1
|
Ossa-López PA, Ramírez-Chaves HE, Álvarez López ME, Castaño Villa GJ, Rivera-Páez FA. Bacterial community of ticks (Acari: Ixodidae) and mammals from Arauca, Colombian Orinoquia. Int J Parasitol Parasites Wildl 2024; 24:100943. [PMID: 38778917 PMCID: PMC11109883 DOI: 10.1016/j.ijppaw.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Ticks are obligate hematophagous ectoparasites of vertebrates and are relevant worldwide due to the number of bacterial and other pathogens they can transmit. To date, the knowledge about the microorganisms that ticks harbor and transmit to their hosts is incipient. In this study, 24 samples of mammals belonging to four taxonomic orders and ticks of the genera Amblyomma and Rhipicephalus from the Orinoco region of Colombia were analyzed to described and compare the bacterial microbiome. Genetic extraction was performed, and the V3-V4 region of the 16S rRNA gene was amplified by PCR. Libraries were created, and those samples with adequate quality indices were sequenced using Illumina MiSeq technology. Bacterial taxonomic assignment analyses were conducted through Amplicon Sequence Variants (ASVs) and Operational Taxonomic Units (OTUs). The results correspond to 16 samples that passed the quality filters, with 3218 OTUs (415 families). Although a considerable number of unknown bacteria was found, Enterobacteriaceae, Beijerinckiaceae, Moraxellaceae, and Burkholderiaceae are the most prevalent families, and the presence of the genera Coxiella, Escherichia-Shigella, Enterobacter, which can harbor pathogenic species was confirmed. In individuals of Amblyomma mixtum found actively feeding on Hydrochoerus hydrochaeris, bacteria of the genera Escherichia-Shigella and Enterobacter were documented. Similarly, Rhipicephalus microplus found actively feeding on Odocoileus virginianus cariacou shared Escherichia-Shigella. Ralstonia was shared among the blood samples of H. hydrochaeris, while Anaplasma and Eubacterium were shared in blood and liver samples of O. v. cariacou. Shared bacteria between A. mixtum and R. microplus included Bacillus, Coxiella, and Escherichia-Shigella. The results highlight the need of additional studies in other natural regions of Colombia and other American countries where tick-borne diseases have been detected. Likewise, the recorded data are the first at the level of bacterial communities in ticks of the family Ixodidae and provide valuable knowledge for the understanding host-tick and pathogen interactions.
Collapse
Affiliation(s)
- Paula A. Ossa-López
- Doctorado en Ciencias, Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Héctor E. Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, 170004, Manizales, Caldas, Colombia
| | - María Elena Álvarez López
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Básicas, Facultad de Ciencias para la Salud, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Gabriel Jaime Castaño Villa
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Desarrollo Rural y Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Fredy A. Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| |
Collapse
|
2
|
Duron O. Nutritional symbiosis in ticks: singularities of the genus Ixodes. Trends Parasitol 2024; 40:696-706. [PMID: 38942646 DOI: 10.1016/j.pt.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Symbiosis with intracellular bacteria is essential for the nutrition of ticks, particularly through the biosynthesis of B vitamins. Yet, ticks of the genus Ixodes, which include major vectors of human pathogens, lack the nutritional symbionts usually found in other tick genera. This paradox raises questions about the mechanisms that Ixodes ticks use to prevent nutritional deficiencies. Nonetheless, Ixodes ticks commonly harbor other symbionts belonging to the order Rickettsiales. Although these obligate intracellular bacteria are primarily known as human pathogens, Rickettsiales symbionts often dominate the Ixodes microbial community without causing diseases. They also significantly influence Ixodes physiology, synthesize key B vitamins, and are crucial for immatures. These findings underscore unique associations between Rickettsiales and Ixodes ticks distinct from other tick genera.
Collapse
Affiliation(s)
- Olivier Duron
- MIVEGEC, University of Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Montpellier, France.
| |
Collapse
|
3
|
Polycarpo CR, Walter-Nuno AB, Azevedo-Reis L, Paiva-Silva GO. The vector-symbiont affair: a relationship as (im)perfect as it can be. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101203. [PMID: 38705385 DOI: 10.1016/j.cois.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries. The balance between costs and benefits provided by these interactions ultimately determines the outcome of the relationship. Here, we will explore aspects concerning the nature of microbe-vector interactions, including the adaptive traits required for their establishment, the varied outcomes of symbiotic interactions, as well as the factors influencing the transition of these relationships across a continuum from parasitism to mutualism.
Collapse
Affiliation(s)
- Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Leonan Azevedo-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
4
|
Zhong Z, Wang K, Wang J. Tick symbiosis. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101163. [PMID: 38244689 DOI: 10.1016/j.cois.2024.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As obligate blood-feeders, ticks serve as vectors for a variety of pathogens that pose threats on both human and livestock health. The microbiota that ticks harbor play important roles in influencing tick nutrition, development, reproduction, and vector. These microbes also affect the capacity of ticks to transmit pathogens (vector competence). Therefore, comprehending the functions of tick microbiota will help in developing novel and effective tick control strategies. Here, we summarize the effects of main tick symbiotic bacteria on tick physiology and vector competency.
Collapse
Affiliation(s)
- Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Kun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China.
| |
Collapse
|
5
|
Mandel CG, Sanchez SE, Monahan CC, Phuklia W, Omsland A. Metabolism and physiology of pathogenic bacterial obligate intracellular parasites. Front Cell Infect Microbiol 2024; 14:1284701. [PMID: 38585652 PMCID: PMC10995303 DOI: 10.3389/fcimb.2024.1284701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial obligate intracellular parasites (BOIPs) represent an exclusive group of bacterial pathogens that all depend on invasion of a eukaryotic host cell to reproduce. BOIPs are characterized by extensive adaptation to their respective replication niches, regardless of whether they replicate within the host cell cytoplasm or within specialized replication vacuoles. Genome reduction is also a hallmark of BOIPs that likely reflects streamlining of metabolic processes to reduce the need for de novo biosynthesis of energetically costly metabolic intermediates. Despite shared characteristics in lifestyle, BOIPs show considerable diversity in nutrient requirements, metabolic capabilities, and general physiology. In this review, we compare metabolic and physiological processes of prominent pathogenic BOIPs with special emphasis on carbon, energy, and amino acid metabolism. Recent advances are discussed in the context of historical views and opportunities for discovery.
Collapse
Affiliation(s)
- Cameron G. Mandel
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Savannah E. Sanchez
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Colleen C. Monahan
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Weerawat Phuklia
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
de França DA, Kmetiuk LB, Panazzolo GAK, Domingues OJ, da Silva FP, Biondo LM, de Souza Ribeiro Mioni M, Possebon FS, de Lima Duré AÍ, Silva MVF, Duarte MM, Fávero GM, Biondo AW, Langoni H. Serosurvey of Coxiella burnetii in Descendants of Former Black Slaves (Quilombola Communities) of Southern Brazil. Microorganisms 2024; 12:92. [PMID: 38257919 PMCID: PMC10819991 DOI: 10.3390/microorganisms12010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 01/24/2024] Open
Abstract
Brazilian descendants of former Black-slave (quilombola) communities have been predisposed to several zoonotic diseases due to social vulnerability, characterized by subsistence and close contact with livestock and companion animals. Accordingly, the present study has assessed anti-Coxiella burnetii antibodies in 200 individuals and 20 dogs from four quilombola communities located in Paraná State, southern Brazil. Serum samples were tested by indirect immunofluorescence assay (IFA) using in-house and commercial diagnostic protocols, with analysis of seropositive titers and antibody type. Fisher's exact test was used to compare seropositivity to C. burnetti with binary variables, with variables with three or more possible responses submitted to logistic regression. In total, 44/200 (22%; 95% CI 16.82-28.24) people tested positive, and 4.5% had titers higher than 128, indicating a recent onset of C. burnetii infection. Seropositive individuals were statistically associated with the Limitão community (p = 0.0013), urban workers as occupations (p = 0.0475), consumption of undercooked meat (p = 0.0159), and contact with animal abortion (p = 0.0276). No seropositivity association was found for age, sex, education, habit of entering forest areas, consumption of game meat, consumption of raw milk, flea and tick bites, dog contact, or history of female miscarriage. Only one of 20 dogs was seropositive with a titer of 128, probably related to an acute animal infection. Despite the prevalence here being higher than previous Brazilian reports, including with symptomatic populations, the results were within range for worldwide outbreaks and occupational risk populations. To the reader's knowledge, this is the first human survey of Q fever in southern Brazil and should be considered a warning for C. burnetii in vulnerable populations, particularly Quilombola communities.
Collapse
Affiliation(s)
- Danilo Alves de França
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animals Science, São Paulo State University, Botucatu 18618-681, SP, Brazil; (D.A.d.F.); (F.S.P.)
| | - Louise Bach Kmetiuk
- Department of Veterinary Medicine, Federal University of Paraná State, Curitiba 80035-050, PR, Brazil; (L.B.K.); (A.W.B.)
| | - Giovanni Augusto Kalempa Panazzolo
- Graduate College of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil; (G.A.K.P.); (O.J.D.); (G.M.F.)
| | - Orlei José Domingues
- Graduate College of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil; (G.A.K.P.); (O.J.D.); (G.M.F.)
| | - Filipe Pereira da Silva
- Service of Virology and Rickettsiosis, Octavio Magalhaes Institute, Ezequiel Dias Foundation, Belo Horizonte 30510-010, MG, Brazil; (F.P.d.S.); (A.Í.d.L.D.); (M.V.F.S.); (M.M.D.)
| | - Leandro Meneguelli Biondo
- National Institute of the Atlantic Forest (INMA), Brazilian Ministry of Science, Technology and Innovation, Santa Teresa 29650-000, ES, Brazil;
- Interdisciplinary Graduate Studies, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Mateus de Souza Ribeiro Mioni
- Department of Pathology, Reproduction and One Health, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil;
| | - Fábio Sossai Possebon
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animals Science, São Paulo State University, Botucatu 18618-681, SP, Brazil; (D.A.d.F.); (F.S.P.)
| | - Ana Íris de Lima Duré
- Service of Virology and Rickettsiosis, Octavio Magalhaes Institute, Ezequiel Dias Foundation, Belo Horizonte 30510-010, MG, Brazil; (F.P.d.S.); (A.Í.d.L.D.); (M.V.F.S.); (M.M.D.)
| | - Marcos Vinicius Ferreira Silva
- Service of Virology and Rickettsiosis, Octavio Magalhaes Institute, Ezequiel Dias Foundation, Belo Horizonte 30510-010, MG, Brazil; (F.P.d.S.); (A.Í.d.L.D.); (M.V.F.S.); (M.M.D.)
| | - Myrian Morato Duarte
- Service of Virology and Rickettsiosis, Octavio Magalhaes Institute, Ezequiel Dias Foundation, Belo Horizonte 30510-010, MG, Brazil; (F.P.d.S.); (A.Í.d.L.D.); (M.V.F.S.); (M.M.D.)
| | - Giovani Marino Fávero
- Graduate College of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil; (G.A.K.P.); (O.J.D.); (G.M.F.)
| | - Alexander Welker Biondo
- Department of Veterinary Medicine, Federal University of Paraná State, Curitiba 80035-050, PR, Brazil; (L.B.K.); (A.W.B.)
| | - Helio Langoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animals Science, São Paulo State University, Botucatu 18618-681, SP, Brazil; (D.A.d.F.); (F.S.P.)
| |
Collapse
|
7
|
Ragini G, Raju HK, Krishnamoorthi R, Elango A, Muthukumaravel S, Kumar A. The Molecular Detection of Bacterial Infections of Public Health Importance in Hard Tick ( Ixodidae) Nymphs Collected from the Forest Fringes of Western Ghats in the Goa, Karnataka and Maharashtra States of India. Microorganisms 2023; 12:52. [PMID: 38257879 PMCID: PMC10819270 DOI: 10.3390/microorganisms12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
A survey was conducted to determine the human tick-borne bacterial infections in the nymphs which were collected from Western Ghats' fringe forest areas. Tick nymphs were collected using the flagging method from the villages where cases Kyasanur Forest Disease (KFD) were previously reported in the states of Goa, Karnataka and Maharashtra. A total of 200 tick pools consisting of 4587 nymphs were tested by PCR for the detection of bacteria of public health importance, such as Coxiella burnetii and Rickettsia spp. Of these, four pools (4.8%) in Karnataka and three pools (4.4%) in Maharashtra were positive for Coxiella burnetii, while none of the samples from Goa state were positive. Rickettsia spp. were positively obtained from Maharashtra (51.5%), Goa (35.42%) and Karnataka (26.19%). The sequence results of Rickettsia spp. showed similarity to the spotted fever group Candidatus Rickettsia shennongii, Rickettsia conorii subsp. heilongjiangensis and Rickettsia spp. strain koreansis. Individuals are entering into the forest areas for various reasons are more likely to infect with Coxiella burnetii. and Rickettsia spp.
Collapse
Affiliation(s)
- Gnanasekar Ragini
- Climate Change, GIS and VBD Stratification/Mapping, ICMR-Vector Control Research Centre, Department of Health Research, Ministry of Health & Family Welfare, GOI, Medical Complex, Indira Nagar, Puducherry 605 006, India; (G.R.); (R.K.)
| | - Hari Kishan Raju
- Climate Change, GIS and VBD Stratification/Mapping, ICMR-Vector Control Research Centre, Department of Health Research, Ministry of Health & Family Welfare, GOI, Medical Complex, Indira Nagar, Puducherry 605 006, India; (G.R.); (R.K.)
| | - Ranganathan Krishnamoorthi
- Climate Change, GIS and VBD Stratification/Mapping, ICMR-Vector Control Research Centre, Department of Health Research, Ministry of Health & Family Welfare, GOI, Medical Complex, Indira Nagar, Puducherry 605 006, India; (G.R.); (R.K.)
| | - Ayyanar Elango
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Department of Health Research, Ministry of Health & Family Welfare, GOI, Medical Complex, Indira Nagar, Puducherry 605 006, India;
| | - Subramanian Muthukumaravel
- Molecular Epidemiology, ICMR-Vector Control Research Centre, Department of Health Research, Ministry of Health & Family Welfare, GOI, Medical Complex, Indira Nagar, Puducherry 605 006, India;
| | - Ashwani Kumar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 605102, India;
| |
Collapse
|
8
|
Su S, Hong M, Cui MY, Gui Z, Ma SF, Wu L, Xing LL, Mu L, Yu JF, Fu SY, Gao RJ, Qi DD. Microbial diversity of ticks and a novel typhus group Rickettsia species (Rickettsiales bacterium Ac37b) in Inner Mongolia, China. Parasite 2023; 30:58. [PMID: 38084939 PMCID: PMC10714680 DOI: 10.1051/parasite/2023057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Ticks can carry multiple pathogens, and Inner Mongolia's animal husbandry provides excellent environmental conditions for ticks. This study characterized the microbiome of ticks from different geographical locations in Inner Mongolia; 905 Dermacentor nuttalli and 36 Ixodes persulcatus were collected from sheep in three main pasture areas and from bushes within the forested area. Mixed DNA samples were prepared from three specimens from each region and tick species. Microbial diversity was analyzed by 16S rRNA sequencing, and α and β diversity were determined. The predominant bacterial genera were Rickettsia (54.60%), including Rickettsiales bacterium Ac37b (19.33%) and other Rickettsia (35.27%), Arsenophonus (11.21%), Candidatus Lariskella (10.84%), and Acinetobacter (7.17%). Rickettsia bellii was identified in I. persulcatus, while Rickettsiales bacterium Ac37b was found in D. nuttalli from Ordos and Chifeng. Potential Rickettsia and Anaplasma coinfections were observed in the Ordos region. Tick microbial diversity analysis in Inner Mongolia suggests that sheep at the sampling sites were exposed to multiple pathogens.
Collapse
Affiliation(s)
- Si Su
-
Graduate School, Inner Mongolia Medical University Hohhot 010059 Inner Mongolia China
| | - Mei Hong
-
School of Basic Medicine, Inner Mongolia Medical University Hohhot 010110 Inner Mongolia China
| | - Meng-Yu Cui
-
Graduate School, Inner Mongolia Medical University Hohhot 010059 Inner Mongolia China
| | - Zheng Gui
- First Hospital of Jilin University Changchun 130021 China
| | - Shi-Fa Ma
-
Hulunbuir Mental Health Center Hulunbuir 022150 Inner Mongolia China
| | - Lin Wu
-
Beijing Guoke Biotechnology Co., Ltd 102200 Beijing China
| | - Li-Li Xing
-
Department of Infection Control, Second Affiliated Hospital of Inner Mongolia Medical University Hohhot Inner Mongolia Autonomous Region 010000 China
| | - Lan Mu
-
School of Basic Medicine, Inner Mongolia Medical University Hohhot 010110 Inner Mongolia China
| | - Jing-Feng Yu
-
School of Basic Medicine, Inner Mongolia Medical University Hohhot 010110 Inner Mongolia China
| | - Shao-Yin Fu
-
Inner Mongolia Academy of Agricultural & Animal Husbandry Science Hohhot 010031 Inner Mongolia China
| | - Rui-Juan Gao
-
School of Basic Medicine, Inner Mongolia Medical University Hohhot 010110 Inner Mongolia China
| | - Dong-Dong Qi
-
Hulunbuir Mental Health Center Hulunbuir 022150 Inner Mongolia China
| |
Collapse
|
9
|
Zhang L, Han J, Zhou Q, He Z, Sun SW, Li R, Li RS, Zhang WK, Wang YH, Xu LL, Lu ZH, Shao ZJ. Differential microbial composition in parasitic vs. questing ticks based on 16S next-generation sequencing. Front Microbiol 2023; 14:1264939. [PMID: 38192286 PMCID: PMC10773790 DOI: 10.3389/fmicb.2023.1264939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction As tick-borne diseases rise to become the second most prevalent arthropod-transmitted disease globally, the increasing investigations focus on ticks correspondingly. Factors contributed to this increase include anthropogenic influences, changes in vertebrate faunal composition, social-recreational shifts, and climatic variation. Employing the 16S gene sequence method in next-generation sequencing (NGS) allows comprehensive pathogen identification in samples, facilitating the development of refined approaches to tick research omnidirectionally. Methods In our survey, we compared the microbial richness and biological diversity of ticks in Wuwei City, Gansu province, differentiating between questing ticks found in grass and parasitic ticks collected from sheep based on 16S NGS method. Results The results show Rickettsia, Coxiella, and Francisella were detected in all 50 Dermacentor nuttalli samples, suggesting that the co-infection may be linked to specific symbiotic bacteria in ticks. Our findings reveal significant differences in the composition and diversity of microorganisms, with the Friedmanniella and Bordetella genera existing more prevalent in parasitic ticks than in questing ticks (p < 0.05). Additionally, the network analysis demonstrates that the interactions among bacterial genera can be either promotive or inhibitive in ticks exhibiting different lifestyles with the correlation index |r| > 0.6. For instance, Francisella restrains the development of 10 other bacteria in parasitic ticks, whereas Phyllobacterium and Arthrobacter enhance colonization across all tick species. Discussion By leveraging NGS techniques, our study reveals a high degree of species and phylogenetic diversity within the tick microbiome. It further highlights the potential to investigate the interplay between bacterial genera in both parasitic and questing ticks residing in identical habitat environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhen-Hua Lu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, Shaanxi, China
| | - Zhong-Jun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Kolo AO, Raghavan R. Impact of endosymbionts on tick physiology and fitness. Parasitology 2023; 150:859-865. [PMID: 37722758 PMCID: PMC10577665 DOI: 10.1017/s0031182023000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Ticks transmit pathogens and harbour non-pathogenic, vertically transmitted intracellular bacteria termed endosymbionts. Almost all ticks studied to date contain 1 or more of Coxiella, Francisella, Rickettsia or Candidatus Midichloria mitochondrii endosymbionts, indicative of their importance to tick physiology. Genomic and experimental data suggest that endosymbionts promote tick development and reproductive success. Here, we review the limited information currently available on the potential roles endosymbionts play in enhancing tick metabolism and fitness. Future studies that expand on these findings are needed to better understand endosymbionts’ contributions to tick biology. This knowledge could potentially be applied to design novel strategies that target endosymbiont function to control the spread of ticks and pathogens they vector.
Collapse
Affiliation(s)
- Agatha O. Kolo
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Rahul Raghavan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
11
|
Tarabai H, Floriano AM, Zima J, Filová N, Brown JJ, Roachell W, Smith RL, Beatty NL, Vogel KJ, Nováková E. Microbiomes of Blood-Feeding Triatomines in the Context of Their Predatory Relatives and the Environment. Microbiol Spectr 2023; 11:e0168123. [PMID: 37289079 PMCID: PMC10433993 DOI: 10.1128/spectrum.01681-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
The importance of gut microbiomes has become generally recognized in vector biology. This study addresses microbiome signatures in North American Triatoma species of public health significance (vectors of Trypanosoma cruzi) linked to their blood-feeding strategy and the natural habitat. To place the Triatoma-associated microbiomes within a complex evolutionary and ecological context, we sampled sympatric Triatoma populations, related predatory reduviids, unrelated ticks, and environmental material from vertebrate nests where these arthropods reside. Along with five Triatoma species, we have characterized microbiomes of five reduviids (Stenolemoides arizonensis, Ploiaria hirticornis, Zelus longipes, and two Reduvius species), a single soft tick species, Ornithodoros turicata, and environmental microbiomes from selected sites in Arizona, Texas, Florida, and Georgia. The microbiomes of predatory reduviids lack a shared core microbiota. As in triatomines, microbiome dissimilarities among species correlate with dominance of a single bacterial taxon. These include Rickettsia, Lactobacillus, "Candidatus Midichloria," and Zymobacter, which are often accompanied by known symbiotic genera, i.e., Wolbachia, "Candidatus Lariskella," Asaia, Gilliamella, and Burkholderia. We have further identified a compositional convergence of the analyzed microbiomes in regard to the host phylogenetic distance in both blood-feeding and predatory reduviids. While the microbiomes of the two reduviid species from the Emesinae family reflect their close relationship, the microbiomes of all Triatoma species repeatedly form a distinct monophyletic cluster highlighting their phylosymbiosis. Furthermore, based on environmental microbiome profiles and blood meal analysis, we propose three epidemiologically relevant and mutually interrelated bacterial sources for Triatoma microbiomes, i.e., host abiotic environment, host skin microbiome, and pathogens circulating in host blood. IMPORTANCE This study places microbiomes of blood-feeding North American Triatoma vectors (Reduviidae) into a broader evolutionary and ecological context provided by related predatory assassin bugs (Reduviidae), another unrelated vector species (soft tick Ornithodoros turicata), and the environment these arthropods coinhabit. For both vectors, microbiome analyses suggest three interrelated sources of bacteria, i.e., the microbiome of vertebrate nests as their natural habitat, the vertebrate skin microbiome, and the pathobiome circulating in vertebrate blood. Despite an apparent influx of environment-associated bacteria into the arthropod microbiomes, Triatoma microbiomes retain their specificity, forming a distinct cluster that significantly differs from both predatory relatives and ecologically comparable ticks. Similarly, within the related predatory Reduviidae, we found the host phylogenetic distance to underlie microbiome similarities.
Collapse
Affiliation(s)
- Hassan Tarabai
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
| | - Anna Maria Floriano
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Jan Zima
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Natalia Filová
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Joel J. Brown
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Cornell University, Department of Entomology, Ithaca, New York, USA
| | - Walter Roachell
- Public Health Command-Central, Fort Sam Houston, San Antonio, Texas, USA
| | - Robert L. Smith
- The University of Arizona, Department of Entomology and Desert Station, Tucson, Arizona, USA
| | - Norman L. Beatty
- University of Florida College of Medicine, Department of Medicine, Division of Infectious Disease and Global Medicine, and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Kevin J. Vogel
- The University of Georgia, Department of Entomology, Athens, Georgia, USA
| | - Eva Nováková
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Ceske Budejovice, Czech Republic
| |
Collapse
|
12
|
Shames SR. Eat or Be Eaten: Strategies Used by Legionella to Acquire Host-Derived Nutrients and Evade Lysosomal Degradation. Infect Immun 2023; 91:e0044122. [PMID: 36912646 PMCID: PMC10112212 DOI: 10.1128/iai.00441-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
To replicate within host cells, bacterial pathogens must acquire host-derived nutrients while avoiding degradative antimicrobial pathways. Fundamental insights into bacterial pathogenicity have been revealed by bacteria of the genus Legionella, which naturally parasitize free-living protozoa by establishing a membrane-bound replicative niche termed the Legionella-containing vacuole (LCV). Biogenesis of the LCV and intracellular replication rely on rapid evasion of the endocytic pathway and acquisition of host-derived nutrients, much of which is mediated by bacterial effector proteins translocated into host cells by a Dot/Icm type IV secretion system. Billions of years of co-evolution with eukaryotic hosts and broad host tropism have resulted in expansion of the Legionella genome to accommodate a massive repertoire of effector proteins that promote LCV biogenesis, safeguard the LCV from endolysosomal maturation, and mediate the acquisition of host nutrients. This minireview is focused on the mechanisms by which an ancient intracellular pathogen leverages effector proteins and hijacks host cell biology to obtain essential host-derived nutrients and prevent lysosomal degradation.
Collapse
Affiliation(s)
- Stephanie R. Shames
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Distribution and Prevalence of Anaplasmataceae, Rickettsiaceae and Coxiellaceae in African Ticks: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:microorganisms11030714. [PMID: 36985288 PMCID: PMC10051480 DOI: 10.3390/microorganisms11030714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
In Africa, ticks continue to be a major hindrance to the improvement of the livestock industry due to tick-borne pathogens that include Anaplasma, Ehrlichia, Rickettsia and Coxiella species. A systemic review and meta-analysis were conducted here and highlighted the distribution and prevalence of these tick-borne pathogens in African ticks. Relevant publications were searched in five electronic databases and selected using inclusion/exclusion criteria, resulting in 138 and 78 papers included in the qualitative and quantitative analysis, respectively. Most of the studies focused on Rickettsia africae (38 studies), followed by Ehrlichia ruminantium (27 studies), Coxiella burnetii (20 studies) and Anaplasma marginale (17 studies). A meta-analysis of proportions was performed using the random-effects model. The highest prevalence was obtained for Rickettsia spp. (18.39%; 95% CI: 14.23–22.85%), R. africae (13.47%; 95% CI: 2.76–28.69%), R. conorii (11.28%; 95% CI: 1.77–25.89%), A. marginale (12.75%; 95% CI: 4.06–24.35%), E. ruminantium (6.37%; 95% CI: 3.97–9.16%) and E. canis (4.3%; 95% CI: 0.04–12.66%). The prevalence of C. burnetii was low (0%; 95% CI: 0–0.25%), with higher prevalence for Coxiella spp. (27.02%; 95% CI: 10.83–46.03%) and Coxiella-like endosymbionts (70.47%; 95% CI: 27–99.82%). The effect of the tick genera, tick species, country and other variables were identified and highlighted the epidemiology of Rhipicephalus ticks in the heartwater; affinity of each Rickettsia species for different tick genera; dominant distribution of A. marginale, R. africae and Coxiella-like endosymbionts in ticks and a low distribution of C. burnetii in African hard ticks.
Collapse
|
14
|
Rialch A, Sankar M, Silamparasan M, Madhusoodan AP, Kharayat NS, Gautam S, Gurav AR, Thankappan S. Molecular detection of Coxiella-like endosymbionts in Rhipicephalus microplus from north India. Vet Parasitol Reg Stud Reports 2022; 36:100803. [PMID: 36436891 DOI: 10.1016/j.vprsr.2022.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
Abstract
Apart from the tick-borne pathogens affecting human and animal health, ticks also harbor various non-pathogenic endosymbionts with dynamic ecological interactions. These endosymbionts are unexplored from the Indian ticks; hence this pilot study was conducted. Seventy-nine ticks were collected from Nainital district of Uttarakhand state of north India and were identified as Rhipicephalus microplus morphologically and by molecular analysis. PCR and sequence analysis were carried out to detect the presence of Rickettsia-like, Coxiella-like and Francisella-like endosymbionts in these ticks. Based on the partial 16S rRNA gene sequence, Coxiella-like endosymbiont (CLE) was detected in the adult and other life-cycle stages of ticks with 96.6-97.7% nucleotide sequence identity with the published CLE sequences from GenBank. The phylogenetic analysis revealed that the CLE from R. microplus were clustered with the CLE from other Rhipicephalus species. All these CLE formed distinct clades from the pathogenic Coxiella burnetii. None of the tick samples was found positive for Rickettsia-like and Francisella-like endosymbionts in the present study. We also demonstrated the vertical transmission of CLE from surface sterilized and laboratory reared fully engorged adult females to the eggs and the larvae. However, large scale studies are to be conducted to detect various endosymbionts and endosymbiont-tick associations in the Indian tick species and to explore these associations for tick and tick-borne disease control.
Collapse
Affiliation(s)
- Ajayta Rialch
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India.
| | - M Sankar
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - M Silamparasan
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - A P Madhusoodan
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - Nitish Singh Kharayat
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - Siddharth Gautam
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - Amol Ramdas Gurav
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| | - Sabrinath Thankappan
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttrakhand 263138, India
| |
Collapse
|
15
|
Grostieta E, Zazueta-Islas HM, Cruz-Valdez T, Ballados-González GG, Álvarez-Castillo L, García-Esparza SM, Cruz-Romero A, Romero-Salas D, Aguilar-Domínguez M, Becker I, Sánchez-Montes S. Molecular detection of Coxiella-like endosymbionts and absence of Coxiella burnetii in Amblyomma mixtum from Veracruz, Mexico. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:113-125. [PMID: 36244047 DOI: 10.1007/s10493-022-00748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Ticks are obligate ectoparasites associated with a wide range of vertebrate hosts, including domestic animals. Moreover, ticks are capable of transmitting many pathogens such as Coxiella. To date, Coxiella burnetii, the etiological agent of coxiellosis or Q fever, is the only valid species of the genera. Nevertheless, a wide range of agents denominated Coxiella-like have been detected in recent studies, mainly associated with ticks. The pathogenicity of these Coxiella-like agents is controversial as some of them can infect both birds and humans. In Mexico, knowledge about Q fever is scarce and limited to historical serological records, and there is an overall lack of molecular proof of any agent of the genus Coxiella circulating in the country. Therefore, the aim of this study was to detect the presence of Coxiella in ticks associated with cattle in all 10 regions of Veracruz, Mexico. To accomplish this objective, first, we identified ticks collected from cattle and horses in Veracruz. Then, for Coxiella detection, DNA extraction from ticks and PCR amplification of the 16S-rDNA of Coxiella was performed. Finally, we performed a phylogenetic reconstruction to determine the Coxiella lineages detected. From the 10 regions sampled we collected 888 ticks grouped in 180 pools, and only five Amblyomma mixtum from the locality of Castán, and one from Los Angeles from Tuxpan were found positive, which represents a frequency of 20% for each locality. This study represents the first attempt at molecular detection of Coxiella in ticks associated with cattle in the state of Veracruz, the major livestock producer in the country. The findings of the present study are relevant as they establish a precedent regarding the circulation of Coxiella-like agents, as well as the absence in three municipalities of the state of Veracruz of C. burnetii, an abortive agent of livestock importance.
Collapse
Affiliation(s)
- Estefanía Grostieta
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Dr. Balmis 148, Ciudad de Mexico, C.P. 06726, México
| | - Héctor M Zazueta-Islas
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Dr. Balmis 148, Ciudad de Mexico, C.P. 06726, México
| | - Timoteo Cruz-Valdez
- Facultad de Ciencias Biológicas y Agropecuarias Región Tuxpan, Universidad Veracruzana, Veracruz, México
| | - Gerardo G Ballados-González
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Circunvalación s/n, Veracruz, 91710, México
| | - Lucía Álvarez-Castillo
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Sandra M García-Esparza
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Dr. Balmis 148, Ciudad de Mexico, C.P. 06726, México
| | - Anabel Cruz-Romero
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Circunvalación s/n, Veracruz, 91710, México
| | - Dora Romero-Salas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Circunvalación s/n, Veracruz, 91710, México
| | - Mariel Aguilar-Domínguez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Circunvalación s/n, Veracruz, 91710, México.
| | - Ingeborg Becker
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Dr. Balmis 148, Ciudad de Mexico, C.P. 06726, México.
| | - Sokani Sánchez-Montes
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Dr. Balmis 148, Ciudad de Mexico, C.P. 06726, México
- Facultad de Ciencias Biológicas y Agropecuarias Región Tuxpan, Universidad Veracruzana, Veracruz, México
| |
Collapse
|
16
|
Abstract
Infections caused by antibiotic-resistant pathogens pose high risks to human and animal health worldwide. In recent years, the environment and wildlife as major sources and reservoirs of antibiotic resistance genes (ARGs) are being increasingly investigated. There have been many reports on bacterial community in ticks, but little is known about ARGs they carry, and the correlation between bacterial and ARGs in wild ticks also remains unknown. Here, the profiles of microbial community and antibiotic resistome in wild tick species were investigated using high-throughput 16S rRNA sequencing and smart chip-based high-throughput quantitative PCR approach (HT-qPCR), respectively. We found that bacterial composition in wild tick species is variable; the sequenced reads from all samples were assigned to 37 different phyla at the phylum level. The dominant phylum was Proteobacteria, which accounted for 75.60 ± 10.34%, followed by Bacteroidetes accounting for 13.78 ± 11.68% of the total bacterial community. In total, 100 different ARGs across 12 antibiotic classes and 20 mobile genetic elements (MGEs) were identified by HT-qPCR, and among them aminoglycosides, multidrug, macrolide-clinolamide-streptogramin B, and tetracycline resistance genes were the dominant ARG types. Co-occurrence patterns revealed by network analysis showed that eight bacterial genera may serve as the potential hosts for different ARGs. For the first time, this study provides comprehensive overview of the diversity and abundance of ARGs in wild ticks and highlights the possible role of wild ticks as ARG disseminators into the environment and vertebrate hosts, with implications for human and animal health. IMPORTANCE The emergence of antibiotic-resistant bacteria poses serious threat to the public health around the world. Ticks are obligate hematophagous ectoparasites, surviving via feeding on the blood of various animal hosts. Although some previous studies have confirmed wild ticks carried various bacterial community, the role of wild ticks in the antibiotic resistance remains unknown. Here, identification of microbial community and antibiotic resistome in wild tick species revealed that wild ticks are the reservoir, postulated potential spreaders of antibiotic resistance. Our findings highlight the contribution of wild ticks to the maintenance and dissemination of ARGs, and the associated health risks.
Collapse
|
17
|
Zhang XY, Li SS, Chen KL, Yang C, Zhou XJ, Liu JZ, Zhang YK. Growth dynamics and tissue localization of a Coxiella-like endosymbiont in the tick Haemaphysalis longicornis. Ticks Tick Borne Dis 2022; 13:102005. [PMID: 35868196 DOI: 10.1016/j.ttbdis.2022.102005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/26/2022] [Accepted: 07/16/2022] [Indexed: 12/30/2022]
Abstract
A Coxiella-like endosymbiont (Coxiella-LE hereinafter) stably infects and influences Haemaphysalis longicornis development, indicating a mutualistic relationship of Coxiella-LE and ticks. To further elucidate the patterns of growth dynamics and tissue localization of Coxiella-LE in H. longicornis, 16S rRNA high-throughput sequencing, quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) were used in this study. The density of Coxiella-LE varied among different tick life stages, and fed female ticks had the highest density, followed by unfed female and unfed larval ticks. In the four organs that were dissected from fed female ticks, the ovary carried the highest density of Coxiella-LE, which was significantly different from salivary glands, midgut and Malpighian tubules. The high abundance of Coxiella-LE in fed female ticks and in the ovaries of fed female ticks in the bacterial microbiota analyses further confirmed that Coxiella-LE rapidly proliferates in the ovary after blood feeding. The ovaries continued to develop after engorgement and oviposition began on day 5, with a significant decrease in the density of Coxiella-LE in the ovaries occurring on day 7. FISH results indicated that Coxiella-LE is mainly colonized in the cytoplasm of the oocyte and proliferates with oogenesis. Coxiella-LE was expelled from the body with the mature oocyte, ensuring its vertical transmission. In the Malpighian tubules at different days after engorgement, the white flocculent materials were increasing, and the density of Coxiella-LE raised significantly on day 7. Unlike the localization pattern in the ovary, Coxiella-LE was initially distributed in a mass and continually increased during the development of Malpighian tubules until it filled the Malpighian tubules. These findings provide new insights on the growth dynamics and tissue localization of Coxiella-LE in ticks and are useful for further investigation on the interactions of symbiont and ticks .
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Si-Si Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui University, Hengshui, Hebei 053000, China
| | - Kai-Li Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Chen Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xue-Jiao Zhou
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Yan-Kai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
18
|
Molecular Survey of Vector-Borne Pathogens in Ticks, Sheep Keds, and Domestic Animals from Ngawa, Southwest China. Pathogens 2022; 11:pathogens11050606. [PMID: 35631127 PMCID: PMC9143929 DOI: 10.3390/pathogens11050606] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Vector-borne pathogens are mainly transmitted by blood-feeding arthropods such as ticks, mosquitoes, fleas, lice, mites, etc. They pose a significant threat to animal and human health due to their worldwide distribution. Although much work has been performed on these pathogens, some neglected areas and undiscovered pathogens are still to be further researched. In this study, ticks (Haemaphysalis qinghaiensis), sheep keds (Melophagus ovinus), and blood samples from yaks and goats were collected in Ngawa Tibetan and Qiang Autonomous Prefecture located on the eastern edge of the Qinghai–Tibet Plateau, Southwest China. Several vector-borne bacterial pathogens were screened and studied. Anaplasma bovis strains representing novel genotypes were detected in ticks (8.83%, 37/419), yak blood samples (45.71%, 64/140), and goat blood samples (58.93%, 33/56). Two spotted fever group (SFG) Rickettsiae, Candidatus Rickettsia jingxinensis, and a novel Rickettsia species named Candidatus Rickettsia hongyuanensis were identified in ticks. Another Rickettsia species closely related to the Rickettsia endosymbiont of Polydesmus complanatus was also detected in ticks. Furthermore, a Coxiella species was detected in ticks (3.34%, 14/419), keds (1.89%, 2/106), and yak blood (0.71%, 1/140). Interestingly, another Coxiella species and a Coxiella-like bacterium were detected in a tick and a goat blood sample, respectively. These results indicate the remarkable diversity of vector-borne pathogens circulating in this area. Further investigations on their pathogenicity to humans and domestic animals are still needed.
Collapse
|
19
|
de Oliveira LB, Calchi AC, Vultão JG, Yogui DR, Kluyber D, Alves MH, Desbiez ALJ, de Santi M, Soares AG, Soares JF, Werther K, Teixeira MMG, Machado RZ, André MR. Molecular investigation of hemotropic mycoplasmas and Coxiella burnetii in free-living Xenarthra mammals from Brazil, with evidence of new hemoplasma species. Transbound Emerg Dis 2022; 69:e1877-e1891. [PMID: 35298081 DOI: 10.1111/tbed.14523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
Although mammals of the superorder Xenarthra are considered hosts of a wide range of zoonotic agents, works aiming at investigating the role of these animals as hosts for bacteria with zoonotic potential are rare. The present study aimed to investigate the occurrence and molecularly characterize Coxiella burnetii and hemoplasma (hemotropic mycoplasmas) DNA in blood and spleen samples from 397 free-living Xenarthra mammals (233 sloths, 107 anteaters, and 57 armadillos) in five Brazilian states (Mato Grosso do Sul, São Paulo, Pará, Rondônia, and Rio Grande do Sul). All biological samples from Xenarthra were negative in the qPCR for Coxiella burnetii based on the IS1111 gene. The absence of C. burnetii DNA in blood and spleen samples from Xenarthra suggests that these mammals may not act as possible hosts for this agent in the locations studied. When performed conventional PCR assays for the endogenous (gapdh) mammalian gene, 386 samples were positive. When screened by molecular assays based on the 16S rRNA gene of hemoplasmas, 81 samples were positive, of which 15.54% (60/386) were positive by conventional PCR and 5.44% (21/386) were positive by real-time PCR; three samples were positive in both assays. Of these, 39.74% (31/78) were also positive for the 23S rRNA gene and 7.69% (6/78) for the hemoplasma RNAse P gene. Among the samples positive for hemoplasmas, 25.64% (20/78) were obtained from anteaters (Tamandua tetradactyla and Myrmecophaga tridactyla), 39.74% (31/78) from sloths (Bradypus tridactylus, Bradypus sp. and Choloepus sp.) 34.61% (27/78) from armadillos (Priodontes maximus, Euphractus sexcinctus and Dasypus novemcinctus). A hemoplasma 16S rRNA sequence closely related and showing high identity (99.7%) to Mycoplasma wenyonii was detected, for the first time, in B. tridactylus. Based on the low identity and phylogenetic positioning of 16S rRNA and 23S rRNA sequences of hemoplasmas detected in anteaters and armadillos, the present study showed, for the first time, the occurrence of putative new Candidatus hemotropic Mycoplasma spp. ('Candidatus Mycoplasma haematotetradactyla' and 'Candidatus Mycoplasma haematomaximus') in Xenarthra mammals from Brazil. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laryssa Borges de Oliveira
- Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista, UNESP, Jaboticabal, SP, Brazil
| | - Ana Cláudia Calchi
- Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista, UNESP, Jaboticabal, SP, Brazil
| | | | - Débora Regina Yogui
- Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Mato Grosso do Sul, MS, Brazil
| | - Danilo Kluyber
- Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Mato Grosso do Sul, MS, Brazil.,Pesquisador associado do Naples Zoo at the Caribbean Gardens, Naples, USA
| | - Mário Henrique Alves
- Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Mato Grosso do Sul, MS, Brazil
| | | | - Mariele de Santi
- Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista, UNESP, Jaboticabal, SP, Brazil
| | - Aline Girotto Soares
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - João Fabio Soares
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Karin Werther
- Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista, UNESP, Jaboticabal, SP, Brazil
| | | | - Rosangela Zacarias Machado
- Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista, UNESP, Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista, UNESP, Jaboticabal, SP, Brazil
| |
Collapse
|
20
|
Hussain S, Perveen N, Hussain A, Song B, Aziz MU, Zeb J, Li J, George D, Cabezas-Cruz A, Sparagano O. The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Front Microbiol 2022; 13:854803. [PMID: 35369485 PMCID: PMC8969565 DOI: 10.3389/fmicb.2022.854803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Among blood-sucking arthropods, ticks are recognized as being of prime global importance because of their role as vectors of pathogens affecting human and animal health. Ticks carry a variety of pathogenic, commensal, and symbiotic microorganisms. For the latter, studies are available concerning the detection of endosymbionts, but their role in the physiology and ecology of ticks remains largely unexplored. This review paper focuses on tick endosymbionts of the genera Coxiella, Rickettsia, Francisella, Midichloria, and Wolbachia, and their impact on ticks and tick-pathogen interactions that drive disease risk. Tick endosymbionts can affect tick physiology by influencing nutritional adaptation, fitness, and immunity. Further, symbionts may influence disease ecology, as they interact with tick-borne pathogens and can facilitate or compete with pathogen development within the vector tissues. Rickettsial symbionts are frequently found in ticks of the genera of Ixodes, Amblyomma, and Dermacentor with relatively lower occurrence in Rhipicephalus, Haemaphysalis, and Hyalomma ticks, while Coxiella-like endosymbionts (CLEs) were reported infecting almost all tick species tested. Francisella-like endosymbionts (FLEs) have been identified in tick genera such as Dermacentor, Amblyomma, Ornithodoros, Ixodes, and Hyalomma, whereas Wolbachia sp. has been detected in Ixodes, Amblyomma, Hyalomma, and Rhipicephalus tick genera. Notably, CLEs and FLEs are obligate endosymbionts essential for tick survival and development through the life cycle. American dog ticks showed greater motility when infected with Rickettsia, indirectly influencing infection risk, providing evidence of a relationship between tick endosymbionts and tick-vectored pathogens. The widespread occurrence of endosymbionts across the tick phylogeny and evidence of their functional roles in ticks and interference with tick-borne pathogens suggests a significant contribution to tick evolution and/or vector competence. We currently understand relatively little on how these endosymbionts influence tick parasitism, vector capacity, pathogen transmission and colonization, and ultimately on how they influence tick-borne disease dynamics. Filling this knowledge gap represents a major challenge for future research.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abrar Hussain
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
21
|
Complete Mitochondrial Genome Sequence of the Gulf Coast Tick (Amblyomma maculatum). Microbiol Resour Announc 2021; 10:e0043121. [PMID: 34553990 PMCID: PMC8459658 DOI: 10.1128/mra.00431-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete circularized mitochondrial genome sequence of Amblyomma maculatum is 14,803 bp long. It encodes 13 protein coding genes, 2 rRNA genes, 22 tRNA genes, 2 tick box motifs, and 2 control regions. The gene arrangement and content are consistent with those of previously reported Metastriata tick mitochondrial genomes.
Collapse
|
22
|
Kobayashi T, Chatanga E, Qiu Y, Simuunza M, Kajihara M, Hang’ombe BM, Eto Y, Saasa N, Mori-Kajihara A, Simulundu E, Takada A, Sawa H, Katakura K, Nonaka N, Nakao R. Molecular Detection and Genotyping of Coxiella-Like Endosymbionts in Ticks Collected from Animals and Vegetation in Zambia. Pathogens 2021; 10:pathogens10060779. [PMID: 34205691 PMCID: PMC8234379 DOI: 10.3390/pathogens10060779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 01/16/2023] Open
Abstract
Ticks are obligate ectoparasites as they require to feed on their host blood during some or all stages of their life cycle. In addition to the pathogens that ticks harbor and transmit to vertebrate hosts, they also harbor other seemingly nonpathogenic microorganisms including nutritional mutualistic symbionts. Tick nutritional mutualistic symbionts play important roles in the physiology of the host ticks as they are involved in tick reproduction and growth through the supply of B vitamins as well as in pathogen maintenance and propagation. Coxiella-like endosymbionts (CLEs) are the most widespread endosymbionts exclusively reported in ticks. Although CLEs have been investigated in ticks in other parts of the world, there is no report of their investigation in ticks in Zambia. To investigate the occurrence of CLEs, their maintenance, and association with host ticks in Zambia, 175 ticks belonging to six genera, namely Amblyomma, Argas, Haemaphysalis, Hyalomma, Ornithodoros, and Rhipicephalus, were screened for CLEs, followed by characterization of CLEs by multi-locus sequence typing of the five Coxiella housekeeping genes (dnaK, groEL, rpoB, 16S rRNA, and 23S rRNA). The results showed that 45.7% (n = 80) were positive for CLEs. The comparison of the tick 16S rDNA phylogenetic tree with that of the CLEs concatenated sequences showed that there was a strong correlation between the topology of the trees. The results suggest that most of the CLEs have evolved within tick species, supporting the vertical transmission phenomenon. However, the negative results for CLE in some ticks warrants further investigations of other endosymbionts that the ticks in Zambia may also harbor.
Collapse
Affiliation(s)
- Toshiya Kobayashi
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (T.K.); (E.C.); (K.K.); (N.N.)
| | - Elisha Chatanga
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (T.K.); (E.C.); (K.K.); (N.N.)
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe P.O. Box 219, Malawi
| | - Yongjin Qiu
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan;
| | - Martin Simuunza
- Department of Diseases Control, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.S.); (N.S.); (E.S.); (A.T.); (H.S.)
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka P.O. Box 32379, Zambia;
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.E.); (A.M.-K.)
| | - Bernard Mudenda Hang’ombe
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka P.O. Box 32379, Zambia;
- Department of ParaClinical Studies, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Yoshiki Eto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.E.); (A.M.-K.)
| | - Ngonda Saasa
- Department of Diseases Control, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.S.); (N.S.); (E.S.); (A.T.); (H.S.)
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.E.); (A.M.-K.)
| | - Edgar Simulundu
- Department of Diseases Control, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.S.); (N.S.); (E.S.); (A.T.); (H.S.)
- Macha Research Trust, Choma P.O. Box 630166, Zambia
| | - Ayato Takada
- Department of Diseases Control, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.S.); (N.S.); (E.S.); (A.T.); (H.S.)
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.E.); (A.M.-K.)
| | - Hirofumi Sawa
- Department of Diseases Control, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.S.); (N.S.); (E.S.); (A.T.); (H.S.)
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Ken Katakura
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (T.K.); (E.C.); (K.K.); (N.N.)
| | - Nariaki Nonaka
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (T.K.); (E.C.); (K.K.); (N.N.)
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (T.K.); (E.C.); (K.K.); (N.N.)
- Correspondence: ; Tel.: +81-11-706-5196
| |
Collapse
|