1
|
Nelson DR, Mystikou A, Jaiswal A, Rad-Menendez C, Preston MJ, De Boever F, El Assal DC, Daakour S, Lomas MW, Twizere JC, Green DH, Ratcliff WC, Salehi-Ashtiani K. Macroalgal deep genomics illuminate multiple paths to aquatic, photosynthetic multicellularity. MOLECULAR PLANT 2024; 17:747-771. [PMID: 38614077 DOI: 10.1016/j.molp.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 04/15/2024]
Abstract
Macroalgae are multicellular, aquatic autotrophs that play vital roles in global climate maintenance and have diverse applications in biotechnology and eco-engineering, which are directly linked to their multicellularity phenotypes. However, their genomic diversity and the evolutionary mechanisms underlying multicellularity in these organisms remain uncharacterized. In this study, we sequenced 110 macroalgal genomes from diverse climates and phyla, and identified key genomic features that distinguish them from their microalgal relatives. Genes for cell adhesion, extracellular matrix formation, cell polarity, transport, and cell differentiation distinguish macroalgae from microalgae across all three major phyla, constituting conserved and unique gene sets supporting multicellular processes. Adhesome genes show phylum- and climate-specific expansions that may facilitate niche adaptation. Collectively, our study reveals genetic determinants of convergent and divergent evolutionary trajectories that have shaped morphological diversity in macroalgae and provides genome-wide frameworks to understand photosynthetic multicellular evolution in aquatic environments.
Collapse
Affiliation(s)
- David R Nelson
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE; Biotechnology Research Center, Technology Innovation Institute, PO Box 9639, Masdar City, Abu Dhabi, UAE.
| | - Ashish Jaiswal
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Cecilia Rad-Menendez
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, Scotland, UK
| | - Michael J Preston
- National Center for Marine Algae and Microbiota, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Frederik De Boever
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, Scotland, UK
| | - Diana C El Assal
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sarah Daakour
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE
| | - Michael W Lomas
- National Center for Marine Algae and Microbiota, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Jean-Claude Twizere
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - David H Green
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, Scotland, UK
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
2
|
Edelbroek B, Kjellin J, Biryukova I, Liao Z, Lundberg T, Noegel A, Eichinger L, Friedländer M, Söderbom F. Evolution of microRNAs in Amoebozoa and implications for the origin of multicellularity. Nucleic Acids Res 2024; 52:3121-3136. [PMID: 38375870 PMCID: PMC11014262 DOI: 10.1093/nar/gkae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in both plants and animals. They are thought to have evolved convergently in these lineages and hypothesized to have played a role in the evolution of multicellularity. In line with this hypothesis, miRNAs have so far only been described in few unicellular eukaryotes. Here, we investigate the presence and evolution of miRNAs in Amoebozoa, focusing on species belonging to Acanthamoeba, Physarum and dictyostelid taxonomic groups, representing a range of unicellular and multicellular lifestyles. miRNAs that adhere to both the stringent plant and animal miRNA criteria were identified in all examined amoebae, expanding the total number of protists harbouring miRNAs from 7 to 15. We found conserved miRNAs between closely related species, but the majority of species feature only unique miRNAs. This shows rapid gain and/or loss of miRNAs in Amoebozoa, further illustrated by a detailed comparison between two evolutionary closely related dictyostelids. Additionally, loss of miRNAs in the Dictyostelium discoideum drnB mutant did not seem to affect multicellular development and, hence, demonstrates that the presence of miRNAs does not appear to be a strict requirement for the transition from uni- to multicellular life.
Collapse
Affiliation(s)
- Bart Edelbroek
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Jonas Kjellin
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Zhen Liao
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Torgny Lundberg
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Angelika A Noegel
- Centre for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Marc R Friedländer
- Science for Life Laboratory, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
3
|
Lindsey CR, Knoll AH, Herron MD, Rosenzweig F. Fossil-calibrated molecular clock data enable reconstruction of steps leading to differentiated multicellularity and anisogamy in the Volvocine algae. BMC Biol 2024; 22:79. [PMID: 38600528 PMCID: PMC11007952 DOI: 10.1186/s12915-024-01878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Throughout its nearly four-billion-year history, life has undergone evolutionary transitions in which simpler subunits have become integrated to form a more complex whole. Many of these transitions opened the door to innovations that resulted in increased biodiversity and/or organismal efficiency. The evolution of multicellularity from unicellular forms represents one such transition, one that paved the way for cellular differentiation, including differentiation of male and female gametes. A useful model for studying the evolution of multicellularity and cellular differentiation is the volvocine algae, a clade of freshwater green algae whose members range from unicellular to colonial, from undifferentiated to completely differentiated, and whose gamete types can be isogamous, anisogamous, or oogamous. To better understand how multicellularity, differentiation, and gametes evolved in this group, we used comparative genomics and fossil data to establish a geologically calibrated roadmap of when these innovations occurred. RESULTS Our ancestral-state reconstructions, show that multicellularity arose independently twice in the volvocine algae. Our chronograms indicate multicellularity evolved during the Carboniferous-Triassic periods in Goniaceae + Volvocaceae, and possibly as early as the Cretaceous in Tetrabaenaceae. Using divergence time estimates we inferred when, and in what order, specific developmental changes occurred that led to differentiated multicellularity and oogamy. We find that in the volvocine algae the temporal sequence of developmental changes leading to differentiated multicellularity is much as proposed by David Kirk, and that multicellularity is correlated with the acquisition of anisogamy and oogamy. Lastly, morphological, molecular, and divergence time data suggest the possibility of cryptic species in Tetrabaenaceae. CONCLUSIONS Large molecular datasets and robust phylogenetic methods are bringing the evolutionary history of the volvocine algae more sharply into focus. Mounting evidence suggests that extant species in this group are the result of two independent origins of multicellularity and multiple independent origins of cell differentiation. Also, the origin of the Tetrabaenaceae-Goniaceae-Volvocaceae clade may be much older than previously thought. Finally, the possibility of cryptic species in the Tetrabaenaceae provides an exciting opportunity to study the recent divergence of lineages adapted to live in very different thermal environments.
Collapse
Affiliation(s)
- Charles Ross Lindsey
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
| | - Matthew D Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, 30332, USA.
| |
Collapse
|
4
|
Gutsche N, Koczula J, Trupp M, Holtmannspötter M, Appelfeller M, Rupp O, Busch A, Zachgo S. MpTGA, together with MpNPR, regulates sexual reproduction and independently affects oil body formation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1559-1573. [PMID: 38095258 DOI: 10.1111/nph.19472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
In angiosperms, basic leucine-zipper (bZIP) TGACG-motif-binding (TGA) transcription factors (TFs) regulate developmental and stress-related processes, the latter often involving NON EXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) coregulator interactions. To gain insight into their functions in an early diverging land-plant lineage, the single MpTGA and sole MpNPR genes were investigated in the liverwort Marchantia polymorpha. We generated Marchantia MpTGA and MpNPR knockout and overexpression mutants and conducted morphological, transcriptomic and expression studies. Furthermore, we investigated MpTGA interactions with wild-type and mutagenized MpNPR and expanded our analyses including TGA TFs from two streptophyte algae. Mptga mutants fail to induce the switch from vegetative to reproductive development and lack gametangiophore formation. MpTGA and MpNPR proteins interact and Mpnpr mutant analysis reveals a novel coregulatory NPR role in sexual reproduction. Additionally, MpTGA acts independently of MpNPR as a repressor of oil body (OB) formation and can thereby affect herbivory. The single MpTGA TF exerts a dual role in sexual reproduction and OB formation in Marchantia. Common activities of MpTGA/MpNPR in sexual development suggest that coregulatory interactions were established after emergence of land-plant-specific NPR genes and contributed to the diversification of TGA TF functions during land-plant evolution.
Collapse
Affiliation(s)
- Nora Gutsche
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Jens Koczula
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Melanie Trupp
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | | | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Andrea Busch
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| |
Collapse
|
5
|
Murik O, Geffen O, Shotland Y, Fernandez-Pozo N, Ullrich KK, Walther D, Rensing SA, Treves H. Genomic imprints of unparalleled growth. THE NEW PHYTOLOGIST 2024; 241:1144-1160. [PMID: 38072860 DOI: 10.1111/nph.19444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Chlorella ohadii was isolated from desert biological soil crusts, one of the harshest habitats on Earth, and is emerging as an exciting new green model for studying growth, photosynthesis and metabolism under a wide range of conditions. Here, we compared the genome of C. ohadii, the fastest growing alga on record, to that of other green algae, to reveal the genomic imprints empowering its unparalleled growth rate and resistance to various stressors, including extreme illumination. This included the genome of its close relative, but slower growing and photodamage sensitive, C. sorokiniana UTEX 1663. A larger number of ribosome-encoding genes, high intron abundance, increased codon bias and unique genes potentially involved in metabolic flexibility and resistance to photodamage are all consistent with the faster growth of C. ohadii. Some of these characteristics highlight general trends in Chlorophyta and Chlorella spp. evolution, and others open new broad avenues for mechanistic exploration of their relationship with growth. This work entails a unique case study for the genomic adaptations and costs of exceptionally fast growth and sheds light on the genomic signatures of fast growth in photosynthetic cells. It also provides an important resource for future studies leveraging the unique properties of C. ohadii for photosynthesis and stress response research alongside their utilization for synthetic biology and biotechnology aims.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- Medical Genetics Institute, Shaare Zedek Medical Center, 93722, Jerusalem, Israel
| | - Or Geffen
- School of Plant Sciences and Food Security, Tel-Aviv University, 39040, Tel-Aviv, Israel
| | - Yoram Shotland
- Chemical Engineering, Shamoon College of Engineering, 84100, Beer-Sheva, Israel
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
| | - Kristian Karsten Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Dirk Walther
- Max-Planck Institute for Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Stefan Andreas Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, 79098, Freiburg, Germany
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, 39040, Tel-Aviv, Israel
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| |
Collapse
|
6
|
Gupta A, Kang K, Pathania R, Saxton L, Saucedo B, Malik A, Torres-Tiji Y, Diaz CJ, Dutra Molino JV, Mayfield SP. Harnessing genetic engineering to drive economic bioproduct production in algae. Front Bioeng Biotechnol 2024; 12:1350722. [PMID: 38347913 PMCID: PMC10859422 DOI: 10.3389/fbioe.2024.1350722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Our reliance on agriculture for sustenance, healthcare, and resources has been essential since the dawn of civilization. However, traditional agricultural practices are no longer adequate to meet the demands of a burgeoning population amidst climate-driven agricultural challenges. Microalgae emerge as a beacon of hope, offering a sustainable and renewable source of food, animal feed, and energy. Their rapid growth rates, adaptability to non-arable land and non-potable water, and diverse bioproduct range, encompassing biofuels and nutraceuticals, position them as a cornerstone of future resource management. Furthermore, microalgae's ability to capture carbon aligns with environmental conservation goals. While microalgae offers significant benefits, obstacles in cost-effective biomass production persist, which curtails broader application. This review examines microalgae compared to other host platforms, highlighting current innovative approaches aimed at overcoming existing barriers. These approaches include a range of techniques, from gene editing, synthetic promoters, and mutagenesis to selective breeding and metabolic engineering through transcription factors.
Collapse
Affiliation(s)
- Abhishek Gupta
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ruchi Pathania
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Lisa Saxton
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Barbara Saucedo
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ashleyn Malik
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Crisandra J. Diaz
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - João Vitor Dutra Molino
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
- California Center for Algae Biotechnology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Qin X, Li Y, Li C, Li X, Wu Y, Wu Q, Wen H, Jiang D, Liu S, Nan W, Liang Y, Zhang H. A Rapid and Simplified Method to Isolate Specific Regulators Based on Biotin-Avidin Binding Affinities in Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:883-893. [PMID: 38118073 DOI: 10.1021/acs.jafc.3c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Transcription factors (TFs) are indispensable components of transcriptional regulatory pathways involved in crop growth and development. Herein, we developed a new method for the identification of upstream TFs specific to genes in crops based on the binding affinities of biotin and avidin. First, we constructed and verified the new biotin and avidin system (BAS) by a coprecipitation assay. Subsequently, the feasibility of DNA-based BAS (DBAS) was further proved by in vivo and in vitro assays. Furthermore, we cloned the promoter of rice OsNRT1.1B and the possible regulators were screened and identified. Additionally, partial candidates were validated by the electrophoresis mobility shift assay (EMSA), yeast one-hybrid, and luciferase activity assays. Remarkably, the results showed that the candidates PIP3 and PIP19 both responded to nitrate immediately and overexpression of PIP3 caused retard growth, which indicates that the candidates are functional and the new DBAS method is useful to isolate regulators in crops.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuanyuan Wu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Huan Wen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Shifeng Liu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
8
|
Tang J, Hu Z, Zhang J, Daroch M. Genome-scale identification and comparative analysis of transcription factors in thermophilic cyanobacteria. BMC Genomics 2024; 25:44. [PMID: 38195395 PMCID: PMC10775510 DOI: 10.1186/s12864-024-09969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The transcription factors (TFs) in thermophilic cyanobacteria might represent a uniquely evolved gene repertoire in light of the strong selective pressure caused by hostile habitats. Understanding the molecular composition of the TF genes in thermophilic cyanobacteria will facilitate further studies regarding verifying their exact biochemical functions and genetic engineering. However, limited information is available on the TFs of thermophilic cyanobacteria. Herein, a thorough investigation and comparative analysis were performed to gain insights into the molecular composition of the TFs in 22 thermophilic cyanobacteria. RESULTS The results suggested a fascinating diversity of the TFs among these thermophiles. The abundance and type of TF genes were diversified in these genomes. The identified TFs are speculated to play various roles in biological regulations. Further comparative and evolutionary genomic analyses revealed that HGT may be associated with the genomic plasticity of TF genes in Thermostichus and Thermosynechococcus strains. Comparative analyses also indicated different pattern of TF composition between thermophiles and corresponding mesophilic reference cyanobacteria. Moreover, the identified unique TFs of thermophiles are putatively involved in various biological regulations, mainly as responses to ambient changes, may facilitating the thermophiles to survive in hot springs. CONCLUSION The findings herein shed light on the TFs of thermophilic cyanobacteria and fundamental knowledge for further research regarding thermophilic cyanobacteria with a broad potential for transcription regulations in responses to environmental fluctuations.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Zhe Hu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Jing Zhang
- Food Safety Detection Key Laboratory of Sichuan, Technical Center of Chengdu Customs, Chengdu, 610041, China.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Song H, Cao Y, Zhao L, Zhang J, Li S. Review: WRKY transcription factors: Understanding the functional divergence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111770. [PMID: 37321304 DOI: 10.1016/j.plantsci.2023.111770] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
WRKY transcription factors (TFs) play crucial roles in the growth and development of plants and their response to environmental changes. WRKY TFs have been detected in sequenced plant genomes. The functions and regulatory networks of many WRKY TFs, especially from Arabidopsis thaliana (AtWRKY TFs), have been revealed, and the origin of WRKY TFs in plants is clear. Nonetheless, the relationship between WRKY TFs function and classification is unclear. Furthermore, the functional divergence of homologous WRKY TFs in plants is unclear. In this review, WRKY TFs were explored based on WRKY-related literature published from 1994 to 2022. WRKY TFs were identified in 234 species at the genome and transcriptome levels. The biological functions of ∼ 71 % of AtWRKY TFs were uncovered. Although functional divergence occurred in homologous WRKY TFs, different WRKY TF groups had no preferential function.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Longgang Zhao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; High-efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Qingdao 266109, China
| | | | - Shuai Li
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
10
|
Bowles AMC, Williamson CJ, Williams TA, Lenton TM, Donoghue PCJ. The origin and early evolution of plants. TRENDS IN PLANT SCIENCE 2023; 28:312-329. [PMID: 36328872 DOI: 10.1016/j.tplants.2022.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant (archaeplastid) evolution has transformed the biosphere, but we are only now beginning to learn how this took place through comparative genomics, phylogenetics, and the fossil record. This has illuminated the phylogeny of Archaeplastida, Viridiplantae, and Streptophyta, and has resolved the evolution of key characters, genes, and genomes - revealing that many key innovations evolved long before the clades with which they have been casually associated. Molecular clock analyses estimate that Streptophyta and Viridiplantae emerged in the late Mesoproterozoic to late Neoproterozoic, whereas Archaeplastida emerged in the late-mid Palaeoproterozoic. Together, these insights inform on the coevolution of plants and the Earth system that transformed ecology and global biogeochemical cycles, increased weathering, and precipitated snowball Earth events, during which they would have been key to oxygen production and net primary productivity (NPP).
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Timothy M Lenton
- Global Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
11
|
León-Ruiz JA, Cruz Ramírez A. Predicted landscape of RETINOBLASTOMA-RELATED LxCxE-mediated interactions across the Chloroplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1507-1524. [PMID: 36305297 DOI: 10.1111/tpj.16012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
The colonization of land by a single streptophyte algae lineage some 450 million years ago has been linked to multiple key innovations such as three-dimensional growth, alternation of generations, the presence of stomata, as well as innovations inherent to the birth of major plant lineages, such as the origins of vascular tissues, roots, seeds and flowers. Multicellularity, which evolved multiple times in the Chloroplastida coupled with precise spatiotemporal control of proliferation and differentiation were instrumental for the evolution of these traits. RETINOBLASTOMA-RELATED (RBR), the plant homolog of the metazoan Retinoblastoma protein (pRB), is a highly conserved and multifunctional core cell cycle regulator that has been implicated in the evolution of multicellularity in the green lineage as well as in plant multicellularity-related processes such as proliferation, differentiation, stem cell regulation and asymmetric cell division. RBR fulfills these roles through context-specific protein-protein interactions with proteins containing the Leu-x-Cys-x-Glu (LxCxE) short-linear motif (SLiM); however, how RBR-LxCxE interactions have changed throughout major innovations in the Viridiplantae kingdom is a question that remains unexplored. Here, we employ an in silico evo-devo approach to predict and analyze potential RBR-LxCxE interactions in different representative species of key Chloroplastida lineages, providing a valuable resource for deciphering RBR-LxCxE multiple functions. Furthermore, our analyses suggest that RBR-LxCxE interactions are an important component of RBR functions and that interactions with chromatin modifiers/remodelers, DNA replication and repair machinery are highly conserved throughout the Viridiplantae, while LxCxE interactions with transcriptional regulators likely diversified throughout the water-to-land transition.
Collapse
Affiliation(s)
- Jesús A León-Ruiz
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| | - Alfredo Cruz Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| |
Collapse
|
12
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Schreiber M, Rensing SA, Gould SB. The greening ashore. TRENDS IN PLANT SCIENCE 2022; 27:847-857. [PMID: 35739050 DOI: 10.1016/j.tplants.2022.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
More than half a billion years ago a streptophyte algal lineage began terraforming the terrestrial habitat and the Earth's atmosphere. This pioneering step enabled the subsequent evolution of all complex life on land, and the past decade has uncovered that many traits, both morphological and genetic, once thought to be unique to land plants, are conserved across some streptophyte algae. They provided the common ancestor of land plants with a repertoire of genes, of which many were adapted to overcome the new biotic and abiotic challenges. Exploring these molecular adaptations in non-tracheophyte species may help us to better prepare all green life, including our crops, for the challenges precipitated by the climate change of the Anthropocene because the challenges mostly differ by the speed with which they are now being met.
Collapse
Affiliation(s)
- Mona Schreiber
- Plant Cell Biology, University of Marburg, 35043 Marburg, Germany.
| | - Stefan A Rensing
- Plant Cell Biology, University of Marburg, 35043 Marburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University (HHU) Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Wrightsman T, Marand AP, Crisp PA, Springer NM, Buckler ES. Modeling chromatin state from sequence across angiosperms using recurrent convolutional neural networks. THE PLANT GENOME 2022; 15:e20249. [PMID: 35924336 DOI: 10.1002/tpg2.20249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/20/2022] [Indexed: 06/06/2024]
Abstract
Accessible chromatin regions are critical components of gene regulation but modeling them directly from sequence remains challenging, especially within plants, whose mechanisms of chromatin remodeling are less understood than in animals. We trained an existing deep-learning architecture, DanQ, on data from 12 angiosperm species to predict the chromatin accessibility in leaf of sequence windows within and across species. We also trained DanQ on DNA methylation data from 10 angiosperms because unmethylated regions have been shown to overlap significantly with ACRs in some plants. The across-species models have comparable or even superior performance to a model trained within species, suggesting strong conservation of chromatin mechanisms across angiosperms. Testing a maize (Zea mays L.) held-out model on a multi-tissue chromatin accessibility panel revealed our models are best at predicting constitutively accessible chromatin regions, with diminishing performance as cell-type specificity increases. Using a combination of interpretation methods, we ranked JASPAR motifs by their importance to each model and saw that the TCP and AP2/ERF transcription factor (TF) families consistently ranked highly. We embedded the top three JASPAR motifs for each model at all possible positions on both strands in our sequence window and observed position- and strand-specific patterns in their importance to the model. With our publicly available across-species 'a2z' model it is now feasible to predict the chromatin accessibility and methylation landscape of any angiosperm genome.
Collapse
Affiliation(s)
- Travis Wrightsman
- Section of Plant Breeding and Genetics, Cornell Univ., Ithaca, NY, 14853, USA
| | | | - Peter A Crisp
- School of Agriculture and Food Sciences, Univ. of Queensland, Brisbane, QLD, 4072, Australia
| | - Nathan M Springer
- Dep. of Plant and Microbial Biology, Univ. of Minnesota, Saint Paul, MN, 55108, USA
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell Univ., Ithaca, NY, 14853, USA
- Institute for Genomic Diversity, Cornell Univ., Ithaca, NY, 14853, USA
- USDA-ARS, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Fernandez-Pozo N, Haas FB, Gould SB, Rensing SA. An overview of bioinformatics, genomics, and transcriptomics resources for bryophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4291-4305. [PMID: 35148385 DOI: 10.1093/jxb/erac052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Bryophytes are useful models for the study of plant evolution, development, plant-fungal symbiosis, stress responses, and gametogenesis. Additionally, their dominant haploid gametophytic phase makes them great models for functional genomics research, allowing straightforward genome editing and gene knockout via CRISPR or homologous recombination. Until 2016, however, the only bryophyte genome sequence published was that of Physcomitrium patens. Throughout recent years, several other bryophyte genomes and transcriptome datasets became available, enabling better comparative genomics in evolutionary studies. The increase in the number of bryophyte genome and transcriptome resources available has yielded a plethora of annotations, databases, and bioinformatics tools to access the new data, which covers the large diversity of this clade and whose biology comprises features such as association with arbuscular mycorrhiza fungi, sex chromosomes, low gene redundancy, or loss of RNA editing genes for organellar transcripts. Here we provide a guide to resources available for bryophytes with regards to genome and transcriptome databases and bioinformatics tools.
Collapse
Affiliation(s)
- Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Subtropical and Mediterranean Fruit Crops, Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-CSIC-UMA), Málaga, Spain
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Sven B Gould
- Evolutionary Cell Biology, Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
16
|
Reboledo G, Agorio A, Ponce De León I. Moss transcription factors regulating development and defense responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4546-4561. [PMID: 35167679 DOI: 10.1093/jxb/erac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Transcription factors control gene expression, leading to regulation of biological processes that determine plant development and adaptation to the environment. Land colonization by plants occurred 450-470 million years ago and was accompanied by an increase in the complexity of transcriptional regulation associated to transcription factor gene expansions. AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY transcription factor families increased in land plants compared with algae. In angiosperms, they play crucial roles in regulating plant growth and responses to environmental stressors. However, less information is available in bryophytes and only in a few cases is the functional role of moss transcription factors in stress mechanisms known. In this review, we discuss current knowledge of the transcription factor families involved in development and defense responses to stress in mosses and other bryophytes. By exploring and analysing the Physcomitrium patens public database and published transcriptional profiles, we show that a high number of AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY genes are differentially expressed in response to abiotic stresses and during biotic interactions. Expression profiles together with a comprehensive analysis provide insights into relevant transcription factors involved in moss defenses, and hint at distinct and conserved biological roles between bryophytes and angiosperms.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
17
|
Wang QH, Zhang J, Liu Y, Jia Y, Jiao YN, Xu B, Chen ZD. Diversity, phylogeny, and adaptation of bryophytes: insights from genomic and transcriptomic data. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4306-4322. [PMID: 35437589 DOI: 10.1093/jxb/erac127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Bryophytes including mosses, liverworts, and hornworts are among the earliest land plants, and occupy a crucial phylogenetic position to aid in the understanding of plant terrestrialization. Despite their small size and simple structure, bryophytes are the second largest group of extant land plants. They live ubiquitously in various habitats and are highly diversified, with adaptive strategies to modern ecosystems on Earth. More and more genomes and transcriptomes have been assembled to address fundamental questions in plant biology. Here, we review recent advances in bryophytes associated with diversity, phylogeny, and ecological adaptation. Phylogenomic studies have provided increasing supports for the monophyly of bryophytes, with hornworts sister to the Setaphyta clade including liverworts and mosses. Further comparative genomic analyses revealed that multiple whole-genome duplications might have contributed to the species richness and morphological diversity in mosses. We highlight that the biological changes through gene gain or neofunctionalization that primarily evolved in bryophytes have facilitated the adaptation to early land environments; among the strategies to adapt to modern ecosystems in bryophytes, desiccation tolerance is the most remarkable. More genomic information for bryophytes would shed light on key mechanisms for the ecological success of these 'dwarfs' in the plant kingdom.
Collapse
Affiliation(s)
- Qing-Hua Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Nian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Yan Z, Yang MY, Zhao BG, Li G, Chao Q, Tian F, Gao G, Wang BC. OsAPL controls the nutrient transport systems in the leaf of rice (Oryza sativa L.). PLANTA 2022; 256:11. [PMID: 35699777 DOI: 10.1007/s00425-022-03913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
OsAPL positively controls the seedling growth and grain size in rice by targeting the plasma membrane H+-ATPase-encoding gene, OsRHA1, as well as drastically affects genes encoding H+-coupled secondary active transporters. Nutrient transport is a key component of both plant growth and environmental adaptation. Photosynthates and nutrients produced in the source organs (e.g., leaves) need to be transported to the sink organs (e.g., seeds). In rice, the unloading of nutrients occurs through apoplastic transport (i.e., across the membrane via transporters) and is dependent on the efficiency and number of transporters embedded in the cell membrane. However, the genetic mechanisms underlying the regulation of these transporters remain to be determined. Here we show that rice (Oryza sativa L., Kitaake) ALTERED PHLOEM DEVELOPMENT (OsAPL), homologous to a MYB family transcription factor promoting phloem development in Arabidopsis thaliana, regulates the number of transporters in rice. Overexpression of OsAPL leads to a 10% increase in grain yield at the heading stage. OsAPL acts as a transcriptional activator of OsRHA1, which encodes a subunit of the plasma membrane H+-ATPase (primary transporter). In addition, OsAPL strongly affects the expression of genes encoding H+-coupled secondary active transporters. Decreased expression of OsAPL leads to a decreased expression level of nutrient transporter genes. Taken together, our findings suggest the involvement of OsAPL in nutrients transport and crop yield accumulation in rice.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Life Sciences, National Demonstration Center for Experimental Biology Education, Sichuan University, Chengdu, 610064, China
| | - Man-Yu Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China
| | - Feng Tian
- Peking-Tsinghua Center for Life Sciences (CLS), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG) and Biomedical Pioneering Innovation Center (BIOPIC), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ge Gao
- Peking-Tsinghua Center for Life Sciences (CLS), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
19
|
Dutta D, Harper A, Gangopadhyay G. Transcriptomic analysis of high oil-yielding cultivated white sesame and low oil-yielding wild black sesame seeds reveal differentially expressed genes for oil and seed coat colour. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Diversity and Evolution of Mamiellophyceae: Early-Diverging Phytoplanktonic Green Algae Containing Many Cosmopolitan Species. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genomic revolution has bridged a gap in our knowledge about the diversity, biology and evolution of unicellular photosynthetic eukaryotes, which bear very few discriminating morphological features among species from the same genus. The high-quality genome resources available in the class Mamiellophyceae (Chlorophyta) have been paramount to estimate species diversity and screen available metagenomic data to assess the biogeography and ecological niches of different species on a global scale. Here we review the current knowledge about the diversity, ecology and evolution of the Mamiellophyceae and the large double-stranded DNA prasinoviruses infecting them, brought by the combination of genomic and metagenomic analyses, including 26 metabarcoding environmental studies, as well as the pan-oceanic GOS and the Tara Oceans expeditions.
Collapse
|
21
|
Yang P, Wang D, Kang L. Alternative splicing level related to intron size and organism complexity. BMC Genomics 2021; 22:853. [PMID: 34819032 PMCID: PMC8614042 DOI: 10.1186/s12864-021-08172-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Alternative splicing is the process of selecting different combinations of splice sites to produce variably spliced mRNAs. However, the relationships between alternative splicing prevalence and level (ASP/L) and variations of intron size and organism complexity (OC) remain vague. Here, we developed a robust protocol to analyze the relationships between ASP/L and variations of intron size and OC. Approximately 8 Tb raw RNA-Seq data from 37 eumetazoan species were divided into three sets of species based on variations in intron size and OC. Results We found a strong positive correlation between ASP/L and OC, but no correlation between ASP/L and intron size across species. Surprisingly, ASP/L displayed a positive correlation with mean intron size of genes within individual genomes. Moreover, our results revealed that four ASP/L-related pathways contributed to the differences in ASP/L that were associated with OC. In particular, the spliceosome pathway displayed distinct genomic features, such as the highest gene expression level, conservation level, and fraction of disordered regions. Interestingly, lower or no obvious correlations were observed among these genomic features. Conclusions The positive correlation between ASP/L and OC ubiquitously exists in eukaryotes, and this correlation is not affected by the mean intron size of these species. ASP/L-related splicing factors may play an important role in the evolution of OC. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08172-2.
Collapse
Affiliation(s)
- Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Depin Wang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Benites LF, Bucchini F, Sanchez-Brosseau S, Grimsley N, Vandepoele K, Piganeau G. Evolutionary Genomics of Sex-Related Chromosomes at the Base of the Green Lineage. Genome Biol Evol 2021; 13:6380139. [PMID: 34599324 PMCID: PMC8557840 DOI: 10.1093/gbe/evab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although sex is now accepted as a ubiquitous and ancestral feature of eukaryotes, direct observation of sex is still lacking in most unicellular eukaryotic lineages. Evidence of sex is frequently indirect and inferred from the identification of genes involved in meiosis from whole genome data and/or the detection of recombination signatures from genetic diversity in natural populations. In haploid unicellular eukaryotes, sex-related chromosomes are named mating-type (MTs) chromosomes and generally carry large genomic regions where recombination is suppressed. These regions have been characterized in Fungi and Chlorophyta and determine gamete compatibility and fusion. Two candidate MT+ and MT− alleles, spanning 450–650 kb, have recently been described in Ostreococcus tauri, a marine phytoplanktonic alga from the Mamiellophyceae class, an early diverging branch in the green lineage. Here, we investigate the architecture and evolution of these candidate MT+ and MT− alleles. We analyzed the phylogenetic profile and GC content of MT gene families in eight different genomes whose divergence has been previously estimated at up to 640 Myr, and found evidence that the divergence of the two MT alleles predates speciation in the Ostreococcus genus. Phylogenetic profiles of MT trans-specific polymorphisms in gametologs disclosed candidate MTs in two additional species, and possibly a third. These Mamiellales MT candidates are likely to be the oldest mating-type loci described to date, which makes them fascinating models to investigate the evolutionary mechanisms of haploid sex determination in eukaryotes.
Collapse
Affiliation(s)
- Luis Felipe Benites
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sophie Sanchez-Brosseau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Gwenaël Piganeau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
23
|
Petroll R, Schreiber M, Finke H, Cock JM, Gould SB, Rensing SA. Signatures of Transcription Factor Evolution and the Secondary Gain of Red Algae Complexity. Genes (Basel) 2021; 12:1055. [PMID: 34356071 PMCID: PMC8304369 DOI: 10.3390/genes12071055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Red algae (Rhodophyta) belong to the superphylum Archaeplastida, and are a species-rich group exhibiting diverse morphologies. Theory has it that the unicellular red algal ancestor went through a phase of genome contraction caused by adaptation to extreme environments. More recently, the classes Porphyridiophyceae, Bangiophyceae, and Florideophyceae experienced genome expansions, coinciding with an increase in morphological complexity. Transcription-associated proteins (TAPs) regulate transcription, show lineage-specific patterns, and are related to organismal complexity. To better understand red algal TAP complexity and evolution, we investigated the TAP family complement of uni- and multi-cellular red algae. We found that the TAP family complement correlates with gain of morphological complexity in the multicellular Bangiophyceae and Florideophyceae, and that abundance of the C2H2 zinc finger transcription factor family may be associated with the acquisition of morphological complexity. An expansion of heat shock transcription factors (HSF) occurred within the unicellular Cyanidiales, potentially as an adaption to extreme environmental conditions.
Collapse
Affiliation(s)
- Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
| | - Mona Schreiber
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Hermann Finke
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
| | - J. Mark Cock
- Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, CNRS, UPMC University Paris 06, CS 90074, 29688 Roscoff, France;
| | - Sven B. Gould
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefan A. Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
- Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
24
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-Pozo N, Healey A, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, McBreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, McDaniel SF. Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. SCIENCE ADVANCES 2021; 7:7/27/eabh2488. [PMID: 34193417 PMCID: PMC8245031 DOI: 10.1126/sciadv.abh2488] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss Ceratodon purpureus to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam C Payton
- Department of Biology, University of Florida, Gainesville, FL, USA
- RAPiD Genomics, Gainesville, FL, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Adam Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Jordan C McBreen
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Leslie M Kollar
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, INIA-CIFOR, Madrid, Spain
| | - Sanna Huttunen
- Department of Biology and Biodiversity Unit, University of Turku, Turku, Finland
| | - Jacob B Landis
- L.H. Bailey Hortorium and Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, USA
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Stefan A Rensing
- Plant Cell Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg im Breisgau, Germany
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
25
|
Genau AC, Li Z, Renzaglia KS, Fernandez Pozo N, Nogué F, Haas FB, Wilhelmsson PKI, Ullrich KK, Schreiber M, Meyberg R, Grosche C, Rensing SA. HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants. PLANT REPRODUCTION 2021; 34:149-173. [PMID: 33839924 PMCID: PMC8128824 DOI: 10.1007/s00497-021-00409-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Bryophytes as models to study the male germ line: loss-of-function mutants of epigenetic regulators HAG1 and SWI3a/b demonstrate conserved function in sexual reproduction. With the water-to-land transition, land plants evolved a peculiar haplodiplontic life cycle in which both the haploid gametophyte and the diploid sporophyte are multicellular. The switch between these phases was coined alternation of generations. Several key regulators that control the bauplan of either generation are already known. Analyses of such regulators in flowering plants are difficult due to the highly reduced gametophytic generation, and the fact that loss of function of such genes often is embryo lethal in homozygous plants. Here we set out to determine gene function and conservation via studies in bryophytes. Bryophytes are sister to vascular plants and hence allow evolutionary inferences. Moreover, embryo lethal mutants can be grown and vegetatively propagated due to the dominance of the bryophyte gametophytic generation. We determined candidates by selecting single copy orthologs that are involved in transcriptional control, and of which flowering plant mutants show defects during sexual reproduction, with a focus on the under-studied male germ line. We selected two orthologs, SWI3a/b and HAG1, and analyzed loss-of-function mutants in the moss P. patens. In both mutants, due to lack of fertile spermatozoids, fertilization and hence the switch to the diploid generation do not occur. Pphag1 additionally shows arrested male and impaired female gametangia development. We analyzed HAG1 in the dioecious liverwort M. polymorpha and found that in Mphag1 the development of gametangiophores is impaired. Taken together, we find that involvement of both regulators in sexual reproduction is conserved since the earliest divergence of land plants.
Collapse
Affiliation(s)
- Anne C Genau
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Zhanghai Li
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Noe Fernandez Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, Université Paris-Saclay, 78000, Versailles, AgroParisTech, France
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Per K I Wilhelmsson
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Mona Schreiber
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany.
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
26
|
Wang SY, Pollina EA, Wang IH, Pino LK, Bushnell HL, Takashima K, Fritsche C, Sabin G, Garcia BA, Greer PL, Greer EL. Role of epigenetics in unicellular to multicellular transition in Dictyostelium. Genome Biol 2021; 22:134. [PMID: 33947439 PMCID: PMC8094536 DOI: 10.1186/s13059-021-02360-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The evolution of multicellularity is a critical event that remains incompletely understood. We use the social amoeba, Dictyostelium discoideum, one of the rare organisms that readily transits back and forth between both unicellular and multicellular stages, to examine the role of epigenetics in regulating multicellularity. RESULTS While transitioning to multicellular states, patterns of H3K4 methylation and H3K27 acetylation significantly change. By combining transcriptomics, epigenomics, chromatin accessibility, and orthologous gene analyses with other unicellular and multicellular organisms, we identify 52 conserved genes, which are specifically accessible and expressed during multicellular states. We validated that four of these genes, including the H3K27 deacetylase hdaD, are necessary and that an SMC-like gene, smcl1, is sufficient for multicellularity in Dictyostelium. CONCLUSIONS These results highlight the importance of epigenetics in reorganizing chromatin architecture to facilitate multicellularity in Dictyostelium discoideum and raise exciting possibilities about the role of epigenetics in the evolution of multicellularity more broadly.
Collapse
Affiliation(s)
- Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | | | - I-Hao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lindsay Kristina Pino
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Henry L Bushnell
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ken Takashima
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Colette Fritsche
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - George Sabin
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Benjamin Aaron Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Paul Lieberman Greer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Grigoriev IV, Hayes RD, Calhoun S, Kamel B, Wang A, Ahrendt S, Dusheyko S, Nikitin R, Mondo SJ, Salamov A, Shabalov I, Kuo A. PhycoCosm, a comparative algal genomics resource. Nucleic Acids Res 2021; 49:D1004-D1011. [PMID: 33104790 PMCID: PMC7779022 DOI: 10.1093/nar/gkaa898] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Algae are a diverse, polyphyletic group of photosynthetic eukaryotes spanning nearly all eukaryotic lineages of life and collectively responsible for ∼50% of photosynthesis on Earth. Sequenced algal genomes, critical to understanding their complex biology, are growing in number and require efficient tools for analysis. PhycoCosm (https://phycocosm.jgi.doe.gov) is an algal multi-omics portal, developed by the US Department of Energy Joint Genome Institute to support analysis and distribution of algal genome sequences and other ‘omics’ data. PhycoCosm provides integration of genome sequence and annotation for >100 algal genomes with available multi-omics data and interactive web-based tools to enable algal research in bioenergy and the environment, encouraging community engagement and data exchange, and fostering new sequencing projects that will further these research goals.
Collapse
Affiliation(s)
- Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard D Hayes
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bishoy Kamel
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alice Wang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sergey Dusheyko
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Roman Nikitin
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor Shabalov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Valentin G, Abdel T, Gaëtan D, Jean-François D, Matthieu C, Mathieu R. GreenPhylDB v5: a comparative pangenomic database for plant genomes. Nucleic Acids Res 2021; 49:D1464-D1471. [PMID: 33237299 PMCID: PMC7779052 DOI: 10.1093/nar/gkaa1068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Comparative genomics is the analysis of genomic relationships among different species and serves as a significant base for evolutionary and functional genomic studies. GreenPhylDB (https://www.greenphyl.org) is a database designed to facilitate the exploration of gene families and homologous relationships among plant genomes, including staple crops critically important for global food security. GreenPhylDB is available since 2007, after the release of the Arabidopsis thaliana and Oryza sativa genomes and has undergone multiple releases. With the number of plant genomes currently available, it becomes challenging to select a single reference for comparative genomics studies but there is still a lack of databases taking advantage several genomes by species for orthology detection. GreenPhylDBv5 introduces the concept of comparative pangenomics by harnessing multiple genome sequences by species. We created 19 pangenes and processed them with other species still relying on one genome. In total, 46 plant species were considered to build gene families and predict their homologous relationships through phylogenetic-based analyses. In addition, since the previous publication, we rejuvenated the website and included a new set of original tools including protein-domain combination, tree topologies searches and a section for users to store their own results in order to support community curation efforts.
Collapse
Affiliation(s)
- Guignon Valentin
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
- French Institute of Bioinformatics (IFB)—South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier France
| | - Toure Abdel
- Syngenta Seeds SAS, 31790 Saint-Sauveur France
| | - Droc Gaëtan
- French Institute of Bioinformatics (IFB)—South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier France
- AGAP, Univ de Montpellier, CIRAD, INRAE, Montpellier SupAgro, F-34398 Montpellier, France
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - Dufayard Jean-François
- French Institute of Bioinformatics (IFB)—South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier France
- AGAP, Univ de Montpellier, CIRAD, INRAE, Montpellier SupAgro, F-34398 Montpellier, France
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | | | - Rouard Mathieu
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
- French Institute of Bioinformatics (IFB)—South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier France
| |
Collapse
|
29
|
Liu M, Sun W, Ma Z, Yu G, Li J, Wang Y, Wang X. Comprehensive multiomics analysis reveals key roles of NACs in plant growth and development and its environmental adaption mechanism by regulating metabolite pathways. Genomics 2020; 112:4897-4911. [PMID: 32916257 DOI: 10.1016/j.ygeno.2020.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 01/17/2023]
Abstract
Abnormal environmental conditions induce polyploidization and exacerbate vulnerability to agricultural production. Polyploidization is a pivotal event for plant adaption to stress and the expansion of transcription factors. NACs play key roles in plant stress resistance and growth and development, but the adaptive mechanism of NACs during plant polyploidization remain to be explored. Here, we identified and analyzed NACs from 15 species and found that the expansion of NACs was contributed by polyploidization. The regulatory networks were systematically analyzed based on polyomics. NACs might influence plant phenotypes and were correlated with amino acids acting as nitrogen source, indicating that NACs play a vital role in plant development. More importantly, in quinoa and Arabidopsis thaliana, NACs enabled plants to resist stress by regulating flavonoid pathways, and the universality was further confirmed by the Arabidopsis population. Our study provides a cornerstone for future research into improvement of important agronomic traits by transcription factors in a changing global environment.
Collapse
Affiliation(s)
- Moyang Liu
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Wenjun Sun
- Sichuan Agricultural University, College of Life Science, Ya'an, China.
| | - Zhaotang Ma
- Sichuan Agricultural University, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Chengdu, China.
| | - Guolong Yu
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Jiahao Li
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Yudong Wang
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Xu Wang
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| |
Collapse
|
30
|
Geiger D. Plant glucose transporter structure and function. Pflugers Arch 2020; 472:1111-1128. [PMID: 32845347 PMCID: PMC8298354 DOI: 10.1007/s00424-020-02449-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022]
Abstract
The carbohydrate D-glucose is the main source of energy in living organisms. In contrast to animals, as well as most fungi, bacteria, and archaea, plants are capable to synthesize a surplus of sugars characterizing them as autothrophic organisms. Thus, plants are de facto the source of all food on earth, either directly or indirectly via feed to livestock. Glucose is stored as polymeric glucan, in animals as glycogen and in plants as starch. Despite serving a general source for metabolic energy and energy storage, glucose is the main building block for cellulose synthesis and represents the metabolic starting point of carboxylate- and amino acid synthesis. Finally yet importantly, glucose functions as signalling molecule conveying the plant metabolic status for adjustment of growth, development, and survival. Therefore, cell-to-cell and long-distance transport of photoassimilates/sugars throughout the plant body require the fine-tuned activity of sugar transporters facilitating the transport across membranes. The functional plant counterparts of the animal sodium/glucose transporters (SGLTs) are represented by the proton-coupled sugar transport proteins (STPs) of the plant monosaccharide transporter(-like) family (MST). In the framework of this special issue on “Glucose Transporters in Health and Disease,” this review gives an overview of the function and structure of plant STPs in comparison to the respective knowledge obtained with the animal Na+-coupled glucose transporters (SGLTs).
Collapse
Affiliation(s)
- Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082, Wuerzburg, Germany.
| |
Collapse
|
31
|
Zhou S, Chen Y, Guo C, Qi J. PhyloMCL: Accurate clustering of hierarchical orthogroups guided by phylogenetic relationship and inference of polyploidy events. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengyu Zhou
- State key Laboratory of Genetic Engineering Institute of Plant Biology School of Life Sciences Fudan University Shanghai China
| | - Yamao Chen
- State key Laboratory of Genetic Engineering Institute of Plant Biology School of Life Sciences Fudan University Shanghai China
| | - Chunce Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization Forestry College Jiangxi Agricultural University Nanchang China
| | - Ji Qi
- State key Laboratory of Genetic Engineering Institute of Plant Biology School of Life Sciences Fudan University Shanghai China
| |
Collapse
|
32
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-pozo N, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, Mcbreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, Mcdaniel SF. The Ceratodon purpureus genome uncovers structurally complex, gene rich sex chromosomes.. [PMID: 0 DOI: 10.1101/2020.07.03.163634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
AbstractNon-recombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration1,2. The correlation between suppressed recombination and degeneration is clear in animal XY systems1,2, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions3,4. Here we test for degeneration in the bryophyte UV sex chromosome system through genomic comparisons with new female and male chromosome-scale reference genomes of the moss Ceratodon purpureus. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes show signs of weaker purifying selection than autosomes, we find suppressed recombination alone is insufficient to drive gene loss on sex-specific chromosomes. Instead, the U and V sex chromosomes harbor thousands of broadly-expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
|
33
|
Fürst-Jansen JMR, de Vries S, de Vries J. Evo-physio: on stress responses and the earliest land plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3254-3269. [PMID: 31922568 PMCID: PMC7289718 DOI: 10.1093/jxb/eraa007] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/07/2020] [Indexed: 05/19/2023]
Abstract
Embryophytes (land plants) can be found in almost any habitat on the Earth's surface. All of this ecologically diverse embryophytic flora arose from algae through a singular evolutionary event. Traits that were, by their nature, indispensable for the singular conquest of land by plants were those that are key for overcoming terrestrial stressors. Not surprisingly, the biology of land plant cells is shaped by a core signaling network that connects environmental cues, such as stressors, to the appropriate responses-which, thus, modulate growth and physiology. When did this network emerge? Was it already present when plant terrestrialization was in its infancy? A comparative approach between land plants and their algal relatives, the streptophyte algae, allows us to tackle such questions and resolve parts of the biology of the earliest land plants. Exploring the biology of the earliest land plants might shed light on exactly how they overcame the challenges of terrestrialization. Here, we outline the approaches and rationale underlying comparative analyses towards inferring the genetic toolkit for the stress response that aided the earliest land plants in their conquest of land.
Collapse
Affiliation(s)
- Janine M R Fürst-Jansen
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Göttingen, Germany
| | - Sophie de Vries
- Population Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan de Vries
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|
34
|
Zhang J, Fu XX, Li RQ, Zhao X, Liu Y, Li MH, Zwaenepoel A, Ma H, Goffinet B, Guan YL, Xue JY, Liao YY, Wang QF, Wang QH, Wang JY, Zhang GQ, Wang ZW, Jia Y, Wang MZ, Dong SS, Yang JF, Jiao YN, Guo YL, Kong HZ, Lu AM, Yang HM, Zhang SZ, Van de Peer Y, Liu ZJ, Chen ZD. The hornwort genome and early land plant evolution. NATURE PLANTS 2020; 6:107-118. [PMID: 32042158 PMCID: PMC7027989 DOI: 10.1038/s41477-019-0588-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
Hornworts, liverworts and mosses are three early diverging clades of land plants, and together comprise the bryophytes. Here, we report the draft genome sequence of the hornwort Anthoceros angustus. Phylogenomic inferences confirm the monophyly of bryophytes, with hornworts sister to liverworts and mosses. The simple morphology of hornworts correlates with low genetic redundancy in plant body plan, while the basic transcriptional regulation toolkit for plant development has already been established in this early land plant lineage. Although the Anthoceros genome is small and characterized by minimal redundancy, expansions are observed in gene families related to RNA editing, UV protection and desiccation tolerance. The genome of A. angustus bears the signatures of horizontally transferred genes from bacteria and fungi, in particular of genes operating in stress-response and metabolic pathways. Our study provides insight into the unique features of hornworts and their molecular adaptations to live on land.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xin-Xing Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Qi Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhao
- PubBio-Tech Services Corporation, Wuhan, China
| | - Yang Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Yan-Long Guan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jia-Yu Xue
- Center for Plant Diversity and Systematics, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yi-Ying Liao
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Qing-Feng Wang
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Qing-Hua Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jie-Yu Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Guo-Qiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mei-Zhi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shan-Shan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Jian-Fen Yang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Yuan-Nian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - An-Ming Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - Shou-Zhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Pretoria, South Africa.
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
35
|
Marcellin-Gros R, Piganeau G, Stien D. Metabolomic Insights into Marine Phytoplankton Diversity. Mar Drugs 2020; 18:E78. [PMID: 31991720 PMCID: PMC7074452 DOI: 10.3390/md18020078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 02/08/2023] Open
Abstract
The democratization of sequencing technologies fostered a leap in our knowledge of the diversity of marine phytoplanktonic microalgae, revealing many previously unknown species and lineages. The evolutionary history of the diversification of microalgae can be inferred from the analysis of their genome sequences. However, the link between the DNA sequence and the associated phenotype is notoriously difficult to assess, all the more so for marine phytoplanktonic microalgae for which the lab culture and, thus, biological experimentation is very tedious. Here, we explore the potential of a high-throughput untargeted metabolomic approach to explore the phenotypic-genotypic gap in 12 marine microalgae encompassing 1.2 billion years of evolution. We identified species- and lineage-specific metabolites. We also provide evidence of a very good correlation between the molecular divergence, inferred from the DNA sequences, and the metabolomic divergence, inferred from the complete metabolomic profiles. These results provide novel insights into the potential of chemotaxonomy in marine phytoplankton and support the hypothesis of a metabolomic clock, suggesting that DNA and metabolomic profiles co-evolve.
Collapse
Affiliation(s)
- Rémy Marcellin-Gros
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France;
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Gwenaël Piganeau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
36
|
Liang Z, Geng Y, Ji C, Du H, Wong CE, Zhang Q, Zhang Y, Zhang P, Riaz A, Chachar S, Ding Y, Wen J, Wu Y, Wang M, Zheng H, Wu Y, Demko V, Shen L, Han X, Zhang P, Gu X, Yu H. Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901850. [PMID: 31921561 PMCID: PMC6947507 DOI: 10.1002/advs.201901850] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Indexed: 05/02/2023]
Abstract
The Streptophyta include unicellular and multicellular charophyte green algae and land plants. Colonization of the terrestrial habitat by land plants is a major evolutionary event that has transformed the planet. So far, lack of genome information on unicellular charophyte algae hinders the understanding of the origin and the evolution from unicellular to multicellular life in Streptophyta. This work reports the high-quality reference genome and transcriptome of Mesostigma viride, a single-celled charophyte alga with a position at the base of Streptophyta. There are abundant segmental duplications and transposable elements in M. viride, which contribute to a relatively large genome with high gene content compared to other algae and early diverging land plants. This work identifies the origin of genetic tools that multicellular Streptophyta have inherited and key genetic innovations required for the evolution of land plants from unicellular aquatic ancestors. The findings shed light on the age-old questions of the evolution of multicellularity and the origin of land plants.
Collapse
Affiliation(s)
- Zhe Liang
- Department of Biological SciencesNational University of SingaporeSingapore117543Singapore
| | - Yuke Geng
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Changmian Ji
- Biomarker TechnologiesBeijing101300China
- Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Hai Du
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | - Chui Eng Wong
- Department of Biological SciencesNational University of SingaporeSingapore117543Singapore
| | - Qian Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Ye Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Pingxian Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Adeel Riaz
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Sadaruddin Chachar
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Yike Ding
- Department of EntomologyUniversity of California RiversideRiversideCA92521USA
| | - Jing Wen
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | - Yunwen Wu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | | | | | - Yanmin Wu
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | - Viktor Demko
- Department of Plant PhysiologyFaculty of Natural SciencesComenius University in BratislavaBratislava84215Slovakia
| | - Lisha Shen
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore117604Singapore
| | - Xiao Han
- College of Biological Science and EngineeringFuzhou UniversityFuzhou350108China
| | - Pengpeng Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Xiaofeng Gu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Hao Yu
- Department of Biological SciencesNational University of SingaporeSingapore117543Singapore
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore117604Singapore
| |
Collapse
|
37
|
Matias Hurtado FM, Pinto MDS, de Oliveira PN, Riaño-Pachón DM, Inocente LB, Carrer H. Analysis of NAC Domain Transcription Factor Genes of Tectona grandis L.f. Involved in Secondary Cell Wall Deposition. Genes (Basel) 2019; 11:E20. [PMID: 31878092 PMCID: PMC7016782 DOI: 10.3390/genes11010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
NAC proteins are one of the largest families of plant-specific transcription factors (TFs). They regulate diverse complex biological processes, including secondary xylem differentiation and wood formation. Recent genomic and transcriptomic studies of Tectona grandis L.f. (teak), one of the most valuable hardwood trees in the world, have allowed identification and analysis of developmental genes. In the present work, T. grandis NAC genes were identified and analyzed regarding to their evolution and expression profile during wood formation. We analyzed the recently published T. grandis genome, and identified 130 NAC proteins that are coded by 107 gene loci. These proteins were classified into 23 clades of the NAC family, together with Populus, Eucalyptus, and Arabidopsis. Data on transcript expression revealed specific temporal and spatial expression patterns for the majority of teak NAC genes. RT-PCR indicated expression of VND genes (Tg11g04450-VND2 and Tg15g08390-VND4) related to secondary cell wall formation in xylem vessels of 16-year-old juvenile trees. Our findings open a way to further understanding of NAC transcription factor genes in T. grandis wood biosynthesis, while they are potentially useful for future studies aiming to improve biomass and wood quality using biotechnological approaches.
Collapse
Affiliation(s)
- Fernando Manuel Matias Hurtado
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Maísa de Siqueira Pinto
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Perla Novais de Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Diego Mauricio Riaño-Pachón
- Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo. Av. Centenário 303, Piracicaba, SP 13416-000, Brazil;
| | - Laura Beatriz Inocente
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| |
Collapse
|
38
|
Herron MD. A New Prasinophyte With A New Way To Stay Put. JOURNAL OF PHYCOLOGY 2019; 55:1208-1209. [PMID: 31784995 DOI: 10.1111/jpy.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Matthew D Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
39
|
Fan K, Yuan S, Chen J, Chen Y, Li Z, Lin W, Zhang Y, Liu J, Lin W. Molecular evolution and lineage-specific expansion of the PP2C family in Zea mays. PLANTA 2019; 250:1521-1538. [PMID: 31346803 DOI: 10.1007/s00425-019-03243-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/16/2019] [Indexed: 05/19/2023]
Abstract
97 ZmPP2Cs were clustered into 10 subfamilies with biased subfamily evolution and lineage-specific expansion. Segmental duplication after the divergence of maize and sorghum might have led to primary expansion of ZmPP2Cs. The protein phosphatase 2C (PP2C) enzymes control many stress responses and developmental processes in plants. In Zea mays, a comprehensive understanding of the evolution and expansion of the PP2C family is still lacking. In the current study, 97 ZmPP2Cs were identified and clustered into 10 subfamilies. Through the analysis of the PP2C family in monocots, the ZmPP2C subfamilies displayed biased subfamily molecular evolution and lineage-specific expansion, as evidenced by their differing numbers of member genes, expansion and evolutionary rates, conserved subdomains, chromosomal distributions, expression levels, responsive-regulatory elements and regulatory networks. Moreover, while segmental duplication events have caused the primary expansion of the ZmPP2Cs, the majority of their diversification occurred following the additional whole-genome duplication that took place after the divergence of maize and sorghum (Sorghum bicolor). After this event, the PP2C subfamilies showed asymmetric evolutionary rates, with the D, F2 and H subfamily likely the most closely to resemble its ancestral subfamily's genes. These findings could provide novel insights into the molecular evolution and expansion of the PP2C family in maize, and lay the foundation for the functional analysis of these enzymes in maize and related monocots.
Collapse
Affiliation(s)
- Kai Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Shuna Yuan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences/Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture, Danzhou, 571737, China
| | - Jie Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Yunrui Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Zhaowei Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Weiwei Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Jianping Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China
| | - Wenxiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002, China.
| |
Collapse
|
40
|
Abstract
Green plants (Viridiplantae) include around 450,000-500,000 species1,2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
Collapse
|
41
|
Armaleo D, Müller O, Lutzoni F, Andrésson ÓS, Blanc G, Bode HB, Collart FR, Dal Grande F, Dietrich F, Grigoriev IV, Joneson S, Kuo A, Larsen PE, Logsdon JM, Lopez D, Martin F, May SP, McDonald TR, Merchant SS, Miao V, Morin E, Oono R, Pellegrini M, Rubinstein N, Sanchez-Puerta MV, Savelkoul E, Schmitt I, Slot JC, Soanes D, Szövényi P, Talbot NJ, Veneault-Fourrey C, Xavier BB. The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics 2019; 20:605. [PMID: 31337355 PMCID: PMC6652019 DOI: 10.1186/s12864-019-5629-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lichens, encompassing 20,000 known species, are symbioses between specialized fungi (mycobionts), mostly ascomycetes, and unicellular green algae or cyanobacteria (photobionts). Here we describe the first parallel genomic analysis of the mycobiont Cladonia grayi and of its green algal photobiont Asterochloris glomerata. We focus on genes/predicted proteins of potential symbiotic significance, sought by surveying proteins differentially activated during early stages of mycobiont and photobiont interaction in coculture, expanded or contracted protein families, and proteins with differential rates of evolution. RESULTS A) In coculture, the fungus upregulated small secreted proteins, membrane transport proteins, signal transduction components, extracellular hydrolases and, notably, a ribitol transporter and an ammonium transporter, and the alga activated DNA metabolism, signal transduction, and expression of flagellar components. B) Expanded fungal protein families include heterokaryon incompatibility proteins, polyketide synthases, and a unique set of G-protein α subunit paralogs. Expanded algal protein families include carbohydrate active enzymes and a specific subclass of cytoplasmic carbonic anhydrases. The alga also appears to have acquired by horizontal gene transfer from prokaryotes novel archaeal ATPases and Desiccation-Related Proteins. Expanded in both symbionts are signal transduction components, ankyrin domain proteins and transcription factors involved in chromatin remodeling and stress responses. The fungal transportome is contracted, as are algal nitrate assimilation genes. C) In the mycobiont, slow-evolving proteins were enriched for components involved in protein translation, translocation and sorting. CONCLUSIONS The surveyed genes affect stress resistance, signaling, genome reprogramming, nutritional and structural interactions. The alga carries many genes likely transferred horizontally through viruses, yet we found no evidence of inter-symbiont gene transfer. The presence in the photobiont of meiosis-specific genes supports the notion that sexual reproduction occurs in Asterochloris while they are free-living, a phenomenon with implications for the adaptability of lichens and the persistent autonomy of the symbionts. The diversity of the genes affecting the symbiosis suggests that lichens evolved by accretion of many scattered regulatory and structural changes rather than through introduction of a few key innovations. This predicts that paths to lichenization were variable in different phyla, which is consistent with the emerging consensus that ascolichens could have had a few independent origins.
Collapse
Affiliation(s)
| | - Olaf Müller
- Department of Biology, Duke University, Durham, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | | | - Ólafur S. Andrésson
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Guillaume Blanc
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Helge B. Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften & Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank R. Collart
- Argonne National Laboratory, Biosciences Division, Argonne, & Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt am Main, Germany
| | - Fred Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, USA
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, USA
| | - Suzanne Joneson
- Department of Biology, Duke University, Durham, USA
- College of General Studies, University of Wisconsin - Milwaukee at Waukesha, Waukesha, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, USA
| | - Peter E. Larsen
- Argonne National Laboratory, Biosciences Division, Argonne, & Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | | | | | - Francis Martin
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
| | - Susan P. May
- Department of Biology, Duke University, Durham, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, USA
| | - Tami R. McDonald
- Department of Biology, Duke University, Durham, USA
- Department of Biology, St. Catherine University, St. Paul, USA
| | - Sabeeha S. Merchant
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, USA
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, USA
| | - Vivian Miao
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Emmanuelle Morin
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
| | - Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology, University of California - Santa Barbara, Santa Barbara, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, and DOE Institute for Genomics and Proteomics, University of California, Los Angeles, USA
| | - Nimrod Rubinstein
- National Evolutionary Synthesis Center, Durham, USA
- Calico Life Sciences LLC, South San Francisco, USA
| | | | | | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Fachbereich Biowissenschaften, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason C. Slot
- College of Food, Agricultural, and Environmental Sciences, Department of Plant Pathology, The Ohio State University, Columbus, USA
| | - Darren Soanes
- College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | | | - Claire Veneault-Fourrey
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
- Université de Lorraine, INRA, Interactions Arbres-Microorganismes, Faculté des Sciences et Technologies, Vandoeuvre les Nancy Cedex, France
| | - Basil B. Xavier
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
42
|
Bonnot C, Hetherington AJ, Champion C, Breuninger H, Kelly S, Dolan L. Neofunctionalisation of basic helix-loop-helix proteins occurred when embryophytes colonised the land. THE NEW PHYTOLOGIST 2019; 223:993-1008. [PMID: 30946484 DOI: 10.1111/nph.15829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
ROOT HAIR DEFECTIVE SIX-LIKE (RSL) genes control the development of structures from single cells at the surface of embryophytes (land plants) such as rhizoids and root hairs. RSL proteins constitute a subclass (VIIIc) of the basic helix-loop-helix (bHLH) class VIII transcription factor family. The Charophyceae form the only class of streptophyte algae with tissue-like structures and rhizoids. To determine if the function of RSL genes in the control of cell differentiation in embryophytes was inherited from a streptophyte algal ancestor, we identified the single class VIII bHLH gene from the charophyceaen alga Chara braunii (CbbHLHVIII). CbbHLHVIII is sister to the RSL proteins; they constitute a monophyletic group. Expression of CbbHLHVIII does not compensate for loss of RSL functions in Marchantia polymorpha or Arabidopsis thaliana. In C. braunii CbbHLHVIII is expressed at sites of morphogenesis but not in rhizoids. This finding indicates that C. braunii class VIII protein is functionally different from land plant RSL proteins. This result suggests that the function of RSL proteins in cell differentiation at the plant surface evolved by neofunctionalisation in the land plants lineage after its divergence from its last common ancestor with C. braunii, at or before the colonisation of the land by embryophytes.
Collapse
Affiliation(s)
- Clémence Bonnot
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Clément Champion
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Holger Breuninger
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
43
|
Theune ML, Bloss U, Brand LH, Ladwig F, Wanke D. Phylogenetic Analyses and GAGA-Motif Binding Studies of BBR/BPC Proteins Lend to Clues in GAGA-Motif Recognition and a Regulatory Role in Brassinosteroid Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:466. [PMID: 31057577 PMCID: PMC6477699 DOI: 10.3389/fpls.2019.00466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Plant GAGA-motif binding factors are encoded by the BARLEY B RECOMBINANT / BASIC PENTACYSTEINE (BBR/BPC) family, which fulfill indispensable functions in growth and development. BBR/BPC proteins control flower development, size of the stem cell niche and seed development through transcriptional regulation of homeotic transcription factor genes. They are responsible for the context dependent recruitment of Polycomb repressive complexes (PRC) or other repressive proteins to GAGA-motifs, which are contained in Polycomb repressive DNA-elements (PREs). Hallmark of the protein family is the highly conserved BPC domain, which is required for DNA binding. Here we study the evolution and diversification of the BBR/BPC family and its DNA-binding domain. Our analyses supports a further division of the family into four main groups (I-IV) and several subgroups, to resolve a strict monophyletic descent of the BPC domain. We prove a polyphyletic origin for group III proteins, which evolved from group I and II members through extensive loss of domains in the N-terminus. Conserved motif searches lend to the identification of a WAR/KHGTN consensus and a TIR/K motif at the very C-terminus of the BPC-domain. We could show by DPI-ELISA that this signature is required for DNA-binding in AtBPC1. Additional binding studies with AtBPC1, AtBPC6 and mutated oligonucleotides consolidated the binding to GAGA tetramers. To validate these findings, we used previously published ChIP-seq data from GFP-BPC6. We uncovered that many genes of the brassinosteroid signaling pathway are targeted by AtBPC6. Consistently, bpc6, bpc4 bpc6, and lhp1 bpc4 bpc4 mutants display brassinosteroid-dependent root growth phenotypes. Both, a function in brassinosteroid signaling and our phylogenetic data supports a link between BBR/BPC diversification in the land plant lineage and the complexity of flower and seed plant evolution.
Collapse
Affiliation(s)
- Marius L. Theune
- Molecular Plant Biology, Saarland University, Saarbrücken, Germany
| | - Ulrich Bloss
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
| | - Luise H. Brand
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
| | | | - Dierk Wanke
- Molecular Plant Biology, Saarland University, Saarbrücken, Germany
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
- *Correspondence: Dierk Wanke,
| |
Collapse
|
44
|
Goswami G, Nath UK, Park JI, Hossain MR, Biswas MK, Kim HT, Kim HR, Nou IS. Transcriptional regulation of anthocyanin biosynthesis in a high-anthocyanin resynthesized Brassica napus cultivar. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2018; 25:19. [PMID: 30505808 PMCID: PMC6258291 DOI: 10.1186/s40709-018-0090-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Anthocyanins are plant secondary metabolites with key roles in attracting insect pollinators and protecting against biotic and abiotic stresses. They have potential health-promoting effects as part of the human diet. Anthocyanin biosynthesis has been elucidated in many species, enabling the development of anthocyanin-enriched fruits, vegetables, and grains; however, few studies have investigated Brassica napus anthocyanin biosynthesis. RESULTS We developed a high-anthocyanin resynthesized B. napus line, Rs035, by crossing anthocyanin-rich B. rapa (A genome) and B. oleracea (C genome) lines, followed by chromosome doubling. We identified and characterized 73 and 58 anthocyanin biosynthesis genes in silico in the A and C genomes, respectively; these genes showed syntenic relationships with 41 genes in Arabidopsis thaliana and B. napus. Among the syntenic genes, twelve biosynthetic and six regulatory genes showed transgressively higher expression in Rs035, and eight structural genes and one regulatory gene showed additive expression. We identified three early-, four late-biosynthesis pathways, three transcriptional regulator genes, and one transporter as putative candidates enhancing anthocyanin accumulation in Rs035. Principal component analysis and Pearson's correlation coefficients corroborated the contribution of these genes to anthocyanin accumulation. CONCLUSIONS Our study lays the foundation for producing high-anthocyanin B. napus cultivars. The resynthesized lines and the differentially expressed genes we have identified could be used to transfer the anthocyanin traits to other commercial rapeseed lines using molecular and conventional breeding.
Collapse
Affiliation(s)
- Gayatri Goswami
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Mohammad Rashed Hossain
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Manosh Kumar Biswas
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
- University-Industry Cooperation Foundation, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Hye Ran Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| |
Collapse
|
45
|
Das Gupta M, Tsiantis M. Gene networks and the evolution of plant morphology. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:82-87. [PMID: 29885565 DOI: 10.1016/j.pbi.2018.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 05/19/2023]
Abstract
Elaboration of morphology depends on the precise orchestration of gene expression by key regulatory genes. The hierarchy and relationship among the participating genes is commonly known as gene regulatory network (GRN). Therefore, the evolution of morphology ultimately occurs by the rewiring of gene network structures or by the co-option of gene networks to novel domains. The availability of high-resolution expression data combined with powerful statistical tools have opened up new avenues to formulate and test hypotheses on how diverse gene networks influence trait development and diversity. Here we summarize recent studies based on both big-data and genetics approaches to understand the evolution of plant form and physiology. We also discuss recent genome-wide investigations on how studying open-chromatin regions may help study the evolution of gene expression patterns.
Collapse
Affiliation(s)
- Mainak Das Gupta
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany.
| |
Collapse
|
46
|
Wilhelmsson PKI, Mühlich C, Ullrich KK, Rensing SA. Comprehensive Genome-Wide Classification Reveals That Many Plant-Specific Transcription Factors Evolved in Streptophyte Algae. Genome Biol Evol 2018; 9:3384-3397. [PMID: 29216360 PMCID: PMC5737466 DOI: 10.1093/gbe/evx258] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 02/07/2023] Open
Abstract
Plant genomes encode many lineage-specific, unique transcription factors. Expansion of such gene families has been previously found to coincide with the evolution of morphological complexity, although comparative analyses have been hampered by severe sampling bias. Here, we make use of the recently increased availability of plant genomes. We have updated and expanded previous rule sets for domain-based classification of transcription associated proteins (TAPs), comprising transcription factors and transcriptional regulators. The genome-wide annotation of these protein families has been analyzed and made available via the novel TAPscan web interface. We find that many TAP families previously thought to be specific for land plants actually evolved in streptophyte (charophyte) algae; 26 out of 36 TAP family gains are inferred to have occurred in the common ancestor of the Streptophyta (uniting the land plants—Embryophyta—with their closest algal relatives). In contrast, expansions of TAP families were found to occur throughout streptophyte evolution. 17 out of 76 expansion events were found to be common to all land plants and thus probably evolved concomitant with the water-to-land-transition.
Collapse
Affiliation(s)
| | - Cornelia Mühlich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Germany
| | | | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Germany.,BIOSS Center for Biological Signaling Studies, University of Freiburg, Germany
| |
Collapse
|
47
|
De Clerck O, Kao SM, Bogaert KA, Blomme J, Foflonker F, Kwantes M, Vancaester E, Vanderstraeten L, Aydogdu E, Boesger J, Califano G, Charrier B, Clewes R, Del Cortona A, D’Hondt S, Fernandez-Pozo N, Gachon CM, Hanikenne M, Lattermann L, Leliaert F, Liu X, Maggs CA, Popper ZA, Raven JA, Van Bel M, Wilhelmsson PK, Bhattacharya D, Coates JC, Rensing SA, Van Der Straeten D, Vardi A, Sterck L, Vandepoele K, Van de Peer Y, Wichard T, Bothwell JH. Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Curr Biol 2018; 28:2921-2933.e5. [DOI: 10.1016/j.cub.2018.08.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/21/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
|
48
|
Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C. The transcriptional landscape of polyploid wheat. Science 2018; 361:eaar6089. [PMID: 30115782 DOI: 10.1126/science.aar6089] [Citation(s) in RCA: 545] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
The coordinated expression of highly related homoeologous genes in polyploid species underlies the phenotypes of many of the world's major crops. Here we combine extensive gene expression datasets to produce a comprehensive, genome-wide analysis of homoeolog expression patterns in hexaploid bread wheat. Bias in homoeolog expression varies between tissues, with ~30% of wheat homoeologs showing nonbalanced expression. We found expression asymmetries along wheat chromosomes, with homoeologs showing the largest inter-tissue, inter-cultivar, and coding sequence variation, most often located in high-recombination distal ends of chromosomes. These transcriptionally dynamic genes potentially represent the first steps toward neo- or subfunctionalization of wheat homoeologs. Coexpression networks reveal extensive coordination of homoeologs throughout development and, alongside a detailed expression atlas, provide a framework to target candidate genes underpinning agronomic traits in wheat.
Collapse
|
49
|
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Stein N, Choulet F, Distelfeld A, Eversole K, Poland J, Rogers J, Ronen G, Sharpe AG, Pozniak C, Ronen G, Stein N, Barad O, Baruch K, Choulet F, Keeble-Gagnère G, Mascher M, Sharpe AG, Ben-Zvi G, Josselin AA, Stein N, Mascher M, Himmelbach A, Choulet F, Keeble-Gagnère G, Mascher M, Rogers J, Balfourier F, Gutierrez-Gonzalez J, Hayden M, Josselin AA, Koh C, Muehlbauer G, Pasam RK, Paux E, Pozniak CJ, Rigault P, Sharpe AG, Tibbits J, Tiwari V, Choulet F, Keeble-Gagnère G, Mascher M, Josselin AA, Rogers J, Spannagl M, Choulet F, Lang D, Gundlach H, Haberer G, Keeble-Gagnère G, Mayer KFX, Ormanbekova D, Paux E, Prade V, Šimková H, Wicker T, Choulet F, Spannagl M, Swarbreck D, Rimbert H, Felder M, Guilhot N, Gundlach H, Haberer G, Kaithakottil G, Keilwagen J, Lang D, Leroy P, Lux T, Mayer KFX, Twardziok S, Venturini L, Appels R, Rimbert H, Choulet F, Juhász A, Keeble-Gagnère G, Choulet F, Spannagl M, Lang D, Abrouk M, Haberer G, Keeble-Gagnère G, Mayer KFX, Wicker T, Choulet F, Wicker T, Gundlach H, Lang D, Spannagl M, Lang D, Spannagl M, Appels R, Fischer I, Uauy C, Borrill P, Ramirez-Gonzalez RH, Appels R, Arnaud D, Chalabi S, Chalhoub B, Choulet F, Cory A, Datla R, Davey MW, Hayden M, Jacobs J, Lang D, Robinson SJ, Spannagl M, Steuernagel B, Tibbits J, Tiwari V, van Ex F, Wulff BBH, Pozniak CJ, Robinson SJ, Sharpe AG, Cory A, Benhamed M, Paux E, Bendahmane A, Concia L, Latrasse D, Rogers J, Jacobs J, Alaux M, Appels R, Bartoš J, Bellec A, Berges H, Doležel J, Feuillet C, Frenkel Z, Gill B, Korol A, Letellier T, Olsen OA, Šimková H, Singh K, Valárik M, van der Vossen E, Vautrin S, Weining S, Korol A, Frenkel Z, Fahima T, Glikson V, Raats D, Rogers J, Tiwari V, Gill B, Paux E, Poland J, Doležel J, Číhalíková J, Šimková H, Toegelová H, Vrána J, Sourdille P, Darrier B, Appels R, Spannagl M, Lang D, Fischer I, Ormanbekova D, Prade V, Barabaschi D, Cattivelli L, Hernandez P, Galvez S, Budak H, Steuernagel B, Jones JDG, Witek K, Wulff BBH, Yu G, Small I, Melonek J, Zhou R, Juhász A, Belova T, Appels R, Olsen OA, Kanyuka K, King R, Nilsen K, Walkowiak S, Pozniak CJ, Cuthbert R, Datla R, Knox R, Wiebe K, Xiang D, Rohde A, Golds T, Doležel J, Čížková J, Tibbits J, Budak H, Akpinar BA, Biyiklioglu S, Muehlbauer G, Poland J, Gao L, Gutierrez-Gonzalez J, N'Daiye A, Doležel J, Šimková H, Číhalíková J, Kubaláková M, Šafář J, Vrána J, Berges H, Bellec A, Vautrin S, Alaux M, Alfama F, Adam-Blondon AF, Flores R, Guerche C, Letellier T, Loaec M, Quesneville H, Pozniak CJ, Sharpe AG, Walkowiak S, Budak H, Condie J, Ens J, Koh C, Maclachlan R, Tan Y, Wicker T, Choulet F, Paux E, Alberti A, Aury JM, Balfourier F, Barbe V, Couloux A, Cruaud C, Labadie K, Mangenot S, Wincker P, Gill B, Kaur G, Luo M, Sehgal S, Singh K, Chhuneja P, Gupta OP, Jindal S, Kaur P, Malik P, Sharma P, Yadav B, Singh NK, Khurana J, Chaudhary C, Khurana P, Kumar V, Mahato A, Mathur S, Sevanthi A, Sharma N, Tomar RS, Rogers J, Jacobs J, Alaux M, Bellec A, Berges H, Doležel J, Feuillet C, Frenkel Z, Gill B, Korol A, van der Vossen E, Vautrin S, Gill B, Kaur G, Luo M, Sehgal S, Bartoš J, Holušová K, Plíhal O, Clark MD, Heavens D, Kettleborough G, Wright J, Valárik M, Abrouk M, Balcárková B, Holušová K, Hu Y, Luo M, Salina E, Ravin N, Skryabin K, Beletsky A, Kadnikov V, Mardanov A, Nesterov M, Rakitin A, Sergeeva E, Handa H, Kanamori H, Katagiri S, Kobayashi F, Nasuda S, Tanaka T, Wu J, Appels R, Hayden M, Keeble-Gagnère G, Rigault P, Tibbits J, Olsen OA, Belova T, Cattonaro F, Jiumeng M, Kugler K, Mayer KFX, Pfeifer M, Sandve S, Xun X, Zhan B, Šimková H, Abrouk M, Batley J, Bayer PE, Edwards D, Hayashi S, Toegelová H, Tulpová Z, Visendi P, Weining S, Cui L, Du X, Feng K, Nie X, Tong W, Wang L, Borrill P, Gundlach H, Galvez S, Kaithakottil G, Lang D, Lux T, Mascher M, Ormanbekova D, Prade V, Ramirez-Gonzalez RH, Spannagl M, Stein N, Uauy C, Venturini L, Stein N, Appels R, Eversole K, Rogers J, Borrill P, Cattivelli L, Choulet F, Hernandez P, Kanyuka K, Lang D, Mascher M, Nilsen K, Paux E, Pozniak CJ, Ramirez-Gonzalez RH, Šimková H, Small I, Spannagl M, Swarbreck D, Uauy C. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018; 361:361/6403/eaar7191. [PMID: 30115783 DOI: 10.1126/science.aar7191] [Citation(s) in RCA: 1541] [Impact Index Per Article: 256.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Collapse
Affiliation(s)
| | | | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia. .,Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), 5207 Wyoming Road, Bethesda, MD 20816, USA. .,Eversole Associates, 5207 Wyoming Road, Bethesda, MD 20816, USA
| | - Catherine Feuillet
- Bayer CropScience, Crop Science Division, Research and Development, Innovation Centre, 3500 Paramount Parkway, Morrisville, NC 27560, USA
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Jane Rogers
- International Wheat Genome Sequencing Consortium (IWGSC), 18 High Street, Little Eversden, Cambridge CB23 1HE, UK
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany. .,The University of Western Australia (UWA), School of Agriculture and Environment, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | - Curtis J Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany. .,The University of Western Australia (UWA), School of Agriculture and Environment, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), 5207 Wyoming Road, Bethesda, MD 20816, USA. .,Eversole Associates, 5207 Wyoming Road, Bethesda, MD 20816, USA
| | - Jesse Poland
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jane Rogers
- International Wheat Genome Sequencing Consortium (IWGSC), 18 High Street, Little Eversden, Cambridge CB23 1HE, UK
| | - Gil Ronen
- NRGene Ltd., 5 Golda Meir Street, Ness Ziona 7403648, Israel
| | - Andrew G Sharpe
- University of Saskatchewan, Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK S7N 4J8, Canada
| | | | - Curtis Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Gil Ronen
- NRGene Ltd., 5 Golda Meir Street, Ness Ziona 7403648, Israel
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany. .,The University of Western Australia (UWA), School of Agriculture and Environment, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Omer Barad
- NRGene Ltd., 5 Golda Meir Street, Ness Ziona 7403648, Israel
| | - Kobi Baruch
- NRGene Ltd., 5 Golda Meir Street, Ness Ziona 7403648, Israel
| | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Gabriel Keeble-Gagnère
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Andrew G Sharpe
- University of Saskatchewan, Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK S7N 4J8, Canada
| | - Gil Ben-Zvi
- NRGene Ltd., 5 Golda Meir Street, Ness Ziona 7403648, Israel
| | - Ambre-Aurore Josselin
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany. .,The University of Western Australia (UWA), School of Agriculture and Environment, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany
| | | | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Gabriel Keeble-Gagnère
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Jane Rogers
- International Wheat Genome Sequencing Consortium (IWGSC), 18 High Street, Little Eversden, Cambridge CB23 1HE, UK
| | - François Balfourier
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Juan Gutierrez-Gonzalez
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, St. Paul, MN 55108, USA
| | - Matthew Hayden
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Ambre-Aurore Josselin
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - ChuShin Koh
- University of Saskatchewan, Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK S7N 4J8, Canada
| | - Gary Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, St. Paul, MN 55108, USA
| | - Raj K Pasam
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Etienne Paux
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Curtis J Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Philippe Rigault
- GYDLE, Suite 220, 1135 Grande Allée, Ouest, Québec, QC G1S 1E7, Canada
| | - Andrew G Sharpe
- University of Saskatchewan, Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK S7N 4J8, Canada
| | - Josquin Tibbits
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Vijay Tiwari
- Plant Science and Landscape Architecture, University of Maryland, 4291 Fieldhouse Road, 2102 Plant Sciences Building, College Park, MD 20742, USA
| | | | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Gabriel Keeble-Gagnère
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ambre-Aurore Josselin
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Jane Rogers
- International Wheat Genome Sequencing Consortium (IWGSC), 18 High Street, Little Eversden, Cambridge CB23 1HE, UK
| | | | - Manuel Spannagl
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Daniel Lang
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Heidrun Gundlach
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Georg Haberer
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Gabriel Keeble-Gagnère
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Klaus F X Mayer
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Danara Ormanbekova
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,Department of Agricultural Sciences, University of Bologna, Viale Fanin, 44 40127 Bologna, Italy
| | - Etienne Paux
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Verena Prade
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | | | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Manuel Spannagl
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | | - Hélène Rimbert
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Marius Felder
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Nicolas Guilhot
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Heidrun Gundlach
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Georg Haberer
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | | - Jens Keilwagen
- Julius Kühn-Institut, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Daniel Lang
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Philippe Leroy
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Thomas Lux
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Klaus F X Mayer
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Sven Twardziok
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Luca Venturini
- Earlham Institute, Core Bioinformatics, Norwich NR4 7UZ, UK
| | | | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia. .,Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia
| | - Hélène Rimbert
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Angéla Juhász
- Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia.,Agricultural Institute, MTA Centre for Agricultural Research, Applied Genomics Department, 2 Brunszvik Street, Martonvásár H 2462, Hungary
| | - Gabriel Keeble-Gagnère
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | | | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Manuel Spannagl
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Daniel Lang
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Georg Haberer
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Gabriel Keeble-Gagnère
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Klaus F X Mayer
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | | | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Heidrun Gundlach
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Daniel Lang
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Manuel Spannagl
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | | - Daniel Lang
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Manuel Spannagl
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia. .,Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia
| | - Iris Fischer
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | | - Cristobal Uauy
- John Innes Centre, Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK
| | - Philippa Borrill
- John Innes Centre, Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia. .,Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia
| | - Dominique Arnaud
- Institut National de la Recherche Agronomique (INRA), 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Smahane Chalabi
- Institut National de la Recherche Agronomique (INRA), 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Boulos Chalhoub
- Monsanto SAS, 28000 Boissay, France.,Institut National de la Recherche Agronomique (INRA), 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Aron Cory
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Raju Datla
- National Research Council Canada, Aquatic and Crop Resource Development, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Mark W Davey
- Bayer CropScience, Trait Research, Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Matthew Hayden
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - John Jacobs
- Bayer CropScience, Trait Research, Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Daniel Lang
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Manuel Spannagl
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | | - Josquin Tibbits
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Vijay Tiwari
- Plant Science and Landscape Architecture, University of Maryland, 4291 Fieldhouse Road, 2102 Plant Sciences Building, College Park, MD 20742, USA
| | - Fred van Ex
- Bayer CropScience, Trait Research, Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Brande B H Wulff
- John Innes Centre, Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Curtis J Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Andrew G Sharpe
- University of Saskatchewan, Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK S7N 4J8, Canada
| | - Aron Cory
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | | | - Moussa Benhamed
- Biology Department, Institute of Plant Sciences-Paris-Saclay, Bâtiment 630, rue de Noetzlin, Plateau du Moulon, CS80004, 91192 Gif-sur-Yvette Cedex, France
| | - Etienne Paux
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Abdelhafid Bendahmane
- Biology Department, Institute of Plant Sciences-Paris-Saclay, Bâtiment 630, rue de Noetzlin, Plateau du Moulon, CS80004, 91192 Gif-sur-Yvette Cedex, France
| | - Lorenzo Concia
- Biology Department, Institute of Plant Sciences-Paris-Saclay, Bâtiment 630, rue de Noetzlin, Plateau du Moulon, CS80004, 91192 Gif-sur-Yvette Cedex, France
| | - David Latrasse
- Biology Department, Institute of Plant Sciences-Paris-Saclay, Bâtiment 630, rue de Noetzlin, Plateau du Moulon, CS80004, 91192 Gif-sur-Yvette Cedex, France
| | | | - Jane Rogers
- International Wheat Genome Sequencing Consortium (IWGSC), 18 High Street, Little Eversden, Cambridge CB23 1HE, UK
| | - John Jacobs
- Bayer CropScience, Trait Research, Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Michael Alaux
- URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia. .,Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia
| | - Jan Bartoš
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Arnaud Bellec
- INRA, CNRGV, chemin de Borde Rouge, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Hélène Berges
- INRA, CNRGV, chemin de Borde Rouge, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Catherine Feuillet
- Bayer CropScience, Crop Science Division, Research and Development, Innovation Centre, 3500 Paramount Parkway, Morrisville, NC 27560, USA
| | - Zeev Frenkel
- University of Haifa, Institute of Evolution and the Department of Evolutionary and Environmental Biology, 199 Abba-Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Bikram Gill
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Abraham Korol
- University of Haifa, Institute of Evolution and the Department of Evolutionary and Environmental Biology, 199 Abba-Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | | | - Odd-Arne Olsen
- Faculty of Bioscience, Department of Plant Science, Norwegian University of Life Sciences, Arboretveien 6, 1433 Ås, Norway
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Kuldeep Singh
- Punjab Agricultural University, Ludhiana, School of Agricultural Biotechnology, ICAR-National Bureau of Plant Genetic Resources, Dev Prakash Shastri Marg, New Delhi 110012, India
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | | | - Sonia Vautrin
- INRA, CNRGV, chemin de Borde Rouge, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712101, China
| | | | - Abraham Korol
- University of Haifa, Institute of Evolution and the Department of Evolutionary and Environmental Biology, 199 Abba-Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Zeev Frenkel
- University of Haifa, Institute of Evolution and the Department of Evolutionary and Environmental Biology, 199 Abba-Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Tzion Fahima
- University of Haifa, Institute of Evolution and the Department of Evolutionary and Environmental Biology, 199 Abba-Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | | | - Dina Raats
- Earlham Institute, Core Bioinformatics, Norwich NR4 7UZ, UK
| | - Jane Rogers
- International Wheat Genome Sequencing Consortium (IWGSC), 18 High Street, Little Eversden, Cambridge CB23 1HE, UK
| | | | - Vijay Tiwari
- Plant Science and Landscape Architecture, University of Maryland, 4291 Fieldhouse Road, 2102 Plant Sciences Building, College Park, MD 20742, USA
| | - Bikram Gill
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Etienne Paux
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Jesse Poland
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Jarmila Číhalíková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Helena Toegelová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | | | | | - Benoit Darrier
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | | | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia. .,Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia
| | - Manuel Spannagl
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Daniel Lang
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Iris Fischer
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Danara Ormanbekova
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,Department of Agricultural Sciences, University of Bologna, Viale Fanin, 44 40127 Bologna, Italy
| | - Verena Prade
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | | - Delfina Barabaschi
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, I -29017 Fiorenzuola d'Arda, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, I -29017 Fiorenzuola d'Arda, Italy
| | | | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS-CSIC), Consejo Superior de Investigaciones Científicas, Alameda del Obispo s/n, 14004 Córdoba, Spain
| | - Sergio Galvez
- Universidad de Málaga, Lenguajes y Ciencias de la Computación, Campus de Teatinos, 29071 Málaga, Spain
| | - Hikmet Budak
- Plant Sciences and Plant Pathology, Cereal Genomics Lab, Montana State University, 412 Leon Johnson Hall, Bozeman, MT 59717, USA
| | | | | | | | - Kamil Witek
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Brande B H Wulff
- John Innes Centre, Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK
| | - Guotai Yu
- John Innes Centre, Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Ian Small
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Joanna Melonek
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ruonan Zhou
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany
| | | | - Angéla Juhász
- Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia.,Agricultural Institute, MTA Centre for Agricultural Research, Applied Genomics Department, 2 Brunszvik Street, Martonvásár H 2462, Hungary
| | - Tatiana Belova
- Faculty of Bioscience, Department of Plant Science, Norwegian University of Life Sciences, Arboretveien 6, 1433 Ås, Norway
| | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia. .,Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia
| | - Odd-Arne Olsen
- Faculty of Bioscience, Department of Plant Science, Norwegian University of Life Sciences, Arboretveien 6, 1433 Ås, Norway
| | | | - Kostya Kanyuka
- Rothamsted Research, Biointeractions and Crop Protection, West Common, Harpenden AL5 2JQ, UK
| | - Robert King
- Rothamsted Research, Computational and Analytical Sciences, West Common, Harpenden AL5 2JQ, UK
| | | | - Kirby Nilsen
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Sean Walkowiak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Curtis J Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Richard Cuthbert
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Box 1030, Swift Current, SK S9H 3X2, Canada
| | - Raju Datla
- National Research Council Canada, Aquatic and Crop Resource Development, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Ron Knox
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Box 1030, Swift Current, SK S9H 3X2, Canada
| | - Krysta Wiebe
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Daoquan Xiang
- National Research Council Canada, Aquatic and Crop Resource Development, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | | | - Antje Rohde
- Bayer CropScience, Breeding and Trait Development, Technologiepark 38, 9052 Gent, Belgium
| | - Timothy Golds
- Bayer CropScience, Trait Research, Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Josquin Tibbits
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | | | - Hikmet Budak
- Plant Sciences and Plant Pathology, Cereal Genomics Lab, Montana State University, 412 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - Bala Ani Akpinar
- Plant Sciences and Plant Pathology, Cereal Genomics Lab, Montana State University, 412 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - Sezgi Biyiklioglu
- Plant Sciences and Plant Pathology, Cereal Genomics Lab, Montana State University, 412 Leon Johnson Hall, Bozeman, MT 59717, USA
| | | | - Gary Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, St. Paul, MN 55108, USA
| | - Jesse Poland
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Liangliang Gao
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Juan Gutierrez-Gonzalez
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, St. Paul, MN 55108, USA
| | - Amidou N'Daiye
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Jarmila Číhalíková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | | | - Hélène Berges
- INRA, CNRGV, chemin de Borde Rouge, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Arnaud Bellec
- INRA, CNRGV, chemin de Borde Rouge, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Sonia Vautrin
- INRA, CNRGV, chemin de Borde Rouge, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | | | - Michael Alaux
- URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | | | | | - Raphael Flores
- URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | - Claire Guerche
- URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | | | - Mikaël Loaec
- URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | | | | | | | - Curtis J Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Andrew G Sharpe
- National Research Council Canada, Aquatic and Crop Resource Development, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.,University of Saskatchewan, Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK S7N 4J8, Canada
| | | | - Hikmet Budak
- Plant Sciences and Plant Pathology, Cereal Genomics Lab, Montana State University, 412 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - Janet Condie
- National Research Council Canada, Aquatic and Crop Resource Development, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Jennifer Ens
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - ChuShin Koh
- University of Saskatchewan, Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK S7N 4J8, Canada
| | - Ron Maclachlan
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Yifang Tan
- National Research Council Canada, Aquatic and Crop Resource Development, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | | | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Etienne Paux
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Adriana Alberti
- CEA-Institut de Biologie François-Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Jean-Marc Aury
- CEA-Institut de Biologie François-Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - François Balfourier
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Valérie Barbe
- CEA-Institut de Biologie François-Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Arnaud Couloux
- CEA-Institut de Biologie François-Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Corinne Cruaud
- CEA-Institut de Biologie François-Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Karine Labadie
- CEA-Institut de Biologie François-Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Sophie Mangenot
- CEA-Institut de Biologie François-Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Patrick Wincker
- CEA-Institut de Biologie François-Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France.,CNRS, UMR 8030, CP5706, 91057 Evry, France.,Université d'Evry, UMR 8030, CP5706, 91057 Evry, France
| | | | - Bikram Gill
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Gaganpreet Kaur
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Mingcheng Luo
- Department of Plant Sciences, University of California, Davis, One Shield Avenue, Davis, CA 95617, USA
| | - Sunish Sehgal
- Agronomy Horticulture and Plant Science, South Dakota State University, 2108 Jackrabbit Drive, Brookings, SD 57006, USA
| | | | - Kuldeep Singh
- Punjab Agricultural University, Ludhiana, School of Agricultural Biotechnology, ICAR-National Bureau of Plant Genetic Resources, Dev Prakash Shastri Marg, New Delhi 110012, India
| | - Parveen Chhuneja
- Punjab Agricultural University, Ludhiana, School of Agricultural Biotechnology, ICAR-National Bureau of Plant Genetic Resources, Dev Prakash Shastri Marg, New Delhi 110012, India
| | - Om Prakash Gupta
- Punjab Agricultural University, Ludhiana, School of Agricultural Biotechnology, ICAR-National Bureau of Plant Genetic Resources, Dev Prakash Shastri Marg, New Delhi 110012, India
| | - Suruchi Jindal
- Punjab Agricultural University, Ludhiana, School of Agricultural Biotechnology, ICAR-National Bureau of Plant Genetic Resources, Dev Prakash Shastri Marg, New Delhi 110012, India
| | - Parampreet Kaur
- Punjab Agricultural University, Ludhiana, School of Agricultural Biotechnology, ICAR-National Bureau of Plant Genetic Resources, Dev Prakash Shastri Marg, New Delhi 110012, India
| | - Palvi Malik
- Punjab Agricultural University, Ludhiana, School of Agricultural Biotechnology, ICAR-National Bureau of Plant Genetic Resources, Dev Prakash Shastri Marg, New Delhi 110012, India
| | - Priti Sharma
- Punjab Agricultural University, Ludhiana, School of Agricultural Biotechnology, ICAR-National Bureau of Plant Genetic Resources, Dev Prakash Shastri Marg, New Delhi 110012, India
| | - Bharat Yadav
- Punjab Agricultural University, Ludhiana, School of Agricultural Biotechnology, ICAR-National Bureau of Plant Genetic Resources, Dev Prakash Shastri Marg, New Delhi 110012, India
| | | | - Nagendra K Singh
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110012, India
| | - JitendraP Khurana
- University of Delhi South Campus, Interdisciplinary Center for Plant Genomics and Department of Plant Molecular Biology, Benito Juarez Road, New Delhi 110021, India
| | - Chanderkant Chaudhary
- University of Delhi South Campus, Interdisciplinary Center for Plant Genomics and Department of Plant Molecular Biology, Benito Juarez Road, New Delhi 110021, India
| | - Paramjit Khurana
- University of Delhi South Campus, Interdisciplinary Center for Plant Genomics and Department of Plant Molecular Biology, Benito Juarez Road, New Delhi 110021, India
| | - Vinod Kumar
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110012, India
| | - Ajay Mahato
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110012, India
| | - Saloni Mathur
- University of Delhi South Campus, Interdisciplinary Center for Plant Genomics and Department of Plant Molecular Biology, Benito Juarez Road, New Delhi 110021, India
| | - Amitha Sevanthi
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110012, India
| | - Naveen Sharma
- University of Delhi South Campus, Interdisciplinary Center for Plant Genomics and Department of Plant Molecular Biology, Benito Juarez Road, New Delhi 110021, India
| | - Ram Sewak Tomar
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110012, India
| | | | - Jane Rogers
- International Wheat Genome Sequencing Consortium (IWGSC), 18 High Street, Little Eversden, Cambridge CB23 1HE, UK
| | - John Jacobs
- Bayer CropScience, Trait Research, Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Michael Alaux
- URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | - Arnaud Bellec
- INRA, CNRGV, chemin de Borde Rouge, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Hélène Berges
- INRA, CNRGV, chemin de Borde Rouge, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Catherine Feuillet
- Bayer CropScience, Crop Science Division, Research and Development, Innovation Centre, 3500 Paramount Parkway, Morrisville, NC 27560, USA
| | - Zeev Frenkel
- University of Haifa, Institute of Evolution and the Department of Evolutionary and Environmental Biology, 199 Abba-Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Bikram Gill
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Abraham Korol
- University of Haifa, Institute of Evolution and the Department of Evolutionary and Environmental Biology, 199 Abba-Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | | | - Sonia Vautrin
- INRA, CNRGV, chemin de Borde Rouge, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | | | - Bikram Gill
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Gaganpreet Kaur
- Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Mingcheng Luo
- Department of Plant Sciences, University of California, Davis, One Shield Avenue, Davis, CA 95617, USA
| | - Sunish Sehgal
- Agronomy Horticulture and Plant Science, South Dakota State University, 2108 Jackrabbit Drive, Brookings, SD 57006, USA
| | | | - Jan Bartoš
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Ondřej Plíhal
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | | | - Matthew D Clark
- Earlham Institute, Core Bioinformatics, Norwich NR4 7UZ, UK.,Department of Lifesciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Darren Heavens
- Earlham Institute, Core Bioinformatics, Norwich NR4 7UZ, UK
| | | | - Jon Wright
- Earlham Institute, Core Bioinformatics, Norwich NR4 7UZ, UK
| | | | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Barbora Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Yuqin Hu
- Department of Plant Sciences, University of California, Davis, One Shield Avenue, Davis, CA 95617, USA
| | - Mingcheng Luo
- Department of Plant Sciences, University of California, Davis, One Shield Avenue, Davis, CA 95617, USA
| | | | - Elena Salina
- The Federal Research Center Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Nikolai Ravin
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Leninsky Avenue 33, Building 2, Moscow 119071, Russia.,Faculty of Biology, Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia
| | - Konstantin Skryabin
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Leninsky Avenue 33, Building 2, Moscow 119071, Russia.,Faculty of Biology, Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia
| | - Alexey Beletsky
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Leninsky Avenue 33, Building 2, Moscow 119071, Russia
| | - Vitaly Kadnikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Leninsky Avenue 33, Building 2, Moscow 119071, Russia
| | - Andrey Mardanov
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Leninsky Avenue 33, Building 2, Moscow 119071, Russia
| | - Michail Nesterov
- The Federal Research Center Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Andrey Rakitin
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Leninsky Avenue 33, Building 2, Moscow 119071, Russia
| | - Ekaterina Sergeeva
- The Federal Research Center Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russia
| | | | - Hirokazu Handa
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Hiroyuki Kanamori
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Satoshi Katagiri
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Fuminori Kobayashi
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tsuyoshi Tanaka
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Jianzhong Wu
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | | | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia. .,Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia
| | - Matthew Hayden
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Gabriel Keeble-Gagnère
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Philippe Rigault
- GYDLE, Suite 220, 1135 Grande Allée, Ouest, Québec, QC G1S 1E7, Canada
| | - Josquin Tibbits
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | | | - Odd-Arne Olsen
- Faculty of Bioscience, Department of Plant Science, Norwegian University of Life Sciences, Arboretveien 6, 1433 Ås, Norway
| | - Tatiana Belova
- Faculty of Bioscience, Department of Plant Science, Norwegian University of Life Sciences, Arboretveien 6, 1433 Ås, Norway
| | | | - Min Jiumeng
- BGI-Shenzhen, BGI Genomics, Building No. 7, BGI Park, No. 21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
| | - Karl Kugler
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Klaus F X Mayer
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Matthias Pfeifer
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Simen Sandve
- Faculty of Bioscience, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Arboretveien 6, 1433 Ås, Norway
| | - Xu Xun
- BGI-Shenzhen, BGI Genomics, Yantian District, Shenzhen 518083, Guangdong, China
| | - Bujie Zhan
- Faculty of Bioscience, Department of Plant Science, Norwegian University of Life Sciences, Arboretveien 6, 1433 Ås, Norway
| | | | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Satomi Hayashi
- Queensland University of Technology, Earth, Environmental and Biological Sciences, Brisbane, QLD 4001, Australia
| | - Helena Toegelová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Zuzana Tulpová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Paul Visendi
- University of Greenwich, Natural Resources Institute, Central Avenue, Chatham, Kent ME4 4TB, UK
| | | | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712101, China
| | - Licao Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712101, China
| | - Xianghong Du
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712101, China
| | - Kewei Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712101, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712101, China
| | - Wei Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712101, China
| | - Le Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712101, China
| | | | - Philippa Borrill
- John Innes Centre, Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK
| | - Heidrun Gundlach
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Sergio Galvez
- Universidad de Málaga, Lenguajes y Ciencias de la Computación, Campus de Teatinos, 29071 Málaga, Spain
| | | | - Daniel Lang
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Thomas Lux
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Danara Ormanbekova
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,Department of Agricultural Sciences, University of Bologna, Viale Fanin, 44 40127 Bologna, Italy
| | - Verena Prade
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | | - Manuel Spannagl
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany. .,The University of Western Australia (UWA), School of Agriculture and Environment, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Cristobal Uauy
- John Innes Centre, Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK
| | - Luca Venturini
- Earlham Institute, Core Bioinformatics, Norwich NR4 7UZ, UK
| | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany. .,The University of Western Australia (UWA), School of Agriculture and Environment, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia. .,Murdoch University, Australia-China Centre for Wheat Improvement, School of Veterinary and Life Sciences, 90 South Street, Murdoch, WA 6150, Australia
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), 5207 Wyoming Road, Bethesda, MD 20816, USA. .,Eversole Associates, 5207 Wyoming Road, Bethesda, MD 20816, USA
| | - Jane Rogers
- International Wheat Genome Sequencing Consortium (IWGSC), 18 High Street, Little Eversden, Cambridge CB23 1HE, UK
| | - Philippa Borrill
- John Innes Centre, Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, I -29017 Fiorenzuola d'Arda, Italy
| | - Frédéric Choulet
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS-CSIC), Consejo Superior de Investigaciones Científicas, Alameda del Obispo s/n, 14004 Córdoba, Spain
| | - Kostya Kanyuka
- Rothamsted Research, Biointeractions and Crop Protection, West Common, Harpenden AL5 2JQ, UK
| | - Daniel Lang
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank, Corrensstr. 3, 06466 Stadt Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Kirby Nilsen
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Etienne Paux
- GDEC (Genetics, Diversity and Ecophysiology of Cereals), INRA, Université Clermont Auvergne (UCA), 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Curtis J Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | | | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Ian Small
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Manuel Spannagl
- Helmholtz Center Munich, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | | | - Cristobal Uauy
- John Innes Centre, Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
50
|
Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas FB, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson PK, Janitza P, Kern R, Heyl A, Rümpler F, Villalobos LIAC, Clay JM, Skokan R, Toyoda A, Suzuki Y, Kagoshima H, Schijlen E, Tajeshwar N, Catarino B, Hetherington AJ, Saltykova A, Bonnot C, Breuninger H, Symeonidi A, Radhakrishnan GV, Van Nieuwerburgh F, Deforce D, Chang C, Karol KG, Hedrich R, Ulvskov P, Glöckner G, Delwiche CF, Petrášek J, Van de Peer Y, Friml J, Beilby M, Dolan L, Kohara Y, Sugano S, Fujiyama A, Delaux PM, Quint M, Theißen G, Hagemann M, Harholt J, Dunand C, Zachgo S, Langdale J, Maumus F, Van Der Straeten D, Gould SB, Rensing SA. The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell 2018; 174:448-464.e24. [DOI: 10.1016/j.cell.2018.06.033] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 01/11/2023]
|