1
|
Lee JH, Kim YG, Park I, Lee J. Antifungal and antibiofilm activities of flavonoids against Candida albicans: Focus on 3,2'-dihydroxyflavone as a potential therapeutic agent. Biofilm 2024; 8:100218. [PMID: 39175909 PMCID: PMC11340609 DOI: 10.1016/j.bioflm.2024.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Effective management of microbial biofilms holds significance within food and medical environments. Candida albicans, an opportunistic fungus, forms mucosal biofilms closely linked to candidiasis and drug-resistant infections due to their drug tolerance. Morphologic change from yeast to filamentous cells is a key virulence factor and a prerequisite for biofilm development. This study investigated the anti-fungal and antibiofilm activities of 20 flavonoids against C. albicans. With their known antioxidant capabilities, flavonoids hold promise in combating infections associated with biofilms. Among them, flavone and its derivatives exhibited moderate antifungal activity, 3,2'-dihydroxyflavone (3,2'-DHF) at 1 μg/mL exhibited strong antibiofilm activity (MIC 50 μg/mL). In addition, 3,2'-DHF dramatically inhibited cell aggregation and germ tube/hyphae formation. Transcriptomic analyses revealed that flavone and 3,2'-DHF behaved differently, as 3,2'-DHF downregulated the expressions of germ tube/hyphae-forming and biofilm-related genes (ECE1, HWP1, TEC1, and UME6) but upregulated the biofilm/hyphal regulators (CHK1, IFD6, UCF1, and YWP1). Tests evaluating toxicity with plant and nematode models revealed that flavone and 3,2'-DHF exhibited mild toxicity. Current results indicate that hydroxylated flavone derivatives can enhance anti-fungal and antibiofilm activities and provide a source of potential anti-fungal agents against drug-resistant C. albicans.
Collapse
Affiliation(s)
| | | | - Inji Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
2
|
Almeida NLM, Peralta LCF, Pontes FML, Rinaldo D, Porto VC, Lara VS. Anti-Candida activity and biocompatibility of silver nanoparticles associated with denture glaze: a new approach to the management of denture stomatitis. Folia Microbiol (Praha) 2024; 69:1229-1246. [PMID: 38652435 DOI: 10.1007/s12223-024-01161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The association of silver nanoparticles (AgNps) to sealant agent Palaseal® can be a promising alternative for complete denture wearers who may develop denture stomatitis (DS). The study aimed to evaluate the anti-Candida and biocompatible potential of silver nanoparticles synthesized by three routes associated with denture glaze to prevent and/or treat oral candidiasis. Surface acrylic resin specimens were treated with different associations of glaze with AgNps (VER+AgUV, VER+AgTurk and VER+AgGm). As controls, specimens were treated with glaze+nystatin (VER+Nyst), glaze only (VER) or submerged in PBS (PBS). Afterwards, Candida albicans biofilm was developed for 24 h, 15 d and 30 d. Subsequently, the biofilm was quantified by CFU/mL, XTT assay and confocal laser scanning microscopy. Fibroblasts were submitted to conditioned medium with the same associations for 24, 48 and 72 h and LIVE/DEAD® viability test was carried out. Regardless of the period, there was a significant reduction (p < 0.01) of viable fungal cells load, as well as inhibition of fungal metabolic activity, in specimens treated with glaze+AgNps associations, compared to VER and PBS. The anti-Candida effects of the associations were similar to the VER+Nyst group, with emphasis on VER+AgGm, which showed the highest percentage values of non-viable fungal cells maintained over time. The associations did not prove toxicity to fibroblasts. The AgNps exerted antimicrobial activity against C. albicans biofilms and are biocompatible. The most effective results were achieved with the association of glaze+silver nanoparticles synthesized by the green chemistry method (AgGm), proving to be an innovative alternative in the management of DS.
Collapse
Affiliation(s)
- Nara Lígia Martins Almeida
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, 17012-901, Brazil
| | - Laura Catalí Ferreira Peralta
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil
| | | | - Daniel Rinaldo
- Department of Chemistry, São Paulo State University (UNESP), Bauru 17033-360, Brazil
| | - Vinicius Carvalho Porto
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, 17012-901, Brazil.
| |
Collapse
|
3
|
Shahina Z, Dahms TES. A Comparative Review of Eugenol and Citral Anticandidal Mechanisms: Partners in Crimes Against Fungi. Molecules 2024; 29:5536. [PMID: 39683696 DOI: 10.3390/molecules29235536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Candida albicans is an emerging multidrug-resistant opportunistic pathogen that causes candidiasis, superficial infections on the mucosa, nails or skin, and life-threatening candidemia in deep tissue when disseminated through the bloodstream. Recently, there has been a sharp rise in resistant strains, posing a considerable clinical challenge for the treatment of candidiasis. There has been a resurged interest in the pharmacological properties of essential oils and their active components, for example, monoterpenes with alcohol (-OH) and aldehyde (-CHO) groups. Eugenol and citral have shown promising in vitro and in vivo activity against Candida species. Although there is substantial research on the efficacy of these essential oil components against C. albicans, a detailed knowledge of their mycological mechanisms is lacking. To explore the broad-spectrum effects of EOs, it is more meaningful and rational to study the whole essential oil, along with some of its major components. This review provides a comprehensive overview of eugenol and citral anticandidal and antivirulence activity, alone and together, along with the associated mechanisms and limitations of our current knowledge.
Collapse
Affiliation(s)
- Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
4
|
Hong S, Kim SK, Chung CH, Yun CH, Lee J, Cho CS, Huh WK. Pullulan nanoparticles inhibit the pathogenicity of Candida albicans by regulating hypha-related gene expression. Microbiol Spectr 2024; 12:e0104824. [PMID: 39540747 PMCID: PMC11619324 DOI: 10.1128/spectrum.01048-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Candida albicans is a prevalent opportunistic pathogenic fungus that resides in the skin and gastrointestinal (GI) tract of humans. Under specific conditions, C. albicans cells transition from a commensal to a pathogenic state, leading to both superficial and invasive infections. Although systemic candidiasis poses a life-threatening risk, a limited number of antifungal drugs are employed for its treatment. Moreover, the emergence of resistant strains to antifungal agents underscores the pressing need for new treatment options. In this study, we propose the use of polysaccharide nanoparticles as a strategy for treating candidiasis. We synthesized phthalic pullulan nanoparticles (PPNPs) and examined their ability to inhibit the pathogenicity of C. albicans. We observed that PPNPs inhibit hyphal growth, adhesion to abiotic surfaces, and biofilm formation of C. albicans in a dose-dependent manner. This inhibitory effect is mediated by transcriptional modulation, particularly the downregulation of hypha-related genes and the upregulation of stress-responsive genes, involving the Ras/cAMP/PKA signaling pathway. Furthermore, we observed that PPNPs inhibit the adhesion of C. albicans to human epithelial cells without inducing toxicity in human cells. In addition, PPNPs inhibited the in vivo pathogenicity of C. albicans in Caenorhabditis elegans, suggesting an antagonistic effect on candidiasis. Our findings suggest that PPNPs exhibit inhibitory effects on C. albicans biofilm formation and in vivo pathogenicity, indicating their potential as a novel therapeutic agent for candidiasis. IMPORTANCE The pathogenic process of Candida albicans, the primary causative species of candidiasis, involves hyphal growth, biofilm formation, and secretion of virulence factors. Of these factors, the biofilm, created by the secretion of extracellular matrix from adherent cells, shields cells from external threats, enabling them to withstand high concentrations of antifungal agents. Therefore, suppressing biofilm formation is a crucial aspect of combating candidiasis. This study developed phthalic pullulan nanoparticles (PPNPs) as a novel material for inhibiting C. albicans' pathogenicity. PPNPs were internalized within Candida cells and reduced pathogenicity at the gene expression level, resulting in reduced in vitro biofilm formation, adhesion to human cells, and mortality of infected Caenorhabditis elegans. Moreover, PPNPs exhibited these effects without toxicity to human cells and host animals. These findings not only indicate that PPNPs can be employed to hinder in vitro biofilm formation but also suggest their potential as a novel treatment for candidiasis.
Collapse
Affiliation(s)
- Sujin Hong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Seo-Kyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Christine H. Chung
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junho Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Chong-Su Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Pezzotti G, Adachi T, Imamura H, Ikegami S, Kitahara R, Yamamoto T, Kanamura N, Zhu W, Ishibashi KI, Okuma K, Mazda O, Komori A, Komatsuzawa H, Makimura K. Raman Spectroscopic Algorithms for Assessing Virulence in Oral Candidiasis: The Fight-or-Flight Response. Int J Mol Sci 2024; 25:11410. [PMID: 39518963 PMCID: PMC11545699 DOI: 10.3390/ijms252111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to test the effectiveness of Raman spectroscopy in the characterization of the degrees of physiological stress and virulence in clinical swab samples collected from patients affected by oral candidiasis. Raman experiments were conducted on a series of eight isolates, both in an as-collected state and after biofilm purification followed by 3 days of culture. The outputs were matched to optical microscopy observations and the results of conventional chromogenic medium assays. A statistically significant series of ten Raman spectra were collected for each clinical sample, and their averages were examined and interpreted as multiomic snapshots for albicans and non-albicans species. Spectroscopic analyses based on selected Raman parameters previously developed for standard Candida samples revealed an extreme structural complexity for all of the clinical samples, which arose from the concurrent presence of a variety of biofilms and commensal bacteria in the samples, as well as a number of other biochemical circumstances affecting the cells in their physiological stress state. However, three Raman algorithms survived such complexity, which enabled insightful classifications of Candida cells from clinical samples, in terms of their physiological stress and morphogenic state, membrane permeability, and virulence. These three characteristics, in turn, converged into a seemingly "fight or flight" response of the Candida cells. Although yet preliminary, the present study points out criticalities and proposes solutions regarding the potential utility of Raman spectroscopy in fast bedside analyses of surveillance samples.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
- Department of Microbiology, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
- Department of Dentistry, Kyoto Prefectural Rehabilitation Hospital for Mentally and Physically Disabled, Naka Ashihara, Joyo, Kyoto 610-0113, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Saki Ikegami
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Microbiology, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
| | - Ryo Kitahara
- Structural Biology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Kusatsu 525-8577, Japan;
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
| | - Ken-ichi Ishibashi
- Laboratory of Host Defense and Responses, Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Saitama, Sakado, Saitama 350-0288, Japan;
| | - Kazu Okuma
- Department of Microbiology, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (T.A.); (O.M.)
| | - Aya Komori
- Medical Mycology, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (A.K.); (K.M.)
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (A.K.); (K.M.)
- Teikyo University Institute of Medical Mycology (TIMM), 359 Otsuka, Hachijoji, Tokyo 192-0395, Japan
| |
Collapse
|
6
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
7
|
Villanueva-Cotrina F, Bejar V, Guevara J, Cajamarca I, Medina C, Mujica L, Lescano AG. Biofilm formation and increased mortality among cancer patients with candidemia in a Peruvian reference center. BMC Infect Dis 2024; 24:1145. [PMID: 39395965 PMCID: PMC11470705 DOI: 10.1186/s12879-024-10044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Candidemia is an invasive mycosis with an increasing global incidence and high mortality rates in cancer patients. The production of biofilms by some strains of Candida constitutes a mechanism that limits the action of antifungal agents; however, there is limited and conflicting evidence about its role in the risk of death. This study aimed to determine whether biofilm formation is associated with mortality in cancer patients with candidemia. METHODS This retrospective cohort study included patients treated at Peru's oncologic reference center between June 2015 and October 2017. Data were collected by monitoring patients for 30 days from the diagnosis of candidemia until the date of death or hospital discharge. Statistical analyses evaluated the association between biofilm production determined by XTT reduction and mortality, adjusting for demographic, clinical, and microbiological factors assessed by the hospital routinary activities. Survival analysis and bivariate and multivariate Cox regression were used, estimating the hazard ratio (HR) as a measure of association with a significance level of p < 0.05. RESULTS A total of 140 patients with candidemia were included in the study. The high mortality observed on the first day of post-diagnosis follow-up (81.0%) among 21 patients who were not treated with either antifungal or antimicrobial drugs led to stratification of the analyses according to whether they received treatment. In untreated patients, there was a mortality gradient in patients infected with non-biofilm-forming strains vs. low/medium and high-level biofilm-forming strains (25.0%, 66.7% and 82.3%, respectively, p = 0.049). In treated patients, a high level of biofilm formation was associated with increased mortality (HR, 3.92; 95% p = 0.022), and this association persisted after adjusting for age, comorbidities, and hospital emergency admission (HR, 6.59; CI: 1.87-23.24, p = 0.003). CONCLUSIONS The association between candidemia with in vitro biofilm formation and an increased risk of death consistently observed both in patients with and without treatment, provides another level of evidence for a possible causal association. The presence of comorbidities and the origin of the hospital emergency, which reflect the fragile clinical condition of the patients, and increasing age above 15 years were associated with a higher risk of death.
Collapse
Affiliation(s)
- Freddy Villanueva-Cotrina
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru.
- Mycology Laboratory, Instituto de Medicina Tropical Daniel Alcides Carrion - Universidad Nacional Mayor de San Marcos, Lima, Peru.
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Medicina Regional - Universidad Nacional del Nordeste. CONICET, Chaco, Argentina.
| | - Vilma Bejar
- Mycology Laboratory, Instituto de Medicina Tropical Daniel Alcides Carrion - Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - José Guevara
- Mycology Laboratory, Instituto de Medicina Tropical Daniel Alcides Carrion - Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ines Cajamarca
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | - Cyntia Medina
- Mycology Laboratory, Instituto de Medicina Tropical Daniel Alcides Carrion - Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Luis Mujica
- Mycology Laboratory, Instituto de Medicina Tropical Daniel Alcides Carrion - Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Andres G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
8
|
Chen Y, Gao Y, Yin J. Ascorbic Acid Enhances the Inhibitory Effect of Theasaponins against Candida albicans. Int J Mol Sci 2024; 25:10661. [PMID: 39408989 PMCID: PMC11476360 DOI: 10.3390/ijms251910661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Combination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Theasaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our previous studies prove that theasaponins display inhibitory activity against C. albicans. Ascorbic acid (VC) is a vitamin found in many plants that shows potential in combination therapy. However, whether VC enhances the activity of theasaponins remains unclear. In this study, the checkerboard micro-dilution method was used to assess the effect of VC (0-80 mmol/L) on the anti-C. albicans effect of theasaponins (0-1000 μg/mL). Then, the effects of theasaponins (31.25 μg/mL), VC (80 mmol/L), and theasaponins (31.25 μg/mL) + VC (80 mmol/L) on C. albicans planktonic cells and different stages of biofilm formation were assessed. Transcriptomic analysis was conducted to investigate the molecular mechanisms. According to the results, VC enhanced the anti-planktonic and anti-biofilm effect of theasaponins against C. albicans. The minimum inhibitory concentration of theasaponins was significantly decreased and the fungicidal efficiency was increased with the addition of VC. VC remarkably aggravated the suppression of theasaponins with regard to various virulence factors of C. albicans, including adhesion, early biofilm formation, mature biofilm, cell surface hydrophobicity, and phospholipase activity. Compared with the theasaponins or VC groups, the level of intracellular reactive oxygen species was higher, while the levels of mitochondrial membrane potential and adenosine triphosphate were lower in the combination group, suggesting more severe oxidative stress, mitochondrial injury, and energy deficiency. Transcriptomic analysis revealed that the combination predominantly suppressed the pathways of glycolysis, glycerophospholipid metabolism, glutathione metabolism, and cysteine and methionine metabolism. This implied that energy deficiency and redox imbalance were associated with the anti-C. albicans activity of the combination. These results prove that VC enhances the inhibitory effect of theasaponins against C. albicans and that the combination has the potential to be used as a topical antifungal therapy or disinfectant.
Collapse
Affiliation(s)
- Yuhong Chen
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
| |
Collapse
|
9
|
Erfaninejad M, Mahmoudabadi A, Hashemzadeh M, Maraghi E, Fatahinia M. Characteristics of Candida albicans Derived From HIV-Positive Individuals With Oral Candidiasis: Genotyping, Phenotypic Variation, Antifungal Susceptibility, and Biofilm Formation. J Clin Lab Anal 2024; 38:e25103. [PMID: 39297751 PMCID: PMC11520941 DOI: 10.1002/jcla.25103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Oral candidiasis (OC) is one of the most common mucosal infections in those afflicted with HIV/AIDS. This study aimed to provide detailed information on the phenotype, genotype, antifungal susceptibility, and biofilm formation ability of oral Candida albicans isolated from HIV-infected patients with OC. METHODS A total of 25 C. albicans isolates were collected from oral lesions of HIV-infected patients referred to Behavioral Diseases Counseling Center affiliated with Ahvaz Jundishapur University of Medical Sciences, Iran. The antifungal susceptibility testing was done according to CLSI M27 guideline (fourth edition). The crystal violet method was used to evaluate the biofilm formation ability of isolates. Different phenotypes were identified on yeast extract-peptone-dextrose agar medium supplemented with phloxine B. Genotyping analysis of the isolates was performed using high-resolution melting (HRM) assays and ABC genotyping. RESULTS The highest and lowest susceptibility of the C. albicans isolates was found for fluconazole 24 (96%) and ITC 18 (72%), respectively. Forty-eight percent of the isolates had high biofilm formation ability and exhibited gray cell type. The most common genotype was genotype B (52%). HRM analysis of HIS3, EF3, and CDC3 markers showed three, four, and five different groups, respectively. CONCLUSION Investigating the phenotype, antifungal susceptibility and biofilm formation ability of the C. albicans isolates obtained from oral lesions of HIV-infected patients revealed that the dominant genotypes in the current research could cause more serious infections from the oral source. We recommend further research with a larger sample size to determine the molecular epidemiology of C. albicans among HIV patients in Iran.
Collapse
Affiliation(s)
- Maryam Erfaninejad
- Department of Basic Medical SciencesShoushtar Faculty of Medical SciencesShoushtarIran
| | - Ali Zarei Mahmoudabadi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Medical Mycology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mohammad Hashemzadeh
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Elham Maraghi
- Department of Biostatistics and Epidemiology, School of HealthAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mahnaz Fatahinia
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Medical Mycology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
10
|
Soriano-Abarca M, Tapia JC, Cáceres-Valdiviezo MJ, Morey-León G, Fernández-Cadena J, Díaz-Cevallos L, Andrade-Molina D. Virulence-Related Genes Expression in Planktonic Mixed Cultures of Candida albicans and Non-Albicans Candida Species. Microb Physiol 2024; 34:243-254. [PMID: 39265543 DOI: 10.1159/000540991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
INTRODUCTION Candida albicans is the most common opportunistic pathogen causing fungal infections worldwide, especially in high-risk patients. Its pathogenicity is related to virulence factors gene expression, such as hyphal growth (HWP1), cell adhesion (ALS3), and protease secretion (SAP1) during infection spreading mechanisms. In recent years, an increase in non-albicans Candida infections has been reported, which may present coinfection or competitive interactions with C. albicans, potentially aggravating the patient's condition. This study aims to evaluate the expression of genes related to virulence factors of C. albicans and non-albicans Candida during planktonic stage. METHODS C. albicans (ATCC MYA-3573) as well as with three clinical strains (C. albicans DCA53, C. tropicalis DCT6, and C. parapsilosis DCP1) isolated from blood samples, were grown in 24-well plates at 37°C for 20 h, either in monocultures or mixed cultures. Quantitative real-time polymerase chain reaction was used to evaluate the expression levels of the genes HWP1, ALS3, and SAP1 in cells collected during the planktonic stage. In addition, hyphal filamentation was observed using a Scanning Electron Microscope. RESULTS The overexpression of HWP1 and ASL3 genes in mixed growth conditions between C. albicans and non-albicans Candida species suggests a synergistic relationship as well as an increased capacity for hyphal growth and adhesion. In contrast, C. parapsilosis versus C. tropicalis interaction shows an antagonistic relationship during mixed culture, suggesting a decreased virulence profile of C. parapsilosis during initial coinfection with C. tropicalis. CONCLUSION The expression of HWP1, ALS3, and SAP1 genes associated with virulence factors varies under competitive conditions among species of the genus Candida during planktonic stage.
Collapse
Affiliation(s)
- Melanie Soriano-Abarca
- OMICS Science Laboratory, Faculty of Health Science, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Juan Carlos Tapia
- OMICS Science Laboratory, Faculty of Health Science, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Gabriel Morey-León
- OMICS Science Laboratory, Faculty of Health Science, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Juan Fernández-Cadena
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Linda Díaz-Cevallos
- National Institute of Public Health Research (INSPI), Specialized Platform for Electron and Confocal Microscopy, Guayaquil, Ecuador
| | - Derly Andrade-Molina
- OMICS Science Laboratory, Faculty of Health Science, Universidad Espíritu Santo, Samborondón, Ecuador
| |
Collapse
|
11
|
Calvi GDS, Cartaxo GNJ, Carretoni QL, da Silva ALM, de Moraes DN, Pradella JGDC, Costa MS. Inhibition of Development and Metabolism of Dual-Species Biofilms of Candida albicans and Candida krusei ( Pichia kudriavzevii) by Organoselenium Compounds. Pharmaceuticals (Basel) 2024; 17:1078. [PMID: 39204183 PMCID: PMC11359205 DOI: 10.3390/ph17081078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Although Candida albicans is the most frequently identified Candida species in clinical settings, a significant number of infections related to the non-albicans Candida (NAC) species, Candida krusei, has been reported. Both species are able to produce biofilms and have been an important resistance-related factor to antimicrobial resistance. In addition, the microbial relationship is common in the human body, contributing to the formation of polymicrobial biofilms. Considering the great number of reports showing the increase in cases of resistance to the available antifungal drugs, the development of new and effective antifungal agents is critical. The inhibitory effect of Organoselenium Compounds (OCs) on the development of Candida albicans and Candida krusei was recently demonstrated, supporting the potential of these compounds as efficient antifungal drugs. In addition, OCs were able to reduce the viability and the development of biofilms, a very important step in colonization and infection caused by fungi. Thus, the objective of this study was to investigate the effect of the Organoselenium Compounds (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2 on the development of dual-species biofilms of Candida albicans and Candida krusei produced using either RPMI-1640 or Sabouraud Dextrose Broth (SDB) media. The development of dual-species biofilms was evaluated by the determination of both metabolic activity, using a metabolic assay based on the reduction of XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt) assay and identification of either Candida albicans and Candida krusei on CHROMagar Candida medium. Biofilm formation using RPMI-1640 was inhibited in 90, 55, and 20% by 30 µM (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2, respectively. However, biofilms produced using SDB presented an inhibition of 62, 30 and 15% in the presence of 30 µM (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2, respectively. The metabolic activity of 24 h biofilms was inhibited by 35, 30 and 20% by 30 µM (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2, respectively, with RPMI-1640; however, 24 h biofilms formed using SDB were not modified by the OCs. In addition, a great reduction in the number of CFUs of Candida albicans (93%) in biofilms produced using RPMI-1640 in the presence of 30 µM (p-MeOPhSe)2 was observed. However, biofilms formed using SDB and treated with 30 µM (p-MeOPhSe)2 presented a reduction of 97 and 69% in the number of CFUs of Candida albicans and Candida krusei, respectively. These results demonstrated that Organoselenium Compounds, mainly (p-MeOPhSe)2, are able to decrease the metabolic activity of dual-species biofilms by reducing both Candida albicans and Candida krusei cell number during biofilm formation using either RPMI-1640 or SDB. Taken together, these results demonstrated the potential of the OCs to inhibit the development of dual-species biofilms of Candida albicans and Candida krusei.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maricilia Silva Costa
- Instituto de Pesquisa & Desenvolvimento—IP&D, Universidade do Vale do Paraíba—UNIVAP, Av. Shishima Hifumi, 2911, São José dos Campos 12244-390, SP, Brazil; (G.d.S.C.); (G.N.J.C.); (Q.L.C.); (A.L.M.d.S.); (D.N.d.M.); (J.G.d.C.P.)
| |
Collapse
|
12
|
Gharieb MM, Rizk A, Elfeky N. Anticandidal activity of a wild Bacillus subtilis NAM against clinical isolates of pathogenic Candida albicans. ANN MICROBIOL 2024; 74:23. [DOI: 10.1186/s13213-024-01764-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Resistance to antifungal medications poses a significant obstacle in combating fungal infections. The development of novel therapeutics for Candida albicans is necessary due to the increasing resistance of candidiasis to the existing medications. The utilization of biological control is seen as a more advantageous and less hazardous strategy therefore the objective of this study is to identify the antifungal properties of Bacillus subtilis against pathogenic C. albicans.
Results
We conducted a study to evaluate the antifungal properties of three bacterial isolates against the human pathogen Candida albicans. One of the bacterial isolates exhibited a potent antifungal activity against this fungal pathogen. This bacterium was identified as Bacillus subtilis based on the 16Sr RNA gene sequence. It exhibited inhibitory efficacy ranging from 33.5 to 44.4% against 15 Candida isolates. The optimal incubation duration for achieving the maximum antifungal activity was determined to be 48 h, resulting in a mean inhibition zone diameter of 29 ± 0.39 mm. The Potato Dextrose agar (PDA) medium was the best medium for the most effective antifungal activity. Incubation temperature of 25oC and medium pH value of 8.0 were the most favorable conditions for maximum antagonistic activity that resulted fungal growth inhibition of 40 ± 0.16 and 36 ± 0.94 mm respectively. Furthermore, the addition of 10.5 mg/ml of bacterial filtrate to C. albicans colonies resulted in 86.51%. decrease in the number of germinated cells. The fungal cell ultrastructural responses due to exposure to B. subtilis filtrate after 48 h were investigated using transmission electron microscopy (TEM). It revealed primary a drastic abnormality that lead to cellular disintegration including folding and lysis of the cell wall, total collapse of the yeast cells, and malformed germ tube following the exposure to the filtrate. However, the control culture treatment had a characteristic morphology of the normal fungal cells featuring a consistently dense central region, a well-organized nucleus, and a cytoplasm containing several components of the endomembrane system. The cells were surrounded by a uniform and intact cell wall.
Conclusion
The current study demonstrates a notable antifungal properties of B. subtilis against C. albicans as a result of production of bioactive components of the bacterial exudate. This finding could be a promising natural antifungal agent that could be utilized to combat C. albicans.
Collapse
|
13
|
Imam MW, Luqman S. Unveiling the mechanism of essential oil action against skin pathogens: from ancient wisdom to modern science. Arch Microbiol 2024; 206:347. [PMID: 38985339 DOI: 10.1007/s00203-024-03986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 07/11/2024]
Abstract
Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.
Collapse
Affiliation(s)
- Md Waquar Imam
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India.
| |
Collapse
|
14
|
Kumar D, Kumar A. Molecular Determinants Involved in Candida albicans Biofilm Formation and Regulation. Mol Biotechnol 2024; 66:1640-1659. [PMID: 37410258 DOI: 10.1007/s12033-023-00796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Candida albicans is known for its pathogenicity, although it lives within the human body as a commensal member. The commensal nature of C. albicans is well controlled and regulated by the host's immune system as they live in the harmonized microenvironment. However, the development of certain unusual microhabitat conditions (change in pH, co-inhabiting microorganisms' population ratio, debilitated host-immune system) pokes this commensal fungus to transform into a pathogen in such a way that it starts to propagate very rapidly and tries to breach the epithelial barrier to enter the host's systemic circulations. In addition, Candida is infamous as a major nosocomial (hospital-acquired infection) agent because it enters the human body through venous catheters or medical prostheses. The hysterical mode of C. albicans growth builds its microcolony or biofilm, which is pathogenic for the host. Biofilms propose additional resistance mechanisms from host immunity or extracellular chemicals to aid their survival. Differential gene expressions and regulations within the biofilms cause altered morphology and metabolism. The genes associated with adhesiveness, hyphal/pseudo-hyphal growth, persister cell transformation, and biofilm formation by C. albicans are controlled by myriads of cell-signaling regulators. These genes' transcription is controlled by different molecular determinants like transcription factors and regulators. Therefore, this review has focused discussion on host-immune-sensing molecular determinants of Candida during biofilm formation, regulatory descriptors (secondary messengers, regulatory RNAs, transcription factors) of Candida involved in biofilm formation that could enable small-molecule drug discovery against these molecular determinants, and lead to disrupt the well-structured Candida biofilms effectively.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
15
|
Wang Z, Zhang Q, Zhang H, Lu Y. Roles of alcohol dehydrogenase 1 in the biological activities of Candida albicans. Crit Rev Microbiol 2024:1-15. [PMID: 38916139 DOI: 10.1080/1040841x.2024.2371510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Candida albicans stands as the foremost prevalent human commensal pathogen and a significant contributor to nosocomial fungal infections. In the metabolism of C. albicans, alcohol dehydrogenase 1 (Adh1) is one of the important enzymes that converts acetaldehyde produced by pyruvate decarboxylation into ethanol at the end of glycolysis. Leveraging the foundational processes of alcoholic fermentation, Adh1 plays an active role in multiple biological phenomena, including biofilm formation, interactions between different species, the development of drug resistance, and the potential initiation of gastrointestinal cancer. Additionally, Adh1 within C. albicans has demonstrated associations with regulating the cell cycle, stress responses, and various intracellular states. Furthermore, Adh1 is extracellularly localized on the cell wall surface, where it plays roles in processes such as tissue invasion and host immune responses. Drawing from an analysis of ADH1 gene structure, expression patterns, and fundamental functions, this review elucidates the intricate connections between Adh1 and various biological processes within C. albicans, underscoring its potential implications for the prevention, diagnosis, and treatment of candidiasis.
Collapse
Affiliation(s)
- Ziqi Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haoying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Hassan FF, Mushrif MH, Suleiman AA. Investigating novel antifungal strategies through molecular docking & dynamics simulations of oxidative stress response in Candida albicans. NETWORK MODELING ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2024; 13:31. [DOI: 10.1007/s13721-024-00464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 01/03/2025]
|
17
|
El-Gazzar N, Elez RMMA, Attia ASA, Abdel-Warith AWA, Darwish MM, Younis EM, Eltahlawi RA, Mohamed KI, Davies SJ, Elsohaby I. Antifungal and antibiofilm effects of probiotic Lactobacillus salivarius, zinc nanoparticles, and zinc nanocomposites against Candida albicans from Nile tilapia ( Oreochromis niloticus), water and humans. Front Cell Infect Microbiol 2024; 14:1358270. [PMID: 38895734 PMCID: PMC11183309 DOI: 10.3389/fcimb.2024.1358270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Candida albicans (C. albicans) can form biofilms; a critical virulence factor that provides effective protection from commercial antifungals and contributes to public health issues. The development of new antifungal therapies, particularly those targeting biofilms, is imperative. Thus, this study was conducted to investigate the antifungal and antibiofilm effects of Lactobacillus salivarius (L. salivarius), zinc nanoparticles (ZnNPs) and nanocomposites (ZnNCs) on C. albicans isolates from Nile tilapia, fish wash water and human fish sellers in Sharkia Governorate, Egypt. Methods A cross-sectional study collected 300 samples from tilapia, fish wash water, and fish sellers (100 each). Probiotic L. salivarius was immobilized with ZnNPs to synthesize ZnNCs. The study assessed the antifungal and antibiofilm activities of ZnNPs, L. salivarius, and ZnNCs compared to amphotericin (AMB). Results Candida spp. were detected in 38 samples, which included C. albicans (42.1%), C. glabrata (26.3%), C. krusei (21.1%), and C. parapsilosis (10.5%). A total of 62.5% of the isolates were resistant to at least one antifungal agent, with the highest resistance to nystatin (62.5%). However, 75% of the isolates were highly susceptible to AMB. All C. albicans isolates exhibited biofilm-forming capabilities, with 4 (25%) isolates showing strong biofilm formation. At least one virulence-associated gene (RAS1, HWP1, ALS3, or SAP4) was identified among the C. albicans isolates. Probiotics L. salivarius, ZnNPs, and ZnNCs displayed antibiofilm and antifungal effects against C. albicans, with ZnNCs showing significantly higher inhibitory activity. ZnNCs, with a minimum inhibitory concentration (MIC) of 10 µg/mL, completely reduced C. albicans biofilm gene expression. Additionally, scanning electron microscopy images of C. albicans biofilms treated with ZnNCs revealed asymmetric, wrinkled surfaces, cell deformations, and reduced cell numbers. Conclusion This study identified virulent, resistant C. albicans isolates with strong biofilm-forming abilities in tilapia, water, and humans, that pose significant risks to public health and food safety.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Manal M. Darwish
- Medical Microbiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab A. Eltahlawi
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Rai LS, Chauvel M, Sanchez H, van Wijlick L, Maufrais C, Cokelaer T, Sertour N, Legrand M, Sanyal K, Andes DR, Bachellier-Bassi S, d’Enfert C. Metabolic reprogramming during Candida albicans planktonic-biofilm transition is modulated by the transcription factors Zcf15 and Zcf26. PLoS Biol 2024; 22:e3002693. [PMID: 38905306 PMCID: PMC11221756 DOI: 10.1371/journal.pbio.3002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/03/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
Candida albicans is a commensal of the human microbiota that can form biofilms on implanted medical devices. These biofilms are tolerant to antifungals and to the host immune system. To identify novel genes modulating C. albicans biofilm formation, we performed a large-scale screen with 2,454 C. albicans doxycycline-dependent overexpression strains and identified 16 genes whose overexpression significantly hampered biofilm formation. Among those, overexpression of the ZCF15 and ZCF26 paralogs that encode transcription factors and have orthologs only in biofilm-forming species of the Candida clade, caused impaired biofilm formation both in vitro and in vivo. Interestingly, overexpression of ZCF15 impeded biofilm formation without any defect in hyphal growth. Transcript profiling, transcription factor binding, and phenotypic microarray analyses conducted upon overexpression of ZCF15 and ZCF26 demonstrated their role in reprogramming cellular metabolism by regulating central metabolism including glyoxylate and tricarboxylic acid cycle genes. Taken together, this study has identified a new set of biofilm regulators, including ZCF15 and ZCF26, that appear to control biofilm development through their specific role in metabolic remodeling.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Department of Life Sciences, GITAM University, Bengaluru, Karnataka 561203, India
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Lasse van Wijlick
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Mélanie Legrand
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN-80, Sector-V, Salt Lake City, Kolkata, India
| | - David R. Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
19
|
Alawadi A, AbdulAzees PA, Lin CY, Haney SJ, Hanlon JP, Angelara K, Taft RM, Amaechi BT. Application of organoselenium in inhibiting Candida albicans biofilm adhesion on 3D printed denture base material. J Prosthodont 2024; 33:460-466. [PMID: 37422719 DOI: 10.1111/jopr.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Denture Stomatitis, a chronic mucosal inflammation associated with Candida albicans, is common among denture wearers. Several health conditions have been linked to chronic Candida infections. The complex, multifactorial nature of denture stomatitis requires the continuous pursuit of effective long-term solutions. The present in vitro study investigated the effect of incorporating organoselenium into 3D-printed denture base resin on C. albicans adhesion and biofilm formation. MATERIALS AND METHODS Thirty disks were fabricated using 3D-printed denture base resin and assigned to three experimental groups (10/group): disks without organoselenium (control), disks with 0.5% organoselenium (0.5%SE), and disks with 1% organoselenium (1%SE). Each disk was incubated with approximately 1 × 106 cells/mL of C. albicans for 48 h. Microbial viability (CFU/mL) was quantified by the spread plate method, while Confocal laser scanning microscopy and scanning electron microscope were performed for quantifying the biofilm thickness and examining biofilm morphology, respectively. Data were analyzed using One-way ANOVA with Tukey's multiple comparisons test. RESULTS CFU/mL was significantly (p < 0.05) higher in Control when compared with 0.5%SE and 1%SE, but no significant difference between 0.5%SE and 1%SE. A similar trend was observed with biofilm thickness except that there was no significant difference between the Control and 0.5%SE. There was C. albicans biofilm adhesion on the Control disks, with yeast cells and hyphae formation, whereas on 0.5%SE and 1%SE, there was inhibition of yeast cells transition to hyphae formation. CONCLUSIONS Incorporation of organoselenium into 3D-printed denture base resin was effective in reducing C. albicans biofilm formation and growth on denture base material.
Collapse
Affiliation(s)
- Ahmad Alawadi
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Parveez Ahmed AbdulAzees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Chun-Yen Lin
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
- Department of Family Dentistry and Oral Diagnosis, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Stephan J Haney
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - John P Hanlon
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Konstantina Angelara
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Robert M Taft
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Bennett T Amaechi
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| |
Collapse
|
20
|
Zhu X, Jin F, Yang G, Zhuang T, Zhang C, Zhou H, Niu X, Wang H, Wu D. Mitochondrial Protease Oct1p Regulates Mitochondrial Homeostasis and Influences Pathogenicity through Affecting Hyphal Growth and Biofilm Formation Activities in Candida albicans. J Fungi (Basel) 2024; 10:391. [PMID: 38921377 PMCID: PMC11204688 DOI: 10.3390/jof10060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Mitochondria, as the core metabolic organelles, play a crucial role in aerobic respiration/biosynthesis in fungi. Numerous studies have demonstrated a close relationship between mitochondria and Candida albicans virulence and drug resistance. Here, we report an octapeptide-aminopeptidase located in the mitochondrial matrix named Oct1p. Its homolog in the model fungus Saccharomyces cerevisiae is one of the key proteins in maintaining mitochondrial respiration and protein stability. In this study, we utilized evolutionary tree analysis, gene knockout experiments, mitochondrial function detection, and other methods to demonstrate the impact of Oct1p on the mitochondrial function of C. albicans. Furthermore, through transcriptome analysis, real-time quantitative PCR, and morphological observation, we discovered that the absence of Oct1p results in functional abnormalities in C. albicans, affecting hyphal growth, cell adhesion, and biofilm formation. Finally, the in vivo results of the infection of Galleria mellonella larvae and vulvovaginal candidiasis in mice indicate that the loss of Oct1p led to the decreased virulence of C. albicans. In conclusion, this study provides a solid theoretical foundation for treating Candida diseases, developing new targeted drugs, and serves as a valuable reference for investigating the connection between mitochondria and virulence in other pathogenic fungi.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Feng Jin
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Guangyuan Yang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Tian Zhuang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Cangcang Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Hanjing Zhou
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Xiaojia Niu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Hongchen Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, College of Nursing, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230038, China
| |
Collapse
|
21
|
Patil SB, Basrani ST, Chougule SA, Gavandi TC, Karuppayil SM, Jadhav AK. Butyl isothiocyanate exhibits antifungal and anti-biofilm activity against Candida albicans by targeting cell membrane integrity, cell cycle progression and oxidative stress. Arch Microbiol 2024; 206:251. [PMID: 38727840 DOI: 10.1007/s00203-024-03983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.
Collapse
Affiliation(s)
- Shivani Balasaheb Patil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sargun Tushar Basrani
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sayali Ashok Chougule
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Tanjila Chandsaheb Gavandi
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India.
| | - Ashwini Khanderao Jadhav
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India.
| |
Collapse
|
22
|
Wu Y, Sun A, Chen F, Zhao Y, Zhu X, Zhang T, Ni G, Wang R. Synthesis, structure-activity relationship and biological evaluation of indole derivatives as anti-Candida albicans agents. Bioorg Chem 2024; 146:107293. [PMID: 38507998 DOI: 10.1016/j.bioorg.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
In this work, we synthesized a series of indole derivatives to cope with the current increasing fungal infections caused by drug-resistant Candida albicans. All compounds were evaluated for antifungal activities against Candida albicans in vitro, and the structure-activity relationships (SARs) were analyzed. The results indicated that indole derivatives used either alone or in combination with fluconazole showed good activities against fluconazole-resistant Candida albicans. Further mechanisms studies demonstrated that compound 1 could inhibit yeast-to-hypha transition and biofilm formation of Candida albicans, increase the activity of the efflux pump, the damage of mitochondrial function, and the decrease of intracellular ATP content. In vivo studies, further proved the anti-Candida albicans activity of compound 1 by histological observation. Therefore, compound 1 could be considered as a novel antifungal agent.
Collapse
Affiliation(s)
- Yandan Wu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Aimei Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Fei Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Yin Zhao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Xianhu Zhu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Tianbao Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Guanghui Ni
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China.
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China.
| |
Collapse
|
23
|
Cheng W, Li F, Gao Y, Yang R. Fungi and tumors: The role of fungi in tumorigenesis (Review). Int J Oncol 2024; 64:52. [PMID: 38551162 PMCID: PMC10997370 DOI: 10.3892/ijo.2024.5640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Fungi inhabit different anatomic sites in the human body. Advances in omics analyses of host‑microbiome interactions have tremendously improved our understanding of the effects of fungi on human health and diseases such as tumors. Due to the significant enrichment of specific fungi in patients with malignant tumors, the associations between fungi and human cancer have attracted an increasing attention in recent years. Indeed, cancer type‑specific fungal profiles have been found in different tumor tissues. Importantly, fungi also influence tumorigenesis through multiple factors, such as host immunity and bioactive metabolites. Microbiome interactions, host factors and fungal genetic and epigenetic factors could be involved in fungal enrichment in tumor tissues and/or in the conversion from a commensal fungus to a pathogenic fungus. Exploration of the interactions of fungi with the bacterial microbiome and the host may enable them to be a target for cancer diagnosis and treatment. In the present review, the associations between fungi and human cancer, cancer type‑specific fungal profiles and the mechanisms by which fungi cause tumorigenesis were discussed. In addition, possible factors that can lead to the enrichment of fungi in tumor tissues and/or the conversion of commensal fungi to pathogenic fungi, as well as potential therapeutic and preventive strategies for tumors based on intratumoral fungi were summarized.
Collapse
Affiliation(s)
- Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Fan Li
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
24
|
Ahmady L, Gothwal M, Mukkoli MM, Bari VK. Antifungal drug resistance in Candida: a special emphasis on amphotericin B. APMIS 2024; 132:291-316. [PMID: 38465406 DOI: 10.1111/apm.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.
Collapse
Affiliation(s)
- Lailema Ahmady
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Manisha Gothwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
25
|
Arribas V, Monteoliva L, Hernáez ML, Gil C, Molero G. Unravelling the Role of Candida albicans Prn1 in the Oxidative Stress Response through a Proteomics Approach. Antioxidants (Basel) 2024; 13:527. [PMID: 38790632 PMCID: PMC11118716 DOI: 10.3390/antiox13050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Candida albicans Prn1 is a protein with an unknown function similar to mammalian Pirin. It also has orthologues in other pathogenic fungi, but not in Saccharomyces cerevisiae. Prn1 highly increases its abundance in response to H2O2 treatment; thus, to study its involvement in the oxidative stress response, a C. albicans prn1∆ mutant and the corresponding wild-type strain SN250 have been studied. Under H2O2 treatment, Prn1 absence led to a higher level of reactive oxygen species (ROS) and a lower survival rate, with a higher percentage of death by apoptosis, confirming its relevant role in oxidative detoxication. The quantitative differential proteomics studies of both strains in the presence and absence of H2O2 indicated a lower increase in proteins with oxidoreductase activity after the treatment in the prn1∆ strain, as well as an increase in proteasome-activating proteins, corroborated by in vivo measurements of proteasome activity, with respect to the wild type. In addition, remarkable differences in the abundance of some transcription factors were observed between mutant and wild-type strains, e.g., Mnl1 or Nrg1, an Mnl1 antagonist. orf19.4850, a protein orthologue to S. cerevisiae Cub1, has shown its involvement in the response to H2O2 and in proteasome function when Prn1 is highly expressed in the wild type.
Collapse
Affiliation(s)
- Victor Arribas
- University of Salamanca (USAL), 37008 Salamanca, Spain;
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Lucia Monteoliva
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - María Luisa Hernáez
- Proteomics Unit, Biological Techniques Center, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Concha Gil
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Proteomics Unit, Biological Techniques Center, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Gloria Molero
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
26
|
Roberts K, Osme A, De Salvo C, Zoli E, Herrada J, McCormick TS, Ghannoum M, Cominelli F, Di Martino L. Candida tropicalis Affects Candida albicans Virulence by Limiting Its Capacity to Adhere to the Host Intestinal Surface, Leading to Decreased Susceptibility to Colitis in Mice. J Fungi (Basel) 2024; 10:245. [PMID: 38667916 PMCID: PMC11051055 DOI: 10.3390/jof10040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Candida (C.) infections represent a serious health risk for people affected by inflammatory bowel disease. An important fungal virulence factor is the capacity of the fungus to form biofilms on the colonized surface of the host. This research study aimed to determine the effect of a C. tropicalis and C. albicans co-infection on dextran sodium sulfate (DSS)-induced colitis in mice. The colitis severity was evaluated using histology and a colonoscopy. The mice were mono-inoculated with C. albicans or C. tropicalis or co-challenged with both species. The mice were administered 3% DSS to induce acute colitis. The biofilm activity was assessed using (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl] 2H-tetrazoliumhydroxide (XTT) and dry-weight assays. The abundance of C. albicans in the colon tissues was assessed by immunohistochemistry. The co-challenged mice showed a decreased colitis severity compared to the mono-inoculated mice. The dry-weight assay demonstrated a marked decrease in C. albicans biofilm production in a C. albicans culture incubated with C. tropicalis supernatant. Immunohistochemical staining showed that C. albicans was more abundant in the mucosa of C. albicans mono-inoculated mice compared to the co-inoculated group. These data indicate an antagonistic microbial interaction between the two Candida species, where C. tropicalis may produce molecules capable of limiting the ability of C. albicans to adhere to the host intestinal surface, leading to a reduction in biofilm formation.
Collapse
Affiliation(s)
- Kyle Roberts
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA; (K.R.); (J.H.); (T.S.M.); (M.G.)
| | - Abdullah Osme
- Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Carlo De Salvo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (C.D.S.); (F.C.)
| | - Eleonora Zoli
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Janet Herrada
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA; (K.R.); (J.H.); (T.S.M.); (M.G.)
| | - Thomas S. McCormick
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA; (K.R.); (J.H.); (T.S.M.); (M.G.)
| | - Mahmoud Ghannoum
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA; (K.R.); (J.H.); (T.S.M.); (M.G.)
| | - Fabio Cominelli
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (C.D.S.); (F.C.)
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
27
|
Chuchulska B, Dimitrova M, Vlahova A, Hristov I, Tomova Z, Kazakova R. Comparative Analysis of the Mechanical Properties and Biocompatibility between CAD/CAM and Conventional Polymers Applied in Prosthetic Dentistry. Polymers (Basel) 2024; 16:877. [PMID: 38611135 PMCID: PMC11013798 DOI: 10.3390/polym16070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Modern media often portray CAD/CAM technology as widely utilized in the fabrication of dental prosthetics. This study presents a comparative analysis of the mechanical properties and biocompatibility of CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) polymers and conventional polymers commonly utilized in prosthetic dentistry. With the increasing adoption of CAD/CAM technology in dental laboratories and practices, understanding the differences in material properties is crucial for informed decision-making in prosthodontic treatment planning. Through a narrative review of the literature and empirical data, this study evaluates the mechanical strength, durability, esthetics, and biocompatibility of CAD/CAM polymers in comparison to traditional polymers. Furthermore, it examines the implications of these findings on the clinical outcomes and long-term success of prosthetic restorations. The results provide valuable insights into the advantages and limitations of CAD/CAM polymers, informing clinicians and researchers about their suitability for various dental prosthetic applications. This study underscores the considerable advantages of CAD/CAM polymers over conventional ones in terms of mechanical properties, biocompatibility, and esthetics for prosthetic dentistry. CAD/CAM technology offers improved mechanical strength and durability, potentially enhancing the long-term performance of dental prosthetics, while the biocompatibility of these polymers makes them suitable for a broad patient demographic, reducing the risk of adverse reactions. The practical implications of these findings for dental technicians and dentists are significant, as understanding these material differences enables tailored treatment planning to meet individual patient needs and preferences. Integration of CAD/CAM technology into dental practices can lead to more predictable outcomes and heightened patient satisfaction with prosthetic restorations.
Collapse
Affiliation(s)
- Bozhana Chuchulska
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Mariya Dimitrova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Angelina Vlahova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Ilian Hristov
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Zlatina Tomova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Rada Kazakova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
28
|
Chen Y, Gao Y, Li Y, Yin J. Anti-Biofilm Activity of Assamsaponin A, Theasaponin E1, and Theasaponin E2 against Candida albicans. Int J Mol Sci 2024; 25:3599. [PMID: 38612411 PMCID: PMC11011434 DOI: 10.3390/ijms25073599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Biofilm formation plays a crucial role in the pathogenesis of Candida albicans and is significantly associated with resistance to antifungal agents. Tea seed saponins, a class of non-ionic triterpenes, have been proven to have fungicidal effects on planktonic C. albicans. However, their anti-biofilm activity and mechanism of action against C. albicans remain unclear. In this study, the effects of three Camellia sinensis seed saponin monomers, namely, theasaponin E1 (TE1), theasaponin E2 (TE2), and assamsaponin A (ASA), on the metabolism, biofilm development, and expression of the virulence genes of C. albicans were evaluated. The results of the XTT reduction assay and crystal violet (CV) staining assay demonstrated that tea seed saponin monomers concentration-dependently suppressed the adhesion and biofilm formation of C. albicans and were able to eradicate mature biofilms. The compounds were in the following order in terms of their inhibitory effects: ASA > TE1 > TE2. The mechanisms were associated with reductions in multiple crucial virulence factors, including cell surface hydrophobicity (CSH), adhesion ability, hyphal morphology conversion, and phospholipase activity. It was further demonstrated through qRT-PCR analysis that the anti-biofilm activity of ASA and TE1 against C. albicans was attributed to the inhibition of RAS1 activation, which consequently suppressed the cAMP-PKA and MAPK signaling pathways. Conversely, TE2 appeared to regulate the morphological turnover and hyphal growth of C. albicans via a pathway that was independent of RAS1. These findings suggest that tea seed saponin monomers are promising innovative agents against C. albicans.
Collapse
Affiliation(s)
- Yuhong Chen
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; (Y.C.); (Y.L.)
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; (Y.C.); (Y.L.)
| | - Yifan Li
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; (Y.C.); (Y.L.)
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; (Y.C.); (Y.L.)
| |
Collapse
|
29
|
Alhajj MN, Halboub E, Yacob N, Al-Maweri SA, Ahmad SF, Celebić A, Al-Mekhlafi HM, Salleh NM. Adhesion of Candida Albicans to digital versus conventional acrylic resins: a systematic review and meta-analysis. BMC Oral Health 2024; 24:303. [PMID: 38439020 PMCID: PMC10910815 DOI: 10.1186/s12903-024-04083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The present systematic review and meta-analysis investigated the available evidence about the adherence of Candida Albicans to the digitally-fabricated acrylic resins (both milled and 3D-printed) compared to the conventional heat-polymerized acrylic resins. METHODS This study followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA). A comprehensive search of online databases/search tools (Web of Science, Scopus, PubMed, Ovid, and Google Scholar) was conducted for all relevant studies published up until May 29, 2023. Only in-vitro studies comparing the adherence of Candida albicans to the digital and conventional acrylic resins were included. The quantitative analyses were performed using RevMan v5.3 software. RESULTS Fourteen studies were included, 11 of which were meta-analyzed based on Colony Forming Unit (CFU) and Optical Density (OD) outcome measures. The pooled data revealed significantly lower candida colonization on the milled digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (MD = - 0.36; 95%CI = - 0.69, - 0.03; P = 0.03 and MD = - 0.04; 95%CI = - 0.06, - 0.01; P = 0.0008; as measured by CFU and OD respectively). However, no differences were found in the adhesion of Candida albicans between the 3D-printed digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (CFU: P = 0.11, and OD: P = 0.20). CONCLUSION The available evidence suggests that candida is less likely to adhere to the milled digitally-fabricated acrylic resins compared to the conventional ones.
Collapse
Affiliation(s)
- Mohammed Nasser Alhajj
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Esam Halboub
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
- Department of Oral Medicine, Oral Pathology and Oral Radiology, Faculty of Dentistry, Sana'a University, Sana'a, Yemen
| | - Norlela Yacob
- Department of Conservative Dentistry & Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia, Negeri Sembilan, Malaysia
| | | | - Siti Fauzza Ahmad
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Asja Celebić
- Department of Removable Prosthodontics, Faculty of Dentistry, University of Zagreb, Zagreb, Croatia
| | - Hesham M Al-Mekhlafi
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Nosizana Mohd Salleh
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Tsopmene UJ, Tokam Kuaté CR, Kayoka-Kabongo PN, Bisso BN, Metopa A, Mofor CT, Dzoyem JP. Antibiofilm Activity of Curcumin and Piperine and Their Synergistic Effects with Antifungals against Candida albicans Clinical Isolates. SCIENTIFICA 2024; 2024:2025557. [PMID: 38449801 PMCID: PMC10917476 DOI: 10.1155/2024/2025557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 03/08/2024]
Abstract
Background Candidiasis is the common name for diseases caused by yeast of the genus Candida. Candida albicans is one of the most implicated species in superficial and invasive candidiasis. Antifungals, polyenes, and azoles have been used to treat candidiasis. However, due to the development of antifungal resistance, research of natural substances with potential antifungal effects at low concentrations or combined is also a possibility. Methods The broth microdilution method was used to evaluate the antifungal activity. The biofilm formation was assessed using the microtiter plate method. The antibiofilm activities were assessed using micro plaque tetrazolium salt assay (MTT). The combination effect of antifungal with natural substances was made using the checkerboard method. Results Among our isolates, clotrimazole was the most resistant, but amphotericin B was the most effective antifungal. The biofilm was formed by all isolates of C. albicans. Curcumin and piperine displayed antibiofilm activity with minimum biofilm inhibitory concentration (MBIC) and minimum eradicating concentration (MBEC) ranging from 64 to 1024 μg/mL and 256 to 2048 μg/mL. In combination, piperine presented double synergistic effects compared to curcumin with all antifungals tested. Curcumin shows more synergistic effect when combined with polyenes than with azoles. However, piperine shows a more synergistic effect when combined with azoles compared to polyenes. Conclusion C. albicans was susceptible to curcumin and piperine both on planktonic cells and biofilm. The combination of curcumin and piperine with antifungals has shown synergistic effects against multiresistant clinical isolates of Candida albicans representing an alternative drug research for the treatment of clinical candidiasis.
Collapse
Affiliation(s)
- Ulrich Joël Tsopmene
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Borel Ndezo Bisso
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Anisel Metopa
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Clautilde Teugwa Mofor
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Dzoyem
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
31
|
Shui Y, Wang H, Chen Y, Hao Y, Li S, Zhang W, Deng B, Li W, Wu P, Li Z. Antifungal efficacy of scorpion derived peptide K1K8 against Candida albicans in vitro and in vivo. Toxicon 2024; 238:107593. [PMID: 38163461 DOI: 10.1016/j.toxicon.2023.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
As an alternative class of antimicrobial agents, antimicrobial peptides (AMPs) have gained significant attention. In this study, K1K8, a scorpion AMP derivative, showed effective activity against Candida albicans including clinically resistant strains. K1K8 killed C. albicans cells mainly by damaging the cell membrane and inducing necrosis via an ROS-related pathway. K1K8 could also interact with DNA after damaging the nuclear envelope. Moreover, K1K8 inhibited hyphal development and biofilm formation of C. albicans in a dose-dependent manner. In the mouse skin infection model, K1K8 significantly decreased the counts of C. albicans cells in the infection area. Overall, K1K8 is a potential anti-infective agent against skin infections caused by C. albicans.
Collapse
Affiliation(s)
- Yingbin Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Huayi Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yunqi Chen
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yixuan Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Shasha Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wenlu Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Deng
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Pengfei Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
32
|
Janeczko M, Kochanowicz E, Górka K, Skrzypek T. Quinalizarin as a potential antifungal drug for the treatment of Candida albicans fungal infection in cancer patients. Microbiol Spectr 2024; 12:e0365223. [PMID: 38289929 PMCID: PMC10913734 DOI: 10.1128/spectrum.03652-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
This study aims to analyze the antifungal properties of quinalizarin, a plant-derived compound with proven anticancer effects. Quinalizarin exhibited antifungal activity against opportunistic pathogenic Candida species and Geotrichum capitatum. The treatment with this anthraquinone reduced hyphal growth, inhibited biofilm formation, and damaged mature Candida albicans biofilms. Real-time RT-PCR revealed that quinalizarin downregulated the expression of hyphae-related and biofilm-specific genes. The flow cytometry method used in the study showed that both apoptosis and necrosis were the physiological mechanisms of quinalizarin-induced C. albicans cell death, depending on the dose of the antifungal agent. A further study revealed an increase in the levels of intracellular reactive oxygen species and alterations in mitochondrial membrane potential after treatment with quinalizarin. Finally, quinalizarin was found to have low toxicity in a hemolytic test using human erythrocytes. In conclusion, we have identified quinalizarin as a potential antifungal compound.IMPORTANCEThis article is a study to determine the antifungal activity of quinalizarin (1,2,5,8-tetrahydroxyanthraquinone). Quinalizarin has potential antitumor properties and is effective in different types of tumor cells. The aim of the present study was to prove that quinalizarin can be used simultaneously in the treatment of cancer and in the treatment of intercurrent fungal infections. Quinalizarin was identified as a novel antifungal compound with low toxicity. These results may contribute to the development of a new drug with dual activity in the treatment of cancer-associated candidiasis.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Kamila Górka
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
33
|
Angiolella L, Rojas F, Giammarino A, Bellucci N, Giusiano G. Identification of Virulence Factors in Isolates of Candida haemulonii, Candida albicans and Clavispora lusitaniae with Low Susceptibility and Resistance to Fluconazole and Amphotericin B. Microorganisms 2024; 12:212. [PMID: 38276197 PMCID: PMC10819056 DOI: 10.3390/microorganisms12010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Emerging life-threatening multidrug-resistant (MDR) species such as the C. haemulonii species complex, Clavispora lusitaniae (sin. C. lusitaniae), and other Candida species are considered as an increasing risk for human health in the near future. (1) Background: Many studies have emphasized that the increase in drug resistance can be associated with several virulence factors in Candida and its knowledge is also essential in developing new antifungal strategies. (2) Methods: Hydrophobicity, adherence, biofilm formation, lipase activity, resistance to osmotic stress, and virulence 'in vivo' on G. mellonella larvae were studied in isolates of C. haemulonii, C. albicans, and C. lusitaniae with low susceptibility and resistance to fluconazole and amphotericin B. (3) Results: Intra- and interspecies variability were observed. C. haemulonii showed high hydrophobicity and the ability to adhere to and form biofilm. C. lusitaniae was less hydrophobic, was biofilm-formation-strain-dependent, and did not show lipase activity. Larvae inoculated with C. albicans isolates displayed significantly higher mortality rates than those infected with C. haemulonii and C. lusitaniae. (4) Conclusions: The ability to adhere to and form biofilms associated with their hydrophobic capacity, to adapt to stress, and to infect within an in vivo model, observed in these non-wild-type Candida and Clavispora isolates, shows their marked virulence features. Since factors that define virulence are related to the development of the resistance of these fungi to the few antifungals available for clinical use, differences in the physiology of these cells must be considered to develop new antifungal therapies.
Collapse
Affiliation(s)
- Letizia Angiolella
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Florencia Rojas
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia 3500, Argentina; (F.R.); (G.G.)
| | - Andrea Giammarino
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Nicolò Bellucci
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Gustavo Giusiano
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia 3500, Argentina; (F.R.); (G.G.)
| |
Collapse
|
34
|
Han D, Ji Y, Yang S, Song P, Shi Y, Shao D, Chen X, Shang L, Shi J, Jiang C. Therapeutic effect of iturin A on Candida albicans oral infection and its pathogenic factors. Antimicrob Agents Chemother 2024; 68:e0094823. [PMID: 38051047 PMCID: PMC10777857 DOI: 10.1128/aac.00948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Candida albicans is responsible for conditions ranging from superficial infections such as oral or vaginal candidiasis to potentially fatal systemic infections. It produces pathogenic factors contributing to its virulence. Iturin A, a lipopeptide derived from Bacillus sp., exhibits a significant inhibitory effect against C. albicans. However, its exact mechanism in mitigating the pathogenic factors of C. albicans remains to be elucidated. This study aimed to explore the influence of iturin A on several pathogenic attributes of C. albicans, including hypha formation, cell membrane permeability, cell adhesion, biofilm formation, and therapeutic efficacy in an oral C. albicans infection model in mice. The minimal inhibitory concentration of iturin A against C. albicans was determined to be 25 µg/mL in both YEPD and RPMI-1640 media. Iturin A effectively inhibited C. albicans hyphal formation, decreased cell viability within biofilms, enhanced cell membrane permeability, and disrupted cell adhesion in vitro. Nonetheless, iturin A did not significantly affect the phospholipase activity or hydrophobicity of C. albicans. A comparative study with nystatin demonstrated the superior therapeutic efficacy of iturin A in a mouse model of oral C. albicans infection, significantly decreasing C. albicans count and inhibiting both fungal hypha formation and tongue surface adhesion. High-dose iturin A treatment (25 µg/mL) in mice had no significant effects on blood indices, tongue condition, or body weight, indicating the potential for iturin A in managing oral infections. This study confirmed the therapeutic potential of iturin A and provided valuable insights for developing effective antifungal therapies targeting C. albicans pathogenic factors.
Collapse
Affiliation(s)
- Di Han
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Yulan Ji
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Saixue Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Pei Song
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Yihong Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Dongyan Shao
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Xianqing Chen
- School of Medicine, Xi’an International University, Xi’an, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Junling Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Chunmei Jiang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
35
|
Wu M, Xu X, Hu R, Chen Q, Chen L, Yuan Y, Li J, Zhou L, Feng S, Wang L, Chen S, Gu M. A Membrane-Targeted Photosensitizer Prevents Drug Resistance and Induces Immune Response in Treating Candidiasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207736. [PMID: 37875397 PMCID: PMC10724446 DOI: 10.1002/advs.202207736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Candida albicans (C. albicans), a ubiquitous polymorphic fungus in humans, causes different types of candidiasis, including oral candidiasis (OC) and vulvovaginal candidiasis (VVC), which are physically and mentally concerning and financially costly. Thus, developing alternative antifungals that prevent drug resistance and induce immunity to eliminate Candida biofilms is crucial. Herein, a novel membrane-targeted aggregation-induced emission (AIE) photosensitizer (PS), TBTCP-QY, is developed for highly efficient photodynamic therapy (PDT) of candidiasis. TBTCP-QY has a high molar absorption coefficient and an excellent ability to generate 1 O2 and •OH, entering the interior of biofilms due to its high permeability. Furthermore, TBTCP-QY can efficiently inhibit biofilm formation by suppressing the expression of genes related to the adhesion (ALS3, EAP1, and HWP1), invasion (SAP1 and SAP2), and drug resistance (MDR1) of C. albicans, which is also advantageous for eliminating potential fungal resistance to treat clinical infectious diseases. TBTCP-QY-mediated PDT efficiently targets OC and VVC in vivo in a mouse model, induces immune response, relieves inflammation, and accelerates the healing of mucosal defects to combat infections caused by clinically isolated fluconazole-resistant strains. Moreover, TBTCP-QY demonstrates excellent biocompatibility, suggesting its potential applications in the clinical treatment of OC and VVC.
Collapse
Affiliation(s)
- Ming‐Yu Wu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Xiaoyu Xu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Rui Hu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| | - Qingrong Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Luojia Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuncong Yuan
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Jie Li
- Department of Medical Intensive Care UnitMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430070China
| | - Li Zhou
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Lianrong Wang
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| | - Shi Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Meijia Gu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| |
Collapse
|
36
|
Phuna ZX, Madhavan P. A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer's disease. Int J Neurosci 2023; 133:1071-1089. [PMID: 35282779 DOI: 10.1080/00207454.2022.2045290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is a progressive neurological disorder that accounted for the most common cause of dementia in the elderly population. Lately, 'infection hypothesis' has been proposed where the infection of microbes can lead to the pathogenesis of AD. Among different types of microbes, human immunodeficiency virus-1 (HIV-1), herpes simplex virus-1 (HSV-1), Chlamydia pneumonia, Spirochetes and Candida albicans are frequently detected in the brain of AD patients. Amyloid-beta protein has demonstrated to exhibit antimicrobial properties upon encountering these pathogens. It can bind to microglial cells and astrocytes to activate immune response and neuroinflammation. Nevertheless, HIV-1 and HSV-1 can develop into latency whereas Chlamydia pneumonia, Spirochetes and Candida albicans can cause chronic infections. At this stage, the DNA of microbes remains undetectable yet active. This can act as the prolonged pathogenic stimulus that over-triggers the expression of Aβ-related genes, which subsequently lead to overproduction and deposition of Aβ plaque. This review will highlight the pathogenesis of each of the stated microbial infection, their association in AD pathogenesis as well as the effect of chronic infection in AD progression. Potential therapies for AD by modulating the microbiome have also been suggested. This review will aid in understanding the infectious manifestations of AD.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
37
|
Bravo-Chaucanés CP, Chitiva LC, Vargas-Casanova Y, Diaz-Santoyo V, Hernández AX, Costa GM, Parra-Giraldo CM. Exploring the Potential Mechanism of Action of Piperine against Candida albicans and Targeting Its Virulence Factors. Biomolecules 2023; 13:1729. [PMID: 38136600 PMCID: PMC10742119 DOI: 10.3390/biom13121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Plant-derived compounds have proven to be a source of inspiration for new drugs. In this study, piperine isolated from the fruits of Piper nigrum showed anti-Candida activity. Furthermore, the mechanisms of action of piperine and its impact on virulence factors in Candida albicans, which have not been comprehensively understood, were also assessed. Initially, piperine suppressed the hyphal transition in both liquid and solid media, hindered biofilm formation, and resulted in observable cell distortions in scanning electron microscope (SEM) samples, for both fluconazole-sensitive and fluconazole-resistant C. albicans strains. Additionally, the morphogenetic switches triggered by piperine were found to rely on the activity of mutant C. albicans strains. Secondly, piperine treatment increased cell membrane permeability and disrupted mitochondrial membrane potential, as evidenced by propidium iodine and Rhodamine 123 staining, respectively. Moreover, it induced the accumulation of intracellular reactive oxygen species in C. albicans. Synergy was obtained between the piperine and the fluconazole against the fluconazole-sensitive strain. Interestingly, there were no hemolytic effects of piperine, and it resulted in reduced cytotoxicity on fibroblast cells at low concentrations. The results suggest that piperine could have a dual mode of action inhibiting virulence factors and modulating cellular processes, leading to cell death in C. albicans.
Collapse
Affiliation(s)
- Claudia Patricia Bravo-Chaucanés
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Luis Carlos Chitiva
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Yerly Vargas-Casanova
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Valentina Diaz-Santoyo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Andrea Ximena Hernández
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Geison M. Costa
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Claudia Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
38
|
Yu M, Ma D, Eszterhas S, Rollenhagen C, Lee SA. The Early Endocytosis Gene PAL1 Contributes to Stress Tolerance and Hyphal Formation in Candida albicans. J Fungi (Basel) 2023; 9:1097. [PMID: 37998902 PMCID: PMC10672141 DOI: 10.3390/jof9111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The endocytic and secretory pathways of the fungal pathogen Candida albicans are fundamental to various key cellular processes such as cell growth, cell wall integrity, protein secretion, hyphal formation, and pathogenesis. Our previous studies focused on several candidate genes involved in early endocytosis, including ENT2 and END3, that play crucial roles in such processes. However, much remains to be discovered about other endocytosis-related genes and their contributions toward Candida albicans secretion and virulence. In this study, we examined the functions of the early endocytosis gene PAL1 using a reverse genetics approach based on CRISPR-Cas9-mediated gene deletion. Saccharomyces cerevisiae Pal1 is a protein in the early coat complex involved in clathrin-mediated endocytosis that is later internalized with the coat. The C. albicans pal1Δ/Δ null mutant demonstrated increased resistance to the antifungal agent caspofungin and the cell wall stressor Congo Red. In contrast, the null mutant was more sensitive to the antifungal drug fluconazole and low concentrations of SDS than the wild type (WT) and the re-integrant (KI). While pal1Δ/Δ can form hyphae and a biofilm, under some hyphal-inducing conditions, it was less able to demonstrate filamentous growth when compared to the WT and KI. The pal1Δ/Δ null mutant had no defect in clathrin-mediated endocytosis, and there were no changes in virulence-related processes compared to controls. Our results suggest that PAL1 has a role in susceptibility to antifungal agents, cell wall integrity, and membrane stability related to early endocytosis.
Collapse
Affiliation(s)
- Miranda Yu
- Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH 03755, USA;
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
| | - Dakota Ma
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Susan Eszterhas
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Christiane Rollenhagen
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Samuel A. Lee
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| |
Collapse
|
39
|
Mannala GK, Rupp M, Walter N, Scholz KJ, Simon M, Riool M, Alt V. Galleria mellonella as an alternative in vivo model to study implant-associated fungal infections. J Orthop Res 2023; 41:2547-2559. [PMID: 37080929 DOI: 10.1002/jor.25572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Fungal implant-associated bone infections are rare but difficult to treat and often associated with a poor outcome for patients. Candida species account for approximately 90% of all fungal infections. In vivo biofilm models play a major role to study biofilm development and potential new treatment options; however, there are only a very few in vivo models to study fungi-associated biofilms. Furthermore, mammalian infection models are replaced more and more due to ethical restrictions with other alternative models in basic research. Recently, we developed an insect infection model with Galleria mellonella larvae to study biofilm-associated infections with bacteria. Here, we further expanded the G. mellonella model to study in vivo fungal infections using Candida albicans and Candida krusei. We established a planktonic and biofilm-implant model to test different antifungal medication with amphotericin B, fluconazole, and voriconazole against the two species and assessed the fungal biofilm-load on the implant surface. Planktonic infection with C. albicans and C. krusei showed the killing of the G. mellonella larvae at 5 × 105 colony forming units (CFU). Treatment of larvae with antifungal compounds with amphotericin B and fluconazole showed significant survival improvement against planktonic C. albicans infection, but voriconazole had no effect. Titanium and stainless steel K-wires were preincubated with C. albicans and implanted inside the larvae to induce biofilm infection on the implant surface. The survival analysis revealed significantly reduced survival of the larvae with Candida spp. infection compared to noninfected implants. The treatment with antifungal amphotericin B and fluconazole resulted in a slight and nonsignificant improvement survival of the larvae. The treatment with the antifungal compounds in the biofilm-infection model was not as effective as in the planktonic infection model, which highlights the resistance of fungal biofilms to antifungal compounds like in bacterial biofilms. Scanning electron microscopy (SEM) analysis revealed the formation of a fungal biofilm with hyphae and spores associated with larvae tissue on the implant surface. Thus, our study highlights the use of G. mellonella larvae as alternative in vivo model to study biofilm-associated implant fungal infections and that fungal biofilms exhibit high resistance profiles comparable to bacterial biofilms. The model can be used in the future to test antifungal treatment options for fungal biofilm infections.
Collapse
Affiliation(s)
- Gopala K Mannala
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Konstantin J Scholz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Michaela Simon
- Institute of Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
40
|
Fatima T, Fatima Z, Hameed S. Abrogation of efflux pump activity, biofilm formation, and immune escape by candidacidal geraniol in emerging superbug, Candida auris. Int Microbiol 2023; 26:881-891. [PMID: 36847907 DOI: 10.1007/s10123-023-00343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
During the last decade, Candida auris emerged as a threatening human fungal pathogen that notably caused outbreaks around the globe with high mortality. Considering C. auris species as newly discovered fungi, the evolutionary features remain elusive. The antifungal resistance which is a norm in C. auris underlines the need for innovative therapeutic options. ATP Binding Cassette (ABC) superfamily efflux pumps overexpression and biofilms are known to be major contributors to multidrug resistance (MDR) in C. auris. Therefore, herein, we investigated the antifungal potential of geraniol (Ger) as a promising natural compound in the fight against MDR C. auris. Our experiments proved that Ger was fungicidal in nature and impaired rhodamine 6G (R6G) efflux, confirming the specific effect on ABC transporters. Kinetic studies unravelled the competitive mode of inhibition by Ger for R6G efflux since the apparent Km increased with no change in Vmax value. Mechanistic insights also revealed that Ger depleted ergosterol content in C. auris. Furthermore, Ger led to inhibition in biofilm formation as evident from crystal violet staining, biofilm metabolic and biomass measurements. Additionally, enhanced survival of Caenorhabditis elegans model after C. auris infection demonstrated the in vivo efficacy of Ger. Lastly, the in vivo efficacy was confirmed from a THP-1 cell line model which depicted enhanced macrophage-mediated killing in the presence of Ger. Modulation of C. auris efflux pump activity and biofilm formation by Ger represents a promising approach to combat MDR. Together, this study demonstrated the potential therapeutic insights of Ger as a promising addition to the antifungal armamentarium required to treat emerging and resistant C. auris.
Collapse
Affiliation(s)
- Tazeen Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India.
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, - 61922, Saudi Arabia.
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India.
| |
Collapse
|
41
|
Yang HY, Shin HH, Kim JW, Seon JK. The fate of fungal periprosthetic joint infection after total knee arthroplasty. INTERNATIONAL ORTHOPAEDICS 2023; 47:2727-2735. [PMID: 37542541 DOI: 10.1007/s00264-023-05895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/09/2023] [Indexed: 08/07/2023]
Abstract
PURPOSE To demonstrate the clinical outcomes of patients with fungal periprosthetic joint infections (PJIs) after two-stage exchange arthroplasty combined with antifungal therapy. METHODS We retrospectively reviewed the outcomes of 41 patients with fungal PJIs after primary total knee arthroplasty (TKA) in a single centre from January 1999 to October 2017. During the first stage of resection arthroplasty, antifungal-impregnated cement spacers (AICSs) were implanted in all patients. After systemic antifungal treatment during the interval between the two surgeries, delayed reimplantation as part of a two-stage exchange protocol was performed when patients were clinically stable. We defined treatment success as a well-functioning arthroplasty without any signs of PJI after a minimum follow-up of two years without antimicrobial suppression. Successful treatment was confirmed by repeat negative cultures as well as a return of inflammatory markers to normal levels. RESULTS The treatment success rate was 63.4% at the final follow-up. Thirty-six of 41 patients (87.8%) met the criteria for second-stage revision after confirmation of complete infection control. The mean prosthesis-free interval was 6.6 months (range, 2.0-30.0 months). During follow-up after two-stage exchange arthroplasty, ten patients (27.7% of 36 patients) unfortunately experienced recurrence or relapse of infection after an average of 31.3 months (range, 2.7-135.6 months). The rate of survivorship free from reinfection was 94.4% at six months, 84.8% at one year, and 73.6% at two years. Cox proportional hazard regression analysis demonstrated that the prosthesis-free interval (HR = 1.016, p = 0.037) and mean length of antifungal treatment (HR = 0.226, p = 0.046) were potential risk factors for failure. CONCLUSION Fungal PJIs led to devastating clinical outcomes despite even two-stage revision arthroplasty with the use of AICSs and antifungal medications.
Collapse
Affiliation(s)
- Hong Yeol Yang
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322, Seoyang-ro, 58128, Hwasun, Republic of Korea
| | - Hyun Ho Shin
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322, Seoyang-ro, 58128, Hwasun, Republic of Korea
| | - Ji Won Kim
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322, Seoyang-ro, 58128, Hwasun, Republic of Korea
| | - Jong Keun Seon
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322, Seoyang-ro, 58128, Hwasun, Republic of Korea.
| |
Collapse
|
42
|
Huq MA, Khan AA, Alshehri JM, Rahman MS, Balusamy SR, Akter S. Bacterial mediated green synthesis of silver nanoparticles and their antibacterial and antifungal activities against drug-resistant pathogens. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230796. [PMID: 37885988 PMCID: PMC10598446 DOI: 10.1098/rsos.230796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
In the healthcare sector, the production of bioactive silver nanoparticles (AgNPs) with antimicrobial properties is of great importance. In this study, a novel bacterial strain, Paenibacillus sp. MAHUQ-63, was identified as a potential candidate for facile and rapid biosynthesis of AgNPs. The synthesized AgNPs were used to control the growth of human pathogens, Salmonella Enteritidis and Candida albicans. The bacterial culture supernatant was used to synthesize the nanoparticles (NPs). Field emission transmission electron microscope examination showed spherical-shaped NPs with 15-55 nm in size. Fourier transform-infrared analysis identified various functional groups. The synthesized AgNPs demonstrated remarkable activity against S. Enteritidis and C. albicans. The zones of inhibition for 100 µl (0.5 mg ml-1) of AgNPs against S. Enteritidis and C. albicans were 18.0 ± 1.0 and 19.5 ± 1.3 mm, respectively. The minimum inhibitory concentrations were 25.0 and 12.5 µg ml-1 against S. Enteritidis and C. albicans, respectively. Additionally, the minimum bactericidal concentrations were 25.0 µg ml-1 against both pathogenic microbes. The field emission scanning electron microscopy analysis showed that the treatment of AgNPs caused morphological and structural damage to both S. Enteritidis and C. albicans. Therefore, these AgNPs can be used as a new and effective antimicrobial agent.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jamilah M. Alshehri
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 143-747, Republic of Korea
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 461-701, Republic of Korea
| |
Collapse
|
43
|
Mokoena NZ, Steyn H, Hugo A, Dix-Peek T, Dickens C, Gcilitshana OMN, Sebolai O, Albertyn J, Pohl CH. Eicosapentaenoic acid influences the pathogenesis of Candida albicans in Caenorhabditis elegans via inhibition of hyphal formation and stimulation of the host immune response. Med Microbiol Immunol 2023; 212:349-368. [PMID: 37672050 PMCID: PMC10501937 DOI: 10.1007/s00430-023-00777-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
The intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), is associated with health benefits due to its anti-inflammatory properties. This fatty acid also exhibits antifungal properties in vitro. In order to determine if this antifungal property is valid in vivo, we examined how EPA affects Candida albicans pathogenesis in the Caenorhabditis elegans infection model, an alternative to mammalian host models. The nematodes were supplemented with EPA prior to infection, and the influence of EPA on C. elegans lipid metabolism, survival and immune response was studied. In addition, the influence of EPA on hyphal formation in C. albicans was investigated. It was discovered that EPA supplementation changed the lipid composition, but not the unsaturation index of C. elegans by regulating genes involved in fatty acid and eicosanoid production. EPA supplementation also delayed killing of C. elegans by C. albicans due to the inhibition of hyphal formation in vivo, via the action of the eicosanoid metabolite of EPA, 17,18-epoxyeicosatetraenoic acid. Moreover, EPA supplementation also caused differential expression of biofilm-related gene expression in C. albicans and stimulated the immune response of C. elegans. This provides a link between EPA and host susceptibility to microbial infection in this model.
Collapse
Affiliation(s)
- N Z Mokoena
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - H Steyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - A Hugo
- Department of Animal Science, University of the Free State, Bloemfontein, South Africa
| | - T Dix-Peek
- Department of Internal Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - C Dickens
- Department of Internal Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - O M N Gcilitshana
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - O Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - J Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - C H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
44
|
Yan Z, Huang Y, Zhao D, Li Z, Wang X, Guo M, Wei Y, Wang Y, Mou Y, Hou Z, Guo C. Developing Novel Coumarin-Containing Azoles Antifungal Agents by the Scaffold Merging Strategy for Treating Azole-Resistant Candidiasis. J Med Chem 2023; 66:13247-13265. [PMID: 37725043 DOI: 10.1021/acs.jmedchem.3c01254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The extensive use of antifungal drugs has resulted in severe drug resistance, making clinical treatment of fungal infections more difficult. Biofilm inhibitors can overcome drug resistance by inhibiting fungal biofilm formation. In this study, some coumarins with antibiofilm activity were merged into CYP51 inhibitors to produce novel molecules possessing potent antiresistance activity. As expected, most compounds exhibited excellent in vitro antifungal activity against pathogenic fungi, especially fluconazole-resistant candidiasis. Then, their mechanism was confirmed by sterol composition analysis and morphological observation. Biofilm inhibition and down-regulation of resistance-related genes were employed to confirm the compounds' antiresistance mechanisms. Significantly, compound A32 demonstrated fungicidal activity against fluconazole-resistant strain 904. Most importantly, compound A32 showed potent in vivo antifungal activity against pathogenic fungi and fluconazole-resistant strains. Preliminary pharmacokinetic and toxicity tests demonstrated that the compounds possessed favorable druggability. Taken together, compound A32 represents a promising lead to develop novel antifungal agents for treating azole-resistant candidiasis.
Collapse
Affiliation(s)
- Zhongzuo Yan
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanxiu Huang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongze Zhao
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zengye Li
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengbi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Wei
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yitong Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanhua Mou
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
45
|
Rook GAW. The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. FRONTIERS IN ALLERGY 2023; 4:1220481. [PMID: 37772259 PMCID: PMC10524266 DOI: 10.3389/falgy.2023.1220481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
In wealthy urbanised societies there have been striking increases in chronic inflammatory disorders such as allergies, autoimmunity and inflammatory bowel diseases. There has also been an increase in the prevalence of individuals with systemically raised levels of inflammatory biomarkers correlating with increased risk of metabolic, cardiovascular and psychiatric problems. These changing disease patterns indicate a broad failure of the mechanisms that should stop the immune system from attacking harmless allergens, components of self or gut contents, and that should terminate inappropriate inflammation. The Old Friends Hypothesis postulates that this broad failure of immunoregulation is due to inadequate exposures to the microorganisms that drive development of the immune system, and drive the expansion of components such as regulatory T cells (Treg) that mediate immunoregulatory mechanisms. An evolutionary approach helps us to identify the organisms on which we are in a state of evolved dependence for this function (Old Friends). The bottom line is that most of the organisms that drive the regulatory arm of the immune system come from our mothers and family and from the natural environment (including animals) and many of these organisms are symbiotic components of a healthy microbiota. Lifestyle changes that are interrupting our exposure to these organisms can now be identified, and many are closely associated with low socioeconomic status (SES) in wealthy countries. These insights will facilitate the development of education, diets and urban planning that can correct the immunoregulatory deficit, while simultaneously reducing other contributory factors such as epithelial damage.
Collapse
Affiliation(s)
- Graham A. W. Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, United Kingdom
| |
Collapse
|
46
|
Das A, Patro S, Simnani FZ, Singh D, Sinha A, Kumari K, Rao PV, Singh S, Kaushik NK, Panda PK, Suar M, Verma SK. Biofilm modifiers: The disparity in paradigm of oral biofilm ecosystem. Biomed Pharmacother 2023; 164:114966. [PMID: 37269809 DOI: 10.1016/j.biopha.2023.114966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
A biofilm is a population of sessile microorganisms that has a distinct organized structure and characteristics like channels and projections. Good oral hygiene and reduction in the prevalence of periodontal diseases arise from minimal biofilm accumulation in the mouth, however, studies focusing on modifying the ecology of oral biofilms have not yet been consistently effective. The self-produced matrix of extracellular polymeric substances and greater antibiotic resistance make it difficult to target and eliminate biofilm infections, which lead to serious clinical consequences that are often lethal. Therefore, a better understanding is required to target and modify the ecology of biofilms in order to eradicate the infection, not only in instances of oral disorders but also in terms of nosocomial infections. The review focuses on several biofilm ecology modifiers to prevent biofilm infections, as well as the involvement of biofilm in antibiotic resistance, implants or in-dwelling device contamination, dental caries, and other periodontal disorders. It also discusses recent advances in nanotechnology that may lead to novel strategies for preventing and treating infections caused by biofilms as well as a novel outlook to infection control.
Collapse
Affiliation(s)
- Antarikshya Das
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Swadheena Patro
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Patnala Vedika Rao
- KIIT School of Medical Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sarita Singh
- BVG Life Sciences Limited, Sagar Complex, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
47
|
Zore G, Abdulghani M, Kazi R, Shelar A, Patil R. Proteomic dataset of Candida albicans (ATCC 10231) Biofilm. BMC Res Notes 2023; 16:155. [PMID: 37491288 PMCID: PMC10369833 DOI: 10.1186/s13104-023-06436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVES The ability to form biofilm is considered as one of major virulence factors of Candida albicans, as biofilms form growth confers antifungal resistance and facilitate immune evasion. It is intriguing to understand morphophysiological modulations in the C. albicans cells growing under biofilm form growth. DATA DESCRIPTION In present study, we have profiled biofilm-specific proteins using LC-MS/MS analysis. Whole cell proteins of C. albicans cells grown under biofilm form growth (test) and planktonic (control) growth for 24 h were extracted, digested and identified using micro-Liquid Chromatography-Mass Spectrometry (LC-MS/MS). The present data represents proteomic profile (SWATH Spectral Libraries) of C. albicans biofilm intended to be useful to scientific community as it exhibits reuse potential.
Collapse
Affiliation(s)
- Gajanan Zore
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, 431606, India
| | - Mazen Abdulghani
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, 431606, India.
| | - Rubina Kazi
- Division of Biochemical Sciences, CSIR-NCL, Pune-8, Pune, MS, India
| | - Amruta Shelar
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, MS, 411007, India
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, MS, 411007, India
| |
Collapse
|
48
|
Salvi GE, Roccuzzo A, Imber JC, Stähli A, Klinge B, Lang NP. Clinical periodontal diagnosis. Periodontol 2000 2023. [PMID: 37452444 DOI: 10.1111/prd.12487] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 07/18/2023]
Abstract
Periodontal diseases include pathological conditions elicited by the presence of bacterial biofilms leading to a host response. In the diagnostic process, clinical signs such as bleeding on probing, development of periodontal pockets and gingival recessions, furcation involvement and presence of radiographic bone loss should be assessed prior to periodontal therapy, following active therapy, and during long-term supportive care. In addition, patient-reported outcomes such as increased tooth mobility, migration, and tilting should also be considered. More important to the patient, however, is the fact that assessment of signs of periodontal diseases must be followed by an appropriate treatment plan. Furthermore, it should be realized that clinical and radiographic periodontal diagnosis is based on signs which may not reflect the presence of active disease but rather represent the sequelae of a previous bacterial challenge. Hence, the aim of the present review is to provide a summary of clinical and radiographic diagnostic criteria required to classify patients with periodontal health or disease.
Collapse
Affiliation(s)
- Giovanni E Salvi
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Andrea Roccuzzo
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jean-Claude Imber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Björn Klinge
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Niklaus P Lang
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
49
|
Li F, Gao Y, Cheng W, Su X, Yang R. Gut fungal mycobiome: A significant factor of tumor occurrence and development. Cancer Lett 2023; 569:216302. [PMID: 37451425 DOI: 10.1016/j.canlet.2023.216302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A variety of bacteria, viruses, fungi, protists, archaea and protozoa coexists within the mammalian gastrointestinal (GI) tract such as that fungi are detectable in all intestinal and colon segments in almost all healthy adults. Although fungi can cause infectious diseases, they are also related to gut and systemic homeostasis. Importantly, through transformation of different forms such as from yeast to hyphae, interaction among gut microbiota such as fungal and bacterial interaction, host factors such as immune and host derived factors, and fungus genetic and epigenetic factors, fungi can be transformed from commensal into pathogenic lifestyles. Recent studies have shown that fungi play a significant role in the occurrence and development of tumors such as colorectal cancer. Indeed, evidences have shown that multiple species of different fungi exist in different tumors. Studies have also demonstrated that fungi are related to the occurrence and development of tumors, and also survival of patients. Here we summarize recent advances in the transformation of fungi from commensal into pathogenic lifestyles, and the effects of gut pathogenic fungi on the occurrence and development of tumors such as colorectal and pancreatic cancers.
Collapse
Affiliation(s)
- Fan Li
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
50
|
do Nascimento FB, Valente Sá LG, de Andrade Neto JB, Sampaio LS, Queiroz HA, Silva LJ, Cabral VP, Rodrigues DS, Pereira SC, Cavalcanti BC, Silva J, Marinho ES, Santos HS, Moraes MO, Nobre Júnior HV, Silva CR. Synergistic effect of hydralazine associated with triazoles on Candida spp. in planktonic cells. Future Microbiol 2023; 18:661-672. [PMID: 37540106 DOI: 10.2217/fmb-2023-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Objective: To evaluate the antifungal activity of hydralazine hydrochloride alone and in synergy with azoles against Candida spp. and the action mechanism. Methods: We used broth microdilution assays to determine the MIC, checkerboard assays to investigate synergism, and flow cytometry and molecular docking tests to ascertain action mechanism. Results: Hydralazine alone had antifungal activity in the range of 16-128 μg/ml and synergistic effect with itraconazole versus 100% of the fungal isolates, while there was synergy with fluconazole against 11.11% of the isolates. There was molecular interaction with the receptors exo-B(1,3)-glucanase and CYP51, causing reduced cell viability and DNA damage. Conclusion: Hydralazine is synergistic with itraconazole and triggers cell death of Candida spp. at low concentrations, demonstrating antifungal potential.
Collapse
Affiliation(s)
- Francisca Bsa do Nascimento
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Ceará, 60430-160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Lívia Ga Valente Sá
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Ceará, 60430-160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, Ceará, 60190-180, Brazil
| | - João B de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Ceará, 60430-160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, Ceará, 60190-180, Brazil
| | - Letícia S Sampaio
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Ceará, 60430-160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Helaine A Queiroz
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Ceará, 60430-160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Lisandra J Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Ceará, 60430-160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Vitória Pf Cabral
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Ceará, 60430-160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Daniel S Rodrigues
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Ceará, 60430-160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Sidsayde C Pereira
- Hospital Dr. Carlos Alberto Studart, Fortaleza, Ceará, 60840-285, Brazil
| | - Bruno C Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 62930-000, Brazil
| | - Emmanuel S Marinho
- Department of Chemistry, Group of Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 62930-000, Brazil
| | - Helcio S Santos
- Department of Chemistry, Group of Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 62930-000, Brazil
| | - Manoel O Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Hélio V Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Ceará, 60430-160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Cecília R Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Ceará, 60430-160, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| |
Collapse
|