1
|
Meepagala KM, Anderson CM, Techen N, Duke SO. Pantoea ananatis, a plant growth stimulating bacterium, and its metabolites isolated from Hydrocotyle umbellata (dollarweed). PLANT SIGNALING & BEHAVIOR 2024; 19:2331894. [PMID: 38516998 PMCID: PMC10962587 DOI: 10.1080/15592324.2024.2331894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 03/23/2024]
Abstract
A bacterium growing on infected leaves of Hydrocotyle umbellata, commonly known as dollarweed, was isolated and identified as Pantoea ananatis. An ethyl acetate extract of tryptic soy broth (TSB) liquid culture filtrate of the bacterium was subjected to silica gel chromatography to isolate bioactive molecules. Indole was isolated as the major compound that gave a distinct, foul odor to the extract, together with phenethyl alcohol, phenol, tryptophol, N-acyl-homoserine lactone, 3-(methylthio)-1-propanol, cyclo(L-pro-L-tyr), and cyclo(dehydroAla-L-Leu). This is the first report of the isolation of cyclo(dehydroAla-L-Leu) from a Pantoea species. Even though tryptophol is an intermediate in the indoleacetic acid (IAA) pathway, we were unable to detect or isolate IAA. We investigated the effect of P. ananatis inoculum on the growth of plants. Treatment of Lemna paucicostata Hegelm plants with 4 × 109 colony forming units of P. ananatis stimulated their growth by ca. five-fold after 13 days. After 13 days of treatment, some control plants were browning, but treated plants were greener and no plants were browning. The growth of both Cucumis sativus (cucumber) and Sorghum bicolor (sorghum) plants was increased by ca. 20 to 40%, depending on the growth parameter and species, when the rhizosphere was treated with the bacterium after germination at the same concentration. Plant growth promotion by Pantoea ananatis could be due to the provision of the IAA precursor indole.
Collapse
Affiliation(s)
- Kumudini M. Meepagala
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, USA
| | - Caleb M. Anderson
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, USA
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Natascha Techen
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, USA
| | - Stephen O. Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, USA
| |
Collapse
|
2
|
Lau P, Jain S, Perron GG. Water chlorination increases the relative abundance of an antibiotic resistance marker in developing sourdough starters. Microbiol Spectr 2024; 12:e0112123. [PMID: 39283274 PMCID: PMC11537093 DOI: 10.1128/spectrum.01121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/13/2024] [Indexed: 11/07/2024] Open
Abstract
Multiple factors explain the proper development of sourdough starters. Although the role of raw ingredients and geography, among other things, have been widely studied recently, the possible effect of air quality and water chlorination on the overall bacterial communities associated with sourdough remains to be explored. Here, using 16S rRNA amplicon sequencing, we show that clean, filtered-air severely limited the presence of lactic acid bacteria in sourdough starters, suggesting that surrounding air is an important source of microorganisms necessary for the development of sourdough starters. We also show that water chlorination at levels commonly found in drinking water systems has a limited impact on the overall bacterial communities developing in sourdough starters. However, using targeted sequencing, which offers a higher resolution, we found that the abundance of integron 1, a genetic mechanism responsible for the horizontal exchange of antibiotic-resistance genes in spoilage and pathogenic bacteria, increased significantly with the level of water chlorination. Although our results suggest that water chlorination might not impact sourdough starters at a deep phylogenetic level, they indicate that it can favor the spread of genetic elements associated with spoilage bacteria. IMPORTANCE Proper development of sourdough starters is critical for making tasty and healthy bread. Although many factors contributing to sourdough development have been studied, the effect of water chlorination on the bacterial communities in sourdough has been largely ignored. Researchers used sequencing techniques to investigate this effect and found that water chlorination at levels commonly found in drinking water systems has a limited impact on the overall bacterial communities developing in sourdough starters. However, they discovered that water chlorination could increase the abundance of integron 1, a genetic mechanism responsible for the horizontal exchange of antibiotic resistance genes in spoilage and pathogenic bacteria. This suggests that water chlorination could favor the growth of key spoilage bacteria and compromise the quality and safety of the bread. These findings emphasize the importance of considering water quality when developing sourdough starters for the best possible bread.
Collapse
Affiliation(s)
- Pearson Lau
- Department of Biology, Bard College, Annandale-on-Hudson, New York, USA
| | - Swapan Jain
- Department of Chemistry and Biochemistry, Bard College, Annandale-on-Hudson, New York, USA
| | - Gabriel G. Perron
- Department of Biology, Bard College, Annandale-on-Hudson, New York, USA
- Center for Environmental Sciences & Humanities, Bard College, Annandale-on-Hudson, New York, USA
- Center for Genomics and Systems Biology, New York University, New York, New York, USA
| |
Collapse
|
3
|
Van Hees S, Keulemans S, Vanden Driessche K, Schoonjans AS, Goegebuer T, Lemmens A. A first case of Mixta calida bacteremia and meningitis in a 5-week old child. Infect Dis (Lond) 2024; 56:1000-1002. [PMID: 39146199 DOI: 10.1080/23744235.2024.2391022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Mixta calida, previously known as Pantoea calida, was initially isolated from powdered infant milk in 2010. It falls within the Erwiniaceae family (class: Enterobacterales). While Mixta calida was traditionally regarded as non-pathogenic, we now present a case of Mixta calida bacteraemia and meningitis in a 5-week-old child, successfully treated with cefotaxime. This case, in contrast to prior reports with potential contamination issues, is the first to offer compelling evidence of Mixta calida's pathogenicity in humans.
Collapse
Affiliation(s)
- Stijn Van Hees
- Department of Clinical Microbiology, AZ Sint-Maarten, Mechelen, Belgium
- Department of Clinical Biology, University Hospital Ghent, Ghent, Belgium
- Department of Translational Research in Inflammation and Immunology, Laboratory for Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - Sarah Keulemans
- Department of Pediatrics, AZ Sint-Maarten, Mechelen, Belgium
| | - Koen Vanden Driessche
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, Antwerp University Hospital, Antwerp, Belgium
| | | | - Truus Goegebuer
- Department of Clinical Microbiology, AZ Sint-Maarten, Mechelen, Belgium
| | - Ann Lemmens
- Department of Clinical Microbiology, AZ Sint-Maarten, Mechelen, Belgium
| |
Collapse
|
4
|
Jayasinghe H, Lee SJ, Adam H, Karlowsky J, Zhanel GG, Walkty A. Pantoea septica bacteremia in a 3-month-old infant with RAG2 severe combined immune deficiency: A case report. Diagn Microbiol Infect Dis 2024; 110:116499. [PMID: 39173567 DOI: 10.1016/j.diagmicrobio.2024.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
We present the case of a 3-month-old immunocompromised infant who developed a vascular catheter-related bloodstream infection caused by Pantoea septica. Susceptibility testing results for this isolate and 10 additional clinical strains are provided to help define the susceptibility profile of this infrequently recovered organism.
Collapse
Affiliation(s)
- Himath Jayasinghe
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Santina J Lee
- Department of Pediatrics and Child Health, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Heather Adam
- Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Shared Health, Winnipeg, Manitoba, Canada
| | - James Karlowsky
- Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Shared Health, Winnipeg, Manitoba, Canada
| | - George G Zhanel
- Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Walkty
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Shared Health, Winnipeg, Manitoba, Canada.
| |
Collapse
|
5
|
Schwieters A, Ahmer BMM. Identification of new SdiA regulon members of Escherichia coli, Enterobacter cloacae, and Salmonella enterica serovars Typhimurium and Typhi. Microbiol Spectr 2024:e0192924. [PMID: 39436139 DOI: 10.1128/spectrum.01929-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Bacteria can coordinate behavior in response to population density through the production, release, and detection of small molecules, a phenomenon known as quorum sensing. Salmonella enterica is among a group of Enterobacteriaceae that can detect signaling molecules of the N-acyl homoserine lactone (AHL) type but lack the ability to produce them. The AHLs are detected by the LuxR-type transcription factor, SdiA. This enables a behavior known as eavesdropping, where organisms can sense the signaling molecules of other species of bacteria. The role of SdiA remains largely unknown. Here, we use RNA-seq to more completely identify the sdiA regulons of two clinically significant serovars of Salmonella enterica: Typhimurium and Typhi. We find that their sdiA regulons are largely conserved despite the significant differences in pathogenic strategy and host range of these two serovars. Previous studies identified sdiA-regulated genes in Escherichia coli and Enterobacter cloacae, but there is surprisingly no overlap in regulon membership between the different species. This led us to individually test orthologs of each regulon member in the other species and determine that there is indeed some overlap. Unfortunately, the functions of most sdiA-regulated genes are unknown, with the overall function of eavesdropping in these organisms remaining unclear. IMPORTANCE Many bacterial species detect their own population density through the production, release, and detection of small molecules (quorum sensing). Salmonella and other Enterobacteriaceae have a modified system that detects the N-acyl-homoserine lactones of other bacteria through the solo quorum sensing receptor SdiA, a behavior known as eavesdropping. The roles of sdiA-dependent eavesdropping in the lifecycles of these bacteria are unknown. In this study, we identify sdiA-dependent transcriptional responses in two clinically relevant serovars of Salmonella, Typhimurium and Typhi, and note that their responses are partially conserved. We also demonstrate for the first time that sdiA-dependent regulation of genes is partially conserved in Enterobacter cloacae and Escherichia coli as well, indicating a degree of commonality in eavesdropping among the Enterobacteriaceae.
Collapse
Affiliation(s)
- Andrew Schwieters
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Brian M M Ahmer
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Ma M, Luo J, Chen X, Li C, Li S, Sun J, Xu L. Gut bacteria facilitate leaf beetles in adapting to dietary specialization by enhancing larval fitness. NPJ Biofilms Microbiomes 2024; 10:110. [PMID: 39438487 PMCID: PMC11496516 DOI: 10.1038/s41522-024-00587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Dietary specialization between insect stages can reduce intraspecific food competition. The involvement of gut bacteria and the mechanisms underlying this phenomenon received limited attention. Plagiodera versicolora is a pest harming Salicaceae trees. Here, we confirmed dietary specialization in P. versicolora, wherein adults prefer new leaves, while larvae predominantly consume mature leaves when both types are available. We demonstrated the larval preference for mature leaves confers ecological advantages by promoting growth, development and immunity and this advantage is contingent upon the presence of gut bacteria. Gut microbiota in larvae revealed a significant enrichment of Pantoea when feeding new leaves, with P. anthophila exhibiting the most pronounced inhibitory effect on larval development. Further exploration identified specific metabolites, such as Tyrosyl-valine, with higher content in new leaves, which serve as substrates for the entomopathogenic gut bacterium to facilitate its proliferation. This study provides a fresh perspective on the ecological role of gut bacteria.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xiaotong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Siqun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jianghua Sun
- Hebei Basic Science Center for Biotic Interactions/College of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101, Beijing, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
7
|
Valbuena-Rodríguez JL, Fonseca-Guerra I, Buitrago-Yomayusa C, Puentes-S A, Rozo MEB. Isolation and characterization of Pantoea ananatis and P. agglomerans in quinoa: P. ananatis as a potential fungal biocontroller and plant growth promoter. Int Microbiol 2024:10.1007/s10123-024-00608-5. [PMID: 39414690 DOI: 10.1007/s10123-024-00608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Chenopodium quinoa, globally recognized as quinoa, stands out as one of the cereals with the highest nutritional value native to the Americas. It is cultivated in the Andes Mountain range, and Colombia is no exception, with the Boyacá department emerging as a significant quinoa-producing region. The quinoa ecosystem harbors a rich array of microorganisms within its rhizosphere. In this current study, nitrogen-fixing and phosphate-solubilizing isolates AM-0261 (Pantoea ananatis) and AM-0263 (Pantoea agglomerans) were sourced from rhizospheric soil samples of quinoa. These isolates were subjected to biochemical characterization and identification through PCR analysis and Sanger sequencing targeting a partial sequence of the 16 s region of the rRNA. To assess their potential as plant growth-promoting rhizobacteria (PGPR), taking into consideration that P. ananatis is an IAA producer, greenhouse-based bioassays were conducted using seedlings. Additionally, dual culture assays were employed to showcase their antagonistic capabilities against primary beneficial and phytopathogenic fungi associated with quinoa cultivation in the region. The results underscore the remarkable potential of P. ananatis as a PGPR and a biocontrol agent against quinoa's phytopathogenic fungi. This study represents the pioneering exploration of the interaction between these two bacterial strains with quinoa rhizosphere tissue. In addition, the isolate of P. annatis (AM-0261) stands out, which presents phosphate solubilization capacity, nitrogen fixation, antagonistic capacity, and IAA production, characteristics that make it a promising strain for its use for the management of diseases of fungal origin, and in the future, it could be useful in reducing the use of chemical fertilizers.
Collapse
|
8
|
Mallick A, Sarkar S, Lopes BS, Das S. Drug-resistant Pantoea agglomerans Causing Bacteremia at a Tertiary Care Hospital in Kolkata, India: First Report of Carbapenem Resistance Mediated by OXA-181. Curr Microbiol 2024; 81:389. [PMID: 39367887 DOI: 10.1007/s00284-024-03888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
The spread of antibiotic resistance (ABR) in uncommon human pathogens endangers global public health, escalating morbidity, death, and healthcare expenditures. Pantoea agglomerans, a member of the Erwiniaceae family that rarely infects humans, is emerging as a drug-resistant nosocomial pathogen. Seven P. agglomerans isolates were recovered from bacteremia patients at a tertiary care hospital in Kolkata, West Bengal, between March 2022 and October 2022. The isolates were evaluated for phenotypic resistance, β-lactamase and plasmid-mediated quinolone resistance (PMQR) genes, plasmid profiling, and clonality assessment. All isolates were resistant to fluoroquinolones and third-generation cephalosporins, with four resistant to carbapenems. The following β-lactamases and PMQR genes were identified: blaOXA-1 (n = 1), blaTEM (n = 1), blaCTX-M-1 (n = 2), blaNDM (n = 5), blaOXA-181 (n = 1), qnrB (n = 2), and qnrS (n = 4). Six isolates carried up to seven plasmids ranging in size from 2 kb to > 212 kb. IncFI, FII, HI, and X3 plasmid types were detected in three isolates, while the rest remained untypable. Four different genetic patterns were noted. Four isolates were clonally related, with three being clonal. The swap of environmental isolates to human pathogens exacerbates the ABR dilemma, periling patient care and outcomes. This is the first report in India of a carbapenem-resistant P. agglomerans blood isolate carrying blaOXA-181. In-depth genomic research of drug-resistant microbes adapted to the environment-human interfaces might underpin the source-route-containment of ABR.
Collapse
Affiliation(s)
- Abhi Mallick
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Soma Sarkar
- Microbiology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK.
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| | - Surojit Das
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India.
| |
Collapse
|
9
|
Khanal S, Imran M, Zhou XG, Antony-Babu S. Characterization of differences in seed endophytic microbiome in conventional and organic rice by amplicon-based sequencing and culturing methods. Microbiol Spectr 2024; 12:e0366223. [PMID: 39136439 PMCID: PMC11448069 DOI: 10.1128/spectrum.03662-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/10/2024] [Indexed: 10/05/2024] Open
Abstract
The seed serves as the primary source for establishing microbial populations in plants across subsequent generations, influencing plant growth and overall health. Cropping conditions, especially farming practices, can influence the composition and functionality of the seed microbiome. Very little is known about the differences in seed microbiome between organic and conventional production systems. In this study, we characterized the endophytic microbial populations in seeds of rice grown under organic and conventional management practices through culture-dependent and -independent analyses. The V4 region of 16S rRNA was used for bacterial taxa identification, and the ITS1 region was used for the identification of fungal taxa. Our results revealed significantly higher Shannon and Simpson indices for bacterial diversity in the conventional farming system, whereas the fungal diversity was higher for observed, Shannon, and Simpson indices in the organic farming system. The cultivable endophytic bacteria were isolated and identified using the full-length 16S rRNA gene. There was no difference in culturable endophytic bacterial isolates in rice seeds grown under both conventional and organic farming systems. Among 33 unique isolates tested in vitro, three bacteria-Bacillus sp. ST24, Burkholderia sp. OR5, and Pantoea sp. ST25-showed antagonistic activities against Marasmius graminum, Rhizoctonia solani AG4, and R. solani AG11, the fungal pathogens causing seedling blight in rice. IMPORTANCE In this paper, we studied the differences in the endophytic microbial composition of rice seeds grown in conventional and organic farming systems. Our results demonstrate a greater bacterial diversity in conventional farming, while organic farming showcases a higher fungal diversity. Additionally, our research reveals the ability of seed bacterial endophytes to inhibit the growth of three fungal pathogens responsible for causing seedling blight in rice. This study provides valuable insights into the potential use of beneficial seed microbial endophytes for developing a novel microbiome-based strategy in the management of rice diseases. Such an approach has the potential to enhance overall plant health and improve crop productivity.
Collapse
Affiliation(s)
- Sabin Khanal
- Texas A&M AgriLife Research Center, Beaumont, Texas, USA
| | - Muhammad Imran
- Department of Plant Pathology, University of Faisalabad, Faisalabad, Pakistan
| | - Xin-Gen Zhou
- Texas A&M AgriLife Research Center, Beaumont, Texas, USA
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
10
|
Yin H, Hong Q, Yu X, Wang H, Shi X, Liu W, Yuan T, Tu Z. Dynamic changes in volatile profiles and bacterial communities during natural fermentation of Mei yu, traditional Chinese fermented fish pieces. Food Res Int 2024; 194:114882. [PMID: 39232519 DOI: 10.1016/j.foodres.2024.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Microbial metabolism is important for the unique flavor formation of Mei yu, a kind of traditional Chinese fermented fish pieces. However, the interactive relationship between microorganisms and flavor components during fermentation is still unclear. In this study, electronic nose and headspace-solid-phase microextraction-gas chromatography-mass spectrometry analysis were performed to identify flavor components in Mei yu during the fermentation, and the absolute microbial quantification was conducted to identify the diversity and succession of microbial communities. During fermentation, there was an increase in the types of volatile compounds. Alcohols, aldehydes, aromatics and esters were the main flavor compounds and significantly increased in Mei yu, while hydrocarbon and aldehydes significantly decreased. The absolute abundances of Lactobacillus, Lactococcus and Weissella increased significantly after 3 days' fermentation, which were closely associated with the productions of 1-nonanol, 2-methoxy-4-vinylphenol, guaiacol, ethyl palmitate and ethyl caprylate that might though pathways related to fatty acid biosynthesis and amino acid metabolism. However, these genera were negatively correlated with the production of indole. Additionally, the total volatile basic nitrogen (TVB-N) levels of Mei yu fermented during 3 days were within the limits of 25 mg TVB-N/100 g fish, with the contents of free amino acids and lipoxygenase activities were significant lower than that of 4 days' fermentation. In view of food safety and flavor, it suggested that the natural fermented Mei yu at room temperature should be controlled within 3 days. This study highlights the application of absolute quantification to microbiome analysis in traditional fermented Mei yu and provides new insights into the roles of microorganisms in flavor formation during fermentation.
Collapse
Affiliation(s)
- Hongmei Yin
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiang Hong
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xiang Yu
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Xiaodan Shi
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Wei Liu
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining, Xinjiang 835000, China
| | - Tao Yuan
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
11
|
Cheng L, Peng L, Li X, Xu L, Chen J, Zhu Y, Wei Y, Wei X. Co-occurrence network and functional profiling of the bacterial community in the industrial pile fermentation of Qingzhuan tea: Understanding core functional bacteria. Food Chem 2024; 454:139658. [PMID: 38810451 DOI: 10.1016/j.foodchem.2024.139658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024]
Abstract
The distinct quality of Qingzhuan tea is greatly influenced by the bacterial community but was poorly characterized. Therefore, this study investigated the Co-occurrence network and functional profiling of the bacterial community, with special attention paid to core functional bacteria in the industrial pile fermentation. Microbiomics analysis indicated that Klebsiella and Pantoea dominated raw tea leaves, and were rapidly replaced by Pseudomonas in pile fermentation, but substituted mainly by Burkholderia and Saccharopolyspora in final fermented tea. Bacterial taxa were grouped into 7 modules with the dominant in module I, III, and IV, which were involved in flavor formation and biocontrol production. Functional profiling revealed that "penicillin and cephalosporin biosynthesis" increased in pile fermentation. Twelve bacterial genera were identified as core functional bacteria, in which Klebsiella, Pantoea, and Pseudomonas also dominated the pile fermentation. This work would provide theoretical basis for its chemical biofortification and quality improvement by controlling bacterial communities.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Junhai Chen
- Hubei Zhaoliqiao Tea Factory Co. Ltd., Xianning 437318, PR China
| | - Yuzhi Zhu
- Hubei Qingzhuan Tea Industry Development Group Co. Ltd., Xianning 437000, PR China
| | - Yanxiang Wei
- Hubei Zhaoliqiao Tea Factory Co. Ltd., Xianning 437318, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
12
|
Kosewska O, Przemieniecki SW, Nietupski M. Influence of the Chemical Properties of Cereal Grains on the Structure and Metabolism of the Bacteriome of Rhyzopertha dominica (F.) and Its Development: A Cause-Effect Analysis. Int J Mol Sci 2024; 25:10130. [PMID: 39337614 PMCID: PMC11432622 DOI: 10.3390/ijms251810130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Rhyzopertha dominica causes significant economic losses in stored cereals. Insects' digestive tract microbiome is crucial for their development, metabolism, resistance, and digestion. This work aimed to test whether the different chemical properties of different wheat and barley grain cultivars cause disturbances in insect foraging and rearrangements of the structure of the R. dominica microbiome. The results indicated that grain cultivars significantly influence the microbiome, metabolism, and insect foraging. Most observed traits and microbiome structures were not correlated at the species level, as confirmed by ANOSIM (p = 0.441). However, the PLS-PM analysis revealed significant patterns within barley cultivars. The study found associations between C18:2 fatty acids, entomopathogenic bacteria, an impaired nitrogen cycle, lysine production of bacterial origin, and insect feeding. The antioxidant effects also showed trends towards impacting the microbiome and insect development. The findings suggest that manipulating grain chemical properties (increasing C18:2 and antioxidant levels) can influence the R. dominica microbiome, disrupting their foraging behaviours and adaptation to storage environments. This research supports the potential for breeding resistant cereals, offering an effective pest control strategy and reducing pesticide use in food production.
Collapse
Affiliation(s)
- Olga Kosewska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Sebastian Wojciech Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Mariusz Nietupski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| |
Collapse
|
13
|
Tang J, Wang Q, Yu H, Dong L, Tang M, Arif A, Zhang G, Zhang T, Xie K, Su S, Zhao Z, Dai G. A Comparison of the Cecal Microbiota between the Infection and Recovery Periods in Chickens with Different Susceptibilities to Eimeria tenella. Animals (Basel) 2024; 14:2709. [PMID: 39335298 PMCID: PMC11428751 DOI: 10.3390/ani14182709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
To investigate the effect of Eimeria tenella (E. tenella) infection on the cecal microbiota, resistant and susceptible families were screened out based on the coccidiosis resistance evaluation indexes after E. tenella infection. Subsequently, a comparative analysis of cecal microorganisms among control, resistant, and susceptible groups as well as between different periods following the E. tenella challenge was conducted using metagenomic sequencing technology. The results showed that the abundance of opportunistic pathogens, such as Pantoea, Sporomusa, and Pasteurella in the susceptible group and Helicobacter and Sutterella in the resistant group, was significantly higher on day 27 post-inoculation (PI) (the recovery period) than on day 5 PI (the infection period). Additionally, the abundance of Alistipes, Butyricicoccus, and Eubacterium in the susceptible group and Coprococcus, Roseburia, Butyricicoccus, and Lactobacillus in the resistant group showed a significant upward trend during the infection period compared with that in the recovery period. On day 5 PI, the abundance of Faecalibacterium and Lactobacillus was decreased in both the resistant and susceptible groups when compared with that in the control group and was greater in the resistant group than in the susceptible group, while Alistipes in the susceptible group had a relatively higher abundance than that in other groups. A total of 49 biomarker taxa were identified using the linear discriminant analysis (LDA) effect size (LEfSe) method. Of these, the relative abundance of Lactobacillus aviarius, Lactobacillus salivarius, Roseburia, and Ruminococcus gauvreauii was increased in the resistant group, while Bacteroides_sp__AGMB03916, Fusobacterium_mortiferum, Alistipes_sp__An31A, and Alistipes_sp__Marseille_P5061 were enriched in the susceptible group. On day 27 PI, LDA scores identified 43 biomarkers, among which the relative abundance of Elusimicrobium_sp__An273 and Desulfovibrio_sp__An276 was increased in the resistant group, while that of Bacteroides_sp__43_108, Chlamydiia, Chlamydiales, and Sutterella_sp__AM11 39 was augmented in the susceptible group. Our results indicated that E. tenella infection affects the structure of the cecal microbiota during both the challenge and recovery periods. These findings will enhance the understanding of the effects of changes in the cecal microbiota on chickens after coccidia infection and provide a reference for further research on the mechanisms underlying how the intestinal microbiota influence the growth and health of chickens.
Collapse
Affiliation(s)
- Jianqiang Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Liyue Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Meihui Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Shijie Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
14
|
Matte LM, Genal AV, Landolt EF, Danka ES. T6SS in plant pathogens: unique mechanisms in complex hosts. Infect Immun 2024; 92:e0050023. [PMID: 39166846 PMCID: PMC11385963 DOI: 10.1128/iai.00500-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Type VI secretion systems (T6SSs) are complex molecular machines that allow bacteria to deliver toxic effector proteins to neighboring bacterial and eukaryotic cells. Although initial work focused on the T6SS as a virulence mechanism of human pathogens, the field shifted to examine the use of T6SSs for interbacterial competition in various environments, including in the plant rhizosphere. Genes encoding the T6SS are estimated to be found in a quarter of all Gram-negative bacteria and are especially highly represented in Proteobacteria, a group which includes the most important bacterial phytopathogens. Many of these pathogens encode multiple distinct T6SS gene clusters which can include the core components of the apparatus as well as effector proteins. The T6SS is deployed by pathogens at multiple points as they colonize their hosts and establish an infection. In this review, we describe what is known about the use of T6SS by phytopathogens against plant hosts and non-plant organisms, keeping in mind that the structure of plants requires unique mechanisms of attack that are distinct from the mechanisms used for interbacterial interactions and against animal hosts. While the interactions of specific effectors (such as phospholipases, endonucleases, peptidases, and amidases) with targets have been well described in the context of interbacterial competition and in some eukaryotic interactions, this review highlights the need for future studies to assess the activity of phytobacterial T6SS effectors against plant cells.
Collapse
Affiliation(s)
- Lexie M Matte
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Abigail V Genal
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Emily F Landolt
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Elizabeth S Danka
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| |
Collapse
|
15
|
Dhawan S, Sinha A, Kamath PM, Shenoy VS, Raja PV. An underdog under the mandible: Pantoea agglomerans abscess of the submandibular region- a case report. Eur Arch Otorhinolaryngol 2024:10.1007/s00405-024-08934-0. [PMID: 39242411 DOI: 10.1007/s00405-024-08934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Pantoea agglomerans is a gram negative, aerobic/facultative anaerobic, rod shaped bacilli commonly isolated from plants, soil, food and faeces.(1) It is a rare cause of opportunistic infections in humans acquired mainly via two major routes being, wound infection or hospital acquired. CASE REPORT Here, we encountered a landmark, first of its kind, head and neck manifestation of a cervical soft tissue abscess with Pantoea agglomerans being the miscreant. The patient presented with complaints of a left sided neck swelling, which was radiologically suggestive of a cold abscess, however clinical suscpicion encouraged us to perform an incision and drainage, culture of which revealed this notorious phytogenic bacterium. DISCUSSION Commonly encountered Pantoea infected cases documented in literature have shown a clinical picture of endophthalmitis, acute unilateral dacryocystitis, periostitis, endocarditis, osteomyelitis and a tumour like muscle cyst of the thigh with many of them eventually leading to septicemia while a few also resolved with targeted antibiotics.(2) Remarkably, no ENT or head and neck presentations have been reported in literature till date. History of trauma by brushing against a mango tree was confirmed retrospectively, which was found to be the missing piece of the puzzle.
Collapse
Affiliation(s)
- Saksham Dhawan
- Department of ENT and Head & Neck Surgery, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Ananya Sinha
- Department of ENT and Head & Neck Surgery, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Panduranga M Kamath
- Department of ENT and Head & Neck Surgery, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Vijendra S Shenoy
- Department of ENT and Head & Neck Surgery, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India.
| | - Pooja Varshini Raja
- Department of ENT and Head & Neck Surgery, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
16
|
Chantapakul B, Parreira VR, Farber JM. Effect of Bacterial Endophytes Isolated from Tropical Fruits against Listeria monocytogenes and Cronobacter sakazakii in Model Food Products. J Food Prot 2024; 87:100330. [PMID: 39025261 DOI: 10.1016/j.jfp.2024.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Listeria monocytogenes and Cronobacter sakazakii are two important foodborne bacterial pathogens. Bacterial endophytes, which reside in plant cells, can produce antimicrobial compounds to protect the host organism or inhibit pathogens. This study investigated the bacterial community of tropical fruits for their potential to inactivate L. monocytogenes or C. sakazakii in cantaloupe and liquid infant formula, respectively. Tropical fruits including papayas, dragon fruits, and sugar apples, were sourced from several countries. Candidate bacterial endophytes were recovered from these tropical fruits using blood agar and Reasoner's 2A (R2A) agar and tested for potential inhibition against L. monocytogenes and C. sakazakii. A total of 196 bacterial endophytes were recovered from papayas, dragon fruits, and sugar apples. Among these bacterial endophytes, 33 (16.8%) and 13 (6.6%) of them demonstrated an inhibition zone against L. monocytogenes and C. sakazakii, respectively. The inhibitory strains were identified using 16S rRNA sequencing as Bacillus spp., Enterobacter spp., Klebsiella spp., Microbacterium spp., Pantoea spp., and Pseudomonas spp. A cocktail of Pantoea spp. and Enterobacter spp. was used in challenge studies with cantaloupe and significantly reduced the number of L. monocytogenes by approximately 2.5 log10 CFU/g. In addition, P. stewartii demonstrated antagonistic activity against C. sakazakii in liquid infant formula, i.e., it significantly decreased the number of C. sakazakii by at least 1 log10 CFU/mL. Thus, the use of bacterial endophytes recovered from fruits and vegetables could be a promising area of research. Their use as potential biocontrol agents to control bacterial pathogens in ready-to-eat foods warrants further investigation.
Collapse
Affiliation(s)
- Bowornnan Chantapakul
- Canadian Research Institute for Food Safety, Department of Food Science, Ontario Agriculture College, University of Guelph, Ontario, Canada.
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, Department of Food Science, Ontario Agriculture College, University of Guelph, Ontario, Canada
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, Department of Food Science, Ontario Agriculture College, University of Guelph, Ontario, Canada
| |
Collapse
|
17
|
Kirk A, Stavrinides J. Distribution and comparative genomic analysis of antimicrobial gene clusters found in Pantoea. Front Microbiol 2024; 15:1416674. [PMID: 39206372 PMCID: PMC11350110 DOI: 10.3389/fmicb.2024.1416674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Members of the bacterial genus Pantoea produce a variety of antimicrobial products that are effective against plant, animal, and human pathogens. To date, little is known about the distribution and evolutionary history of these clusters. We surveyed the public databases for the 12 currently known antibiotic biosynthetic gene clusters found across Pantoea strains to determine their distribution. We show that some clusters, namely pantocin B, PNP-3, and PNP-4 are found strictly in Pantoea, while agglomerin, andrimid, AGA, dapdiamide, herbicolin, PNP-1, PNP-2, PNP-5, and pantocin A, are more broadly distributed in distantly related genera within Vibrionaceae, Pectobacteriaceae, Yersiniaceae, Morganellaceae, and Hafniaceae. We evaluated the evolutionary history of these gene clusters relative to a cpn60-based species tree, considering the flanking regions of each cluster, %GC, and presence of mobile genetic elements, and identified potential occurrences of horizontal gene transfer. Lastly, we also describe the biosynthetic gene cluster of pantocin B in the strain Pantoea agglomerans Eh318 more than 20 years after this antibiotic was first described.
Collapse
|
18
|
Kim J, Yun H, Tahmasebi A, Nam J, Pham H, Kim YH, Min HJ, Lee CW. Paramixta manurensis gen. nov., sp. nov., a novel member of the family Erwiniaceae producing indole-3-acetic acid isolated from mushroom compost. Sci Rep 2024; 14:15542. [PMID: 38969698 PMCID: PMC11226699 DOI: 10.1038/s41598-024-65803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
There are numerous species in the Erwiniaceae family that are important for agricultural and clinical purposes. Here we described the Erwiniaceae bacterium PD-1 isolated from mushroom (Pleurotus eryngii) compost. Comparative genomic and phylogenetic analyses showed that the strain PD-1 was assigned to a new genus and species, Paramixta manurensis gen. nov., sp. nov. in the family Erwiniaceae. From the average amino acid index, we identified the five AroBEKAC proteins in the shikimate pathway as a minimal set of molecular markers to reconstruct the phylogenetic tree of the Erwiniaceae species. The strain PD-1 containing annotated genes for ubiquinone and menaquinone produced a higher level of ubiquinone (Q8) than demethylmenaquinone (DMK8) and menaquinone (MK8) in anaerobic condition compared to aerobic condition, as similarly did the reference strains from the genera Mixta and Erwinia. Results from fatty acid methyl ester and numerical analyses of strain PD-1 showed a similarity to species of the genera Mixta and Winslowiella. This study revealed that the strain's ability to utilize polyols, such as glycerol, erythritol, and D-arabitol, distinguished the strain PD-1 from the nearest relative and other type strains. The analyzed genetic markers and biochemical properties of the strain PD-1 suggest its potential role in the process of mushroom compost through the degradation of carbohydrates and polysaccharides derived from fungi and plants. Additionally, it can produce a high concentration of indole-3-acetic acid as a plant growth-promoting agent.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center, DAESANG InnoPark, Gangseo-gu, Seoul, 07789, Republic of Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Aminallah Tahmasebi
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Jiyoung Nam
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ha Pham
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea.
| | - Hye Jung Min
- Department of Cosmetic Science, Gwangju Women's University, Gwangju, 62396, Republic of Korea.
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
19
|
Du Z, Nakagawa A, Fang J, Ridwan R, Astuti WD, Sarwono KA, Sofyan A, Widyastuti Y, Cai Y. Cleaner anaerobic fermentation and greenhouse gas reduction of crop straw. Microbiol Spectr 2024; 12:e0052024. [PMID: 38832787 PMCID: PMC11218512 DOI: 10.1128/spectrum.00520-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
Rice anaerobic fermentation is a significant source of greenhouse gas (GHG) emissions, and in order to efficiently utilize crop residue resources to reduce GHG emissions, rice straw anaerobic fermentation was regulated using lactic acid bacteria (LAB) inoculants (FG1 and TH14), grass medium (GM) to culture LAB, and Acremonim cellulolyticus (AC). Microbial community, GHG emission, dry matter (DM) loss, and anaerobic fermentation were analyzed using PacBio single-molecule real-time and anaerobic fermentation system. The epiphytic microbial diversity of fresh rice straw was extremely rich and contained certain nutrients and minerals. During ensiling, large amounts of GHG such as carbon dioxide are produced due to plant respiration, enzymatic hydrolysis reactions, and proliferation of aerobic bacteria, resulting in energy and DM loss. Addition of FG1, TH14, and AC alone improved anaerobic fermentation by decreasing pH and ammonia nitrogen content (P < 0.05) and increased lactic acid content (P < 0.05) when compared to the control, and GM showed the same additive effect as LAB inoculants. Microbial additives formed a co-occurrence microbial network system dominated by LAB, enhanced the biosynthesis of secondary metabolites, diversified the microbial metabolic environment and carbohydrate metabolic pathways, weakened the amino acid metabolic pathways, and made the anaerobic fermentation cleaner. This study is of great significance for the effective utilization of crop straw resources, the promotion of sustainable livestock production, and the reduction of GHG emissions.IMPORTANCETo effectively utilize crop by-product resources, we applied microbial additives to silage fermentation of fresh rice straw. Fresh rice straw is extremely rich in microbial diversity, which was significantly reduced after silage fermentation, and its nutrients were well preserved. Silage fermentation was improved by microbial additives, where the combination of cellulase and lactic acid bacteria acted as enzyme-bacteria synergists to promote lactic acid fermentation and inhibit the proliferation of harmful bacteria, such as protein degradation and gas production, thereby reducing GHG emissions and DM losses. The microbial additives accelerated the formation of a symbiotic microbial network system dominated by lactic acid bacteria, which regulated silage fermentation and improved microbial metabolic pathways for carbohydrates and amino acids, as well as biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Zhumei Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Andressa Nakagawa
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Jiachen Fang
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Roni Ridwan
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wulansih D. Astuti
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Ki A. Sarwono
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Ahmad Sofyan
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Yantyati Widyastuti
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Dahiya P, Kumar P, Rani S, Dang AS, Suneja P. Comparative Genomic and Functional Analyses for Insights into Pantoea agglomerans Strains Adaptability in Diverse Ecological Niches. Curr Microbiol 2024; 81:254. [PMID: 38955887 DOI: 10.1007/s00284-024-03763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Pantoea agglomerans inhabit diverse ecological niches, ranging from epiphytes and endophytes in plants, body of animals, and occasionally in the human system. This multifaceted bacterium contributes substantially to plant growth promotion, stress resilience, and biocontrol but can also act as a pathogen to its host. The genetic determinants underlying these diverse functions remain largely unfathomed and to uncover this phenomenon, nineteen strains of Pantoea agglomerans were selected and analyzed. Genome-to-Genome Distance Calculator (GGDC) which uses the Genome Blast Distance Phylogeny (GBDP) technique to calculate digital DDH values. Phylogenetic analysis via Genome-to-Genome distance, Average Nucleotide Identity, and Amino Acid Identity calculation revealed that all strains belonged to the genus Pantoea. However, strain 33.1 had a lower value than the threshold for the same species delineation. Bacterial Pan Genome Analysis (BPGA) Pipeline and MinPath analysis revealed genetic traits associated with environmental resilience, such as oxidative stress, UV radiation, temperature extremes, and metabolism of distinct host-specific carbohydrates. Protein-protein interactome analysis illustrated osmotic stress proteins closely linked with core proteins, while heavy metal tolerance, nitrogen metabolism, and Type III and VI secretion systems proteins generally associated with pathogenicity formed a separate network, indicating strain-specific characteristics. These findings shed new light on the intricate genetic architecture of Pantoea agglomerans, revealing its adaptability to inhabit diverse niches and thrive in varied environments.
Collapse
Affiliation(s)
- Priyanka Dahiya
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Lab no. 312, Rohtak, Haryana, 124001, India
| | - Pradeep Kumar
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Lab no. 312, Rohtak, Haryana, 124001, India
| | - Simran Rani
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Lab no. 312, Rohtak, Haryana, 124001, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja Suneja
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Lab no. 312, Rohtak, Haryana, 124001, India.
| |
Collapse
|
21
|
Xu L, Liu Y, Feng S, Liu C, Zhong X, Ren Y, Liu Y, Huang Y, Yang M. The relationship between atmospheric particulate matter, leaf surface microstructure, and the phyllosphere microbial diversity of Ulmus L. BMC PLANT BIOLOGY 2024; 24:566. [PMID: 38880875 PMCID: PMC11181616 DOI: 10.1186/s12870-024-05232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Plants can retain atmospheric particulate matter (PM) through their unique foliar microstructures, which has a profound impact on the phyllosphere microbial communities. Yet, the underlying mechanisms linking atmospheric particulate matter (PM) retention by foliar microstructures to variations in the phyllosphere microbial communities remain a mystery. In this study, we conducted a field experiment with ten Ulmus lines. A series of analytical techniques, including scanning electron microscopy, atomic force microscopy, and high-throughput amplicon sequencing, were applied to examine the relationship between foliar surface microstructures, PM retention, and phyllosphere microbial diversity of Ulmus L. RESULTS We characterized the leaf microstructures across the ten Ulmus lines. Chun exhibited a highly undulated abaxial surface and dense stomatal distribution. Langya and Xingshan possessed dense abaxial trichomes, while Lieye, Zuiweng, and Daguo had sparsely distributed, short abaxial trichomes. Duomai, Qingyun, and Lang were characterized by sparse stomata and flat abaxial surfaces, whereas Jinye had sparsely distributed but extensive stomata. The mean leaf retention values for total suspended particulate (TSP), PM2.5, PM2.5-10, PM10-100, and PM> 100 were 135.76, 6.60, 20.10, 90.98, and 13.08 µg·cm- 2, respectively. Trichomes substantially contributed to PM2.5 retention, while larger undulations enhanced PM2.5-10 retention, as evidenced by positive correlations between PM2.5 and abaxial trichome density and between PM2.5-10 and the adaxial raw microroughness values. Phyllosphere microbial diversity patterns varied among lines, with bacteria dominated by Sediminibacterium and fungi by Mycosphaerella, Alternaria, and Cladosporium. Redundancy analysis confirmed that dense leaf trichomes facilitated the capture of PM2.5-associated fungi, while bacteria were less impacted by PM and struggled to adhere to leaf microstructures. Long and dense trichomes provided ideal microhabitats for retaining PM-borne microbes, as evidenced by positive feedback loops between PM2.5, trichome characteristics, and the relative abundances of microorganisms like Trichoderma and Aspergillus. CONCLUSIONS Based on our findings, a three-factor network profile was constructed, which provides a foundation for further exploration into how different plants retain PM through foliar microstructures, thereby impacting phyllosphere microbial communities.
Collapse
Grants
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
Collapse
Affiliation(s)
- Liren Xu
- Hebei Agricultural University, Baoding, 071000, Hebei, China
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yichao Liu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
| | - Shuxiang Feng
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
| | - Chong Liu
- Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yachao Ren
- Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yinran Huang
- Hebei Agricultural University, Baoding, 071000, Hebei, China.
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China.
| | - Minsheng Yang
- Hebei Agricultural University, Baoding, 071000, Hebei, China.
| |
Collapse
|
22
|
Vale ADS, Pereira CMT, De Dea Lindner J, Rodrigues LRS, Kadri NKE, Pagnoncelli MGB, Kaur Brar S, Soccol CR, Pereira GVDM. Exploring Microbial Influence on Flavor Development during Coffee Processing in Humid Subtropical Climate through Metagenetic-Metabolomics Analysis. Foods 2024; 13:1871. [PMID: 38928813 PMCID: PMC11203001 DOI: 10.3390/foods13121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Research into microbial interactions during coffee processing is essential for developing new methods that adapt to climate change and improve flavor, thus enhancing the resilience and quality of global coffee production. This study aimed to investigate how microbial communities interact and contribute to flavor development in coffee processing within humid subtropical climates. Employing Illumina sequencing for microbial dynamics analysis, and high-performance liquid chromatography (HPLC) integrated with gas chromatography-mass spectrometry (GC-MS) for metabolite assessment, the study revealed intricate microbial diversity and associated metabolic activities. Throughout the fermentation process, dominant microbial species included Enterobacter, Erwinia, Kluyvera, and Pantoea from the prokaryotic group, and Fusarium, Cladosporium, Kurtzmaniella, Leptosphaerulina, Neonectria, and Penicillium from the eukaryotic group. The key metabolites identified were ethanol, and lactic, acetic, and citric acids. Notably, the bacterial community plays a crucial role in flavor development by utilizing metabolic versatility to produce esters and alcohols, while plant-derived metabolites such as caffeine and linalool remain stable throughout the fermentation process. The undirected network analysis revealed 321 interactions among microbial species and key substances during the fermentation process, with Enterobacter, Kluyvera, and Serratia showing strong connections with sugar and various volatile compounds, such as hexanal, benzaldehyde, 3-methylbenzaldehyde, 2-butenal, and 4-heptenal. These interactions, including inhibitory effects by Fusarium and Cladosporium, suggest microbial adaptability to subtropical conditions, potentially influencing fermentation and coffee quality. The sensory analysis showed that the final beverage obtained a score of 80.83 ± 0.39, being classified as a specialty coffee by the Specialty Coffee Association (SCA) metrics. Nonetheless, further enhancements in acidity, body, and aftertaste could lead to a more balanced flavor profile. The findings of this research hold substantial implications for the coffee industry in humid subtropical regions, offering potential strategies to enhance flavor quality and consistency through controlled fermentation practices. Furthermore, this study contributes to the broader understanding of how microbial ecology interplays with environmental factors to influence food and beverage fermentation, a topic of growing interest in the context of climate change and sustainable agriculture.
Collapse
Affiliation(s)
- Alexander da Silva Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| | - Cecília Marques Tenório Pereira
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-000, SC, Brazil; (C.M.T.P.); (J.D.D.L.)
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-000, SC, Brazil; (C.M.T.P.); (J.D.D.L.)
| | - Luiz Roberto Saldanha Rodrigues
- Graduate Program in Biotechnology, Federal Technological University of Paraná (UTFPR), Dois Vizinhos 85660-000, PR, Brazil; (L.R.S.R.); (M.G.B.P.)
| | - Nájua Kêmil El Kadri
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| | - Maria Giovana Binder Pagnoncelli
- Graduate Program in Biotechnology, Federal Technological University of Paraná (UTFPR), Dois Vizinhos 85660-000, PR, Brazil; (L.R.S.R.); (M.G.B.P.)
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3, Canada;
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| | - Gilberto Vinícius de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil (C.R.S.)
| |
Collapse
|
23
|
Ucak S. Determination of Bacterial Community Structure of Table Olive via Metagenomic Approach in Şarköy. Chem Biodivers 2024; 21:e202302120. [PMID: 38613509 DOI: 10.1002/cbdv.202302120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024]
Abstract
One of the most popular pickled foods created worldwide is table olives. The aim was to identify the bacterial microbiota of table olive samples collected from Şarköy, Tekirdağ-Türkiye using next generation sequencing and 16S metagenomic analysis. Samples were studied as non-pre-enriched (n : 10) and after pre-enrichment (n : 10) to compare the effects of the enrichment process on the bacterial diversity. In non-pre-enriched, the most common genus found was Sphingomonas, followed by Altererythrobacter and Lysobacter. The most common phylum found was Proteobacteria, followed by Bacteroidota and Actinobacteria. In pre-enriched, Bacillus was the most commonly detected genus, followed by Pantoea and Staphylococcus. The most frequently found phylum was Firmicutes, followed by Proteobacteria and Cyanobacteria. This study is the first study for Şarköy, which is the only table olive production place in the Tekirdağ region due to its microclimate feature. Further studies are needed in more table olive samples from different geographical areas to confirm and develop current findings.
Collapse
Affiliation(s)
- Samet Ucak
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydın University, Istanbul, 34295, Türkiye
| |
Collapse
|
24
|
Blakney AJC, Morvan S, Lucotte M, Moingt M, Charbonneau A, Bipfubusa M, Gonzalez E, Pitre FE. Site properties, environmental factors, and crop identify influence soil bacterial communities more than municipal biosolid application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171854. [PMID: 38522550 DOI: 10.1016/j.scitotenv.2024.171854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Reducing the environmental impact of Canadian field crop agriculture, including the reliance on conventional synthesised fertilisers, are key societal targets for establishing long-term sustainable practices. Municipal biosolids (MSB) are an abundant, residual organic material, rich in phosphate, nitrogen and other oligo-nutrients, that could be used in conjunction with conventional fertilisers to decrease their use. Though MBS have previously been shown to be an effective fertiliser substitute for different crops, including corn and soybean, there remain key knowledge gaps concerning the impact of MBS on the resident soil bacterial communities in agro-ecosystems. We hypothesised that the MBS fertiliser amendment would not significantly impact the structure or function of the soil bacterial communities, nor contribute to the spread of human pathogenic bacteria, in corn or soybean agricultural systems. In field experiments, fertiliser regimes for both crops were amended with MBS, and compared to corn and soybean plots with standard fertiliser treatments. We repeated this across four different agricultural sites in Quebec, over 2021 and 2022. We sampled MBS-treated, and untreated soils, and identified the composition of the soil bacterial communities via 16S rRNA metabarcoding. We found no indication that the MBS fertiliser amendment altered the structure of the soil bacterial communities, but rather that the soil type and crop identities were the most significant factors in structuring the bacterial communities. Moreover, there was no evidence that the MBS-treated soils were enriched in potential human bacterial pathogens over the two years of our study. Our analysis indicates that not only can MBS function as substitutes for conventional, synthesised fertilisers, but that they also do not disrupt the structure of the resident soil bacterial communities in the short term. Finally, we suggest that the use of MBS in agro-ecosystems poses no greater concern to the public than existing soil bacterial communities. This highlights the significant role MBS could potentially have in reducing the use of conventional industrial fertilisers and improving agricultural production, without risking environmental contamination.
Collapse
Affiliation(s)
- Andrew J C Blakney
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada.
| | - Simon Morvan
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada
| | - Marc Lucotte
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada.
| | - Matthieu Moingt
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada
| | - Ariane Charbonneau
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada
| | - Marie Bipfubusa
- Centre de Recherche sur les Grains, Inc. (CÉROM), Saint-Mathieu-de-Beloeil, QC J3G 0E2, Canada
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
| | - Frédéric E Pitre
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
25
|
Hernández AM, Alcaraz LD, Hernández-Álvarez C, Romero MF, Jara-Servín A, Barajas H, . Ramírez CM, Peimbert M. Revealing the microbiome diversity and biocontrol potential of field Aedes ssp.: Implications for disease vector management. PLoS One 2024; 19:e0302328. [PMID: 38683843 PMCID: PMC11057774 DOI: 10.1371/journal.pone.0302328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
The mosquito Aedes spp. holds important relevance for human and animal health, as it serves as a vector for transmitting multiple diseases, including dengue and Zika virus. The microbiome's impact on its host's health and fitness is well known. However, most studies on mosquito microbiomes have been conducted in laboratory settings. We explored the mixed microbial communities within Aedes spp., utilizing the 16S rRNA gene for diversity analysis and shotgun metagenomics for functional genomics. Our samples, which included Ae. aegypti and Ae. albopictus, spanned various developmental stages-eggs, larvae, and adults-gathered from five semiurban areas in Mexico. Our findings revealed a substantial diversity of 8,346 operational taxonomic units (OTUs), representing 967 bacterial genera and 126,366 annotated proteins. The host developmental stage was identified as the primary factor associated with variations in the microbiome composition. Subsequently, we searched for genes and species involved in mosquito biocontrol. Wolbachia accounted for 9.6% of the 16S gene sequences. We observed a high diversity (203 OTUs) of Wolbachia strains commonly associated with mosquitoes, such as wAlb, with a noticeable increase in abundance during the adult stages. Notably, we detected the presence of the cifA and cifB genes, which are associated with Wolbachia's cytoplasmic incompatibility, a biocontrol mechanism. Additionally, we identified 221 OTUs related to Bacillus, including strains linked to B. thuringiensis. Furthermore, we discovered multiple genes encoding insecticidal toxins, such as Cry, Mcf, Vip, and Vpp. Overall, our study contributes to the understanding of mosquito microbiome biodiversity and metabolic capabilities, which are essential for developing effective biocontrol strategies against this disease vector.
Collapse
Affiliation(s)
- Apolinar M. Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Cristóbal Hernández-Álvarez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miguel F. Romero
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angélica Jara-Servín
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Hugo Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Mariana Peimbert
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
| |
Collapse
|
26
|
Charbonneau A, Lucotte M, Moingt M, Blakney AJC, Morvan S, Bipfubusa M, Pitre FE. Fertilisation of agricultural soils with municipal biosolids: Glyphosate and aminomethylphosphonic acid inputs to Québec field crop soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171290. [PMID: 38431163 DOI: 10.1016/j.scitotenv.2024.171290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Municipal biosolids (MBS) are suggested to be abundant, sustainable, inexpensive fertilisers, rich in phosphorus and nitrogen. However, MBS can also contain glyphosate and phosphonates that can degrade to AMPA. Glyphosate-based herbicides (GBH) are used in field crops all over the world. Most glyphosate generally degrades within a few weeks, mainly as aminomethylphosphonic acid (AMPA). AMPA is more persistent than glyphosate, and can accumulate from one crop year to the next. AMPA is phytotoxic even to glyphosate-resistant crops. The aims of this study were to assess whether MBS applications constitute: 1) an additional source of glyphosate and AMPA to agricultural soils with respect to GBH, 2) a significant source of trace metals, and 3) a partial replacement of mineral fertilisation while maintaining similar yields. To this end, four experimental agricultural sites were selected in Québec (Canada). Soil samples (0-20 cm) were collected to estimate the as yet unmeasured contribution of MBS application to glyphosate and AMPA inputs in agricultural soils. MBS applied in 2021 and 2022 had mean concentrations of 0.69 ± 0.53 μg glyphosate/dry g and 6.26 ± 1.93 μg AMPA/dry g. Despite the presence of glyphosate and AMPA in MBS, monitoring of these two compounds in corn and soybean crops over two years showed no significant difference between plots treated with and without MBS applications. For the same site, yields measured at harvest were similar between treatments. MBS application could thus represent a partial alternative to mineral fertilisers for field crops, while limiting the economic and environmental costs associated with their incineration and landfilling. It is also an economic advantage for agricultural producers given the possibility of using fewer mineral fertilisers and therefore reducing the environmental impact of their use.
Collapse
Affiliation(s)
- Ariane Charbonneau
- Laboratoire d'analyses environnementales de l'Institut des sciences de l'environnement (LAE-ISE), Université du Québec à Montréal (UQÀM), 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada
| | - Marc Lucotte
- GEOTOP & Laboratoire d'analyses environnementales de l'Institut des sciences de l'environnement (LAE-ISE), Université du Québec à Montréal (UQÀM), 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada.
| | - Matthieu Moingt
- Laboratoire d'analyses environnementales de l'Institut des sciences de l'environnement (LAE-ISE), Université du Québec à Montréal (UQÀM), 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada
| | - Andrew J C Blakney
- Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal (UdeM), 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada
| | - Simon Morvan
- Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal (UdeM), 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada
| | - Marie Bipfubusa
- Centre de Recherche sur les Grains, Inc. (CÉROM), Saint-Mathieu-de-Beloeil, QC J3G 0E2, Canada
| | - Frédéric E Pitre
- Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal (UdeM), 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
27
|
Zhang F, Zhang Z, Wei Z, Liu H. Microbiome-conferred herbicides resistance. THE NEW PHYTOLOGIST 2024; 242:327-330. [PMID: 38320978 DOI: 10.1111/nph.19574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
This article is a Commentary on Hu et al. (2023), 242: 333–343.
Collapse
Affiliation(s)
- Fengge Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| |
Collapse
|
28
|
Zheng L, Han Z, Wang S, Gao A, Liu L, Pan H, Zhang H. Transcriptomic analysis and knockout experiments reveal the role of suhB in the biocontrol effects of Pantoea jilinensis D25 on Botrytis cinerea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170771. [PMID: 38336045 DOI: 10.1016/j.scitotenv.2024.170771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Tomato gray mold, caused by Botrytis cinerea, is an important disease in tomato. Pantoea jilinensis D25, isolated form tomato rhizosphere soil, can prevent B. cinerea infection in tomato. To determine the underlying biocontrol mechanism, the transcriptome of P. jilinensis D25 was assessed. Differential expression analysis revealed that 941 genes were upregulated and 997 genes were downregulated. Through transcriptome analysis, the suhB gene was knocked out. ΔPj-suhB exhibited lower swimming motility and colonization abilities than strain D25. After 4 days of co-cultivation, ΔPj-suhB could reduce the colony diameter, mycelial weight, and spore production of B. cinerea with the inhibitory rates of 31.72 %, 39.62 %, and 47.42 %, respectively, compared with control. However, the inhibitory rates of strain D25 were 52.91 %, 60.09 %, and 76.85 %, respectively, compared with control. Strain D25 could significantly downregulate pathogenesis-related genes in B. cinerea, whereas the expression level of these genes in B. cinerea was higher after treatment with ΔPj-suhB than after that with strain D25. In vitro experiments revealed that the lesion area and disease control efficacy were 1.520 and 0.038 cm2 and 68.7 % and 99.0 %, respectively, after ΔPj-suhB and strain D25 treatments. Pot experiments revealed that ΔPj-suhB and strain D25 could prevent tomato plants from B. cinerea infection with the disease reduction rate of 37.5 % and 75.0 %, respectively. Though the activities of defense-related enzymes and expression level of defense related genes in tomato plants were increased under ΔPj-suhB treatment, these effects were higher after strain D25 treatment. Thus, these results demonstrated that suhB was the key gene in strain D25 underlying its biocontrol effect and mobility.
Collapse
Affiliation(s)
- Lining Zheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Zhe Han
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Shengyi Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Ao Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Ling Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, PR China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
29
|
Davies J, Hawkins S, Winters A, Farrar K. Bacterial endophytic community composition varies by hemp cultivar in commercially sourced seed. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13259. [PMID: 38649235 PMCID: PMC11035101 DOI: 10.1111/1758-2229.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
The seed-endophytic bacterial community is a potentially beneficial and heritable fraction of the plant microbiome. Its utilization as a sustainable crop improvement strategy could be especially valuable for species such as hemp, where production is being scaled up and new challenges will be faced in managing crop productivity and health. However, little is known about the makeup and variation of the hemp seed microbiome. This study profiled the endophytic bacterial communities harboured by 16 hemp cultivars sourced from commercial suppliers in Europe. A 16S rDNA amplicon sequencing approach identified 917 amplicon sequence variants across samples. Taxonomic classification of sequences revealed 4 phyla and 87 genera to be represented in the dataset. Several genera were widespread while some were specific to one or a few cultivars. Flavobacterium, Pseudomonas, and Pantoea were notable in their high overall abundance and prevalence, but community composition was variable and no one taxon was universally abundant, suggesting a high degree of flexibility in community assembly. Taxonomic composition and alpha diversity differed among cultivars, though further work is required to understand the relative influence of hemp genetic factors on community structure. The taxonomic profiles presented here can be used to inform further work investigating the functional characteristics and potential plant-growth-promoting traits of seed-borne bacteria in hemp.
Collapse
Affiliation(s)
- Jack Davies
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Sarah Hawkins
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Ana Winters
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Kerrie Farrar
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| |
Collapse
|
30
|
Giermasińska-Buczek K, Gawor J, Stefańczyk E, Gągała U, Żuchniewicz K, Rekosz-Burlaga H, Gromadka R, Łobocka M. Interaction of bacteriophage P1 with an epiphytic Pantoea agglomerans strain-the role of the interplay between various mobilome elements. Front Microbiol 2024; 15:1356206. [PMID: 38591037 PMCID: PMC10999674 DOI: 10.3389/fmicb.2024.1356206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
P1 is a model, temperate bacteriophage of the 94 kb genome. It can lysogenize representatives of the Enterobacterales order. In lysogens, it is maintained as a plasmid. We tested P1 interactions with the biocontrol P. agglomerans L15 strain to explore the utility of P1 in P. agglomerans genome engineering. A P1 derivative carrying the Tn9 (cmR) transposon could transfer a plasmid from Escherichia coli to the L15 cells. The L15 cells infected with this derivative formed chloramphenicol-resistant colonies. They could grow in a liquid medium with chloramphenicol after adaptation and did not contain prophage P1 but the chromosomally inserted cmR marker of P1 Tn9 (cat). The insertions were accompanied by various rearrangements upstream of the Tn9 cat gene promoter and the loss of IS1 (IS1L) from the corresponding region. Sequence analysis of the L15 strain genome revealed a chromosome and three plasmids of 0.58, 0.18, and 0.07 Mb. The largest and the smallest plasmid appeared to encode partition and replication incompatibility determinants similar to those of prophage P1, respectively. In the L15 derivatives cured of the largest plasmid, P1 with Tn9 could not replace the smallest plasmid even if selected. However, it could replace the smallest and the largest plasmid of L15 if its Tn9 IS1L sequence driving the Tn9 mobility was inactivated or if it was enriched with an immobile kanamycin resistance marker. Moreover, it could develop lytically in the L15 derivatives cured of both these plasmids. Clearly, under conditions of selection for P1, the mobility of the P1 selective marker determines whether or not the incoming P1 can outcompete the incompatible L15 resident plasmids. Our results demonstrate that P. agglomerans can serve as a host for bacteriophage P1 and can be engineered with the help of this phage. They also provide an example of how antibiotics can modify the outcome of horizontal gene transfer in natural environments. Numerous plasmids of Pantoea strains appear to contain determinants of replication or partition incompatibility with P1. Therefore, P1 with an immobile selective marker may be a tool of choice in curing these strains from the respective plasmids to facilitate their functional analysis.
Collapse
Affiliation(s)
- Katarzyna Giermasińska-Buczek
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Emil Stefańczyk
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Gągała
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
| | - Karolina Żuchniewicz
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Rekosz-Burlaga
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
| | - Robert Gromadka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
31
|
Morobane DM, Tshishonga K, Serepa-Dlamini MH. Draft Genome Sequence of Pantoea sp. Strain MHSD4, a Bacterial Endophyte With Bioremediation Potential. Evol Bioinform Online 2024; 20:11769343231217908. [PMID: 38487815 PMCID: PMC10938601 DOI: 10.1177/11769343231217908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Pantoea sp. strain MHSD4 is a bacterial endophyte isolated from the leaves of the medicinal plant Pellaea calomelanos. Here, we report on strain MHSD4 draft whole genome sequence and annotation. The draft genome size of Pantoea sp. strain MHSD4 is 4 647 677 bp with a G+C content of 54.2% and 41 contigs. The National Center for Biotechnology Information Prokaryotic Genome Annotation Pipeline tool predicted a total of 4395 genes inclusive of 4235 protein-coding genes, 87 total RNA genes, 14 non-coding (nc) RNAs and 70 tRNAs, and 73 pseudogenes. Biosynthesis pathways for naphthalene and anthracene degradation were identified. Putative genes involved in bioremediation such as copA, copD, cueO, cueR, glnGm, and trxC were identified. Putative genes involved in copper homeostasis and tolerance were identified which may suggest that Pantoea sp. strain MHSD4 has biotechnological potential for bioremediation of heavy metals.
Collapse
Affiliation(s)
- Dimpho Michelle Morobane
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| | - Khuthadzo Tshishonga
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| |
Collapse
|
32
|
Tuytschaevers S, Aden L, Greene Z, Nixon C, Shaw W, Hatch D, Kumar G, Miranda RR, Hudson AO. Isolation, whole-genome sequencing, and annotation of two antibiotic-producing and antibiotic-resistant bacteria, Pantoea rodasii RIT 836 and Pseudomonas endophytica RIT 838, collected from the environment. PLoS One 2024; 19:e0293943. [PMID: 38412159 PMCID: PMC10898753 DOI: 10.1371/journal.pone.0293943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/22/2023] [Indexed: 02/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to human health since infections caused by antimicrobial-resistant bacteria are life-threatening conditions with minimal treatment options. Bacteria become resistant when they develop the ability to overcome the compounds that are meant to kill them, i.e., antibiotics. The increasing number of resistant pathogens worldwide is contrasted by the slow progress in the discovery and production of new antibiotics. About 700,000 global deaths per year are estimated as a result of drug-resistant infections, which could escalate to nearly 10 million by 2050 if we fail to address the AMR challenge. In this study, we collected and isolated bacteria from the environment to screen for antibiotic resistance. We identified several bacteria that showed resistance to multiple clinically relevant antibiotics when tested in antibiotic susceptibility disk assays. We also found that two strains, identified as Pantoea rodasii RIT 836 and Pseudomonas endophytica RIT 838 via whole genome sequencing and annotation, produce bactericidal compounds against both Gram-positive and Gram-negative bacteria in disc-diffusion inhibitory assays. We mined the two strains' whole-genome sequences to gain more information and insights into the antibiotic resistance and production by these bacteria. Subsequently, we aim to isolate, identify, and further characterize the novel antibiotic compounds detected in our assays and bioinformatics analysis.
Collapse
Affiliation(s)
- Serena Tuytschaevers
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Leila Aden
- Rochester Prep High School, Rochester, New York, United States of America
| | - Zacchaeus Greene
- Rochester Prep High School, Rochester, New York, United States of America
| | - Chanei Nixon
- Rochester Prep High School, Rochester, New York, United States of America
| | - Wade Shaw
- Rochester Prep High School, Rochester, New York, United States of America
| | - Dillan Hatch
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Girish Kumar
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Renata Rezende Miranda
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, United States of America
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| |
Collapse
|
33
|
Vergani L, Patania J, Riva V, Nerva L, Nuzzo F, Gambino G, Borin S, Mapelli F. Deciphering the interaction of bacteria inoculants with the recipient endophytic community in grapevine micropropagated plants. Appl Environ Microbiol 2024; 90:e0207823. [PMID: 38289136 PMCID: PMC10880630 DOI: 10.1128/aem.02078-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024] Open
Abstract
Engineering the plant microbiome with beneficial endophytic bacteria can improve the growth, health, and productivity of the holobiont. Here, we administered two beneficial bacterial strains, Kosakonia VR04 sp. and Rhizobium GR12 sp., to micropropagated grapevine cuttings obtained via somatic embryogenesis. While both strains colonized the plant endosphere, only Rhizobium GR12 sp. increased root biomass under nutritional-deficit conditions, as supported by the plant growth promotion traits detected in its genome. Phylogenetic and co-occurrence analyses revealed that the plant native bacterial community, originally dominated by Streptococcaceae and Micrococcaceae, dramatically changed depending on the inoculation treatments, as invading strains differently affected the relative abundance and the interactions of pre-existing taxa. After 30 days of plantlets' growth, Pantoea became a predominant taxon, and considering untreated plantlets as references, Rhizobium sp. GR12 showed a minor impact on the endophytic bacterial community. On the other hand, Kosakonia sp. VR04 caused a major change in community composition, suggesting an opportunistic colonization pattern. Overall, the results corroborate the importance of preserving the native endophytic community structure and functions during plant microbiome engineering.IMPORTANCEA better comprehension of bacterial colonization processes and outcomes could benefit the use of plant probiotics in the field. In this study, we applied two different beneficial bacteria to grapevine micropropagated plantlets and described how the inoculation of these strains impacts endophytic microbiota assembly. We showed that under nutritional deficit conditions, the response of the receiving endophytic bacterial communities to the invasion of the beneficial strains related to the manifestation of plant growth promotion effects by the inoculated invading strains. Rhizobium sp. GR12 was able to preserve the native microbiome structure despite its effective colonization, highlighting the importance of the plant-endophyte associations for the holobiont performance. Moreover, our approach showed that the use of micropropagated plantlets could be a valuable strategy to study the interplay among the plant, its native microbiota, and the invader on a wider portfolio of species besides model plants, facilitating the application of new knowledge in agriculture.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Joa Patania
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
- Italy Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
34
|
Patakova P, Vasylkivska M, Sedlar K, Jureckova K, Bezdicek M, Lovecka P, Branska B, Kastanek P, Krofta K. Whole genome sequencing and characterization of Pantoea agglomerans DBM 3797, endophyte, isolated from fresh hop ( Humulus lupulus L.). Front Microbiol 2024; 15:1305338. [PMID: 38389535 PMCID: PMC10882544 DOI: 10.3389/fmicb.2024.1305338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Background This paper brings new information about the genome and phenotypic characteristics of Pantoea agglomerans strain DBM 3797, isolated from fresh Czech hop (Humulus lupulus) in the Saaz hop-growing region. Although P. agglomerans strains are frequently isolated from different materials, there are not usually thoroughly characterized even if they have versatile metabolism and those isolated from plants may have a considerable potential for application in agriculture as a support culture for plant growth. Methods P. agglomerans DBM 3797 was cultured under aerobic and anaerobic conditions, its metabolites were analyzed by HPLC and it was tested for plant growth promotion abilities, such as phosphate solubilization, siderophore and indol-3-acetic acid productions. In addition, genomic DNA was extracted, sequenced and de novo assembly was performed. Further, genome annotation, pan-genome analysis and selected genome analyses, such as CRISPR arrays detection, antibiotic resistance and secondary metabolite genes identification were carried out. Results and discussion The typical appearance characteristics of the strain include the formation of symplasmata in submerged liquid culture and the formation of pale yellow colonies on agar. The genetic information of the strain (in total 4.8 Mb) is divided between a chromosome and two plasmids. The strain lacks any CRISPR-Cas system but is equipped with four restriction-modification systems. The phenotypic analysis focused on growth under both aerobic and anaerobic conditions, as well as traits associated with plant growth promotion. At both levels (genomic and phenotypic), the production of siderophores, indoleacetic acid-derived growth promoters, gluconic acid, and enzyme activities related to the degradation of complex organic compounds were found. Extracellular gluconic acid production under aerobic conditions (up to 8 g/l) is probably the result of glucose oxidation by the membrane-bound pyrroloquinoline quinone-dependent enzyme glucose dehydrogenase. The strain has a number of properties potentially beneficial to the hop plant and its closest relatives include the strains also isolated from the aerial parts of plants, yet its safety profile needs to be addressed in follow-up research.
Collapse
Affiliation(s)
- Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Matej Bezdicek
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine-Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Lovecka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | | | - Karel Krofta
- Hop Research Institute, Co. Ltd., Zatec, Czechia
| |
Collapse
|
35
|
Sales AL, Cunha SC, Ferreira IM, Morgado J, Melo L, DePaula J, Miguel MAL, Farah A. Volatilome, Microbial, and Sensory Profiles of Coffee Leaf and Coffee Leaf-Toasted Maté Kombuchas. Foods 2024; 13:484. [PMID: 38338619 PMCID: PMC10855110 DOI: 10.3390/foods13030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Kombucha is a fermented beverage traditionally made from the leaves of Camelia sinensis. The market has drastically expanded recently, and the beverage has become more elaborated with new, healthy food materials and flavors. Pruning and harvesting during coffee production may generate tons of coffee leaves that are discarded although they contain substantial amounts of bioactive compounds, including those found in maté tea and coffee seeds. This study characterized the changes in volatilome, microbial, and sensory profiles of pure and blended arabica coffee leaf tea kombuchas between 3-9 days of fermentation. Acceptance was also evaluated by consumers from Rio de Janeiro (n = 103). Kombuchas (K) were prepared using black tea kombucha starter (BTKS) (10%), sucrose (10%), a symbiotic culture of Bacteria and Yeasts (SCOBY) (2.5%), and a pure coffee leaf infusion (CL) or a 50:50 blend with toasted maté infusion (CL-TM) at 2.5%. The RATA test was chosen for sensory profile characterization. One hundred volatile organic compounds were identified when all infusions and kombucha samples were considered. The potential impact compounds identified in CL K and CL-TM K were: methyl salicylate, benzaldehyde, hexanal, nonanal, pentadecanal, phenylethyl-alcohol, cedrol, 3,5-octadien-2-one, β-damascenone, α-ionone, β-ionone, acetic acid, caproic acid, octanoic acid, nonanoic acid, decanoic acid, isovaleric acid, linalool, (S)-dihydroactinidiolide, isoamyl alcohol, ethyl hexanoate, and geranyl acetone. Aroma and flavor descriptors with higher intensities in CL K included fruity, peach, sweet, and herbal, while CL-TM K included additional toasted mate notes. The highest mean acceptance score was given to CL-TM K and CL K on day 3 (6.6 and 6.4, respectively, on a nine-point scale). Arabica coffee leaf can be a co-product with similar fingerprinting to maté and black tea, which can be explored for the elaboration of potentially healthy fermented beverages in food industries.
Collapse
Affiliation(s)
- Amanda Luísa Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Sara C. Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.)
| | - Isabel M.P.L.V.O. Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.)
| | - Jéssika Morgado
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
| | - Lauro Melo
- Laboratório de Análise Sensorial e Estudos do Consumidor (LASEC), Escola de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, CT, Bl. E, Rio de Janeiro 21941-909, Brazil;
| | - Juliana DePaula
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
| | - Marco Antonio L. Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratóriode Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (J.D.)
| |
Collapse
|
36
|
Ghaly M, Zakala A, Penmethsa K, Johnson-Pich KD. A Rare Organism Causing Cholecystitis With Bacteremia in a Breast Cancer Patient. Cureus 2024; 16:e54549. [PMID: 38516448 PMCID: PMC10955448 DOI: 10.7759/cureus.54549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Pantoea, a gram-negative, rod-shaped, anaerobic bacterium, is a rare cause of human disease. Pantoea species have been known to mostly cause pulmonary disease in agricultural workers as they are native to select crops and wild animal furs. However, in very few documented cases, Pantoea has been discovered as the source of nosocomial infections, usually in the setting of an immunocompromised host. This case report details the clinical course of a 62-year-old immunocompromised female with stage 3 breast cancer presenting with acute cholecystitis and bacteremia and the unexpected discovery of Pantoea in peripheral and chemotherapy port blood cultures. After appropriate management and susceptibility testing, the patient fortunately recovered with initial cefepime and eventual levofloxacin to target the Pantoea species. To our knowledge, this is the third documented case worldwide of Pantoea isolated from cholecystitis with associated bacteremia and the first documented case in North America. Of special interest, a few months after her infection, the patient was found to be free of breast cancer. Pantoea species are known to contain levan, an exopolysaccharide, that has been seen to upregulate tumor suppressor genes. This should be considered in the future management and research of Pantoea infections.
Collapse
Affiliation(s)
- Mina Ghaly
- Internal Medicine, Southeast Health Medical Center, Dothan, USA
| | - Alyssa Zakala
- Research, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Kavya Penmethsa
- Research, Alabama College of Osteopathic Medicine, Dothan, USA
| | | |
Collapse
|
37
|
Aljameely AA, AlZubaidi FM, AlSiny FI, Alzahrani FS, Hothan KA. Pantoea Species Bacteremia in a Child With Sickle Cell Disease: A Case Report. Cureus 2024; 16:e55122. [PMID: 38558673 PMCID: PMC10979394 DOI: 10.7759/cureus.55122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
The Pantoea genus of bacteria is a group of Gram-negative rod-shaped bacteria in the Enterobacteriaceae family. It is an uncommon cause of infection in humans except in specific settings, including hospital-acquired infections and in immunocompromised patients. In this report, we describe the case of a 12-year-old girl with sickle cell disease who presented with a picture of sepsis and was found to have Pantoea species in her blood culture which was treated with antibiotics with a good response. From our literature review, risk factors were identified in the reported cases, for which further exploration is highly recommended.
Collapse
Affiliation(s)
- Ali A Aljameely
- Department of Pediatrics, King Abdulaziz University, Jeddah, SAU
| | | | - Fayza I AlSiny
- Department of Pediatrics, King Abdulaziz University, Jeddah, SAU
| | | | - Kholoud A Hothan
- Department of Pediatrics, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
38
|
Wdowiak-Wróbel S, Kalita M, Palusińska-Szysz M, Marek-Kozaczuk M, Sokołowski W, Coutinho TA. Pantoea trifolii sp. nov., a novel bacterium isolated from Trifolium rubens root nodules. Sci Rep 2024; 14:2698. [PMID: 38302681 PMCID: PMC10834434 DOI: 10.1038/s41598-024-53200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
A novel bacterium, designated strain MMK2T, was isolated from a surface-sterilised root nodule of a Trifolium rubens plant growing in south-eastern Poland. Cells were Gram negative, non-spore forming and rod shaped. The strain had the highest 16S rRNA gene sequence similarity with P. endophytica (99.4%), P. leporis (99.4%) P. rwandensis (98.8%) and P. rodasii (98.45%). Phylogenomic analysis clearly showed that strain MMK2T and an additional strain, MMK3, should reside in the genus Pantoea and that they were most closely related to P. endophytica and P. leporis. Genome comparisons showed that the novel strain shared 82.96-93.50% average nucleotide identity and 26.2-53. 2% digital DNA:DNA hybridization with closely related species. Both strains produced siderophores and were able to solubilise phosphates. The MMK2T strain was also able to produce indole-3-acetic acid. The tested strains differed in their antimicrobial activity, but both were able to inhibit the growth of Sclerotinia sclerotiorum 10Ss01. Based on the results of the phenotypic, phylogenomic, genomic and chemotaxonomic analyses, strains MMK2T and MMK3 belong to a novel species in the genus Pantoea for which the name Pantoea trifolii sp. nov. is proposed with the type strain MMK2T (= DSM 115063T = LMG 33049T).
Collapse
Affiliation(s)
- Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Marek-Kozaczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Wojciech Sokołowski
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Teresa A Coutinho
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
39
|
Erban T, Sopko B, Klimov PB, Hubert J. Mixta mediterraneensis as a novel and abundant gut symbiont of the allergen-producing domestic mite Blomia tropicalis. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:161-181. [PMID: 38227156 DOI: 10.1007/s10493-023-00875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Blomia tropicalis is an allergen-producing mite in the human environment in tropical regions. The microbiome of B. tropicalis was described using the barcode sequencing region of V4 16S rDNA and genome assemblage. Mixta mediterraneensis, previously isolated from human skin swabs, was identified as a B. tropicalis gut symbiont based on genome assembly. The microbiome contains two bacteria, Staphylococcus and M. mediterraneensis. The number of M. mediterraneensis 16S DNA copies was 106 per mite and 109 per feces in the rearing chamber based on qPCR quantification. The profile of this bacterium reached 50% of reads in the mite gut and feces. Genomic analyses revealed that the bacterium has several metabolic pathways that suggest metabolic cooperation with the mite host in vitamin and amino acid synthesis, nitrogen recycling, and antimicrobial defense. Lysozyme is present in the symbiotic bacterium but absent in the mite. The B. tropicalis microbiome contained Staphylococcus, which accelerates mite population growth. Mites can digest Staphylococcus by using specific enzymes with hydrolytic functions against bacterial cell walls (chitinases and cathepsin D), leading to endocytosis of bacteria and their degradation in lysosomes and phagosomes. Gene expression analysis of B. tropicalis indicated that phagocytosis was mediated by the PI3-kinase/Akt pathway interacting with the invasins produced by M. mediterraneensis. Moreover, the symbiont had metabolic pathways that allowed it to recycle the mite metabolic waste product guanine, known as a mite attractant. The mite host symbiont enhances mite aggregation in the feces, and the fecal-oral transmission route is excepted.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia
| | - Pavel B Klimov
- Purdue University, Lilly Hall of Life Sciences, G-225, 915 W State St, West Lafayette, IN, 47907, USA
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia.
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6 - Suchdol, Czechia.
| |
Collapse
|
40
|
Nweze JE, Šustr V, Brune A, Angel R. Functional similarity, despite taxonomical divergence in the millipede gut microbiota, points to a common trophic strategy. MICROBIOME 2024; 12:16. [PMID: 38287457 PMCID: PMC10823672 DOI: 10.1186/s40168-023-01731-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/22/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Many arthropods rely on their gut microbiome to digest plant material, which is often low in nitrogen but high in complex polysaccharides. Detritivores, such as millipedes, live on a particularly poor diet, but the identity and nutritional contribution of their microbiome are largely unknown. In this study, the hindgut microbiota of the tropical millipede Epibolus pulchripes (large, methane emitting) and the temperate millipede Glomeris connexa (small, non-methane emitting), fed on an identical diet, were studied using comparative metagenomics and metatranscriptomics. RESULTS The results showed that the microbial load in E. pulchripes is much higher and more diverse than in G. connexa. The microbial communities of the two species differed significantly, with Bacteroidota dominating the hindguts of E. pulchripes and Proteobacteria (Pseudomonadota) in G. connexa. Despite equal sequencing effort, de novo assembly and binning recovered 282 metagenome-assembled genomes (MAGs) from E. pulchripes and 33 from G. connexa, including 90 novel bacterial taxa (81 in E. pulchripes and 9 in G. connexa). However, despite this taxonomic divergence, most of the functions, including carbohydrate hydrolysis, sulfate reduction, and nitrogen cycling, were common to the two species. Members of the Bacteroidota (Bacteroidetes) were the primary agents of complex carbon degradation in E. pulchripes, while members of Proteobacteria dominated in G. connexa. Members of Desulfobacterota were the potential sulfate-reducing bacteria in E. pulchripes. The capacity for dissimilatory nitrate reduction was found in Actinobacteriota (E. pulchripes) and Proteobacteria (both species), but only Proteobacteria possessed the capacity for denitrification (both species). In contrast, some functions were only found in E. pulchripes. These include reductive acetogenesis, found in members of Desulfobacterota and Firmicutes (Bacillota) in E. pulchripes. Also, diazotrophs were only found in E. pulchripes, with a few members of the Firmicutes and Proteobacteria expressing the nifH gene. Interestingly, fungal-cell-wall-degrading glycoside hydrolases (GHs) were among the most abundant carbohydrate-active enzymes (CAZymes) expressed in both millipede species, suggesting that fungal biomass plays an important role in the millipede diet. CONCLUSIONS Overall, these results provide detailed insights into the genomic capabilities of the microbial community in the hindgut of millipedes and shed light on the ecophysiology of these essential detritivores. Video Abstract.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Vladimír Šustr
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Andreas Brune
- RG Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia.
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia.
| |
Collapse
|
41
|
Wu C, Zhang X, Fan Y, Ye J, Dong L, Wang Y, Ren Y, Yong H, Liu R, Wang A. Vertical transfer and functional characterization of cotton seed core microbiome. Front Microbiol 2024; 14:1323342. [PMID: 38264479 PMCID: PMC10803423 DOI: 10.3389/fmicb.2023.1323342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Microbiome within plant tissues is pivotal for co-evolution with host plants. This microbiome can colonize the plant, with potential transmission via seeds between parents and offspring, affecting seedling growth and host plant adaptability to the environment. Methods We employed 16S rRNA gene amplicon analysis to investigate the vertical distribution of core microbiome in cotton seeds across ecological niches [rhizosphere, root, stem, leaf, seed and seed-P (parental seed)] of the three cotton genotypes. Results The findings demonstrated a significant decrease in microbiome diversity and network complexity from roots, stems, and leaves to seeds. The microenvironment exerted a more substantial influence on the microbiome structure of cotton than the genotypes. The core endophytic microorganisms in cotton seeds comprised 29 amplicon sequence variants (ASVs) affiliated with Acidimicrobiia, Alphaproteobacteria, Bacilli, Bacteroidia, Clostridia, Gammaproteobacteria, and unclassified_Proteobacteria. These vertically transmitted taxa are widely distributed in cotton plants. Through 16S rRNA gene-based function prediction analysis of the cotton microbiome, we preliminarily understood that there are potential differences in metabolic capabilities and phenotypic traits among microbiomes in different microhabitats. Discussion In conclusion, this study demonstrated the crucial role of the microenvironment in influencing the cotton microbiome and offered insights into the structures and functions of the cotton seed microbiome, facilitating future crop yield enhancement through core seed microbiome regulation.
Collapse
Affiliation(s)
- Chongdie Wu
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Xin Zhang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yongbin Fan
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Jingyi Ye
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Lingjun Dong
- College of Life Sciences, Shihezi University, Shihezi, China
| | - YuXiang Wang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - YinZheng Ren
- College of Life Sciences, Shihezi University, Shihezi, China
| | - HongHong Yong
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Ruina Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Aiying Wang
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| |
Collapse
|
42
|
Thorgersen MP, Goff JL, Trotter VV, Poole II FL, Arkin AP, Deutschbauer AM, Adams MWW. Fitness factors impacting survival of a subsurface bacterium in contaminated groundwater. THE ISME JOURNAL 2024; 18:wrae176. [PMID: 39259908 PMCID: PMC11467524 DOI: 10.1093/ismejo/wrae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
Many factors contribute to the ability of a microbial species to persist when encountering complexly contaminated environments, including time of exposure, the nature and concentration of contaminants, availability of nutritional resources, and possession of a combination of appropriate molecular mechanisms needed for survival. Herein we sought to identify genes that are most important for survival of Gram-negative Enterobacteriaceae in contaminated groundwater environments containing high concentrations of nitrate and metals using the metal-tolerant Oak Ridge Reservation isolate, Pantoea sp. MT58 (MT58). Survival fitness experiments in which a randomly barcoded transposon insertion (RB-TnSeq) library of MT58 was exposed directly to contaminated Oak Ridge Reservation groundwater samples from across a nitrate and mixed metal contamination plume were used to identify genes important for survival with increasing exposure times and concentrations of contaminants, and availability of a carbon source. Genes involved in controlling and using carbon, encoding transcriptional regulators, and related to Gram-negative outer membrane processes were among those found to be important for survival in contaminated Oak Ridge Reservation groundwater. A comparative genomics analysis of 75 Pantoea genus strains allowed us to further separate the survival determinants into core and non-core genes in the Pantoea pangenome, revealing insights into the survival of subsurface microorganisms during contaminant plume intrusion.
Collapse
Affiliation(s)
- Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Jennifer L Goff
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Valentine V Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, United States
| | - Farris L Poole II
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
43
|
Mazel F, Pitteloud C, Guisan A, Pellissier L. Contrasted host specificity of gut and endosymbiont bacterial communities in alpine grasshoppers and crickets. ISME COMMUNICATIONS 2024; 4:ycad013. [PMID: 38374896 PMCID: PMC10875604 DOI: 10.1093/ismeco/ycad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
Bacteria colonize the body of macroorganisms to form associations ranging from parasitic to mutualistic. Endosymbiont and gut symbiont communities are distinct microbiomes whose compositions are influenced by host ecology and evolution. Although the composition of horizontally acquired symbiont communities can correlate to host species identity (i.e. harbor host specificity) and host phylogeny (i.e. harbor phylosymbiosis), we hypothesize that the microbiota structure of vertically inherited symbionts (e.g. endosymbionts like Wolbachia) is more strongly associated with the host species identity and phylogeny than horizontally acquired symbionts (e.g. most gut symbionts). Here, using 16S metabarcoding on 336 guts from 24 orthopteran species (grasshoppers and crickets) in the Alps, we observed that microbiota correlated to host species identity, i.e. hosts from the same species had more similar microbiota than hosts from different species. This effect was ~5 times stronger for endosymbionts than for putative gut symbionts. Although elevation correlated with microbiome composition, we did not detect phylosymbiosis for endosymbionts and putative gut symbionts: closely related host species did not harbor more similar microbiota than distantly related species. Our findings indicate that gut microbiota of studied orthopteran species is more correlated to host identity and habitat than to the host phylogeny. The higher host specificity in endosymbionts corroborates the idea that-everything else being equal-vertically transmitted microbes harbor stronger host specificity signal, but the absence of phylosymbiosis suggests that host specificity changes quickly on evolutionary time scales.
Collapse
Affiliation(s)
- Florent Mazel
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Camille Pitteloud
- Département de la mobilité, du territoire et de l'environnement, Service des forêts, de la nature et du paysage, Sion 1950, Switzerland
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne 1015, Switzerland
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| |
Collapse
|
44
|
Baltrus DA, Shin GY, Coutinho T, Kvitko BH. Draft genome sequences for Pantoea ananatis ATCC 35400 and Pantoea stewartii subspecies indologenes ICMP 10132. Microbiol Resour Announc 2023; 12:e0047123. [PMID: 37982615 PMCID: PMC10720522 DOI: 10.1128/mra.00471-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 11/21/2023] Open
Abstract
Here, we describe draft genome sequences for two bacterial isolates from the genus Pantoea. Pantoea ananatis ATCC 35400 was originally isolated from honeydew melon and was obtained from the American Type Culture Collection. Pantoea stewartii subspecies indologenes ICMP 10132 was originally isolated from sugarcane and classified as Pantoea ananatis, but average nucleotide identity and discriminatory PCR support species reclassification.
Collapse
Affiliation(s)
- David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Gi Yoon Shin
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Teresa Coutinho
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
- The Plant Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
45
|
Casale R, Boattini M, Bianco G, Comini S, Corcione S, Garazzino S, Silvestro E, De Rosa FG, Cavallo R, Costa C. Bloodstream Infections by Pantoea Species: Clinical and Microbiological Findings from a Retrospective Study, Italy, 2018-2023. Antibiotics (Basel) 2023; 12:1723. [PMID: 38136757 PMCID: PMC10740582 DOI: 10.3390/antibiotics12121723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: The widespread use of MALDI-TOF coupled to mass spectrometry has improved diagnostic accuracy by identifying uncommon bacteria. Among Enterobacterales, Pantoea species have been seen to be implicated in several human infections, but their clinical and microbiological framework is currently based on a few anecdotal reports. (2) Methods: We conducted this five-year (2018-2023) single-center study aimed at investigating the prevalence and clinical and microbiological findings of Pantoea species bloodstream infections. (3) Results: Among the 4996 bloodstream infection Gram-negative isolates collected during the study period, Pantoea species accounted for 0.4% (n = 19) of isolates from 19 different patients, 5 of them being pediatric cases. Among Pantoea species isolates, P. agglomerans was the most frequently detected (45%; n = 9) followed by P. eucrina (30%; n = 6) and P. septica (15%; n = 3). Malignancy (35.7%) in adults and malignancy (40%) and cerebrovascular disease following meconium aspiration (40%) in pediatric patients as comorbidities and shivering and/or fever following parenteral infusion (36.8%) as a symptom/sign of Pantoea species bloodstream infection onset were the most frequently observed clinical features. Among adults, primary bloodstream infection was the most frequent (50%), whereas among pediatric patients, the most commonly identified sources of infection were catheter-related (40%) and the respiratory tract (40%). Overall, Pantoea species bloodstream infection isolates displayed high susceptibility to all the antibiotics except for ampicillin (63.2%), fosfomycin (73.7%), and piperacillin/tazobactam (84.2%). Targeted antibiotic treatment was prescribed as monotherapy for adults (71.4%) and combination therapy for pediatric patients (60%). The most prescribed antibiotic regimens were piperacillin/tazobactam (21.4%) in adults and meropenem- (40%) and aminoglycoside-containing (40%) antibiotics in pediatric patients. The overall 28-day all-cause mortality rate was 5.3% (n = 1). (4) Conclusions: The prevalence and 28-day mortality rate of Pantoea species bloodstream infections were low. The prescription of targeted therapy including broad-spectrum antibiotics could indicate an underestimation of the specific involvement of the Pantoea species in the onset of the disease, warranting further studies defining their pathogenic potential.
Collapse
Affiliation(s)
- Roberto Casale
- Microbiology and Virology Unit, University Hospital City of Health and Science of Turin, 10126 Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, 10124 Turin, Italy
| | - Matteo Boattini
- Microbiology and Virology Unit, University Hospital City of Health and Science of Turin, 10126 Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, 10124 Turin, Italy
- Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital City of Health and Science of Turin, 10126 Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, 10124 Turin, Italy
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, 60035 Jesi, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10124 Turin, Italy
| | - Silvia Garazzino
- Infectious Diseases Unit, Department of Pediatric and Public Health Sciences, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Erika Silvestro
- Infectious Diseases Unit, Department of Pediatric and Public Health Sciences, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10124 Turin, Italy
- Unit of Infectious Diseases, Cardinal Massaia Hospital, 14100 Asti, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital City of Health and Science of Turin, 10126 Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, 10124 Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital City of Health and Science of Turin, 10126 Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, 10124 Turin, Italy
| |
Collapse
|
46
|
Wicaksono WA, Cernava T, Wassermann B, Abdelfattah A, Soto-Giron MJ, Toledo GV, Virtanen SM, Knip M, Hyöty H, Berg G. The edible plant microbiome: evidence for the occurrence of fruit and vegetable bacteria in the human gut. Gut Microbes 2023; 15:2258565. [PMID: 37741805 PMCID: PMC10519362 DOI: 10.1080/19490976.2023.2258565] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Diversity of the gut microbiota is crucial for human health. However, whether fruit and vegetable associated bacteria contribute to overall gut bacterial diversity is still unknown. We reconstructed metagenome-assembled genomes from 156 fruit and vegetable metagenomes to investigate the prevalence of associated bacteria in 2,426 publicly available gut metagenomes. The microbiomes of fresh fruits and vegetables and the human gut are represented by members in common such as Enterobacterales, Burkholderiales, and Lactobacillales. Exposure to bacteria via fruit and vegetable consumption potentially has a beneficial impact on the functional diversity of gut microbiota particularly due to the presence of putative health-promoting genes for the production of vitamin and short-chain fatty acids. In the human gut, they were consistently present, although at a low abundance, approx. 2.2%. Host age, vegetable consumption frequency, and the diversity of plants consumed were drivers favoring a higher proportion. Overall, these results provide one of the primary links between the human microbiome and the environmental microbiome. This study revealed evidence that fruit and vegetable-derived microbes could be found in the human gut and contribute to gut microbiome diversity.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | | | | | - Suvi M. Virtanen
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
- Faculty of Social Sciences, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, Children’s Hospital, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
47
|
Du L, Gao X, Zhao L, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J. Assessment of the risk of imidaclothiz to the dominant aphid parasitoid Binodoxys communis (Hymenoptera: Braconidae). ENVIRONMENTAL RESEARCH 2023; 238:117165. [PMID: 37739156 DOI: 10.1016/j.envres.2023.117165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The neonicotinoid of imidaclothiz insecticide with low resistance and high efficiency, has great potential for application in pest control in specifically cotton field. In this systematically evaluate the effects of sublethal doses of imidaclothiz (LC10: 11.48 mg/L; LC30: 28.03 mg/L) on the biology, transcriptome, and microbiome of Binodoxys communis, the predominant primary parasitic natural enemy of aphids. The findings indicated that imidaclothiz has significant deleterious effects on the survival rate, parasitic rate, and survival time of B. communis. Additionally, there was a marked reduction in the survival rate and survival time of the F1 generation, that is, the negative effect of imidaclothiz on B. communis was continuous and trans-generational. Transcriptome analysis revealed that imidaclothiz treatment elicited alterations in the expression of genes associated with energy and detoxification metabolism. In addition, 16S rRNA analysis revealed a significant increase in the relative abundance of Rhodococcus and Pantoea, which are associated with detoxification metabolism, due to imidaclothiz exposure. These findings provide evidence that B. communis may regulate gene expression in conjunction with symbiotic bacteria to enhance adaptation to imidaclothiz. Finally, this study precise evaluation of imidaclothiz's potential risk to B. communis and provides crucial theoretical support for increasing the assessment of imidaclothiz in integrated pest management.
Collapse
Affiliation(s)
- Lingen Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Likang Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
48
|
Shetty S, Kamble A, Singh H. Insights into the Potential Role of Plasmids in the Versatility of the Genus Pantoea. Mol Biotechnol 2023:10.1007/s12033-023-00960-3. [PMID: 38007817 DOI: 10.1007/s12033-023-00960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023]
Abstract
In the past two decades, 25 different species of the genus Pantoea within the Enterobacteriaceae family, have been isolated from different environmental niches. These species have a wide range of biological roles. Versatility in functions and hosts indicate that this genus has undergone extensive genetic diversification, which can be attributed to the different extra-chromosomal genetic elements or plasmids found across this genus. We have analyzed the functions of these plasmids and categorized them into four major groups for a better understanding of their future applications. The first and second group includes plasmids that contribute to genetic diversification and pathogenicity, respectively. The third group comprises cryptic plasmids of Pantoea. The last group includes plasmids that play a role in the metabolic versatility of the genus Pantoea. We have analyzed the data available up to May 2023 from two databases (viz; NCBI and PLSDB). In our analysis we have found a vast gap in knowledge. Complete gene annotations are available for only a few of the plasmids. This review highlights these challenges as an avenue for future research.
Collapse
Affiliation(s)
- Srinidhi Shetty
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, 400056, India
| | - Asmita Kamble
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, 400056, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, 400056, India.
| |
Collapse
|
49
|
Cambronero-Heinrichs JC, Battisti A, Biedermann PHW, Cavaletto G, Castro-Gutierrez V, Favaro L, Santoiemma G, Rassati D. Erwiniaceae bacteria play defensive and nutritional roles in two widespread ambrosia beetles. FEMS Microbiol Ecol 2023; 99:fiad144. [PMID: 37951293 PMCID: PMC10664977 DOI: 10.1093/femsec/fiad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023] Open
Abstract
Ambrosia beetles are fungal-growing insects excavating galleries deep inside the wood. Their success as invaders increased scientific interest towards them. However, most studies on their microbiota targeted their fungal associates whereas the role of bacterial associates is understudied. To explore the role of abundant microbial associates, we isolated bacteria from active galleries of two widespread ambrosia beetles, Xylosandrus crassiusculus and X. germanus. These isolates were classified within the Erwiniaceae family and through a phylogenetic analysis including isolates from other insects we showed that they clustered with isolates obtained from ambrosia and bark beetles, including Erwinia typographi. The whole genome analysis of the isolate from active galleries of X. crassiusculus suggested that this bacterium plays both a nutritional role, by providing essential amino acids and enzymes for the hydrolysis of plant biomass, and a defensive role, by producing antibiotics. This defensive role was also tested in vitro against fungi, including mutualists, common associates, and parasites. The bacteria inhibited the growth of some of the common associates and parasites but did not affect mutualists. Our study supported the hypothesis of a mutualist role of Erwiniaceae bacteria in ambrosia beetles and highlighed the importance of bacteria in maintaining the symbiosis of their host with nutritional fungi.
Collapse
Affiliation(s)
- Juan Carlos Cambronero-Heinrichs
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Andrea Battisti
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Peter H W Biedermann
- Chair for Forest Entomology and Protection, University of Freiburg, Stegen-Wittental 79252, Germany
| | - Giacomo Cavaletto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Víctor Castro-Gutierrez
- Center for Research on Environmental Pollution (CICA), University of Costa Rica, Montes de Oca 11501, Costa Rica
| | - Lorenzo Favaro
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Giacomo Santoiemma
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Davide Rassati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| |
Collapse
|
50
|
Hettiarachchi A, Cnockaert M, Joossens M, Gekière A, Meeus I, Vereecken NJ, Michez D, Smagghe G, Vandamme P. The wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta microbiota are host specific and dominated by endosymbionts and environmental microorganisms. MICROBIAL ECOLOGY 2023; 86:3013-3026. [PMID: 37794084 DOI: 10.1007/s00248-023-02304-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
We characterized the microbial communities of the crop, midgut, hindgut, and ovaries of the wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta through 16S rRNA gene and ITS2 amplicon sequencing and a large-scale isolation campaign. The bacterial communities of these bees were dominated by endosymbionts of the genera Wolbachia and Spiroplasma. Bacterial and yeast genera representing the remaining predominant taxa were linked to an environmental origin. While only a single sampling site was examined for Andrena vaga, Anthophora plumipes, and Colletes cunicularius, and two sampling sites for Osmia cornuta, the microbiota appeared to be host specific: bacterial, but not fungal, communities generally differed between the analyzed bee species, gut compartments and ovaries. This may suggest a selective process determined by floral and host traits. Many of the gut symbionts identified in the present study are characterized by metabolic versatility. Whether they exert similar functionalities within the bee gut and thus functional redundancy remains to be elucidated.
Collapse
Affiliation(s)
- Amanda Hettiarachchi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000, Mons, Belgium
| | - Ivan Meeus
- Laboratory of Agrozoology, Department of Plants of Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Nicolas J Vereecken
- Agroecology Lab, Université libre de Bruxelles (ULB), Boulevard du Triomphe CP 264/02, 1050, Brussels, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants of Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|