1
|
Li C, Heuler J, Zhu D, Meng X, Chakraborty S, Harmanus C, Wang S, Peng Z, Smits WK, Wu A, Sun X. Genomic and phenotypic characterization of a Clostridioides difficile strain of the epidemic ST37 type from China. Front Cell Infect Microbiol 2024; 14:1412408. [PMID: 39492989 PMCID: PMC11527712 DOI: 10.3389/fcimb.2024.1412408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
Clostridioides difficile strains of sequence type (ST) 37, primarily including PCR ribotype (RT) 017, are prevalent in mainland China. Our study aimed to compare the major virulence factors of an epidemic C. difficile isolate of ST37 type (Xy06) from China with the well-characterized C. difficile reference strains R20291 (RT027) and CD630E (ST54), as well as a Chinese ST54 strain (Xy07) isolated from the same hospital. The Xy06 genome was predicted to harbor two complete prophages and several transposon-like elements. Comparative analysis of PaLoc revealed a truncated tcdA gene, a functional tcdB gene, a functional tcdC gene, and well-conserved tcdR and tcdE genes. Phenotypic comparisons showed that Xy06 was a robust producer of TcdB, readily sporulated and germinated, and strongly bound to human gut epithelial cells. In a mouse model of C. difficile infection, Xy06 was more virulent than strains CD630E and Xy07 and was comparable to strain R20291 in virulence. Our data suggest the potential threat of the epidemic ST37 strains in China.
Collapse
Affiliation(s)
- Chunhui Li
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, China
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Joshua Heuler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Duolong Zhu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Xiujuan Meng
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, China
| | - Soumyadeep Chakraborty
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Céline Harmanus
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Zhong Peng
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Anhua Wu
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, China
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
2
|
Talarico F, Tilocca B, Spagnuolo R, Abenavoli L, Luzza F, Roncada P. The effects of stress on gut virome: Implications on infectious disease and systemic disorders. Microbiologyopen 2024; 13:e1434. [PMID: 39311537 PMCID: PMC11418023 DOI: 10.1002/mbo3.1434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
The role of gut microbiota in health and disease is being thoroughly examined in various contexts, with a specific focus on the bacterial fraction due to its significant abundance. However, despite their lower abundance, viruses within the gut microbiota are gaining recognition for their crucial role in shaping the structure and function of the intestinal microbiota, with significant effects on the host as a whole, particularly the immune system. Similarly, environmental factors such as stress are key in modulating the host immune system, which in turn influences the composition of the gut virome and neurological functions through the bidirectional communication of the gut-brain axis. In this context, alterations in the host immune system due to stress and/or dysbiosis of the gut virome are critical factors in the development of both infectious and noninfectious diseases. The molecular mechanisms and correlation patterns between microbial species are not yet fully understood. This literature review seeks to explore the interconnected relationship between stress and the gut virome, with a focus on how this interaction is influenced by the host's immune system. We also discuss how disturbances in this finely balanced system can lead to the onset and/or progression of diseases.
Collapse
Affiliation(s)
| | - Bruno Tilocca
- Department of Health SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - Rocco Spagnuolo
- Department of Health SciencesUniversity “Magna Graecia”CatanzaroItaly
| | | | - Francesco Luzza
- Department of Health SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - Paola Roncada
- Department of Health SciencesUniversity “Magna Graecia”CatanzaroItaly
| |
Collapse
|
3
|
Quan M, Zhang X, Fang Q, Lv X, Wang X, Zong Z. Fighting against Clostridioides difficile infection: Current medications. Int J Antimicrob Agents 2024; 64:107198. [PMID: 38734214 DOI: 10.1016/j.ijantimicag.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Clostridioides difficile (formerly Clostridium difficile) has been regarded as an 'urgent threat' and a significant global health problem, as life-threatening diarrhoea and refractory recurrence are common in patients with C. difficile infection (CDI). Unfortunately, the available anti-CDI drugs are limited. Recent guidelines recommend fidaxomicin and vancomycin as first-line drugs to treat CDI, bezlotoxumab to prevent recurrence, and faecal microbiota transplantation for rescue treatment. Currently, researchers are investigating therapeutic antibacterial drugs (e.g. teicoplanin, ridinilazole, ibezapolstat, surotomycin, cadazolid, and LFF571), preventive medications against recurrence (e.g. Rebyota, Vowst, VP20621, VE303, RBX7455, and MET-2), primary prevention strategies (e.g. vaccine, ribaxamase, and DAV132) and other anti-CDI medications in the preclinical stage (e.g. Raja 42, Myxopyronin B, and bacteriophage). This narrative review summarises current medications, including newly marketed drugs and products in development against CDI, to help clinicians treat CDI appropriately and to call for more research on innovation.
Collapse
Affiliation(s)
- Min Quan
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxia Zhang
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Qingqing Fang
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohui Wang
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Zhiyong Zong
- Center for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Buratta S, Urbanelli L, Pellegrino RM, Alabed HBR, Latella R, Cerrotti G, Emiliani C, Bassotti G, Spaterna A, Marconi P, Fettucciari K. PhosphoLipidome Alteration Induced by Clostridioides difficile Toxin B in Enteric Glial Cells. Cells 2024; 13:1103. [PMID: 38994956 PMCID: PMC11240607 DOI: 10.3390/cells13131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a spectrum of nosocomial/antibiotic-associated gastrointestinal diseases that are increasing in global incidence and mortality rates. The C. difficile pathogenesis is due to toxin A and B (TcdA/TcdB), both causing cytopathic and cytotoxic effects and inflammation. Recently, we demonstrated that TcdB induces cytopathic and cytotoxic (apoptosis and necrosis) effects in enteric glial cells (EGCs) in a dose/time-dependent manner and described the underlying signaling. Despite the role played by lipids in host processes activated by pathogens, to counter infection and/or induce cell death, to date no studies have investigated lipid changes induced by TcdB/TcdA. Here, we evaluated the modification of lipid composition in our in vitro model of TcdB infection. Apoptosis, cell cycle, cell viability, and lipidomic profiles were evaluated in EGCs treated for 24 h with two concentrations of TcdB (0.1 ng/mL; 10 ng/mL). In EGCs treated with the highest concentration of TcdB, not only an increased content of total lipids was observed, but also lipidome changes, allowing the separation of TcdB-treated cells and controls into different clusters. The statistical analyses also allowed us to ascertain which lipid classes and lipid molecular species determine the clusterization. Changes in lipid species containing inositol as polar head and plasmalogen phosphatidylethanolamine emerged as key indicators of altered lipid metabolism in TcdB-treated EGCs. These results not only provide a picture of the phospholipid profile changes but also give information regarding the lipid metabolism pathways altered by TcdB, and this might represent an important step for developing strategies against C. difficile infection.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Raffaella Latella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
- Santa Maria Della Misericordia Hospital, Gastroenterology & Hepatology Unit, Piazzale Menghini 1, 06129 Perugia, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy
| | - Pierfrancesco Marconi
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
| | - Katia Fettucciari
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
| |
Collapse
|
5
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
6
|
Saunier M, Fortier LC, Soutourina O. RNA-based regulation in bacteria-phage interactions. Anaerobe 2024; 87:102851. [PMID: 38583547 DOI: 10.1016/j.anaerobe.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Interactions of bacteria with their viruses named bacteriophages or phages shape the bacterial genome evolution and contribute to the diversity of phages. RNAs have emerged as key components of several anti-phage defense systems in bacteria including CRISPR-Cas, toxin-antitoxin and abortive infection. Frequent association with mobile genetic elements and interplay between different anti-phage defense systems are largely discussed. Newly discovered defense systems such as retrons and CBASS include RNA components. RNAs also perform their well-recognized regulatory roles in crossroad of phage-bacteria regulatory networks. Both regulatory and defensive function can be sometimes attributed to the same RNA molecules including CRISPR RNAs. This review presents the recent advances on the role of RNAs in the bacteria-phage interactions with a particular focus on clostridial species including an important human pathogen, Clostridioides difficile.
Collapse
Affiliation(s)
- Marion Saunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
7
|
Iwanicki A, Roskwitalska M, Frankowska N, Wultańska D, Kabała M, Pituch H, Obuchowski M, Hinc K. Insight into the Mechanism of Lysogeny Control of phiCDKH01 Bacteriophage Infecting Clinical Isolate of Clostridioides difficile. Int J Mol Sci 2024; 25:5662. [PMID: 38891850 PMCID: PMC11172241 DOI: 10.3390/ijms25115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Clostridioides difficile is a causative agent of antibiotic-associated diarrhea as well as pseudomembranous colitis. So far, all known bacteriophages infecting these bacteria are temperate, which means that instead of prompt lysis of host cells, they can integrate into the host genome or replicate episomally. While C. difficile phages are capable of spontaneous induction and entering the lytic pathway, very little is known about the regulation of their maintenance in the state of lysogeny. In this study, we investigated the properties of a putative major repressor of the recently characterized C. difficile phiCDKH01 bacteriophage. A candidate protein belongs to the XRE family and controls the transcription of genes encoding putative phage antirepressors, known to be involved in the regulation of lytic development. Hence, the putative major phage repressor is likely to be responsible for maintenance of the lysogeny.
Collapse
Affiliation(s)
- Adam Iwanicki
- Division of Molecular Bacteriology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.I.); (M.R.); (N.F.); (M.O.)
| | - Małgorzata Roskwitalska
- Division of Molecular Bacteriology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.I.); (M.R.); (N.F.); (M.O.)
| | - Natalia Frankowska
- Division of Molecular Bacteriology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.I.); (M.R.); (N.F.); (M.O.)
- Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-307 Gdańsk, Poland
| | - Dorota Wultańska
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland; (D.W.); (H.P.)
| | - Monika Kabała
- Department of Medical Microbiology, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland; (D.W.); (H.P.)
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.I.); (M.R.); (N.F.); (M.O.)
| | - Krzysztof Hinc
- Division of Molecular Bacteriology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.I.); (M.R.); (N.F.); (M.O.)
| |
Collapse
|
8
|
Zhong S, Yang J, Huang H. The role of single and mixed biofilms in Clostridioides difficile infection and strategies for prevention and inhibition. Crit Rev Microbiol 2024; 50:285-299. [PMID: 36939635 DOI: 10.1080/1040841x.2023.2189950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
Clostridioides difficile infection (CDI) is a serious disease with a high recurrence rate. The single and mixed biofilms formed by C. difficile in the gut contribute to the formation of recurrent CDI (rCDI). In parallel, other gut microbes influence the formation and development of C. difficile biofilms, also known as symbiotic biofilms. Interactions between members within the symbiotic biofilm are associated with the worsening or alleviation of CDI. These interactions include effects on C. difficile adhesion and chemotaxis, modulation of LuxS/AI-2 quorum sensing (QS) system activity, promotion of cross-feeding by microbial metabolites, and regulation of intestinal bile acid and pyruvate levels. In the process of C. difficile biofilms control, inhibition of C. difficile initial biofilm formation and killing of C. difficile vegetative cells and spores are the main targets of action. The role of symbiotic biofilms in CDI suggested that targeting interventions of C. difficile-promoting gut microbes could indirectly inhibit the formation of C. difficile mixed biofilms and improved the ultimate therapeutic effect. In summary, this review outlines the mechanisms of C. difficile biofilm formation and summarises the treatment strategies for such single and mixed biofilms, aiming to provide new ideas for the prevention and treatment of CDI.
Collapse
Affiliation(s)
- Saiwei Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Schüler MA, Daniel R, Poehlein A. Novel insights into phage biology of the pathogen Clostridioides difficile based on the active virome. Front Microbiol 2024; 15:1374708. [PMID: 38577680 PMCID: PMC10993401 DOI: 10.3389/fmicb.2024.1374708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
The global pathogen Clostridioides difficile is a well-studied organism, and researchers work on unraveling its fundamental virulence mechanisms and biology. Prophages have been demonstrated to influence C. difficile toxin expression and contribute to the distribution of advantageous genes. All these underline the importance of prophages in C. difficile virulence. Although several C. difficile prophages were sequenced and characterized, investigations on the entire active virome of a strain are still missing. Phages were mainly isolated after mitomycin C-induction, which does not resemble a natural stressor for C. difficile. We examined active prophages from different C. difficile strains after cultivation in the absence of mitomycin C by sequencing and characterization of particle-protected DNA. Phage particles were collected after standard cultivation, or after cultivation in the presence of the secondary bile salt deoxycholate (DCA). DCA is a natural stressor for C. difficile and a potential prophage-inducing agent. We also investigated differences in prophage activity between clinical and non-clinical C. difficile strains. Our experiments demonstrated that spontaneous prophage release is common in C. difficile and that DCA presence induces prophages. Fourteen different, active phages were identified by this experimental procedure. We could not identify a definitive connection between clinical background and phage activity. However, one phage exhibited distinctively higher activity upon DCA induction in the clinical strain than in the corresponding non-clinical strain, although the phage is identical in both strains. We recorded that enveloped DNA mapped to genome regions with characteristics of mobile genetic elements other than prophages. This pointed to mechanisms of DNA mobility that are not well-studied in C. difficile so far. We also detected phage-mediated lateral transduction of bacterial DNA, which is the first described case in C. difficile. This study significantly contributes to our knowledge of prophage activity in C. difficile and reveals novel aspects of C. difficile (phage) biology.
Collapse
Affiliation(s)
| | | | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Gong JJ, Huang IH, Su MSW, Xie SX, Liu WY, Huang CR, Hung YP, Wu SR, Tsai PJ, Ko WC, Chen JW. Phage transcriptional regulator X (PtrX)-mediated augmentation of toxin production and virulence in Clostridioides difficile strain R20291. Microbiol Res 2024; 280:127576. [PMID: 38183754 DOI: 10.1016/j.micres.2023.127576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, and spore-forming bacterial member of the human gut microbiome. The primary virulence factors of C. difficile are toxin A and toxin B. These toxins damage the cell cytoskeleton and cause various diseases, from diarrhea to severe pseudomembranous colitis. Evidence suggests that bacteriophages can regulate the expression of the pathogenicity locus (PaLoc) genes of C. difficile. We previously demonstrated that the genome of the C. difficile RT027 strain NCKUH-21 contains a prophage-like DNA sequence, which was found to be markedly similar to that of the φCD38-2 phage. In the present study, we investigated the mechanisms underlying the φNCKUH-21-mediated regulation of the pathogenicity and the PaLoc genes expression in the lysogenized C. difficile strain R20291. The carriage of φNCKUH-21 in R20291 cells substantially enhanced toxin production, bacterial motility, biofilm formation, and spore germination in vitro. Subsequent mouse studies revealed that the lysogenized R20291 strain caused a more severe infection than the wild-type strain. We screened three φNCKUH-21 genes encoding DNA-binding proteins to check their effects on PaLoc genes expression. The overexpression of NCKUH-21_03890, annotated as a transcriptional regulator (phage transcriptional regulator X, PtrX), considerably enhanced toxin production, biofilm formation, and bacterial motility of R20291. Transcriptome analysis further confirmed that the overexpression of ptrX led to the upregulation of the expression of toxin genes, flagellar genes, and csrA. In the ptrX-overexpressing R20291 strain, PtrX influenced the expression of flagellar genes and the sigma factor gene sigD, possibly through an increased flagellar phase ON configuration ratio.
Collapse
Affiliation(s)
- Jun-Jia Gong
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsiu Huang
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Marcia Shu-Wei Su
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Si-Xuan Xie
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yong Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Rung Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Center for Clinical Medicine Research, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Blau K, Gallert C. Prophage Carriage and Genetic Diversity within Environmental Isolates of Clostridioides difficile. Int J Mol Sci 2023; 25:2. [PMID: 38203173 PMCID: PMC10778935 DOI: 10.3390/ijms25010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Clostridioides difficile is an important human pathogen causing antibiotic-associated diarrhoea worldwide. Besides using antibiotics for treatment, the interest in bacteriophages as an alternative therapeutic option has increased. Prophage abundance and genetic diversity are well-documented in clinical strains, but the carriage of prophages in environmental strains of C. difficile has not yet been explored. Thus, the prevalence and genetic diversity of integrated prophages in the genomes of 166 environmental C. difficile isolates were identified. In addition, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems were determined in the genomes of prophage regions. Predicted prophages and CRISPR-Cas systems were identified by using the PHASTER web server and CRISPRCasFinder, respectively. Phylogenetic relationships among predicated prophages were also constructed based on phage-related genes, terminase large (TerL) subunits and LysM. Among 372 intact prophages, the predominant prophages were phiCDHM1, phiCDHM19, phiMMP01, phiCD506, phiCD27, phiCD211, phiMMP03, and phiC2, followed by phiMMP02, phiCDKM9, phiCD6356, phiCDKM15, and phiCD505. Two newly discovered siphoviruses, phiSM101- and phivB_CpeS-CP51-like Clostridium phages, were identified in two C. difficile genomes. Most prophages were found in sequence types (STs) ST11, ST3, ST8, ST109, and ST2, followed by ST6, ST17, ST4, ST5, ST44, and ST58. An obvious correlation was found between prophage types and STs/ribotypes. Most predicated prophages carry CRISPR arrays. Some prophages carry several gene products, such as accessory gene regulator (Agr), putative spore protease, and abortive infection (Abi) systems. This study shows that prophage carriage, along with genetic diversity and their CRISPR arrays, may play a role in the biology, lifestyle, and fitness of their host strains.
Collapse
Affiliation(s)
| | - Claudia Gallert
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| |
Collapse
|
12
|
Yu Y, Wang W, Zhang F. The Next Generation Fecal Microbiota Transplantation: To Transplant Bacteria or Virome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301097. [PMID: 37914662 PMCID: PMC10724401 DOI: 10.1002/advs.202301097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/02/2023] [Indexed: 11/03/2023]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for dysbiosis-related diseases. However, the clinical practice of crude fecal transplants presents limitations in terms of acceptability and reproductivity. Consequently, two alternative solutions to FMT are developed: transplanting bacteria communities or virome. Advanced methods for transplanting bacteria mainly include washed microbiota transplantation and bacteria spores treatment. Transplanting the virome is also explored, with the development of fecal virome transplantation, which involves filtering the virome from feces. These approaches provide more palatable options for patients and healthcare providers while minimizing research heterogeneity. In general, the evolution of the next generation of FMT in global trends is fecal microbiota components transplantation which mainly focuses on transplanting bacteria or virome.
Collapse
Affiliation(s)
- You Yu
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
- Department of Microbiota MedicineSir Run Run HospitalNanjing Medical UniversityNanjing211166China
| |
Collapse
|
13
|
Kumbhare SV, Pedroso I, Ugalde JA, Márquez-Miranda V, Sinha R, Almonacid DE. Drug and gut microbe relationships: Moving beyond antibiotics. Drug Discov Today 2023; 28:103797. [PMID: 37806386 DOI: 10.1016/j.drudis.2023.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Our understanding of drug-microbe relationships has evolved from viewing microbes as mere drug producers to a dynamic, modifiable system where they can serve as drugs or targets of precision pharmacology. This review highlights recent findings on the gut microbiome, particularly focusing on four aspects of research: (i) drugs for bugs, covering recent strategies for targeting gut pathogens; (ii) bugs as drugs, including probiotics; (iii) drugs from bugs, including postbiotics; and (iv) bugs and drugs, discussing additional types of drug-microbe interactions. This review provides a perspective on future translational research, including efficient companion diagnostics in pharmaceutical interventions.
Collapse
Affiliation(s)
| | | | - Juan A Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | | |
Collapse
|
14
|
Rubio-Mendoza D, Martínez-Meléndez A, Maldonado-Garza HJ, Córdova-Fletes C, Garza-González E. Review of the Impact of Biofilm Formation on Recurrent Clostridioides difficile Infection. Microorganisms 2023; 11:2525. [PMID: 37894183 PMCID: PMC10609348 DOI: 10.3390/microorganisms11102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile infection (CDI) may recur in approximately 10-30% of patients, and the risk of recurrence increases with each successive recurrence, reaching up to 65%. C. difficile can form biofilm with approximately 20% of the bacterial genome expressed differently between biofilm and planktonic cells. Biofilm plays several roles that may favor recurrence; for example, it may act as a reservoir of spores, protect the vegetative cells from the activity of antibiotics, and favor the formation of persistent cells. Moreover, the expression of several virulence genes, including TcdA and TcdB toxins, has been associated with recurrence. Several systems and structures associated with adhesion and biofilm formation have been studied in C. difficile, including cell-wall proteins, quorum sensing (including LuxS and Agr), Cyclic di-GMP, type IV pili, and flagella. Most antibiotics recommended for the treatment of CDI do not have activity on spores and do not eliminate biofilm. Therapeutic failure in R-CDI has been associated with the inadequate concentration of drugs in the intestinal tract and the antibiotic resistance of a biofilm. This makes it challenging to eradicate C. difficile in the intestine, complicating antibacterial therapies and allowing non-eliminated spores to remain in the biofilm, increasing the risk of recurrence. In this review, we examine the role of biofilm on recurrence and the challenges of treating CDI when the bacteria form a biofilm.
Collapse
Affiliation(s)
- Daira Rubio-Mendoza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Adrián Martínez-Meléndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Héctor Jesús Maldonado-Garza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Carlos Córdova-Fletes
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Elvira Garza-González
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| |
Collapse
|
15
|
Garvey M. Foodborne Clostridioides Species: Pathogenicity, Virulence and Biocontrol Options. Microorganisms 2023; 11:2483. [PMID: 37894141 PMCID: PMC10609181 DOI: 10.3390/microorganisms11102483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides species possess many virulence factors and alarming levels of muti-drug resistance which make them a significant risk to public health safety and a causative agent of livestock disease. Clostridioides result in serious systemic and gastrointestinal diseases such as myonecrosis, colitis, food poisoning and gastroenteritis. As foodborne pathogens, Clostridioides species are associated with significant incidences of morbidity and mortality where the application of broad-spectrum antibiotics predisposes patients to virulent Clostridioides colonisation. As part of the One Health approach, there is an urgent need to eliminate the use of antibiotics in food production to safeguard animals, humans and the environment. Alternative options are warranted to control foodborne pathogens at all stages of food production. Antimicrobial peptides and bacteriophages have demonstrated efficacy against Clostridioides species and may offer antimicrobial biocontrol options. The bacteriocin nisin, for example, has been implemented as a biopreservative for the control of Listeria, Staphylococcus and Clostridia species in food. Bacteriophage preparations have also gained recognition for the antibacterial action against highly virulent bacterial species including foodborne pathogens. Studies are warranted to mitigate the formulation and administration limitations associated with the application of such antimicrobials as biocontrol strategies. This review outlines foodborne Clostridioides species, their virulence factors, and potential biocontrol options for application in food production.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Ash Lane, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
16
|
Jones DT, Schulz F, Roux S, Brown SD. Solvent-Producing Clostridia Revisited. Microorganisms 2023; 11:2253. [PMID: 37764097 PMCID: PMC10538166 DOI: 10.3390/microorganisms11092253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The review provides an overview of the current status of the solvent-producing clostridia. The origin and development of industrial clostridial species, as well as the history of the industrial Acetone Butanol Ethanol fermentation process, is reexamined, and the recent resurgence of interest in the production of biobutanol is reviewed. Over 300 fully sequenced genomes for solvent-producing and closely related clostridial species are currently available in public databases. These include 270 genomes sourced from the David Jones culture collection. These genomes were allocated arbitrary DJ codes, and a conversion table to identify the species and strains has now been provided. The expanded genomic database facilitated new comparative genomic and phylogenetic analysis. A synopsis of the common features, molecular taxonomy, and phylogeny of solvent-producing clostridia and the application of comparative phylogenomics are evaluated. A survey and analysis of resident prophages in solvent-producing clostridia are discussed, and the discovery, occurrence, and role of novel R-type tailocins are reported. Prophage genomes with R-type tailocin-like features were detected in all 12 species investigated. The widespread occurrence of tailocins in Gram-negative species is well documented; this survey has indicated that they may also be widespread in clostridia.
Collapse
Affiliation(s)
- David T. Jones
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| | - Frederik Schulz
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA 94720, USA; (F.S.); (S.R.)
| | - Simon Roux
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA 94720, USA; (F.S.); (S.R.)
| | | |
Collapse
|
17
|
Dong Q, Lin H, Allen MM, Garneau JR, Sia JK, Smith RC, Haro F, McMillen T, Pope RL, Metcalfe C, Burgo V, Woodson C, Dylla N, Kohout C, Sundararajan A, Snitkin ES, Young VB, Fortier LC, Kamboj M, Pamer EG. Virulence and genomic diversity among clinical isolates of ST1 (BI/NAP1/027) Clostridioides difficile. Cell Rep 2023; 42:112861. [PMID: 37523264 PMCID: PMC10627504 DOI: 10.1016/j.celrep.2023.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
Clostridioides difficile produces toxins that damage the colonic epithelium, causing colitis. Variation in disease severity is poorly understood and has been attributed to host factors and virulence differences between C. difficile strains. We test 23 epidemic ST1 C. difficile clinical isolates for their virulence in mice. All isolates encode a complete Tcd pathogenicity locus and achieve similar colonization densities. However, disease severity varies from lethal to avirulent infections. Genomic analysis of avirulent isolates reveals a 69-bp deletion in the cdtR gene, which encodes a response regulator for binary toxin expression. Deleting the 69-bp sequence in virulent R20291 strain renders it avirulent in mice with reduced toxin gene transcription. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile isolates without reducing colonization and persistence. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Julian R Garneau
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Jonathan K Sia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Tracy McMillen
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rosemary L Pope
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Dylla
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Claire Kohout
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Evan S Snitkin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vincent B Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G Pamer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Dicks LMT. Biofilm Formation of Clostridioides difficile, Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI. Microorganisms 2023; 11:2161. [PMID: 37764005 PMCID: PMC10534356 DOI: 10.3390/microorganisms11092161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Clostridioides difficile is considered a nosocomial pathogen that flares up in patients exposed to antibiotic treatment. However, four out of ten patients diagnosed with C. difficile infection (CDI) acquired the infection from non-hospitalized individuals, many of whom have not been treated with antibiotics. Treatment of recurrent CDI (rCDI) with antibiotics, especially vancomycin (VAN) and metronidazole (MNZ), increases the risk of experiencing a relapse by as much as 70%. Fidaxomicin, on the other hand, proved more effective than VAN and MNZ by preventing the initial transcription of RNA toxin genes. Alternative forms of treatment include quorum quenching (QQ) that blocks toxin synthesis, binding of small anion molecules such as tolevamer to toxins, monoclonal antibodies, such as bezlotoxumab and actoxumab, bacteriophage therapy, probiotics, and fecal microbial transplants (FMTs). This review summarizes factors that affect the colonization of C. difficile and the pathogenicity of toxins TcdA and TcdB. The different approaches experimented with in the destruction of C. difficile and treatment of CDI are evaluated.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
19
|
Umansky AA, Fortier LC. The long and sinuous road to phage-based therapy of Clostridioides difficile infections. Front Med (Lausanne) 2023; 10:1259427. [PMID: 37680620 PMCID: PMC10481535 DOI: 10.3389/fmed.2023.1259427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
With the antibiotic crisis and the rise in antimicrobial resistance worldwide, new therapeutic alternatives are urgently needed. Phage therapy represents one of the most promising alternatives but for some pathogens, such as Clostridioides difficile, important challenges are being faced. The perspective of phage therapy to treat C. difficile infections is complicated by the fact that no strictly lytic phages have been identified so far, and current temperate phages generally have a narrow host range. C. difficile also harbors multiple antiphage mechanisms, and the bacterial genome is often a host of one or multiple prophages that can interfere with lytic phage infection. Nevertheless, due to recent advances in phage host receptor recognition and improvements in genetic tools to manipulate phage genomes, it is now conceivable to genetically engineer C. difficile phages to make them suitable for phage therapy. Other phage-based alternatives such as phage endolysins and phage tail-like bacteriocins (avidocins) are also being investigated but these approaches also have their own limitations and challenges. Last but not least, C. difficile produces spores that are resistant to phage attacks and all current antibiotics, and this complicates therapeutic interventions. This mini-review gives a brief historical overview of phage work that has been carried out in C. difficile, presents recent advances in the field, and addresses the most important challenges that are being faced, with potential solutions.
Collapse
Affiliation(s)
| | - Louis Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
20
|
Fettucciari K, Dini F, Marconi P, Bassotti G. Role of the Alteration in Calcium Homeostasis in Cell Death Induced by Clostridioides difficile Toxin A and Toxin B. BIOLOGY 2023; 12:1117. [PMID: 37627001 PMCID: PMC10452684 DOI: 10.3390/biology12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Clostridioides difficile (C. difficile), responsible for 15-25% of gastrointestinal infections, causes health problems mainly due to the toxic activity of toxins A and B (Tcds). These are responsible for its clinical manifestations, including diarrhea, pseudomembranous colitis, toxic megacolon and death, with a mortality of 5-30% in primary infection, that increase following relapses. Studies on Tcd-induced cell death have highlighted a key role of caspases, calpains, and cathepsins, with involvement of mitochondria and reactive oxygen species (ROS) in a complex signaling pathway network. The complex response in the execution of various types of cell death (apoptosis, necrosis, pyroptosis and pyknosis) depends on the amount of Tcd, cell types, and Tcd receptors involved, and could have as initial/precocious event the alterations in calcium homeostasis. The entities, peculiarities and cell types involved in these alterations will decide the signaling pathways activated and cell death type. Calcium homeostasis alterations can be caused by calcium influx through calcium channel activation, transient intracellular calcium oscillations, and leakage of calcium from intracellular stores. These increases in cytoplasmic calcium have important effects on all calcium-regulated molecules, which may play a direct role in several cell death types and/or activate other cell death effectors, such as caspases, calpains, ROS and proapoptotic Bcl-2 family members. Furthermore, some support for the possible role of the calcium homeostasis alteration in Tcd-induced cell death originates from the similarity with cytotoxic effects that cause pore-forming toxins, based mainly on calcium influx through plasma membrane pores.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
21
|
Liu C, Monaghan T, Yadegar A, Louie T, Kao D. Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective. Antibiotics (Basel) 2023; 12:1141. [PMID: 37508237 PMCID: PMC10376792 DOI: 10.3390/antibiotics12071141] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Clostridioides difficile remains an important public health threat, globally. Since the emergence of the hypervirulent strain, ribotype 027, new strains have been reported to cause C. difficile infection (CDI) with poor health outcomes, including ribotypes 014/020, 017, 056, 106, and 078/126. These strains differ in their geographic distribution, genetic makeup, virulence factors, and antimicrobial susceptibility profiles, which can affect their ability to cause disease and respond to treatment. As such, understanding C. difficile epidemiology is increasingly important to allow for effective prevention measures. Despite the heightened epidemiological surveillance of C. difficile over the past two decades, it remains challenging to accurately estimate the burden and international epidemiological trends given the lack of concerted global effort for surveillance, especially in low- and middle-income countries. This review summarizes the changing epidemiology of C. difficile based on available data within the last decade, highlights the pertinent ribotypes from a global perspective, and discusses evolving treatments for CDI.
Collapse
Affiliation(s)
- Crystal Liu
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tanya Monaghan
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Thomas Louie
- Medicine and Microbiology, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Dina Kao
- Division of Gastroenterology, University of Alberta, Edmonton, AB T6G 2P8, Canada
| |
Collapse
|
22
|
Raeisi H, Noori M, Azimirad M, Mohebbi SR, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: challenges and perspectives. Gut Pathog 2023; 15:21. [PMID: 37161478 PMCID: PMC10169144 DOI: 10.1186/s13099-023-00550-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Chen X, Mendes BG, Alves BS, Duan Y. Phage therapy in gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:93-118. [PMID: 37770177 DOI: 10.1016/bs.pmbts.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phage therapy, the use of bacteriophage viruses for bacterial infection treatment, has been around for almost a century, but with the increase in antibiotic use, its importance has declined rapidly. There has been renewed interest in revisiting this practice due to the general decline in the effectiveness of antibiotics, combined with improved understanding of human microbiota and advances in sequencing technologies. Phage therapy has been proposed as a clinical alternative to restore the gut microbiota in the absence of an effective treatment. That is due to its immunomodulatory and bactericidal effects against its target bacteria. In the gastrointestinal diseases field, phage therapy has been studied mainly as a promising tool in infectious diseases treatment, such as cholera and diarrhea. However, many studies have been conducted in non-communicable diseases, such as the targeting of adherent invasive Escherichia coli in Crohn's disease, the treatment of Clostridioides difficile in ulcerative colitis, the eradication of Fusobacterium nucleatum in colorectal cancer, the targeting of alcohol-producing Klebsiella pneumoniae in non-alcoholic fatty liver disease, or Enterococcus faecalis in alcohol-associated hepatitis. This review will summarize the changes in the gut microbiota and the phageome in association with some gastrointestinal and liver diseases and highlight the recent scientific advances in phage therapy as a therapeutic tool for their treatment.
Collapse
Affiliation(s)
- Xingyao Chen
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Beatriz G Mendes
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Bruno Secchi Alves
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Yi Duan
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
24
|
Heuler J, Chandra H, Sun X. Mucosal Vaccination Strategies against Clostridioides difficile Infection. Vaccines (Basel) 2023; 11:vaccines11050887. [PMID: 37242991 DOI: 10.3390/vaccines11050887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Clostridioides difficile infection (CDI) presents a major public health threat by causing frequently recurrent, life-threatening cases of diarrhea and intestinal inflammation. The ability of C. difficile to express antibiotic resistance and to form long-lasting spores makes the pathogen particularly challenging to eradicate from healthcare settings, raising the need for preventative measures to curb the spread of CDI. Since C. difficile utilizes the fecal-oral route of transmission, a mucosal vaccine could be a particularly promising strategy by generating strong IgA and IgG responses that prevent colonization and disease. This mini-review summarizes the progress toward mucosal vaccines against C. difficile toxins, cell-surface components, and spore proteins. By assessing the strengths and weaknesses of particular antigens, as well as methods for delivering these antigens to mucosal sites, we hope to guide future research toward an effective mucosal vaccine against CDI.
Collapse
Affiliation(s)
- Joshua Heuler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Harish Chandra
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
25
|
Arivarasan VK. Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:133-149. [PMID: 37770168 DOI: 10.1016/bs.pmbts.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
26
|
Royer ALM, Umansky AA, Allen MM, Garneau JR, Ospina-Bedoya M, Kirk JA, Govoni G, Fagan RP, Soutourina O, Fortier LC. Clostridioides difficile S-Layer Protein A (SlpA) Serves as a General Phage Receptor. Microbiol Spectr 2023; 11:e0389422. [PMID: 36790200 PMCID: PMC10100898 DOI: 10.1128/spectrum.03894-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Therapeutic bacteriophages (phages) are being considered as alternatives in the fight against Clostridioides difficile infections. To be efficient, phages should have a wide host range, buthe lack of knowledge about the cell receptor used by C. difficile phages hampers the rational design of phage cocktails. Recent reports suggested that the C. difficile surface layer protein A (SlpA) is an important phage receptor, but available data are still limited. Here, using the epidemic R20291 strain and its FM2.5 mutant derivative lacking a functional S-layer, we show that the absence of SlpA renders cells completely resistant to infection by ϕCD38-2, ϕCD111, and ϕCD146, which normally infect the parental strain. Complementation with 12 different S-layer cassette types (SLCTs) expressed from a plasmid revealed that SLCT-6 also allowed infection by ϕCD111 and SLCT-11 enabled infection by ϕCD38-2 and ϕCD146. Of note, the expression of SLCT-1, -6, -8, -9, -10, or -12 conferred susceptibility to infection by 5 myophages that normally do not infect the R20291 strain. Also, deletion of the D2 domain within the low-molecular-weight fragment of SlpA was found to abolish infection by ϕCD38-2 and ϕCD146 but not ϕCD111. Altogether, our data suggest that many phages use SlpA as their receptor and, most importantly, that both siphophages and myophages target SlpA despite major differences in their tail structures. Our study therefore represents an important step in understanding the interactions between C. difficile and its phages. IMPORTANCE Phage therapy represents an interesting alternative to treat Clostridioides difficile infections because, contrary to antibiotics, most phages are highly species specific, thereby sparing the beneficial gut microbes that protect from infection. However, currently available phages against C. difficile have a narrow host range and target members from only one or a few PCR ribotypes. Without a clear comprehension of the factors that define host specificity, and in particular the host receptor recognized by phages, it is hard to develop therapeutic cocktails in a rational manner. In our study, we provide clear and unambiguous experimental evidence that SlpA is a common receptor used by many siphophages and myophages. Although work is still needed to define how a particular phage receptor-binding protein binds to a specific SLCT, the identification of SlpA as a common receptor is a major keystone that will facilitate the rational design of therapeutic phage cocktails against clinically important strains.
Collapse
Affiliation(s)
- Alexia L. M. Royer
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Andrew A. Umansky
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julian R. Garneau
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maicol Ospina-Bedoya
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Joseph A. Kirk
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | | | - Robert P. Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
27
|
Cervera C. Current landscape on phage therapy in infections: time to leave it behind for good? Clin Microbiol Infect 2023; 29:565-567. [PMID: 36736660 DOI: 10.1016/j.cmi.2023.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Affiliation(s)
- Carlos Cervera
- Division of Infectious Diseases, Department of Medicine, Li Ka Shing Institute of Virology, University of Alberta, Canada.
| |
Collapse
|
28
|
Dong Q, Lin H, Allen MM, Garneau JR, Sia JK, Smith RC, Haro F, McMillen T, Pope RL, Metcalfe C, Burgo V, Woodson C, Dylla N, Kohout C, Sundararajan A, Snitkin ES, Young VB, Fortier LC, Kamboj M, Pamer EG. Virulence and genomic diversity among clinical isolates of ST1 (BI/NAP1/027) Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523823. [PMID: 36711955 PMCID: PMC9882218 DOI: 10.1101/2023.01.12.523823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clostridioides difficile (C. difficile) , a leading cause of nosocomial infection, produces toxins that damage the colonic epithelium and results in colitis that varies from mild to fulminant. Variation in disease severity is poorly understood and has been attributed to host factors (age, immune competence and intestinal microbiome composition) and/or virulence differences between C. difficile strains, with some, such as the epidemic BI/NAP1/027 (MLST1) strain, being associated with greater virulence. We tested 23 MLST1(ST1) C. difficile clinical isolates for virulence in antibiotic-treated C57BL/6 mice. All isolates encoded a complete Tcd pathogenicity locus and achieved similar colonization densities in mice. Disease severity varied, however, with 5 isolates causing lethal infections, 16 isolates causing a range of moderate infections and 2 isolates resulting in no detectable disease. The avirulent ST1 isolates did not cause disease in highly susceptible Myd88 -/- or germ-free mice. Genomic analysis of the avirulent isolates revealed a 69 base-pair deletion in the N-terminus of the cdtR gene, which encodes a response regulator for binary toxin (CDT) expression. Genetic deletion of the 69 base-pair cdtR sequence in the highly virulent ST1 R20291 C. difficile strain rendered it avirulent and reduced toxin gene transcription in cecal contents. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile strain without reducing colonization and persistence in the gut. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Julian R. Garneau
- Department of Microbiology and Infectious Diseases, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan K. Sia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Rita C. Smith
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Tracy McMillen
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rosemary L. Pope
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Nicholas Dylla
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Claire Kohout
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Evan S Snitkin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent B. Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
29
|
Alaoui Mdarhri H, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M, Boussettine R, Filali-Ansari N, Lahlou FA, Diawara I, Ennaji MM, Kettani-Halabi M. Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine. Antibiotics (Basel) 2022; 11:1826. [PMID: 36551487 PMCID: PMC9774722 DOI: 10.3390/antibiotics11121826] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Resistance to antimicrobials and particularly multidrug resistance is one of the greatest challenges in the health system nowadays. The continual increase in the rates of antimicrobial resistance worldwide boosted by the ongoing COVID-19 pandemic poses a major public health threat. Different approaches have been employed to minimize the effect of resistance and control this threat, but the question still lingers as to their safety and efficiency. In this context, new anti-infectious approaches against multidrug resistance are being examined. Use of new antibiotics and their combination with new β-lactamase inhibitors, phage therapy, antimicrobial peptides, nanoparticles, and antisense antimicrobial therapeutics are considered as one such promising approach for overcoming bacterial resistance. In this review, we provide insights into these emerging alternative therapies that are currently being evaluated and which may be developed in the future to break the progression of antimicrobial resistance. We focus on their advantages and limitations and potential application in medicine. We further highlight the importance of the combination therapy approach, wherein two or more therapies are used in combination in order to more effectively combat infectious disease and increasing access to quality healthcare. These advances could give an alternate solution to overcome antimicrobial drug resistance. We eventually hope to provide useful information for clinicians who are seeking solutions to the problems caused by antimicrobial resistance.
Collapse
Affiliation(s)
- Hiba Alaoui Mdarhri
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rachid Benmessaoud
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Yacoubi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Lina Seffar
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Guennouni Assimi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Mouhsine Hamam
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rihabe Boussettine
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Najoie Filali-Ansari
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Fatima Azzahra Lahlou
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Idrissa Diawara
- Department of Biological Engineering, Higher Institute of Bioscience and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Mohamed Kettani-Halabi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| |
Collapse
|
30
|
Nale JY, Thanki AM, Rashid SJ, Shan J, Vinner GK, Dowah ASA, Cheng JKJ, Sicheritz-Pontén T, Clokie MRJ. Diversity, Dynamics and Therapeutic Application of Clostridioides difficile Bacteriophages. Viruses 2022; 14:v14122772. [PMID: 36560776 PMCID: PMC9784644 DOI: 10.3390/v14122772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.
Collapse
Affiliation(s)
- Janet Y. Nale
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, Scotland’s Rural College, Inverness IV2 5NA, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Anisha M. Thanki
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Srwa J. Rashid
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Gurinder K. Vinner
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Ahmed S. A. Dowah
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- School of Pharmacy, University of Lincoln, Lincoln LN6 7TS, UK
| | | | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Correspondence:
| |
Collapse
|
31
|
Phetruen T, Chanarat S, Janvilisri T, Phanchana M, Charoensutthivarakul S, Phothichaisri W, Chankhamhaengdecha S. Receptor binding protein of prophage reversibly recognizes the low-molecular weight subunit of the surface-layer protein SlpA in Clostridioides difficile. Front Microbiol 2022; 13:998215. [PMID: 36312948 PMCID: PMC9615553 DOI: 10.3389/fmicb.2022.998215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor-binding proteins (RBPs) are located at the viral tail and mediate the initial recognition of phage to a specific bacterial host. Phage RBPs have co-evolved with numerous types of host receptors resulting in the formation of a diverse assortment of cognate pairs of RBP-receptors that function during the phage attachment step. Although several Clostridioides difficile bacteriophages have been discovered, their RBPs are poorly described. Using homology analysis, putative prophage-tail structure (pts) genes were identified from the prophage genome of the C. difficile HN10 strain. Competition and enzyme-linked immunosorbent assays, using recombinant PtsHN10M, demonstrated the interaction of this Pts to C. difficile cells, suggesting a role as a phage RBP. Gel filtration and cross-linking assay revealed the native form of this protein as a homotrimer. Moreover, truncated variants indicated that the C-terminal domain of PtsHN10M was important for binding to C. difficile cells. Interaction of PtsHN10M was also observed to the low-molecular weight subunit of surface-layer protein A (SlpA), located at the outermost surface of C. difficile cells. Altogether, our study highlights the function of PtsHN10M as an RBP and potentially paves the way toward phage engineering and phage therapy against C. difficile infection.
Collapse
Affiliation(s)
- Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sitthivut Charoensutthivarakul
- Faculty of Science, School of Bioinnovation and Bio-Based Product Intelligence, Mahidol University, Bangkok, Thailand
- Faculty of Science, Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Surang Chankhamhaengdecha
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- *Correspondence: Surang Chankhamhaengdecha,
| |
Collapse
|
32
|
Bhattacharjee R, Nandi A, Sinha A, Kumar H, Mitra D, Mojumdar A, Patel P, Jha E, Mishra S, Rout PK, Panda PK, Suar M, Verma SK. Phage-tail-like bacteriocins as a biomedical platform to counter anti-microbial resistant pathogens. Biomed Pharmacother 2022; 155:113720. [PMID: 36162371 DOI: 10.1016/j.biopha.2022.113720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Phage Tail Like bacteriocins (PTLBs) has been an area of interest in the last couple of years owing to their varied application against multi-drug resistant (MDR), anti-microbial resistant (AMR) pathogens and their evolutionary link with the dsDNA virus and bacteriophages. PTLBs are defective phages derived from Myoviridae and Siphoviridae phages, PTLBs are distinguished into R-type (Rigid type) characterized by a non-flexible contractile nanotube resembling Myoviridae phage contractile tails, and F-type (Flexible type) with a flexible non-contractile rod-like structure similar to Siphoviridae phages. In this review, we have discussed the structural association, mechanism, and characterization of PTLBs. Moreover, we have elucidated the symbiotic biological function and application of PTLBs against MDR and XDR pathogens and highlighted the evolutionary role of PTLBs. The difficulties that must be overcome to implement PTLBs clinically are also discussed. It is imperative that these issues be addressed by academics in future studies before being implemented in clinical settings. This article is novel in its way as it will not only provide us with a gateway that acts as a novel strategy for scholars to mitigate and control the uprising issue of AMR pathogens but also promote the development of clinical studies for PTLBs.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Hrithik Kumar
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala 695551, India
| | - Disha Mitra
- University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Abhik Mojumdar
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Ochang Center, Cheongju, Chungcheongbuk 28119, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suman Mishra
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Prabhat Kumar Rout
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
33
|
Cao Z, Sugimura N, Burgermeister E, Ebert MP, Zuo T, Lan P. The gut virome: A new microbiome component in health and disease. EBioMedicine 2022; 81:104113. [PMID: 35753153 PMCID: PMC9240800 DOI: 10.1016/j.ebiom.2022.104113] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
The human gastrointestinal tract harbours an abundance of viruses, collectively known as the gut virome. The gut virome is highly heterogeneous across populations and is linked to geography, ethnicity, diet, lifestyle, and urbanisation. The currently known function of the gut virome varies greatly across human populations, and much remains unknown. We review current literature on the human gut virome, and the intricate trans-kingdom interplay among gut viruses, bacteria, and the mammalian host underlying health and diseases. We summarise evidence on the use of the gut virome as diagnostic markers and a therapeutic target. We shed light on novel avenues of microbiome-inspired diagnosis and therapies. We also review pre-clinical and clinical studies on gut virome-rectification-based therapies, including faecal microbiota transplantation, faecal virome transplantation, and refined phage therapy. Our review suggests that future research effort should focus on unravelling the mechanisms exerted by gut viruses/phages in human pathophysiology, and on developing phage-prompted precision therapies.
Collapse
Affiliation(s)
- Zhirui Cao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Naoki Sugimura
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; DKFZ-Hector Cancer Institute, Mannheim, Germany; Mannheim Cancer Centre (MCC), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Ping Lan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
34
|
Risk Factors, Diagnosis, and Management of Clostridioides difficile Infection in Patients with Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10071315. [PMID: 35889034 PMCID: PMC9319314 DOI: 10.3390/microorganisms10071315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Clostridioides difficile infection (CDI) and inflammatory bowel disease (IBD) are two pathologies that share a bidirectional causal nexus, as CDI is known to have an aggravating effect on IBD and IBD is a known risk factor for CDI. The colonic involvement in IBD not only renders the host more prone to an initial CDI development but also to further recurrences. Furthermore, IBD flares, which are predominantly set off by a CDI, not only create a need for therapy escalation but also prolong hospital stay. For these reasons, adequate and comprehensive management of CDI is of paramount importance in patients with IBD. Microbiological diagnosis, correct evaluation of clinical status, and consideration of different treatment options (from antibiotics and fecal microbiota transplantation to monoclonal antibodies) carry pivotal importance. Thus, the aim of this article is to review the risk factors, diagnosis, and management of CDI in patients with IBD.
Collapse
|
35
|
Venhorst J, van der Vossen JMBM, Agamennone V. Battling Enteropathogenic Clostridia: Phage Therapy for Clostridioides difficile and Clostridium perfringens. Front Microbiol 2022; 13:891790. [PMID: 35770172 PMCID: PMC9234517 DOI: 10.3389/fmicb.2022.891790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
The pathogenic Clostridioides difficile and Clostridium perfringens are responsible for many health care-associated infections as well as systemic and enteric diseases. Therefore, they represent a major health threat to both humans and animals. Concerns regarding increasing antibiotic resistance (related to C. difficile and C. perfringens) have caused a surge in the pursual of novel strategies that effectively combat pathogenic infections, including those caused by both pathogenic species. The ban on antibiotic growth promoters in the poultry industry has added to the urgency of finding novel antimicrobial therapeutics for C. perfringens. These efforts have resulted in various therapeutics, of which bacteriophages (in short, phages) show much promise, as evidenced by the Eliava Phage Therapy Center in Tbilisi, Georgia (https://eptc.ge/). Bacteriophages are a type of virus that infect bacteria. In this review, the (clinical) impact of clostridium infections in intestinal diseases is recapitulated, followed by an analysis of the current knowledge and applicability of bacteriophages and phage-derived endolysins in this disease indication. Limitations of phage and phage endolysin therapy were identified and require considerations. These include phage stability in the gastrointestinal tract, influence on gut microbiota structure/function, phage resistance development, limited host range for specific pathogenic strains, phage involvement in horizontal gene transfer, and-for phage endolysins-endolysin resistance, -safety, and -immunogenicity. Methods to optimize features of these therapeutic modalities, such as mutagenesis and fusion proteins, are also addressed. The future success of phage and endolysin therapies require reliable clinical trial data for phage(-derived) products. Meanwhile, additional research efforts are essential to expand the potential of exploiting phages and their endolysins for mitigating the severe diseases caused by C. difficile and C. perfringens.
Collapse
Affiliation(s)
- Jennifer Venhorst
- Biomedical Health, Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Jos M. B. M. van der Vossen
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Valeria Agamennone
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
36
|
Zhang Y, Saint Fleur A, Feng H. The development of live biotherapeutics against Clostridioides difficile infection towards reconstituting gut microbiota. Gut Microbes 2022; 14:2052698. [PMID: 35319337 PMCID: PMC8959509 DOI: 10.1080/19490976.2022.2052698] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is the most prevalent pathogen of nosocomial diarrhea. In the United States, over 450,000 cases of C. difficile infection (CDI), responsible for more than 29,000 deaths, are reported annually in recent years. Because of the emergence of hypervirulent strains and strains less susceptible to vancomycin and fidaxomicin, new therapeutics other than antibiotics are urgently needed. The gut microbiome serves as one of the first-line defenses against C. difficile colonization. The use of antibiotics causes gut microbiota dysbiosis and shifts the status from colonization resistance to infection. Hence, novel CDI biotherapeutics capable of reconstituting normal gut microbiota have become a focus of drug development in this field.
Collapse
Affiliation(s)
- Yongrong Zhang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD21201, United States
| | - Ashley Saint Fleur
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD21201, United States
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD21201, United States
| |
Collapse
|
37
|
Clostridioides difficile - phage relationship the RNA way. Curr Opin Microbiol 2021; 66:1-10. [PMID: 34922145 DOI: 10.1016/j.mib.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/06/2021] [Accepted: 11/28/2021] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile)-associated diarrhea is currently the most frequently occurring nosocomial diarrhea worldwide. During its infection cycle this pathogen needs to survive in phage-rich gut communities. Recent data strongly suggest that regulatory RNAs control gene expression in C. difficile and many of these RNAs appear to modulate C. difficile-phage interactions. Of the 200 regulatory RNAs identified by deep sequencing and targeted approaches, many function as antitoxins within type I toxin-antitoxin modules and CRISPR RNAs for anti-phage defenses. In this review, we discuss recent insights into the role of RNAs in modulating interactions between C. difficile and phages in light of intriguing data in other prokaryotes.
Collapse
|
38
|
Monaghan TM, Seekatz AM, Mullish BH, Moore-Gillon CCER, Dawson LF, Ahmed A, Kao D, Chan WC. Clostridioides difficile: innovations in target discovery and potential for therapeutic success. Expert Opin Ther Targets 2021; 25:949-963. [PMID: 34793686 DOI: 10.1080/14728222.2021.2008907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Clostridioides difficile infection (CDI) remains a worldwide clinical problem. Increased incidence of primary infection, occurrence of hypertoxigenic ribotypes, and more frequent occurrence of drug resistant, recurrent, and non-hospital CDI, emphasizes the urgent unmet need of discovering new therapeutic targets. AREAS COVERED We searched PubMed and Web of Science databases for articles identifying novel therapeutic targets or treatments for C. difficile from 2001 to 2021. We present an updated review on current preclinical efforts on designing inhibitory compounds against these drug targets and indicate how these could become the focus of future therapeutic approaches. We also evaluate the increasing exploitability of gut microbial-derived metabolites and host-derived therapeutics targeting VEGF-A, immune targets and pathways, ion transporters, and microRNAs as anti-C. difficile therapeutics, which have yet to reach clinical trials. Our review also highlights the therapeutic potential of re-purposing currently available agents . We conclude by considering translational hurdles and possible strategies to mitigate these problems. EXPERT OPINION Considerable progress has been made in the development of new anti-CDI drug candidates. Nevertheless, a greater comprehension of CDI pathogenesis and host-microbe interactions is beginning to uncover potential novel therapeutic targets, which can be exploited to plug gaps in the CDI drug discovery pipeline.
Collapse
Affiliation(s)
- Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Anna M Seekatz
- Biological Sciences, Clemson University, Clemson, SC, USA
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Claudia C E R Moore-Gillon
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Lisa F Dawson
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ammar Ahmed
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Department of Gastroenterology, Zeidler Ledcor Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Weng C Chan
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
39
|
Abstract
Microbes in the 21st century are understood as symbionts ‘completing’ the human ‘superorganism’ (Homo sapiens plus microbial partners-in-health). This paper addresses a significant paradox: despite the vast majority of our genes being microbial, the lack of routine safety testing for the microbiome has led to unintended collateral side effects from pharmaceuticals that can damage the microbiome and inhibit innate ‘colonization resistance’ against pathobionts. Examples are discussed in which a Microbiome First Medicine approach provides opportunities to ‘manage our microbes’ holistically, repair dysbiotic superorganisms, and restore health and resilience in the gut and throughout the body: namely, managing nosocomial infections for Clostridioides difficile and Staphylococcus aureus and managing the gut and neural systems (gut–brain axis) in autism spectrum disorder. We then introduce a risk analysis tool: the evidence map. This ‘mapping’ tool was recently applied by us to evaluate evidence for benefits, risks, and uncertainties pertaining to the breastmilk ecosystem. Here, we discuss the potential role of the evidence map as a risk analysis methodology to guide scientific and societal efforts to: (1) enhance ecosystem resilience, (2) ‘manage our microbes’, and (3) minimize the adverse effects of both acute and chronic diseases.
Collapse
|
40
|
León Y, Faherty CS. Bacteriophages against enteropathogens: rediscovery and refinement of novel antimicrobial therapeutics. Curr Opin Infect Dis 2021; 34:491-499. [PMID: 34524200 PMCID: PMC8447223 DOI: 10.1097/qco.0000000000000772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Alarming rates of antibiotic resistance in bacteria and gastrointestinal dysbiosis associated with traditional antimicrobial therapy have led to renewed interests in developing bacteriophages as novel therapeutics. In this review, we highlight some of the recent advances in bacteriophage therapeutic development targeting important enteropathogens of the gastrointestinal tract. RECENT FINDINGS Bacteriophages are viruses that infect bacteria, either to utilize the bacterial machinery to produce new progeny or stably integrate into the bacterial chromosome to ensure maintenance of the viral genome. With recent advances in synthetic biology and the discovery of CRISPR-Cas systems used by bacteria to protect against bacteriophages, novel molecular applications are taking us beyond the discovery of bacteriophages and toward innovative applications, including the targeting of bacterial virulence factors, the use of temperate bacteriophages, and the production of bacteriophage proteins as antimicrobial agents. These technologies offer promise to target enteropathogens without disrupting the healthy microbiota of the gastrointestinal tract. Moreover, the use of nanoparticle technology and other modifications are helping researchers circumvent the harsh gastrointestinal conditions that could limit the efficacy of bacteriophages against enteric pathogens. SUMMARY This era of discovery and development offers significant potential to modify bacteriophages and overcome the global impact of enteropathogens.
Collapse
Affiliation(s)
- Yrvin León
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Sousa C, Ferreira R, Azevedo NF, Oleastro M, Azeredo J, Figueiredo C, Melo LDR. Helicobacter pylori infection: from standard to alternative treatment strategies. Crit Rev Microbiol 2021; 48:376-396. [PMID: 34569892 DOI: 10.1080/1040841x.2021.1975643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is the major component of the gastric microbiome of infected individuals and one of the aetiological factors of chronic gastritis, peptic ulcer disease and gastric cancer. The increasing resistance to antibiotics worldwide has made the treatment of H. pylori infection a challenge. As a way to overhaul the efficacy of currently used H. pylori antibiotic-based eradication therapies, alternative treatment strategies are being devised. These include probiotics and prebiotics as adjuvants in H. pylori treatment, antimicrobial peptides as alternatives to antibiotics, photodynamic therapy ingestible devices, microparticles and nanoparticles applied as drug delivery systems, vaccines, natural products, and phage therapy. This review provides an updated synopsis of these emerging H. pylori control strategies and discusses the advantages, hurdles, and challenges associated with their development and implementation. An effective human vaccine would be a major achievement although, until now, projects regarding vaccine development have failed or were discontinued. Numerous natural products have demonstrated anti-H. pylori activity, mostly in vitro, but further clinical studies are needed to fully disclose their role in H. pylori eradication. Finally, phage therapy has the potential to emerge as a valid alternative, but major challenges remain, namely the isolation of more H. pylori strictly virulent bacterio(phages).
Collapse
Affiliation(s)
- Cláudia Sousa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Rute Ferreira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F Azevedo
- Faculty of Engineering, LEPABE - Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, Department of Pathology, University of Porto, Porto, Portugal
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|