sci 2020; 21:E5758. [PMID: 32796686 PMCID: PMC7460952 DOI: 10.3390/ijms21165758] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
The innate immune system represents the host's first-line defense against pathogens, dead cells or environmental factors. One of the most important inflammatory pathways is represented by the activation of the NOD-like receptor (NLR) protein family. Some NLRs induce the assembly of large caspase-1-activating complexes called inflammasomes. Different types of inflammasomes have been identified that can respond to distinct bacterial, viral or fungal infections; sterile cell damage or other stressors, such as metabolic imbalances. Epigenetic regulation has been recently suggested to provide a complementary mechanism to control inflammasome activity. This regulation can be exerted through at least three main mechanisms, including CpG DNA methylation, histones post-translational modifications and noncoding RNA expression. The repression or promotion of expression of different inflammasomes (NLRP1, NLRP2, NLRP3, NLRP4, NLRP6, NLRP7, NLRP12 and AIM2) through epigenetic mechanisms determines the development of pathologies with variable severity. For example, our team recently explored the role of microRNAs (miRNAs) targeting and modulating the components of the inflammasome as potential biomarkers in bladder cancer and during therapy. This suggests that the epigenetic control of inflammasome-related genes could represent a potential target for further investigations of molecular mechanisms regulating inflammatory pathways.
Collapse
Affiliation(s)
- Giulia Poli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Consuelo Fabi
- Department of Surgical and Biomedical Sciences, Urology and Andrology Clinic, University of Perugia, 05100 Terni, Italy;
| | - Marina Maria Bellet
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Luisa Nunziangeli
- Polo d’Innovazione di Genomica, Genetica e Biologia, 05100 Terni, Italy;
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Stefano Brancorsini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| |
Collapse
|
26
|
Méndez-Frausto G, Medina-Rosales MN, Uresti-Rivera EE, Baranda-Cándido L, Zapata-Zúñiga M, Bastián Y, González Amaro R, Enciso-Moreno JA, García-Hernández MH. Expression and activity of AIM2-inflammasome in rheumatoid arthritis patients. Immunobiology 2019; 225:151880. [PMID: 31836304 DOI: 10.1016/j.imbio.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/26/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION AIM2 inflammasome activation leads to the release of IL-β, which plays an important role in rheumatoid arthritis pathogenesis. In this work, we evaluated AIM2 expression and activity in RA patients and healthy controls. METHODS AIM2 and RANKL expression were evaluated by flow cytometry. Inflammasome activity was determined in monocyte cultures stimulated with synthetic DNA by measuring IL-1β levels in supernatants using an ELISA assay. The caspase-1 expression in monocytes was measured by western blot, the POP3 expression was analysed by qPCR, and serum levels of IFN-γ were evaluated using ELISA assay. RESULTS We observed a diminution of CD14+AIM2+ cells in RA patients, associated with disease activity and evolution. Likewise, the levels of IL-1β were increased in monocyte cultures un-stimulated and stimulated with LPS from RA patients with DAS28 ≥ 4. The Caspase-1 activity and RANKL + monocytes in RA patients were slightly increased. Finally, augmented POP3 expression and diminished IFN-γ serum levels were detected in RA patients. CONCLUSION Our results showed that the monocytes from RA patients were prone to release IL-1β in the absence of the AIM2 inflammasome signal. The down-regulation of AIM2 to a systemic level in RA patients might be a consequence of augmented POP3 expression and might imply the survival of pro-inflammatory cells contributing to the inflammation process.
Collapse
Affiliation(s)
- Gwendolyne Méndez-Frausto
- Unidad de Investigación Biomédica. Delegación Zacatecas. Instituto Mexicano del Seguro Social, IMSS, C.P. 98000, Mexico
| | - Marina Nayeli Medina-Rosales
- Unidad de Investigación Biomédica. Delegación Zacatecas. Instituto Mexicano del Seguro Social, IMSS, C.P. 98000, Mexico
| | - Edith Elena Uresti-Rivera
- Centro de Investigación en Ciencias de la Salud y Biomedicina. CICSaB Universidad Autónoma de San Luis Potosí, UASLP, C.P. 78000, Mexico
| | - Lourdes Baranda-Cándido
- Centro de Investigación en Ciencias de la Salud y Biomedicina. CICSaB Universidad Autónoma de San Luis Potosí, UASLP, C.P. 78000, Mexico; Unidad Regional de Reumatología y Osteoporosis Hospital Central Dr. Ignacio Morones Prieto. San Luis Potosí, SLP, C.P. 78290, Mexico
| | - Martín Zapata-Zúñiga
- Facultad de Medicina y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Hospital Rural No. 51 IMSS Bienestar, Villanueva, Zacatecas, C.P. 99559, Mexico
| | - Yadira Bastián
- Unidad de Investigación Biomédica. Delegación Zacatecas. Instituto Mexicano del Seguro Social, IMSS, C.P. 98000, Mexico; Cátedras CONACYT- Unidad de Investigación Biomédica de Zacatecas-IMSS, Zacatecas, C.P. 98000, Mexico
| | - Roberto González Amaro
- Centro de Investigación en Ciencias de la Salud y Biomedicina. CICSaB Universidad Autónoma de San Luis Potosí, UASLP, C.P. 78000, Mexico
| | - José Antonio Enciso-Moreno
- Unidad de Investigación Biomédica. Delegación Zacatecas. Instituto Mexicano del Seguro Social, IMSS, C.P. 98000, Mexico
| | | |
Collapse
|
27
|
Semper RP, Vieth M, Gerhard M, Mejías-Luque R. Helicobacter pylori Exploits the NLRC4 Inflammasome to Dampen Host Defenses. THE JOURNAL OF IMMUNOLOGY 2019; 203:2183-2193. [PMID: 31511355 DOI: 10.4049/jimmunol.1900351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori colonizes the stomach of around 50% of humans. This chronic infection can lead to gastric pathologic conditions such as gastric ulcers and gastric adenocarcinomas. The strong inflammatory response elicited by H. pylori is characterized by the induction of the expression of several cytokines. Among those, IL-18 is found highly upregulated in infected individuals, and its expression correlates with the severity of gastric inflammation. IL-18 is produced as inactive proform and has to be cleaved by the multiprotein complex inflammasome to be active. In immune cells, the NLRC4 inflammasome, which is activated by flagellin or bacterial secretion systems, was shown to be dispensable for H. pylori-induced inflammasome activation. However, apart from immune cells, gastric epithelial cells can also produce IL-18. In this study, we analyzed the role of the NLRC4 inflammasome during H. pylori infection. Our results indicate that NLRC4 and a functional type IV secretion system are crucial for the production of IL-18 from human and murine gastric epithelial cells. In vivo, Nlrc4-/- mice failed to produce gastric IL-18 upon H. pylori infection. Compared with wild type mice, Nlrc4-/- mice controlled H. pylori better without showing strong inflammation. Moreover, H. pylori-induced IL-18 inhibits β-defensin 1 expression in a NF-κB-dependent manner, resulting in higher bacterial colonization. At the same time, inflammasome activation enhances neutrophil infiltration, resulting in inflammation. Thus, NLRC4 inflammasome activation and subsequent IL-18 production favors bacterial persistence by inhibiting antimicrobial peptide production and, at the same time, contributes to gastric inflammation.
Collapse
Affiliation(s)
- Raphaela P Semper
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Fakultät für Medizin, Technische Universität München, 81675 Munich, Germany; and
| | - Michael Vieth
- Institut für Pathologie, Klinikum Bayreuth, 95445 Bayreuth, Germany
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Fakultät für Medizin, Technische Universität München, 81675 Munich, Germany; and
| | - Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Fakultät für Medizin, Technische Universität München, 81675 Munich, Germany; and
| |
Collapse
|
28
|
Zhao L, Du L, Zhang Y, Chao J, Duan M, Yao H, Shen C, Zhang Y. Role of PUMA in the methamphetamine-induced migration of microglia. Metab Brain Dis 2019; 34:61-69. [PMID: 30259295 DOI: 10.1007/s11011-018-0319-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Abstract
In this study, we demonstrated that PUMA was involved in the microglial migration induced by methamphetamine. PUMA expression was examined by western blotting and immunofluorescence staining. BV2 and HAPI cells were pretreated with a sigma-1R antagonist and extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), c-Jun N-terminal protein kinase (JNK), and phosphatidylinositol-3 kinase (PI3K)/Akt inhibitors, and PUMA expression was detected by western blotting. The cell migration in BV2 and HAPI cells transfected with a lentivirus encoding red fluorescent protein (LV-RFP) was also examined using a wound-healing assay and nested matrix model and cell migration assay respectively. The molecular mechanisms of PUMA in microglial migration were validated using a siRNA approach. The exposure of BV2 and HAPI cells to methamphetamine increased the expression of PUMA, reactive oxygen species (ROS), the MAPK and PI3K/Akt pathways and the downstream transcription factor signal transducer and activator of transcription 3 (STAT3) pathways. PUMA knockdown in microglia transfected with PUMA siRNA attenuated the increased cell migration induced by methamphetamine, thereby implicating PUMA in the migration of BV2 and HAPI cells. This study demonstrated that methamphetamine-induced microglial migration involved PUMA up-regulation. Targeting PUMA could provide insights into the development of a potential therapeutic approach for the alleviation of microglia migration induced by methamphetamine.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Longfei Du
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yanhong Zhang
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Ming Duan
- Key Laboratory for Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Chuanlu Shen
- Department of Pathophysiology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Yuan Zhang
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
29
|
Lian DW, Xu YF, Ren WK, Fu LJ, Chen FJ, Tang LY, Zhuang HL, Cao HY, Huang P. Unraveling the Novel Protective Effect of Patchouli Alcohol Against Helicobacter pylori-Induced Gastritis: Insights Into the Molecular Mechanism in vitro and in vivo. Front Pharmacol 2018; 9:1347. [PMID: 30524287 PMCID: PMC6262355 DOI: 10.3389/fphar.2018.01347] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
Patchouli alcohol (PA), a natural tricyclic sesquiterpene extracted from Pogostemon cablin (Blanco) Benth. (Labiatae), has been found to exhibit anti-Helicobacter pylori and anti-inflammatory properties. In this study, we investigated the protective effect of PA against H. pylori-induced gastritis in vitro and in vivo, and determined the underlying mechanism. In the in vivo experiment, a C57BL/6 mouse model of gastritis was established using H. pylori SS1, and treatments with standard triple therapy or 5, 10, and 20 mg/kg PA were performed for 2 weeks. Results indicated that PA effectively attenuated oxidative stress by decreasing contents of intracellular reactive oxygen species (ROS) and malonyldialdehyde (MDA), and increasing levels of non-protein sulfhydryl (NP-SH), catalase and glutathione (GSH)/glutathione disulphide (GSSG). Additionally, treatment with PA significantly attenuated the secretions of interleukin 1 beta (IL-1β), keratinocyte chemoattractant and interleukin 6 (IL-6). PA (20 mg/kg) significantly protected the gastric mucosa from H. pylori-induced damage. In the in vitro experiment, GES-1 cells were cocultured with H. pylori NCTC11637 at MOI = 100:1 and treated with different doses of PA (5, 10, and 20 μg/ml). Results indicated that PA not only significantly increased the cell viability and decreased cellular lactate dehydrogenase (LDH) leakage, but also markedly elevated the mitochondrial membrane potential and remarkably attenuated GES-1 cellular apoptosis, thereby protecting gastric epithelial cells against injuries caused by H. pylori. PA also inhibited the secretions of pro-inflammatory factors, such as monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-α (TNF-α) and IL-6. Furthermore, after PA treatment, the combination of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) and cysteine-aspartic proteases 1 (CASPASE-1), the expression levels of NLRP3 inflammasome-related proteins, such as thioredoxin-interacting protein (TXNIP), pro-CASPASE-1, cle-CASPASE-1, and NLRP3 and genes (NLRP3 and CASPASE1) were significantly decreased as compared to the model group. In conclusion, treatment with PA for 2 weeks exhibited highly efficient protective effect against H. pylori-induced gastritis and related damages. The underlying mechanism might involve antioxidant activity, inhibition of pro-inflammatory factor and regulation of NLRP3 inflammasome function. PA exerted anti-H. pylori and anti-gastritis effects and thus had the potential to be a promising candidate for treatment of H. pylori-related diseases.
Collapse
Affiliation(s)
- Da-Wei Lian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Fei Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Kang Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Jun Fu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang-Jun Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Yao Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Ling Zhuang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Ying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Sho T, Xu J. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Biochem 2018; 66:4-13. [PMID: 30315709 DOI: 10.1002/bab.1700] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023]
Abstract
Inflammation, as a common immune response to various infections or injuries, can cause many dangerous and complicated diseases. Inflammasome is a protein complex playing a vital role in an inflammation process, and the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been the most-widely studied one. Recent evidence suggests the reactive oxygen species (ROS)-NLRP3 signaling pathway to be a possible NLRP3 inflammasome regulation model. Numerous recent preclinical reports indicate that application of antioxidants could scavenge excessive ROS and attenuate inflammatory responses through suppressing NLRP3 inflammasome activation. This article, at first, briefly overviews how ROS may mediate the regulation of NLRP3 inflammasome activation. Then, preclinical researches of various ROS scavengers for treating NLRP3 inflammasome-associated diseases are focused on and critically analyzed. Finally, the potential of antioxidant treatment as a therapy for inflammation is to be discussed, and perspectives on future research directions will be shared.
Collapse
Affiliation(s)
- Takami Sho
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - JianXiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiol Mol Biol Rev 2018; 82:82/4/e00015-18. [PMID: 30209070 DOI: 10.1128/mmbr.00015-18] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.
Collapse
|
32
|
Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice. Cell Mol Immunol 2018; 16:878-886. [PMID: 29735977 DOI: 10.1038/s41423-018-0032-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
As an immune checkpoint, Tim-3 plays roles in the regulation of both adaptive and innate immune cells including macrophages and is greatly involved in chronic liver diseases. However, the precise roles of Tim-3 in nonalcoholic steatohepatitis (NASH) remain unstated. In the current study, we analyzed Tim-3 expression on different subpopulations of liver macrophages and further investigated the potential roles of Tim-3 on hepatic macrophages in methionine and choline-deficient diet (MCD)-induced NASH mice. The results of flow cytometry demonstrated the significantly increased expression of Tim-3 on all detected liver macrophage subsets in MCD mice, including F4/80+CD11b+, F4/80+CD68+, and F4/80+CD169+ macrophages. Remarkably, Tim-3 knockout (KO) significantly accelerated MCD-induced liver steatosis, displaying higher serum ALT, larger hepatic vacuolation, more liver lipid deposition, and more severe liver fibrosis. Moreover, compared with wild-type C57BL/6 mice, Tim-3 KO MCD mice demonstrated an enhanced expression of NOX2, NLRP3, and caspase-1 p20 together with increased generation of IL-1β and IL-18 in livers. In vitro studies demonstrated that Tim-3 negatively regulated the production of reactive oxygen species (ROS) and related downstream pro-inflammatory cytokine secretion of IL-1β and IL-18 in macrophages. Exogenous administration of N-Acetyl-L-cysteine (NAC), a small molecular inhibitor of ROS, remarkably suppressed caspase-1 p20 expression and IL-1β and IL-18 production in livers of Tim-3 KO mice, thus significantly reducing the severity of steatohepatitis induced by MCD. In conclusion, Tim-3 is a promising protector in MCD-induced steatohepatitis by controlling ROS and the associated pro-inflammatory cytokine production in macrophages.
Collapse
|
33
|
Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS–HIF-1α–AQP3–ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis. Oncogene 2018; 37:3549-3561. [DOI: 10.1038/s41388-018-0208-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
|
34
|
Pizato N, Luzete BC, Kiffer LFMV, Corrêa LH, de Oliveira Santos I, Assumpção JAF, Ito MK, Magalhães KG. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep 2018; 8:1952. [PMID: 29386662 PMCID: PMC5792438 DOI: 10.1038/s41598-018-20422-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.
Collapse
Affiliation(s)
- Nathalia Pizato
- Department of Nutrition, University of Brasilia, Brasilia, 70910-900, Brazil
| | | | | | - Luís Henrique Corrêa
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, 70910-900, Brazil
| | | | - Marina Kiyomi Ito
- Department of Nutrition, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, 70910-900, Brazil.
| |
Collapse
|
35
|
Chao J, Zhang Y, Du L, Zhou R, Wu X, Shen K, Yao H. Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci Rep 2017; 7:11540. [PMID: 28912535 PMCID: PMC5599501 DOI: 10.1038/s41598-017-11065-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/15/2017] [Indexed: 01/26/2023] Open
Abstract
Our previous study demonstrated that the sigma-1 receptor is involved in methamphetamine-induced microglial apoptosis and death; however, whether the sigma-1 receptor is involved in microglial activation as well as the molecular mechanisms underlying this process remains poorly understood. The aim of this study is to demonstrate the involvement of the sigma-1 receptor in methamphetamine-mediated microglial activation. The expression of σ-1R, iNOS, arginase and SOCS was examined by Western blot; activation of cell signaling pathways was detected by Western blot analysis. The role of σ-1R in microglial activation was further validated in C57BL/6 N WT and sigma-1 receptor knockout mice (male, 6-8 weeks) injected intraperitoneally with saline or methamphetamine (30 mg/kg) by Western blot combined with immunostaining specific for Iba-1. Treatment of cells with methamphetamine (150 μM) induced the expression of M1 markers (iNOS) with concomitant decreased the expression of M2 markers (Arginase) via its cognate sigma-1 receptor followed by ROS generation. Sequential activation of the downstream MAPK, Akt and STAT3 pathways resulted in microglial polarization. Blockade of sigma-1 receptor significantly inhibited the generation of ROS and activation of the MAPK and Akt pathways. These findings underscore the critical role of the sigma-1 receptor in methamphetamine-induced microglial activation.
Collapse
Affiliation(s)
- Jie Chao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
- Department of Physiology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Yuan Zhang
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Longfei Du
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiaodong Wu
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Kai Shen
- Department of Pharmacy, Nantong Tongzhou People's Hospital, Nantong, China.
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
36
|
DiNicolantonio JJ, O'Keefe JH, McCarty MF. Supplemental N-acetylcysteine and other measures that boost intracellular glutathione can downregulate interleukin-1β signalling: a potential strategy for preventing cardiovascular events? Open Heart 2017; 4:e000599. [PMID: 28878946 PMCID: PMC5574421 DOI: 10.1136/openhrt-2017-000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 11/03/2022] Open
|
37
|
Tran LS, Chonwerawong M, Ferrero RL. Regulation and functions of inflammasome-mediated cytokines in Helicobacter pylori infection. Microbes Infect 2017; 19:449-458. [PMID: 28690082 DOI: 10.1016/j.micinf.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/22/2017] [Indexed: 02/08/2023]
Abstract
Persistent stomach infection with Helicobacter pylori causes chronic mucosal inflammation (gastritis), which is widely recognized as an essential precursor to gastric cancer. The IL-1 interleukin family cytokines IL-1β and IL-18 have emerged as central mediators of mucosal inflammation. Here, we review the regulation and functions of these cytokines in H. pylori-induced inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Le Son Tran
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Biomedicine Discovery Institute, Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria, Australia.
| |
Collapse
|
38
|
Human and Helicobacter pylori Interactions Determine the Outcome of Gastric Diseases. Curr Top Microbiol Immunol 2017; 400:27-52. [PMID: 28124148 DOI: 10.1007/978-3-319-50520-6_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The innate immune response is a critical hallmark of Helicobacter pylori infection. Epithelial and myeloid cells produce effectors, including the chemokine CXCL8, reactive oxygen species (ROS), and nitric oxide (NO), in response to bacterial components. Mechanistic and epidemiologic studies have emphasized that dysregulated and persistent release of these products leads to the development of chronic inflammation and to the molecular and cellular events related to carcinogenesis. Moreover, investigations in H. pylori-infected patients about polymorphisms of the genes encoding CXCL8 and inducible NO synthase, and epigenetic control of the ROS-producing enzyme spermine oxidase, have further proven that overproduction of these molecules impacts the severity of gastric diseases. Lastly, the critical effect of the crosstalk between the human host and the infecting bacterium in determining the severity of H. pylori-related diseases has been supported by phylogenetic analysis of the human population and their H. pylori isolates in geographic areas with varying clinical and pathologic outcomes of the infection.
Collapse
|
39
|
Gobert AP, Wilson KT. Polyamine- and NADPH-dependent generation of ROS during Helicobacter pylori infection: A blessing in disguise. Free Radic Biol Med 2017; 105:16-27. [PMID: 27682363 PMCID: PMC5366100 DOI: 10.1016/j.freeradbiomed.2016.09.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that specifically colonizes the gastric ecological niche. During the infectious process, which results in diseases ranging from chronic gastritis to gastric cancer, the host response is characterized by the activation of the innate immunity of gastric epithelial cells and macrophages. These cells thus produce effector molecules such as reactive oxygen species (ROS) to counteract the infection. The generation of ROS in response to H. pylori involves two canonical pathways: 1) the NADPH-dependent reduction of molecular oxygen to generate O2•-, which can dismute to generate ROS; and 2) the back-conversion of the polyamine spermine into spermidine through the enzyme spermine oxidase, leading to H2O2 production. Although these products have the potential to affect the survival of bacteria, H. pylori has acquired numerous strategies to counteract their deleterious effects. Nonetheless, ROS-mediated oxidative DNA damage and mutations may participate in the adaptation of H. pylori to its ecological niche. Lastly, ROS have been shown to play a major role in the development of the inflammation and carcinogenesis. It is the purpose of this review to summarize the literature about the production of ROS during H. pylori infection and their role in this infectious gastric disease.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, United States; Center for Mucosal Inflammation and Cancer, United States
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, United States; Department of Pathology, Microbiology, and Immunology, United States; Department of Cancer Biology, United States; Center for Mucosal Inflammation and Cancer, United States; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, United States.
| |
Collapse
|
40
|
Wang M, Yang XB, Zhao JW, Lu CJ, Zhu W. Structural characterization and macrophage immunomodulatory activity of a novel polysaccharide from Smilax glabra Roxb. Carbohydr Polym 2017; 156:390-402. [DOI: 10.1016/j.carbpol.2016.09.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/24/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022]
|
41
|
Kameoka S, Kameyama T, Hayashi T, Sato S, Ohnishi N, Hayashi T, Murata-Kamiya N, Higashi H, Hatakeyama M, Takaoka A. Helicobacter pylori induces IL-1β protein through the inflammasome activation in differentiated macrophagic cells. Biomed Res 2016; 37:21-7. [PMID: 26912137 DOI: 10.2220/biomedres.37.21] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
More than 50% of people in the world are infected with Helicobacter pylori (H. pylori), which induces various gastric diseases. Especially, epidemiological studies have shown that H. pylori infection is a major risk factor for gastric cancer. It has been reported that the levels of interleukin (IL)-1β are upregulated in gastric tissues of patients with H. pylori infection. In this study, we investigated the induction mechanism of IL-1β during H. pylori infection. We found that IL-1βmRNA and protein were induced in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells after H. pylori infection. This IL-1β production was inhibited by a caspase-1 inhibitor and a ROS inhibitor. Furthermore, K(+) efflux and Ca(2+) signaling were also involved in this process. These data suggest that NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3) and its complex, known as NLRP3 inflammasome, are involved in IL-1β production during H. pylori infection because it is reported that NLRP3 inflammasome is activated by ROS, K(+) efflux and/or Ca(2+) signaling. These findings may provide therapeutic strategy for the control of gastric cancer in H. pylori-infected patients.
Collapse
Affiliation(s)
- Shoichiro Kameoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li Y, Yang G, Yang X, Wang W, Zhang J, He Y, Zhang W, Jing T, Lin R. Nicotinic acid inhibits NLRP3 inflammasome activation via SIRT1 in vascular endothelial cells. Int Immunopharmacol 2016; 40:211-218. [PMID: 27614220 DOI: 10.1016/j.intimp.2016.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/11/2016] [Accepted: 09/02/2016] [Indexed: 02/03/2023]
Abstract
Emerging evidences indicated that NLRP3 inflammasome initiates inflammatory response involved in cardiovascular disease. Nicotinic acid (NA) has been known to possess potential anti-inflammatory property. The aim of this study was to investigate the effect of NA on the activation of NLRP3 inflammasome and the underlying mechanisms. It was found that lipopolysaccharide (LPS) and adenosine triphosphate (ATP) triggered the activation of NLRP3 inflammasome in human umbilical vein endothelial cells (HUVECs). NA inhibited NLRP3 inflammasome activation and subsequent caspase-1 cleavage as well as interleukin (IL)-1β secretion. Moreover, NA administration up-regulated SIRT1 expression in HUVECs stimulated with LPS plus ATP. Importantly, knockdown of SIRT1 reversed the inhibitory effect of NA on the activation of NLRP3 inflammasome. Further study revealed that NA also decreased the generation of reactive oxygen species (ROS) in HUVECs. In addition, NA inhibited NLRP3 inflammasome activation partly through suppression of ROS. Taken together, these findings indicate that NA is able to regulate the activation of NLRP3 inflammasome in HUVECs, which may be partly mediated by SIRT1 and ROS.
Collapse
Affiliation(s)
- Yanxiang Li
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China; Taizhou Polytechnic College, Taizhou, Jiangsu 225300, China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiaofeng Yang
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Jiye Zhang
- School of Pharmacy, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yanhao He
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Wei Zhang
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Ting Jing
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Rong Lin
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
43
|
Gu NY, Kim JH, Han IH, Im SJ, Seo MY, Chung YH, Ryu JS. Trichomonas vaginalis induces IL-1β production in a human prostate epithelial cell line by activating the NLRP3 inflammasome via reactive oxygen species and potassium ion efflux. Prostate 2016; 76:885-96. [PMID: 26959386 DOI: 10.1002/pros.23178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/23/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Trichomonas vaginalis is a sexually transmitted protozoan parasite that causes vaginitis in women, and urethritis and prostatitis in men. IL-1β is synthesized as immature pro-IL-1β, which is cleaved by activated caspase-1. Caspase-1 is, in turn, activated by a multi-protein complex known as an inflammasome. In this study, we investigated the inflammatory response of a prostate epithelial cell line (RWPE-1) to T. vaginalis and, specifically, the capacity of T. vaginalis to activate the NLRP3 inflammasome. METHODS RWPE-1 cells were stimulated by live T. vaginalis, and subsequent expression of pro-IL-1β, IL-1β, NLRP3, ASC and caspase-1 was determined by real-time PCR and Western blotting. IL-1β and caspase-1 production was also measured by ELISA. To evaluate the effects of NLRP3 and caspase-1 on IL-1β production, the activated RWPE-1 cells were transfected with small interfering RNAs to silence the NLRP3 and caspase-1 genes. Activation of the NLRP3 inflammasome was observed by fluorescence microscopy. Intracellular reactive oxygen species (ROS) were evaluated by spectrofluorometry. RESULTS When RWPE-1 cells were stimulated with live T. vaginalis, the mRNA and protein expression of IL-1β, NLRP3, ASC, and caspase-1 increased. Moreover, silencing of NLRP3 and caspase-1 attenuated T. vaginalis-induced IL-1β secretion. The NADPH oxidase inhibitor DPI and high extracellular potassium ion suppressed the production of IL-1β, caspase-1, and the expression of NLRP3 and ASC proteins. The specific NF-κB inhibitor, Bay 11-7082, inhibited IL-1β production, and also inhibited the production of caspase-1, ASC and NLRP3 proteins. CONCLUSIONS T. vaginalis induces the formation of the NLRP3 inflammasome in human prostate epithelial cells via ROS and potassium ion efflux, and this results in IL-1β production. This is the first evidence for activation of the NLRP3 inflammasome in the inflammatory response by prostate epithelial cells infected with T. vaginalis. Prostate 76:885-896, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Na-Yeong Gu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Hanyang University, Seoul, Korea
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Jung-Hyun Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Hanyang University, Seoul, Korea
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Hanyang University, Seoul, Korea
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Su-Jeong Im
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Hanyang University, Seoul, Korea
| | - Min-Young Seo
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Hanyang University, Seoul, Korea
| | - Yong-Hoon Chung
- Department of Microbiology, Hanyang University College of Medicine, Seoul, Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Hanyang University, Seoul, Korea
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
44
|
Hydroxysafflor Yellow A Inhibits LPS-Induced NLRP3 Inflammasome Activation via Binding to Xanthine Oxidase in Mouse RAW264.7 Macrophages. Mediators Inflamm 2016; 2016:8172706. [PMID: 27433030 PMCID: PMC4940575 DOI: 10.1155/2016/8172706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/29/2016] [Indexed: 11/17/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA) is an effective therapeutic agent for inflammatory diseases and autoimmune disorders; however, its regulatory effect on NLRP3 inflammasome activation in macrophages has not been investigated. In this study, we predicted the potential interaction between HSYA and xanthine oxidase (XO) via PharmMapper inverse docking and confirmed the binding inhibition via inhibitory test (IC50 = 40.04 μM). Computation docking illustrated that, in this HSYA-XO complex, HSYA was surrounded by Leu 648, Leu 712, His 875, Leu 873, Ser 876, Glu 879, Phe 649, and Asn 650 with a binding energy of -5.77 kcal/M and formed hydrogen bonds with the hydroxyl groups of HSYA at Glu 879, Asn 650, and His 875. We then found that HSYA significantly decreased the activity of XO in RAW264.7 macrophages and suppressed LPS-induced ROS generation. Moreover, we proved that HSYA markedly inhibited LPS-induced cleaved caspase-1 activation via suppressing the sensitization of NLRP3 inflammasome and prevented the mature IL-1β formation from pro-IL-1β form. These findings suggest that XO may be a potential target of HSYA via direct binding inhibition and the combination of HSYA-XO suppresses LPS-induced ROS generation, contributing to the depression of NLRP3 inflammasome and inhibition of IL-1β secretion in macrophages.
Collapse
|