1
|
Wiśniewska MM, Kyslík J, Alama-Bermejo G, Lövy A, Kolísko M, Holzer AS, Kosakyan A. Comparative transcriptomics reveal stage-dependent parasitic adaptations in the myxozoan Sphaerospora molnari. BMC Genomics 2025; 26:103. [PMID: 39901063 DOI: 10.1186/s12864-025-11265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Parasitism as a life strategy has independently evolved multiple times within the eukaryotic tree of life. Each lineage has developed mechanisms to invade hosts, exploit resources, and ensure replication, but our knowledge of survival mechanisms in many parasitic taxa remain extremely limited. One such group is the Myxozoa, which are obligate, dixenous cnidarians. Evidence suggests that myxozoans evolved from free-living ancestors to endoparasites around 600 million years ago and are likely one of the first metazoan parasites on Earth. Some myxozoans pose significant threats to farmed and wild fish populations, negatively impacting aquaculture and fish stocks; one such example is Sphaerospora molnari, which forms spores in the gills of common carp (Cyprinus carpio), disrupting gill epithelia and causing somatic and respiratory failure. Sphaerospora molnari undergoes sequential development in different organs of its host, with large numbers of morphologically distinct stages occurring in the blood, liver, and gills of carp. We hypothesize that these parasite life-stages differ in regards to their host exploitation, pathogenicity, and host immune evasion strategies and mechanisms. We performed stage-specific transcriptomic profiling to identify differentially expressed key functional gene groups that relate to these functions and provide a fundamental understanding of the mechanisms S. molnari uses to optimize its parasitic lifestyle. We aimed to identify genes that are likely related to parasite pathogenicity and host cell exploitation mechanisms, and we hypothesize that genes unique to S. molnari might be indicative of evolutionary innovations and specific adaptations to host environments. RESULTS We used parasite isolation protocols and comparative transcriptomics to study early proliferative and spore-forming stages of S. molnari, unveiling variation in gene expression between each stage. We discovered several apparent innovations in the S. molnari transcriptome, including proteins that are likely to function in the uptake of previously unknown key nutrients, immune evasion factors that may contribute to long-term survival in hosts, and proteins that likely improve adhesion to host cells that may have arisen from horizontal gene transfer. Notably, we identified genes that are similar to known virulence factors in other parasitic organisms, particularly blood and intestinal parasites like Plasmodium, Trypanosoma, and Giardia. Many of these genes are absent in published cnidarian and myxozoan datasets and appear to be specific to S. molnari; they may therefore represent potential innovations enabling Sphaerospora to exploit the host's blood system. CONCLUSIONS In order to address the threat posed by myxozoans to both cultured fish species and wild stocks, it is imperative to deepen our understanding of their genetics. Sphaerospora molnari offers an appealing model for stage-specific transcriptomic profiling and for identifying differentially expressed key functional gene groups related to parasite development. We identified genes that are thus far unique to S. molnari, which reveal their evolutionary novelty and likely role as adaptations to specific host niches. In addition, we describe the pathogenicity-associated genetic toolbox of S. molnari and discuss the implications of our discoveries for disease control by shedding light on specific targets for potential intervention strategies.
Collapse
Affiliation(s)
- Monika M Wiśniewska
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Jiří Kyslík
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gema Alama-Bermejo
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Fish Health Division, University of Veterinary Medicine, Vienna, Austria
| | - Alena Lövy
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Fish Health Division, University of Veterinary Medicine, Vienna, Austria
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- National Biodiversity Future Center (NBFC), Palermo, Italy.
| |
Collapse
|
2
|
Skalon EK, Starunov VV, Slyusarev GS. RNA-seq analysis of parasitism by Intoshia linei (Orthonectida) reveals protein effectors of defence, communication, feeding and growth. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:398-405. [PMID: 38369898 DOI: 10.1002/jez.b.23247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Orthonectida is a group of multicellular endoparasites of a wide range of marine invertebrates. Their parasitic stage is a multinuclear shapeless plasmodium infiltrating host tissues. The development of the following worm-like sexual generation takes place within the cytoplasm of the plasmodium. The existence of the plasmodial stage and the development of a sexual stage within the plasmodium are unique features to Bilateria. However, the molecular mechanisms that maintain this peculiar organism, and hence enable parasitism in orthonectids, are unknown. Here, we present the first-ever RNA-seq analysis of the plasmodium, aimed at the identification and characterization of the plasmodium-specific protein-coding genes and corresponding hypothetical proteins that distinguish the parasitic plasmodium stage from the sexual stage of the orthonectid Intoshia linei Giard, 1877, parasite of nemertean Lineus ruber Müller, 1774. We discovered 119 plasmodium-specific proteins, 82 of which have inferred functions based on known domains. Thirty-five of the detected proteins are orphans, at least part of which may reflect the unique evolutionary adaptations of orthonectids to parasitism. Some of the identified proteins are known effector molecules of other endoparasites suggesting convergence. Our data indicate that the plasmodium-specific proteins might be involved in the plasmodium defense against the host, host-parasite communication, feeding and nutrient uptake, growth within the host, and support of the sexual stage development. These molecular processes in orthonectids have not been described before, and the particular protein effectors remained unknown until now.
Collapse
Affiliation(s)
- Elizaveta K Skalon
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg University, St. Petersburg, Russia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Viktor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg University, St. Petersburg, Russia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - George S Slyusarev
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg University, St. Petersburg, Russia
| |
Collapse
|
3
|
Maor-Landaw K, Smirnov M, Lotan T. The Tilapia Cyst Tissue Enclosing the Proliferating Myxobolus bejeranoi Parasite Exhibits Cornified Structure and Immune Barrier Function. Int J Mol Sci 2024; 25:5683. [PMID: 38891869 PMCID: PMC11171596 DOI: 10.3390/ijms25115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Myxozoa, a unique group of obligate endoparasites within the phylum Cnidaria, can cause emerging diseases in wild and cultured fish populations. Recently, the myxozoan Myxobolus bejeranoi has been identified as a prevalent pathogen infecting the gills of cultured hybrid tilapia, leading to systemic immune suppression and considerable mortality. Here, we employed a proteomic approach to examine the impact of M. bejeranoi infection on fish gills, focusing on the structure of the granulomata, or cyst, formed around the proliferating parasite to prevent its spread to surrounding tissue. Enrichment analysis showed increased immune response and oxidative stress in infected gill tissue, most markedly in the cyst's wall. The intense immune reaction included a consortium of endopeptidase inhibitors, potentially combating the myxozoan arsenal of secreted proteases. Analysis of the cyst's proteome and histology staining indicated that keratin intermediate filaments contribute to its structural rigidity. Moreover, we uncovered skin-specific proteins, including a grainyhead-like transcription factor and a teleost-specific S100 calcium-binding protein that may play a role in epithelial morphogenesis and cysts formation. These findings deepen our understanding of the proteomic elements that grant the cyst its distinctive nature at the critical interface between the fish host and myxozoan parasite.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel;
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 1080300, Israel;
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel;
| |
Collapse
|
4
|
Sandberg TOM, Yahalomi D, Bracha N, Haddas-Sasson M, Pupko T, Atkinson SD, Bartholomew JL, Zhang JY, Huchon D. Evolution of myxozoan mitochondrial genomes: insights from myxobolids. BMC Genomics 2024; 25:388. [PMID: 38649808 PMCID: PMC11034133 DOI: 10.1186/s12864-024-10254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Myxozoa is a class of cnidarian parasites that encompasses over 2,400 species. Phylogenetic relationships among myxozoans remain highly debated, owing to both a lack of informative morphological characters and a shortage of molecular markers. Mitochondrial (mt) genomes are a common marker in phylogeny and biogeography. However, only five complete myxozoan mt genomes have been sequenced: four belonging to two closely related genera, Enteromyxum and Kudoa, and one from the genus Myxobolus. Interestingly, while cytochrome oxidase genes could be identified in Enteromyxum and Kudoa, no such genes were found in Myxobolus squamalis, and another member of the Myxobolidae (Henneguya salminicola) was found to have lost its entire mt genome. To evaluate the utility of mt genomes to reconstruct myxozoan relationships and to understand if the loss of cytochrome oxidase genes is a characteristic of myxobolids, we sequenced the mt genome of five myxozoans (Myxobolus wulii, M. honghuensis, M. shantungensis, Thelohanellus kitauei and, Sphaeromyxa zaharoni) using Illumina and Oxford Nanopore platforms. RESULTS Unlike Enteromyxum, which possesses a partitioned mt genome, the five mt genomes were encoded on single circular chromosomes. An mt plasmid was found in M. wulii, as described previously in Kudoa iwatai. In all new myxozoan genomes, five protein-coding genes (cob, cox1, cox2, nad1, and nad5) and two rRNAs (rnl and rns) were recognized, but no tRNA. We found that Myxobolus and Thelohanellus species shared unidentified reading frames, supporting the view that these mt open reading frames are functional. Our phylogenetic reconstructions based on the five conserved mt genes agree with previously published trees based on the 18S rRNA gene. CONCLUSIONS Our results suggest that the loss of cytochrome oxidase genes is not a characteristic of all myxobolids, the ancestral myxozoan mt genome was likely encoded on a single circular chromosome, and mt plasmids exist in a few lineages. Our findings indicate that myxozoan mt sequences are poor markers for reconstructing myxozoan phylogenetic relationships because of their fast-evolutionary rates and the abundance of repeated elements, which complicates assembly.
Collapse
Affiliation(s)
| | - Dayana Yahalomi
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Noam Bracha
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Michal Haddas-Sasson
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, 97331, Corvallis, OR, USA
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, 97331, Corvallis, OR, USA
| | - Jin Yong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Dorothée Huchon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
- The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
5
|
Maor-Landaw K, Avidor I, Rostowsky N, Salti B, Smirnov M, Ofek-Lalzar M, Levin L, Brekhman V, Lotan T. The Molecular Mechanisms Employed by the Parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) from Invasion through Sporulation for Successful Proliferation in Its Fish Host. Int J Mol Sci 2023; 24:12824. [PMID: 37629003 PMCID: PMC10454682 DOI: 10.3390/ijms241612824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Myxozoa is a unique group of obligate endoparasites in the phylum Cnidaria that can cause emerging diseases in wild and cultured fish populations. Recently, we identified a new myxozoan species, Myxobolus bejeranoi, which infects the gills of cultured tilapia while suppressing host immunity. To uncover the molecular mechanisms underlying this successful parasitic strategy, we conducted transcriptomics analysis of M. bejeranoi throughout the infection. Our results show that histones, which are essential for accelerated cell division, are highly expressed even one day after invasion. As the infection progressed, conserved parasitic genes that are known to modulate the host immune reaction in different parasitic taxa were upregulated. These genes included energy-related glycolytic enzymes, as well as calreticulin, proteases, and miRNA biogenesis proteins. Interestingly, myxozoan calreticulin formed a distinct phylogenetic clade apart from other cnidarians, suggesting a possible function in parasite pathogenesis. Sporogenesis was in its final stages 20 days post-exposure, as spore-specific markers were highly expressed. Lastly, we provide the first catalog of transcription factors in a Myxozoa species, which is minimized compared to free-living cnidarians and is dominated by homeodomain types. Overall, these molecular insights into myxozoan infection support the concept that parasitic strategies are a result of convergent evolution.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Itamar Avidor
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Nadav Rostowsky
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Barbara Salti
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 1080300, Israel;
| | - Maya Ofek-Lalzar
- Bioinformatic Unit, University of Haifa, Mt. Carmel, Haifa 3498838, Israel;
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| |
Collapse
|
6
|
Infection by the Parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) Suppresses the Immune System of Hybrid Tilapia. Microorganisms 2022; 10:microorganisms10101893. [DOI: 10.3390/microorganisms10101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Myxozoa (Cnidaria) is a large group of microscopic obligate endoparasites that can cause emerging diseases, affecting wild fish populations and fisheries. Recently, the myxozoan Myxobolus bejeranoi was found to infect the gills of hybrid tilapia (Nile tilapia (Oreochromis niloticus) × Jordan/blue tilapia (O. aureus)), causing high morbidity and mortality. Here, we used comparative transcriptomics to elucidate the molecular processes occurring in the fish host following infection by M. bejeranoi. Fish were exposed to pond water containing actinospores for 24 h and the effects of minor, intermediate, and severe infections on the sporulation site, the gills, and on the hematopoietic organs, head kidney and spleen, were compared. Enrichment analysis for GO and KEGG pathways indicated immune system activation in gills at severe infection, whereas in the head kidney a broad immune suppression included deactivation of cytokines and GATA3 transcription factor responsible for T helper cell differentiation. In the spleen, the cytotoxic effector proteins perforin and granzyme B were downregulated and insulin, which may function as an immunomodulatory hormone inducing systemic immune suppression, was upregulated. These findings suggest that M. bejeranoi is a highly efficient parasite that disables the defense mechanisms of its fish host hybrid tilapia.
Collapse
|
7
|
Xiao B, Guo Q, Zhai Y, Gu Z. Transcriptomic Insights into the Diversity and Evolution of Myxozoa (Cnidaria, Endocnidozoa) Toxin-like Proteins. Mar Drugs 2022; 20:291. [PMID: 35621942 PMCID: PMC9144971 DOI: 10.3390/md20050291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
Myxozoa is a speciose group of endoparasitic cnidarians that can cause severe ecological and economic effects. Their cnidarian affinity is affirmed by genetic relatedness and the presence of nematocysts, historically called "polar capsules". Previous studies have revealed the presence of toxin-like proteins in myxozoans; however, the diversity and evolution of venom in Myxozoa are not fully understood. Here, we performed a comparative analysis using the newly sequenced transcriptomes of five Myxobolidae species as well as some public datasets. Toxin mining revealed that myxozoans have lost most of their toxin families, while most species retained Kunitz, M12B, and CRISP, which may play a role in endoparasitism. The venom composition of Endocnidozoa (Myxozoa + Polypodium) differs from that of free-living cnidarians and may be influenced by ecological and environmental factors. Phylogenetic analyses showed that toxin families of myxozoans and free-living cnidarians were clustered into different clades. Selection analyses showed that purifying selection was the dominant evolutionary pressure in toxins, while they were still influenced by episodic adaptive selection. This suggests that the potency or specificity of a particular toxin or species might increase. Overall, our findings provide a more comprehensive framework for understanding the diversity and evolution of Myxozoa venoms.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (Q.G.); (Y.Z.)
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Qingxiang Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (Q.G.); (Y.Z.)
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yanhua Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (Q.G.); (Y.Z.)
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (B.X.); (Q.G.); (Y.Z.)
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
8
|
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. A myxozoan genome reveals mosaic evolution in a parasitic cnidarian. BMC Biol 2022; 20:51. [PMID: 35177085 PMCID: PMC8855578 DOI: 10.1186/s12915-022-01249-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Parasite evolution has been conceptualized as a process of genetic loss and simplification. Contrary to this model, there is evidence of expansion and conservation of gene families related to essential functions of parasitism in some parasite genomes, reminiscent of widespread mosaic evolution-where subregions of a genome have different rates of evolutionary change. We found evidence of mosaic genome evolution in the cnidarian Myxobolus honghuensis, a myxozoan parasite of fish, with extremely simple morphology. RESULTS We compared M. honghuensis with other myxozoans and free-living cnidarians, and determined that it has a relatively larger myxozoan genome (206 Mb), which is less reduced and less compact due to gene retention, large introns, transposon insertion, but not polyploidy. Relative to other metazoans, the M. honghuensis genome is depleted of neural genes and has only the simplest animal immune components. Conversely, it has relatively more genes involved in stress resistance, tissue invasion, energy metabolism, and cellular processes compared to other myxozoans and free-living cnidarians. We postulate that the expansion of these gene families is the result of evolutionary adaptations to endoparasitism. M. honghuensis retains genes found in free-living Cnidaria, including a reduced nervous system, myogenic components, ANTP class Homeobox genes, and components of the Wnt and Hedgehog pathways. CONCLUSIONS Our analyses suggest that the M. honghuensis genome evolved as a mosaic of conservative, divergent, depleted, and enhanced genes and pathways. These findings illustrate that myxozoans are not as genetically simple as previously regarded, and the evolution of some myxozoans is driven by both genomic streamlining and expansion.
Collapse
Affiliation(s)
- Qingxiang Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Bin Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Yanhua Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
9
|
Alama-Bermejo G, Bartošová-Sojková P, Atkinson SD, Holzer AS, Bartholomew JL. Proteases as Therapeutic Targets Against the Parasitic Cnidarian Ceratonova shasta: Characterization of Molecules Key to Parasite Virulence In Salmonid Hosts. Front Cell Infect Microbiol 2022; 11:804864. [PMID: 35071050 PMCID: PMC8777295 DOI: 10.3389/fcimb.2021.804864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Proteases and their inhibitors play critical roles in host-parasite interactions and in the outcomes of infections. Ceratonova shasta is a myxozoan pathogen that causes enteronecrosis in economically important salmonids from the Pacific Northwest of North America. This cnidarian parasite has host-specific genotypes with varying virulence, making it a powerful system to decipher virulence mechanisms in myxozoans. Using C. shasta genome and transcriptome, we identified four proteases of different catalytic types: cathepsin D (aspartic), cathepsin L and Z-like (cysteine) and aminopeptidase-N (metallo); and a stefin (cysteine protease inhibitor), which implied involvement in virulence and hence represent target molecules for the development of therapeutic strategies. We characterized, annotated and modelled their 3D protein structure using bioinformatics and computational tools. We quantified their expression in C. shasta genotype 0 (low virulence, no mortality) and IIR (high virulence and mortality) in rainbow trout Oncorhynchus mykiss, to demonstrate that there are major differences between the genotypes during infection and parasite development. High proliferation of genotype IIR was associated with high expression of the cathepsin D and the stefin, likely correlated with high nutrient demands and to regulate cell metabolism, with upregulation preceding massive proliferation and systemic dispersion. In contrast, upregulation of the cathepsin L and Z-like cysteine proteases may have roles in host immune evasion in genotype 0 infections, which are associated with low proliferation, low inflammation and non-destructive development. In contrast to the other proteases, C. shasta aminopeptidase-N appears to have a prominent role in nematocyst formation in both genotypes, but only during sporogenesis. Homology searches of C. shasta proteases against other myxozoan transcriptomes revealed a high abundance of cathepsin L and aminopeptidase homologs suggesting common gene requirements across species. Our study identified molecules of potential therapeutic significance for aquaculture and serves as a baseline for future research aimed at functional characterisation of these targets.
Collapse
Affiliation(s)
- Gema Alama-Bermejo
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
10
|
Method for Isolation of Myxozoan Proliferative Stages from Fish at High Yield and Purity: An Essential Prerequisite for In Vitro, In Vivo and Genomics-Based Research Developments. Cells 2022; 11:cells11030377. [PMID: 35159187 PMCID: PMC8833907 DOI: 10.3390/cells11030377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Myxozoans are a diverse group of microscopic cnidarian parasites and some representatives are associated with important diseases in fish, in both marine and freshwater aquaculture systems. Research on myxozoans has been largely hampered by the inability to isolate myxozoan parasites from their host tissues. In this study, we developed and optimized a method to isolate the myxozoan proliferative stages of different size and cellularity from fish blood, using DEAE-cellulose ion exchange chromatography. We optimized several parameters and obtained 99–100% parasite purity, as well as high survival and infectivity. Using polyclonal pan-carp blood cell-specific antibodies, we further developed a rapid cytometric assay for quantification of the proliferative stages, not only in highly concentrated DEAE-C isolates but also in dilute conditions in full blood. Early developmental stages of myxozoans are key to parasite proliferation, establishment, and pathology in their hosts. The isolation of these stages not only opens new possibilities for in vivo and in vitro studies, but also for obtaining purified DNA and protein extracts for downstream analyses. Hence, we provide a long-desired tool that will advance the functional research into the mechanisms of host exploitation and immune stimulation/evasion in this group, which could contribute greatly to the development of therapeutic strategies against myxozoans.
Collapse
|
11
|
Americus B, Hams N, Klompen AML, Alama-Bermejo G, Lotan T, Bartholomew JL, Atkinson SD. The cnidarian parasite Ceratonova shasta utilizes inherited and recruited venom-like compounds during infection. PeerJ 2022; 9:e12606. [PMID: 35003924 PMCID: PMC8684318 DOI: 10.7717/peerj.12606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cnidarians are the most ancient venomous organisms. They store a cocktail of venom proteins inside unique stinging organelles called nematocysts. When a cnidarian encounters chemical and physical cues from a potential threat or prey animal, the nematocyst is triggered and fires a harpoon-like tubule to penetrate and inject venom into the prey. Nematocysts are present in all Cnidaria, including the morphologically simple Myxozoa, which are a speciose group of microscopic, spore-forming, obligate parasites of fish and invertebrates. Rather than predation or defense, myxozoans use nematocysts for adhesion to hosts, but the involvement of venom in this process is poorly understood. Recent work shows some myxozoans have a reduced repertoire of venom-like compounds (VLCs) relative to free-living cnidarians, however the function of these proteins is not known. Methods We searched for VLCs in the nematocyst proteome and a time-series infection transcriptome of Ceratonova shasta, a myxozoan parasite of salmonid fish. We used four parallel approaches to detect VLCs: BLAST and HMMER searches to preexisting cnidarian venom datasets, the machine learning tool ToxClassifier, and structural modeling of nematocyst proteomes. Sequences that scored positive by at least three methods were considered VLCs. We then mapped their time-series expressions in the fish host and analyzed their phylogenetic relatedness to sequences from other venomous animals. Results We identified eight VLCs, all of which have closely related sequences in other myxozoan datasets, suggesting a conserved venom profile across Myxozoa, and an overall reduction in venom diversity relative to free-living cnidarians. Expression of the VLCs over the 3-week fish infection varied considerably: three sequences were most expressed at one day post-exposure in the fish’s gills; whereas expression of the other five VLCs peaked at 21 days post-exposure in the intestines, coinciding with the formation of mature parasite spores with nematocysts. Expression of VLC genes early in infection, prior to the development of nematocysts, suggests venoms in C. shasta have been repurposed to facilitate parasite invasion and proliferation within the host. Molecular phylogenetics suggested some VLCs were inherited from a cnidarian ancestor, whereas others were more closely related to sequences from venomous non-Cnidarian organisms and thus may have gained qualities of venom components via convergent evolution. The presence of VLCs and their differential expression during parasite infection enrich the concept of what functions a “venom” can have and represent targets for designing therapeutics against myxozoan infections.
Collapse
Affiliation(s)
- Benjamin Americus
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Nicole Hams
- Columbia River Fish and Wildlife Conservation Office, U.S. Fish and Wildlife Service, Vancouver, Washington, United States of America
| | - Anna M L Klompen
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gema Alama-Bermejo
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
12
|
Guo Q, Whipps CM, Zhai Y, Li D, Gu Z. Quantitative Insights into the Contribution of Nematocysts to the Adaptive Success of Cnidarians Based on Proteomic Analysis. BIOLOGY 2022; 11:91. [PMID: 35053089 PMCID: PMC8773148 DOI: 10.3390/biology11010091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Nematocysts are secretory organelles in cnidarians that play important roles in predation, defense, locomotion, and host invasion. However, the extent to which nematocysts contribute to adaptation and the mechanisms underlying nematocyst evolution are unclear. Here, we investigated the role of the nematocyst in cnidarian evolution based on eight nematocyst proteomes and 110 cnidarian transcriptomes/genomes. We detected extensive species-specific adaptive mutations in nematocyst proteins (NEMs) and evidence for decentralized evolution, in which most evolutionary events involved non-core NEMs, reflecting the rapid diversification of NEMs in cnidarians. Moreover, there was a 33-55 million year macroevolutionary lag between nematocyst evolution and the main phases of cnidarian diversification, suggesting that the nematocyst can act as a driving force in evolution. Quantitative analysis revealed an excess of adaptive changes in NEMs and enrichment for positively selected conserved NEMs. Together, these findings suggest that nematocysts may be key to the adaptive success of cnidarians and provide a reference for quantitative analyses of the roles of phenotypic novelties in adaptation.
Collapse
Affiliation(s)
- Qingxiang Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Christopher M Whipps
- SUNY-ESF, College of Environmental Science and Forestry, State University of New York, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Yanhua Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Dan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
13
|
Koch TL, Hauser F, Grimmelikhuijzen CJP. An evolutionary genomics view on neuropeptide genes in Hydrozoa and Endocnidozoa (Myxozoa). BMC Genomics 2021; 22:862. [PMID: 34847889 PMCID: PMC8638164 DOI: 10.1186/s12864-021-08091-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The animal phylum Cnidaria consists of six classes or subphyla: Hydrozoa, Scyphozoa, Cubozoa, Staurozoa, Anthozoa, and Endocnidozoa. Cnidarians have an early evolutionary origin, diverging before the emergence of the Bilateria. Extant members from this phylum, therefore, are important resources for understanding the evolution of the nervous system. Cnidarian nervous systems are strongly peptidergic. Using genomics, we have recently shown that three neuropeptide families (the X1PRX2amides, GRFamides, and GLWamides) are wide-spread in four (Scyphozoa, Cubozoa, Staurozoa, Anthozoa) out of six cnidarian classes or subphyla, suggesting that these three neuropeptide families emerged in the common cnidarian ancestor. In the current paper, we analyze the remaining cnidarian class, Hydrozoa, and the subphylum Endocnidozoa, to make firm conclusions about the evolution of neuropeptide genes in Cnidaria. RESULTS We analyzed sixteen hydrozoan species with a sequenced genome or transcriptome, using a recently developed software program for discovering neuropeptide genes. These species belonged to various hydrozoan subclasses and orders, among them the laboratory models Hydra, Hydractinia, and Clytia. We found that each species contained three to five neuropeptide families. A common feature for all hydrozoans was that they contained genes coding for (i) X1PRX2amide peptides, (ii) GRFamide peptides, and (iii) GLWamide peptides. These results support our previous conclusions that these three neuropeptide families evolved early in evolution. In addition to these three neuropeptide families, hydrozoans expressed up to two other neuropeptide gene families, which, however, were only occurring in certain animal groups. Endocnidozoa (Myxozoa) are microscopically small endoparasites, which are strongly reduced. For long, it was unknown to which phylum these parasites belonged, but recently they have been associated with cnidarians. We analyzed nine endocnidozoan species and found that two of them (Polypodium hydriforme and Buddenbrockia plumatellae) expressed neuropeptide genes. These genes coded for neuropeptides belonging to the GRFamide and GLWamide families with structures closely resembling them from hydrozoans. CONCLUSIONS We found X1PRX2amide, GRFamide, and GLWamide peptides in all species belonging to the Hydrozoa, confirming that these peptides originated in the common cnidarian ancestor. In addition, we discovered GRFamide and GLWamide peptide genes in some members of the Endocnidozoa, thereby linking these parasites to Hydrozoa.
Collapse
Affiliation(s)
- Thomas L. Koch
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Alama-Bermejo G, Meyer E, Atkinson SD, Holzer AS, Wiśniewska MM, Kolísko M, Bartholomew JL. Transcriptome-Wide Comparisons and Virulence Gene Polymorphisms of Host-Associated Genotypes of the Cnidarian Parasite Ceratonova shasta in Salmonids. Genome Biol Evol 2021; 12:1258-1276. [PMID: 32467979 PMCID: PMC7487138 DOI: 10.1093/gbe/evaa109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ceratonova shasta is an important myxozoan pathogen affecting the health of salmonid fishes in the Pacific Northwest of North America. Ceratonova shasta exists as a complex of host-specific genotypes, some with low to moderate virulence, and one that causes a profound, lethal infection in susceptible hosts. High throughput sequencing methods are powerful tools for discovering the genetic basis of these host/virulence differences, but deep sequencing of myxozoans has been challenging due to extremely fast molecular evolution of this group, yielding strongly divergent sequences that are difficult to identify, and unavoidable host contamination. We designed and optimized different bioinformatic pipelines to address these challenges. We obtained a unique set of comprehensive, host-free myxozoan RNA-seq data from C. shasta genotypes of varying virulence from different salmonid hosts. Analyses of transcriptome-wide genetic distances and maximum likelihood multigene phylogenies elucidated the evolutionary relationship between lineages and demonstrated the limited resolution of the established Internal Transcribed Spacer marker for C. shasta genotype identification, as this marker fails to differentiate between biologically distinct genotype II lineages from coho salmon and rainbow trout. We further analyzed the data sets based on polymorphisms in two gene groups related to virulence: cell migration and proteolytic enzymes including their inhibitors. The developed single-nucleotide polymorphism-calling pipeline identified polymorphisms between genotypes and demonstrated that variations in both motility and protease genes were associated with different levels of virulence of C. shasta in its salmonid hosts. The prospective use of proteolytic enzymes as promising candidates for targeted interventions against myxozoans in aquaculture is discussed. We developed host-free transcriptomes of a myxozoan model organism from strains that exhibited different degrees of virulence, as a unique source of data that will foster functional gene analyses and serve as a base for the development of potential therapeutics for efficient control of these parasites.
Collapse
Affiliation(s)
- Gema Alama-Bermejo
- Department of Microbiology, Oregon State University.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), CCT CONICET - CENPAT, San Antonio Oeste, Argentina
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University
| | | | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Monika M Wiśniewska
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | |
Collapse
|
15
|
Lopes ALK, Kriegová E, Lukeš J, Krieger MA, Ludwig A. Distribution of Merlin in eukaryotes and first report of DNA transposons in kinetoplastid protists. PLoS One 2021; 16:e0251133. [PMID: 33956864 PMCID: PMC8101967 DOI: 10.1371/journal.pone.0251133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
DNA transposons are defined as repeated DNA sequences that can move within the host genome through the action of transposases. The transposon superfamily Merlin was originally found mainly in animal genomes. Here, we describe a global distribution of the Merlin in animals, fungi, plants and protists, reporting for the first time their presence in Rhodophyceae, Metamonada, Discoba and Alveolata. We identified a great variety of potentially active Merlin families, some containing highly imperfect terminal inverted repeats and internal tandem repeats. Merlin-related sequences with no evidence of mobilization capacity were also observed and may be products of domestication. The evolutionary trees support that Merlin is likely an ancient superfamily, with early events of diversification and secondary losses, although repeated re-invasions probably occurred in some groups, which would explain its diversity and discontinuous distribution. We cannot rule out the possibility that the Merlin superfamily is the product of multiple horizontal transfers of related prokaryotic insertion sequences. Moreover, this is the first account of a DNA transposon in kinetoplastid flagellates, with conserved Merlin transposase identified in Bodo saltans and Perkinsela sp., whereas it is absent in trypanosomatids. Based on the level of conservation of the transposase and overlaps of putative open reading frames with Merlin, we propose that in protists it may serve as a raw material for gene emergence.
Collapse
Affiliation(s)
- Ana Luisa Kalb Lopes
- Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brazil
| | - Eva Kriegová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Marco Aurélio Krieger
- Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Adriana Ludwig
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- * E-mail:
| |
Collapse
|
16
|
Eszterbauer E, Szegő D, Ursu K, Sipos D, Gellért Á. Serine protease inhibitors of the whirling disease parasite Myxobolus cerebralis (Cnidaria, Myxozoa): Expression profiling and functional predictions. PLoS One 2021; 16:e0249266. [PMID: 33780500 PMCID: PMC8007001 DOI: 10.1371/journal.pone.0249266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Here, we studied the expression pattern and putative function of four, previously identified serine protease inhibitors (serpins) of Myxobolus cerebralis, a pathogenic myxozoan species (Cnidaria: Myxozoa) causing whirling disease of salmonid fishes. The relative expression profiles of serpins were determined at different developmental stages both in fish and in annelid hosts using serpin-specific qPCR assays. The expression of serpin Mc-S1 was similar throughout the life cycle, whereas a significant decrease was detected in the relative expression of Mc-S3 and Mc-S5 during the development in fish, and then in the sporogonic stage in the worm host. A decreasing tendency could also be observed in the expression of Mc-S4 in fish, which was, however, upregulated in the worm host. For the first time, we predicted the function of M. cerebralis serpins by the use of several bioinformatics-based applications. Mc-S1 is putatively a chymotrypsin-like inhibitor that locates extracellularly and is capable of heparin binding. The other three serpins are caspase-like inhibitors, and they are probably involved in protease and cell degradation processes during the early stage of fish invasion.
Collapse
Affiliation(s)
- Edit Eszterbauer
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Dóra Szegő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Krisztina Ursu
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Dóra Sipos
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Ákos Gellért
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
17
|
Kyslík J, Kosakyan A, Nenarokov S, Holzer AS, Fiala I. The myxozoan minicollagen gene repertoire was not simplified by the parasitic lifestyle: computational identification of a novel myxozoan minicollagen gene. BMC Genomics 2021; 22:198. [PMID: 33743585 PMCID: PMC7981951 DOI: 10.1186/s12864-021-07515-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lineage-specific gene expansions represent one of the driving forces in the evolutionary dynamics of unique phylum traits. Myxozoa, a cnidarian subphylum of obligate parasites, are evolutionarily altered and highly reduced organisms with a simple body plan including cnidarian-specific organelles and polar capsules (a type of nematocyst). Minicollagens, a group of structural proteins, are prominent constituents of nematocysts linking Myxozoa and Cnidaria. Despite recent advances in the identification of minicollagens in Myxozoa, the evolutionary history and diversity of minicollagens in Myxozoa and Cnidaria remain elusive. RESULTS We generated new transcriptomes of two myxozoan species using a novel pipeline for filtering of closely related contaminant species in RNA-seq data. Mining of our transcriptomes and published omics data confirmed the existence of myxozoan Ncol-4, reported only once previously, and revealed a novel noncanonical minicollagen, Ncol-5, which is exclusive to Myxozoa. Phylogenetic analyses support a close relationship between myxozoan Ncol-1-3 with minicollagens of Polypodium hydriforme, but suggest independent evolution in the case of the myxozoan minicollagens Ncol-4 and Ncol-5. Additional genome- and transcriptome-wide searches of cnidarian minicollagens expanded the dataset to better clarify the evolutionary trajectories of minicollagen. CONCLUSIONS The development of a new approach for the handling of next-generation data contaminated by closely related species represents a useful tool for future applications beyond the field of myxozoan research. This data processing pipeline allowed us to expand the dataset and study the evolution and diversity of minicollagen genes in Myxozoa and Cnidaria. We identified a novel type of minicollagen in Myxozoa (Ncol-5). We suggest that the large number of minicollagen paralogs in some cnidarians is a result of several recent large gene multiplication events. We revealed close juxtaposition of minicollagens Ncol-1 and Ncol-4 in myxozoan genomes, suggesting their common evolutionary history. The unique gene structure of myxozoan Ncol-5 suggests a specific function in the myxozoan polar capsule or tubule. Despite the fact that myxozoans possess only one type of nematocyst, their gene repertoire is similar to those of other cnidarians.
Collapse
Affiliation(s)
- Jiří Kyslík
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Serafim Nenarokov
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
18
|
Advances and Discoveries in Myxozoan Genomics. Trends Parasitol 2021; 37:552-568. [PMID: 33619004 DOI: 10.1016/j.pt.2021.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Myxozoans are highly diverse and globally distributed cnidarian endoparasites in freshwater and marine habitats. They have adopted a heteroxenous life cycle, including invertebrate and fish hosts, and have been associated with diseases in aquaculture and wild fish stocks. Despite their importance, genomic resources of myxozoans have proven difficult to obtain due to their miniaturized and derived genome character and close associations with fish tissues. The first 'omic' datasets have now become the main resource for a better understanding of host-parasite interactions, virulence, and diversity, but also the evolutionary history of myxozoans. In this review, we discuss recent genomic advances in the field and outline outstanding questions to be answered with continuous and improved efforts of generating myxozoan genomic data.
Collapse
|
19
|
Bartošová-Sojková P, Kyslík J, Alama-Bermejo G, Hartigan A, Atkinson SD, Bartholomew JL, Picard-Sánchez A, Palenzuela O, Faber MN, Holland JW, Holzer AS. Evolutionary Analysis of Cystatins of Early-Emerging Metazoans Reveals a Novel Subtype in Parasitic Cnidarians. BIOLOGY 2021; 10:110. [PMID: 33546310 PMCID: PMC7913475 DOI: 10.3390/biology10020110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/04/2023]
Abstract
The evolutionary aspects of cystatins are greatly underexplored in early-emerging metazoans. Thus, we surveyed the gene organization, protein architecture, and phylogeny of cystatin homologues mined from 110 genomes and the transcriptomes of 58 basal metazoan species, encompassing free-living and parasite taxa of Porifera, Placozoa, Cnidaria (including Myxozoa), and Ctenophora. We found that the cystatin gene repertoire significantly differs among phyla, with stefins present in most of the investigated lineages but with type 2 cystatins missing in several basal metazoan groups. Similar to liver and intestinal flukes, myxozoan parasites possess atypical stefins with chimeric structure that combine motifs of classical stefins and type 2 cystatins. Other early metazoan taxa regardless of lifestyle have only the classical representation of cystatins and lack multi-domain ones. Our comprehensive phylogenetic analyses revealed that stefins and type 2 cystatins clustered into taxonomically defined clades with multiple independent paralogous groups, which probably arose due to gene duplications. The stefin clade split between the subclades of classical stefins and the atypical stefins of myxozoans and flukes. Atypical stefins represent key evolutionary innovations of the two parasite groups for which their origin might have been linked with ancestral gene chimerization, obligate parasitism, life cycle complexity, genome reduction, and host immunity.
Collapse
Affiliation(s)
- Pavla Bartošová-Sojková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
| | - Jiří Kyslík
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Gema Alama-Bermejo
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
| | - Ashlie Hartigan
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK;
| | - Stephen D. Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (S.D.A.); (J.L.B.)
| | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (S.D.A.); (J.L.B.)
| | - Amparo Picard-Sánchez
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Castellón, Spain;
| | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Castellón, Spain;
| | - Marc Nicolas Faber
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK; (M.N.F.); (J.W.H.)
| | - Jason W. Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK; (M.N.F.); (J.W.H.)
| | - Astrid S. Holzer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
| |
Collapse
|
20
|
Comparative transcriptomics and host-specific parasite gene expression profiles inform on drivers of proliferative kidney disease. Sci Rep 2021; 11:2149. [PMID: 33495500 PMCID: PMC7835236 DOI: 10.1038/s41598-020-77881-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
The myxozoan parasite, Tetracapsuloidesbryosalmonae has a two-host life cycle alternating between freshwater bryozoans and salmonid fish. Infected fish can develop Proliferative Kidney Disease, characterised by a gross lymphoid-driven kidney pathology in wild and farmed salmonids. To facilitate an in-depth understanding of T.bryosalmonae-host interactions, we have used a two-host parasite transcriptome sequencing approach in generating two parasite transcriptome assemblies; the first derived from parasite spore sacs isolated from infected bryozoans and the second from infected fish kidney tissues. This approach was adopted to minimize host contamination in the absence of a complete T.bryosalmonae genome. Parasite contigs common to both infected hosts (the intersect transcriptome; 7362 contigs) were typically AT-rich (60–75% AT). 5432 contigs within the intersect were annotated. 1930 unannotated contigs encoded for unknown transcripts. We have focused on transcripts encoding proteins involved in; nutrient acquisition, host–parasite interactions, development, cell-to-cell communication and proteins of unknown function, establishing their potential importance in each host by RT-qPCR. Host-specific expression profiles were evident, particularly in transcripts encoding proteases and proteins involved in lipid metabolism, cell adhesion, and development. We confirm for the first time the presence of homeobox proteins and a frizzled homologue in myxozoan parasites. The novel insights into myxozoan biology that this study reveals will help to focus research in developing future disease control strategies.
Collapse
|
21
|
Know your enemy - transcriptome of myxozoan Tetracapsuloides bryosalmonae reveals potential drug targets against proliferative kidney disease in salmonids. Parasitology 2021; 148:726-739. [PMID: 33478602 PMCID: PMC8056827 DOI: 10.1017/s003118202100010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The myxozoan Tetracapsuloides bryosalmonae is a widely spread endoparasite that causes proliferative kidney disease (PKD) in salmonid fish. We developed an in silico pipeline to separate transcripts of T. bryosalmonae from the kidney tissue of its natural vertebrate host, brown trout (Salmo trutta). After stringent filtering, we constructed a partial transcriptome assembly T. bryosalmonae, comprising 3427 transcripts. Based on homology-restricted searches of the assembled parasite transcriptome and Atlantic salmon (Salmo salar) proteome, we identified four protein targets (Endoglycoceramidase, Legumain-like protease, Carbonic anhydrase 2, Pancreatic lipase-related protein 2) for the development of anti-parasitic drugs against T. bryosalmonae. Earlier work of these proteins on parasitic protists and helminths suggests that the identified anti-parasitic drug targets represent promising chemotherapeutic candidates also against T. bryosalmonae, and strengthen the view that the known inhibitors can be effective in evolutionarily distant organisms. In addition, we identified differentially expressed T. bryosalmonae genes between moderately and severely infected fish, indicating an increased abundance of T. bryosalmonae sporogonic stages in fish with low parasite load. In conclusion, this study paves the way for future genomic research in T. bryosalmonae and represents an important step towards the development of effective drugs against PKD.
Collapse
|
22
|
D’Ambra I, Lauritano C. A Review of Toxins from Cnidaria. Mar Drugs 2020; 18:E507. [PMID: 33036158 PMCID: PMC7600780 DOI: 10.3390/md18100507] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the definition of their composition and their activity. Despite this interest, only a limited number of compounds extracted from cnidarian venoms have been identified and defined in detail. Venoms extracted from Anthozoa are likely the most studied, while venoms from Cubozoa attract research interests due to their lethal effects on humans. The investigation of cnidarian venoms has benefited in very recent times by the application of omics approaches. In this review, we propose an updated synopsis of the toxins identified in the venoms of the main classes of Cnidaria (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa and Anthozoa). We have attempted to consider most of the available information, including a summary of the most recent results from omics and biotechnological studies, with the aim to define the state of the art in the field and provide a background for future research.
Collapse
Affiliation(s)
- Isabella D’Ambra
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
23
|
Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites. Microorganisms 2020; 8:microorganisms8101502. [PMID: 33003479 PMCID: PMC7650755 DOI: 10.3390/microorganisms8101502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 01/02/2023] Open
Abstract
We studied the genetic variability of serine protease inhibitors (serpins) of Myxozoa, microscopic endoparasites of fish. Myxozoans affect the health of both farmed and wild fish populations, causing diseases and mortalities. Despite their global impact, no effective protection exists against these parasites. Serpins were reported as important factors for host invasion and immune evasion, and as promising targets for the development of antiparasitic therapies. For the first time, we identified and aligned serpin sequences from high throughput sequencing datasets of ten myxozoan species, and analyzed 146 serpins from this parasite group together with those of other taxa phylogenetically, to explore their relationship and origins. High intra- and interspecific variability was detected among the examined serpins. The average sequence identity was 25–30% only. The conserved domains (i.e., motif and signature) showed taxon-level differences. Serpins clustered according to taxonomy rather than to serpin types, and myxozoan serpins seemed to be highly divergent from that of other taxa. None of them clustered with their closest relative free-living cnidarians. The genetic distinction of myxozoan serpins further strengthens the idea of an independent origin of Myxozoa, and may indicate novel protein functions potentially related to parasitism in this animal group.
Collapse
|
24
|
Guo Q, Li D, Zhai Y, Gu Z. CCPRD: A Novel Analytical Framework for the Comprehensive Proteomic Reference Database Construction of NonModel Organisms. ACS OMEGA 2020; 5:15370-15384. [PMID: 32637811 PMCID: PMC7331046 DOI: 10.1021/acsomega.0c01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Protein reference databases are a critical part of producing efficient proteomic analyses. However, the method for constructing clean, efficient, and comprehensive protein reference databases of nonmodel organisms is lacking. Existing methods either do not have contamination control procedures, or these methods rely on a three-frame and/or six-frame translation that sharply increases the search space and the need for computational resources. Herein, we propose a framework for constructing a customized comprehensive proteomic reference database (CCPRD) from draft genomes and deep sequencing transcriptomes. Its effectiveness is demonstrated by incorporating the proteomes of nematocysts from endoparasitic cnidarian: myxozoans. By applying customized contamination removal procedures, contaminations in omic data were successfully identified and removed. This is an effective method that does not result in overdecontamination. This can be shown by comparing the CCPRD MS results with an artificially contaminated database and another database with removed contaminations in genomes and transcriptomes added back. CCPRD outperformed traditional frame-based methods by identifying 35.2-50.7% more peptides and 35.8-43.8% more proteins, with a maximum of 84.6% in size reduction. A BUSCO analysis showed that the CCPRD maintained a relatively high level of completeness compared to traditional methods. These results confirm the superiority of the CCPRD over existing methods in peptide and protein identification numbers, database size, and completeness. By providing a general framework for generating the reference database, the CCPRD, which does not need a high-quality genome, can potentially be applied to nonmodel organisms and significantly contribute to proteomic research.
Collapse
Affiliation(s)
- Qingxiang Guo
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| | - Dan Li
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| | - Yanhua Zhai
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| | - Zemao Gu
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| |
Collapse
|
25
|
Zhang F, Yang Y, Gao C, Yao Y, Xia R, Hu J, Ran C, Zhang Z, Zhou Z. Bioinformatics analysis and characterization of a secretory cystatin from Thelohanellus kitauei. AMB Express 2020; 10:116. [PMID: 32577834 PMCID: PMC7311561 DOI: 10.1186/s13568-020-01052-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/15/2020] [Indexed: 01/17/2023] Open
Abstract
Thelohanellus kitauei, is a member of obligate parasitic myxozoans, which causes intestinal giant-cystic disease of common carp (Cyprinus carpio) and has resulted in significant economic losses in carp farms. Cystatin secreted by parasites can regulate the immune response of host to facilitate parasite's survival. In this study, the secretory TK-cystatin gene, encoding a protein of 120 amino acid residues (13.65 kDa), was cloned from T. kitauei genome. Phylogenetic analysis showed that TK-cystatin gene is closely related to the cystatin-A from Hydra vulgaris. Multiple sequence alignment revealed that TK-cystatin had three conserved motifs: N-terminal G19G20, Q73VVAG77, and C-terminal L102P103. Molecular docking between TK-cystatin and three cysteine proteases showed a lower binding energy (- 13 KJ/mol) with cathepsin L whereas a higher binding energy (- 8.6 KJ/mol) with cathepsin B. TK-cystatin gene was expressed in Escherichia coli. Activity assays revealed that TK-cystatin has stronger inhibitory activity on endopeptidases (papain and cathepsin L) and weaker inhibitory activity on exopeptidase (cathepsin B). TK-cystatin was stable under the condition of acidity or alkalinity or below 57 °C. This study laid a foundation for the design and development of the anti-T. kitauei vaccine in carp culture in the future.
Collapse
Affiliation(s)
- Fengli Zhang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chenchen Gao
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanyuan Yao
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Xia
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Hu
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhigang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
26
|
Hartigan A, Kosakyan A, Pecková H, Eszterbauer E, Holzer AS. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genomics 2020; 21:404. [PMID: 32546190 PMCID: PMC7296530 DOI: 10.1186/s12864-020-6705-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/27/2020] [Indexed: 01/24/2023] Open
Abstract
Background Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Myxozoans are obligate cnidarian parasites, alternating between invertebrate and fish hosts. Their genes are highly divergent from other metazoans, and available genomic and transcriptomic datasets are limited. Some myxozoans are important aquaculture pathogens such as Sphaerospora molnari replicating in the blood of farmed carp before reaching the gills for sporogenesis and transmission. Proliferative stages cause a massive systemic lymphocyte response and the disruption of the gill epithelia by spore-forming stages leads to respiratory problems and mortalities. In the absence of a S. molnari genome, we utilized a de novo approach to assemble the first transcriptome of proliferative myxozoan stages to identify S. molnari proteases that are upregulated during the first stages of infection when the parasite multiplies massively, rather than in late spore-forming plasmodia. Furthermore, a subset of orthologs was used to characterize 3D structures and putative druggable targets. Results An assembled and host filtered transcriptome containing 9436 proteins, mapping to 29,560 contigs was mined for protease virulence factors and revealed that cysteine proteases were most common (38%), at a higher percentage than other myxozoans or cnidarians (25–30%). Two cathepsin Ls that were found upregulated in spore-forming stages with a presenilin like aspartic protease and a dipeptidyl peptidase. We also identified downregulated proteases in the spore-forming development when compared with proliferative stages including an astacin metallopeptidase and lipases (qPCR). In total, 235 transcripts were identified as putative proteases using a MEROPS database. In silico analysis of highly transcribed cathepsins revealed potential drug targets within this data set that should be prioritised for development. Conclusions In silico surveys for proteins are essential in drug discovery and understanding host-parasite interactions in non-model systems. The present study of S. molnari’s protease arsenal reveals previously unknown proteases potentially used for host exploitation and immune evasion. The pioneering dataset serves as a model for myxozoan virulence research, which is of particular importance as myxozoan diseases have recently been shown to emerge and expand geographically, due to climate change.
Collapse
Affiliation(s)
- Ashlie Hartigan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia.
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Hana Pecková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Edit Eszterbauer
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| |
Collapse
|
27
|
A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. Proc Natl Acad Sci U S A 2020; 117:5358-5363. [PMID: 32094163 DOI: 10.1073/pnas.1909907117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although aerobic respiration is a hallmark of eukaryotes, a few unicellular lineages, growing in hypoxic environments, have secondarily lost this ability. In the absence of oxygen, the mitochondria of these organisms have lost all or parts of their genomes and evolved into mitochondria-related organelles (MROs). There has been debate regarding the presence of MROs in animals. Using deep sequencing approaches, we discovered that a member of the Cnidaria, the myxozoan Henneguya salminicola, has no mitochondrial genome, and thus has lost the ability to perform aerobic cellular respiration. This indicates that these core eukaryotic features are not ubiquitous among animals. Our analyses suggest that H. salminicola lost not only its mitochondrial genome but also nearly all nuclear genes involved in transcription and replication of the mitochondrial genome. In contrast, we identified many genes that encode proteins involved in other mitochondrial pathways and determined that genes involved in aerobic respiration or mitochondrial DNA replication were either absent or present only as pseudogenes. As a control, we used the same sequencing and annotation methods to show that a closely related myxozoan, Myxobolus squamalis, has a mitochondrial genome. The molecular results are supported by fluorescence micrographs, which show the presence of mitochondrial DNA in M. squamalis, but not in H. salminicola. Our discovery confirms that adaptation to an anaerobic environment is not unique to single-celled eukaryotes, but has also evolved in a multicellular, parasitic animal. Hence, H. salminicola provides an opportunity for understanding the evolutionary transition from an aerobic to an exclusive anaerobic metabolism.
Collapse
|
28
|
Doonan LB, Hartigan A, Okamura B, Long PF. Stress-Free Evolution: The Nrf-Coordinated Oxidative Stress Response in Early Diverging Metazoans. Integr Comp Biol 2020; 59:799-810. [PMID: 31120488 DOI: 10.1093/icb/icz055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Environmental stress from ultraviolet radiation, elevated temperatures or metal toxicity can lead to reactive oxygen species in cells, leading to oxidative DNA damage, premature aging, neurodegenerative diseases, and cancer. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activates many cytoprotective proteins within the nucleus to maintain homeostasis during oxidative stress. In vertebrates, Nrf2 levels are regulated by the Kelch-family protein Keap1 (Kelch-like ECH-associated protein 1) in the absence of stress according to a canonical redox control pathway. Little, however, is known about the redox control pathway used in early diverging metazoans. Our study examines the presence of known oxidative stress regulatory elements within non-bilaterian metazoans including free living and parasitic cnidarians, ctenophores, placozoans, and sponges. Cnidarians, with their pivotal position as the sister phylum to bilaterians, play an important role in understanding the evolutionary history of response to oxidative stress. Through comparative genomic and transcriptomic analysis our results show that Nrf homologs evolved early in metazoans, whereas Keap1 appeared later in the last common ancestor of cnidarians and bilaterians. However, key Nrf-Keap1 interacting domains are not conserved within the cnidarian lineage, suggesting this important pathway evolved with the radiation of bilaterians. Several known downstream Nrf targets are present in cnidarians suggesting that cnidarian Nrf plays an important role in oxidative stress response even in the absence of Keap1. Comparative analyses of key oxidative stress sensing and response proteins in early diverging metazoans thus provide important insights into the molecular basis of how these lineages interact with their environment and suggest a shared evolutionary history of regulatory pathways. Exploration of these pathways may prove important for the study of cancer therapeutics and broader research in oxidative stress, senescence, and the functional responses of early diverging metazoans to environmental change.
Collapse
Affiliation(s)
- Liam B Doonan
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Ashlie Hartigan
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.,Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Paul F Long
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
29
|
Liu T, Wei WY, Wang KY, Yang Q, Wang EL. Pathological and immunological analyses of Thelohanellus kitauei (Myxozoa:Myxosporea) infection in the scattered mirror carp, Cyprinus carpio. Sci Rep 2019; 9:20014. [PMID: 31882981 PMCID: PMC6934683 DOI: 10.1038/s41598-019-56752-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/04/2019] [Indexed: 11/09/2022] Open
Abstract
Thelohanellus kitauei is a spore-forming myxosporean parasite prevalent in scattered mirror carp (Cyprinus carpio) that generates numerous cysts in the intestine and causes mass mortality in fish. To investigate the infection and mortality induced by T. kitauei in pond-reared farms in Luo-Jiang (104°51’N, 31°31’E), southwest China, morphological and molecular analyses of infected fish were conducted. Natural and specific immune indicators were further evaluated to determine the immunological effects of response to parasitic infection. The infectious parasite was identified as Thelohanellus kitauei based on morphological, 18S rDNA and infectious characteristics. Scattered mirror carp was determined as the specific intermediate host of the parasite. However, T. kitauei still caused considerable damage to the fish, in particular, injury and blockage of the intestines, resulting in malnutrition and even death. The mature spores of T. kitauei colonize the intestinal submucosa of carp and form cysts of various sizes that block the intestinal tract and release spores into the enteric cavity upon rupture, leading to the next phase of T. kitauei growth. Moreover, T. kitauei-infected carp showed weaker innate immunity. IgM is involved in the fight against parasitic infection while cytokines, such as IL-6, IL-1β and TNF-α, had an impact on infection processes. To our knowledge, this is the first report to show that T. kitauei infects and causes death in scattered mirror carp. Our collective findings from systematic pathology, morphology and immunology experiments provide a foundation for further research on infections by this type of parasite and development of effective treatment strategies.
Collapse
Affiliation(s)
- Tao Liu
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China
| | - Wen-Yan Wei
- China Institute of fisheries of chengdu agriculture and forestry academy, Cheng du, 610000, China
| | - Kai-Yu Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China.
| | - Qian Yang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China
| | - Er-Long Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China
| |
Collapse
|
30
|
Zhao Y, Liu X, Xi B, Zhang Q, Li A, Zhang J. Transcriptomic analysis of oligochaete immune responses to myxosporeans infection: Branchiura sowerbyi infected with Myxobolus cultus. J Invertebr Pathol 2019; 169:107283. [PMID: 31765651 DOI: 10.1016/j.jip.2019.107283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
Abstract
The Myxozoa are endoparasites characterized by a two-host life cycle that typically involves invertebrates and vertebrates as definitive and intermediate hosts, respectively. However, little is known about invertebrate-myxosporean interactions, particularly about patterns of host immune defense. We used RNA-sequencing to identify genes that are possibly involved in the immune responses of the oligochaete Branchiura sowerbyi naturally infected with Myxobolus cultus. De novo assembly of the B. sowerbyi transcriptome yielded 119,031 unigenes, with an average length of 896 bp and an N50 length of 1754 bp. Comparative transcriptome analysis revealed 4059 differentially expressed genes (DEGs) between M. cultus-infected and uninfected B. sowerbyi groups, including 3802 upregulated genes and 257 downregulated genes. Among the B. sowerbyi immune factors implicated in the responses to M. cultus infection, DEGs related to lectins, ubiquitin-mediated proteolysis, phagocytosis, oxidative-antioxidative responses, proteases, and protease inhibitors were upregulated. The expression of some immune-related molecules such as calmodulin, heat shock proteins, antimicrobial peptides, lysenin, and serum amyoid A protein were also significantly upregulated. The expression patterns of 14 immune-related DEGs identified by RNA-seq were validated by quantitative real-time polymerase chain reaction. This study is the first attempt to characterize the B. sowerbyi transcriptome and identify immune-related molecules possibly associated with M. cultus infection. It is also the first report of invertebrate host-myxosporean interactions at the transcriptomic level. Our results will facilitate the elucidation of adaptive evolution mechanisms of myxosporean parasites in the definitive host and the genetic basis for differences in resistance of invertebrate hosts of different genotypes to a myxosporean species.
Collapse
Affiliation(s)
- Yuanli Zhao
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhua Liu
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingwen Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Qianqian Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aihua Li
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyong Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Sitjà-Bobadilla A, Gil-Solsona R, Estensoro I, Piazzon MC, Martos-Sitcha JA, Picard-Sánchez A, Fuentes J, Sancho JV, Calduch-Giner JA, Hernández F, Pérez-Sánchez J. Disruption of gut integrity and permeability contributes to enteritis in a fish-parasite model: a story told from serum metabolomics. Parasit Vectors 2019; 12:486. [PMID: 31619276 PMCID: PMC6796429 DOI: 10.1186/s13071-019-3746-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background In the animal production sector, enteritis is responsible for serious economic losses, and intestinal parasitism is a major stress factor leading to malnutrition and lowered performance and animal production efficiency. The effect of enteric parasites on the gut function of teleost fish, which represent the most ancient bony vertebrates, is far from being understood. The intestinal myxozoan parasite Enteromyxum leei dwells between gut epithelial cells and causes severe enteritis in gilthead sea bream (Sparus aurata), anorexia, cachexia, growth impairment, reduced marketability and increased mortality. Methods This study aimed to outline the gut failure in this fish-parasite model using a multifaceted approach and to find and validate non-lethal serum markers of gut barrier dysfunction. Intestinal integrity was studied in parasitized and non-parasitized fish by immunohistochemistry with specific markers for cellular adhesion (E-cadherin) and tight junctions (Tjp1 and Cldn3) and by functional studies of permeability (oral administration of FITC-dextran) and electrophysiology (Ussing chambers). Serum samples from parasitized and non-parasitized fish were analyzed using non-targeted metabolomics and some significantly altered metabolites were selected to be validated using commercial kits. Results The immunodetection of Tjp1 and Cldn3 was significantly lower in the intestine of parasitized fish, while no strong differences were found in E-cadherin. Parasitized fish showed a significant increase in paracellular uptake measured by FITC-dextran detection in serum. Electrophysiology showed a decrease in transepithelial resistance in infected animals, which showed a diarrheic profile. Serum metabolomics revealed 3702 ions, from which the differential expression of 20 identified compounds significantly separated control from infected groups in multivariate analyses. Of these compounds, serum inosine (decreased) and creatine (increased) were identified as relevant and validated with commercial kits. Conclusions The results demonstrate the disruption of tight junctions and the loss of gut barrier function, a metabolomic profile of absorption dysfunction and anorexia, which further outline the pathophysiological effects of E. leei.![]()
Collapse
Affiliation(s)
- Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain. .,Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.
| | - Rubén Gil-Solsona
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Vicent Sos Baynat, s/n. Campus del Riu Sec, 12071, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.,Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus Universitario de Puerto Real, University of Cádiz, 11510, Cádiz, Spain
| | - Amparo Picard-Sánchez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan Fuentes
- Comparative Endocrinology and Integrative Biology, CCMar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Juan Vicente Sancho
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Vicent Sos Baynat, s/n. Campus del Riu Sec, 12071, Castellón, Spain
| | - Josep A Calduch-Giner
- Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.,Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Félix Hernández
- Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.,Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Vicent Sos Baynat, s/n. Campus del Riu Sec, 12071, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.,Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
32
|
Shin SP, Jin CN, Sohn HC, Yokoyama H, Lee J. A new species Myxodavisia jejuensis n. sp. (Myxosporea: Sinuolineidae) isolated from cultured olive flounder Paralichthys olivaceus in South Korea. Parasitol Res 2019; 118:3105-3112. [PMID: 31522298 DOI: 10.1007/s00436-019-06454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
A new myxosporean parasite, Myxodavisia jejuensis n. sp. (Myxozoa; Bivalvulida) is described from the urinary bladder of olive flounder Paralichthys olivaceus cultured on Jeju Island, Korea. Two long lateral appendages with whip-like extensions were attached to mature spores of triangular to semi-circular shape. The spores were measured at 13.1 ± 1.1 μm in length, 17.2 ± 1.0 μm in thickness, and 13.1 ± 1.0 μm in width. Two spherical polar capsules, with a diameter of 5.0 ± 0.4 μm, were observed on opposite sides in the middle of the spore. The suture line was straight or slightly sinuous on the middle of spores. The 18S rDNA from M. jejuensis n. sp. was used in BLAST and molecular phylogenetic analysis. The results demonstrated that M. jejuensis n. sp. was closest to Sinuolinea capsularis and that the infection site tropism was correlated with the phylogeny of marine myxosporeans. In addition, we designed specific primers to detect the 18S rDNA gene of M. jejuensis n. sp.; the results showed specific amplification in M. jejuensis n. sp. among the myxosporeans isolated from the urinary bladder of the cultured olive flounder.
Collapse
Affiliation(s)
- Sang Phil Shin
- Department of Marine Life Science & Fish Vaccine Research Center, Jeju National University, Jeju, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Chang Nam Jin
- Department of Marine Life Science & Fish Vaccine Research Center, Jeju National University, Jeju, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Han Chang Sohn
- Department of Marine Life Science & Fish Vaccine Research Center, Jeju National University, Jeju, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hiroshi Yokoyama
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
| | - Jehee Lee
- Department of Marine Life Science & Fish Vaccine Research Center, Jeju National University, Jeju, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
33
|
Hernández-Elizárraga VH, Olguín-López N, Hernández-Matehuala R, Ocharán-Mercado A, Cruz-Hernández A, Guevara-González RG, Caballero-Pérez J, Ibarra-Alvarado C, Sánchez-Rodríguez J, Rojas-Molina A. Comparative Analysis of the Soluble Proteome and the Cytolytic Activity of Unbleached and Bleached Millepora complanata ("Fire Coral") from the Mexican Caribbean. Mar Drugs 2019; 17:E393. [PMID: 31277227 PMCID: PMC6669453 DOI: 10.3390/md17070393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/24/2023] Open
Abstract
Coral bleaching caused by global warming has resulted in massive damage to coral reefs worldwide. Studies addressing the consequences of elevated temperature have focused on organisms of the class Anthozoa, and up to now, there is little information regarding the mechanisms by which reef forming Hydrozoans face thermal stress. In this study, we carried out a comparative analysis of the soluble proteome and the cytolytic activity of unbleached and bleached Millepora complanata ("fire coral") that inhabited reef colonies exposed to the 2015-2016 El Niño-Southern Oscillation in the Mexican Caribbean. A differential proteomic response involving proteins implicated in key cellular processes, such as glycolysis, DNA repair, stress response, calcium homeostasis, exocytosis, and cytoskeleton organization was found in bleached hydrocorals. Four of the proteins, whose levels increased in bleached specimens, displayed sequence similarity to a phospholipase A2, an astacin-like metalloprotease, and two pore forming toxins. However, a protein, which displayed sequence similarity to a calcium-independent phospholipase A2, showed lower levels in bleached cnidarians. Accordingly, the hemolytic effect of the soluble proteome of bleached hydrocorals was significantly higher, whereas the phospholipase A2 activity was significantly reduced. Our results suggest that bleached M. complanata is capable of increasing its toxins production in order to balance the lack of nutrients supplied by its symbionts.
Collapse
Affiliation(s)
- Víctor Hugo Hernández-Elizárraga
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrea Ocharán-Mercado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrés Cruz-Hernández
- Laboratorio de Biología Molecular. Escuela de Agronomía, Universidad de La Salle Bajío, Av. Universidad 15 602, Colonia Lomas del Campestre, C.P. 37150 León, Guanajuato, México
| | - Ramón Gerardo Guevara-González
- C.A Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km. 1, S/N, C.P. 76265 Amazcala, El Marqués, Querétaro, México
| | - Juan Caballero-Pérez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Judith Sánchez-Rodríguez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes S/N, Puerto Morelos, C.P. 77580 Quintana Roo, México
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México.
| |
Collapse
|
34
|
Panchin AY, Aleoshin VV, Panchin YV. From tumors to species: a SCANDAL hypothesis. Biol Direct 2019; 14:3. [PMID: 30674330 PMCID: PMC6343361 DOI: 10.1186/s13062-019-0233-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/13/2019] [Indexed: 11/27/2022] Open
Abstract
ᅟ Some tumor cells can evolve into transmissible parasites. Notable examples include the Tasmanian devil facial tumor disease, the canine transmissible venereal tumor and transmissible cancers of mollusks. We present a hypothesis that such transmissible tumors existed in the past and that some modern animal taxa are descendants of these tumors. We expect potential candidates for SCANDALs (speciated by cancer development animals) to be simplified relatives of more complex metazoans and have genomic alterations typical for cancer progression (such as deletions of universal apoptosis genes). We considered several taxa of simplified animals for our hypothesis: dicyemida, orthonectida, myxosporea and trichoplax. Based on genomic analysis we conclude that Myxosporea appear to be the most suitable candidates for a tumor ancestry. They are simplified parasitic cnidarians that universally lack major genes implicated in cancer progression including all genes with Caspase and BCL2 domains as well as any p53 and apoptotic protease activating factor – 1 (Apaf-1) homologs, suggesting the disruption of main apoptotic pathways in their early evolutionary history. Further comparative genomics and single-cell transcriptomic studies may be helpful to test our hypothesis of speciation via a cancerous stage. Reviewers This article was reviewed by Eugene Koonin, Mikhail Gelfand and Gregory M Woods. Electronic supplementary material The online version of this article (10.1186/s13062-019-0233-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Y Panchin
- Institute for Information Transmission Problems, Bolshoy Karetniy Pereulok 19/1, Moscow, Russian Federation, 127051.
| | - V V Aleoshin
- Institute for Information Transmission Problems, Bolshoy Karetniy Pereulok 19/1, Moscow, Russian Federation, 127051.,A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Y V Panchin
- Institute for Information Transmission Problems, Bolshoy Karetniy Pereulok 19/1, Moscow, Russian Federation, 127051.,A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
35
|
Shin SP, Nam Jin C, Chang Sohn H, Lee J. Parvicapsula curvatura n. sp. in cultured olive flounder Paralichthys olivaceus and phylogenetic characteristics of the genus Parvicapsula. DISEASES OF AQUATIC ORGANISMS 2018; 130:199-207. [PMID: 30259872 DOI: 10.3354/dao03276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Parvicapsula curvatura n. sp. (Myxozoa; Bivalvulida) was found in the urinary bladder of olive flounder Paralichthys olivaceus cultured in a fish farm on Jeju Island, ROK. When laterally viewed, the parasite has asymmetrical curved spores that measure 9.6-11.6 µm in length. Furthermore, it has 2 subspherical polar capsules at the apex. Based on the phenotypical traits, it is most similar to P. limandae but differs in the shape of polar capsule, locality, and host specificity (family level). BLAST analysis indicated that P. curvatura was closest to P. unicornis and P. petuniae via 18S and 28S rDNA sequences, respectively. The 18S rDNA from P. curvatura was used in molecular phylogenetic analyses of Parvicapsula spp. to examine the congruence of phylogeny with spore morphology, locality, and host specificity. The results demonstrated that the spore morphotype was correlated with the phylogeny of the genus Parvicapsula, and the parasites have speciated into an oblong and semicircular spore type.
Collapse
Affiliation(s)
- Sang Phil Shin
- Department of Marine Life Science, Jeju National University, Jeju Self-Governing Province 63243, ROK
| | | | | | | |
Collapse
|
36
|
Shpirer E, Diamant A, Cartwright P, Huchon D. A genome wide survey reveals multiple nematocyst-specific genes in Myxozoa. BMC Evol Biol 2018; 18:138. [PMID: 30208843 PMCID: PMC6134521 DOI: 10.1186/s12862-018-1253-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/22/2018] [Indexed: 12/02/2022] Open
Abstract
Background Myxozoa represents a diverse group of microscopic endoparasites whose life cycle involves two hosts: a vertebrate (usually a fish) and an invertebrate (usually an annelid worm). Despite lacking nearly all distinguishing animal characteristics, given that each life cycle stage consists of no more than a few cells, molecular phylogenetic studies have revealed that myxozoans belong to the phylum Cnidaria, which includes corals, sea anemones, and jellyfish. Myxozoa, however, do possess a polar capsule; an organelle that is homologous to the stinging structure unique to Cnidaria: the nematocyst. Previous studies have identified in Myxozoa a number of protein-coding genes that are specific to nematocytes (the cells producing nematocysts) and thus restricted to Cnidaria. Determining which other genes are also homologous with the myxozoan polar capsule genes could provide insight into both the conservation and changes that occurred during nematocyst evolution in the transition to endoparasitism. Results Previous studies have examined the phylogeny of two cnidarian-restricted gene families: minicollagens and nematogalectins. Here we identify and characterize seven additional cnidarian-restricted genes in myxozoan genomes using a phylogenetic approach. Four of the seven had never previously been identified as cnidarian-specific and none have been studied in a phylogenetic context. A majority of the proteins appear to be involved in the structure of the nematocyst capsule and tubule. No venom proteins were identified among the cnidarian-restricted genes shared by myxozoans. Conclusions Given the highly divergent forms that comprise Cnidaria, obtaining insight into the processes underlying their ancient diversification remains challenging. In their evolutionary transition to microscopic endoparasites, myxozoans lost nearly all traces of their cnidarian ancestry, with the one prominent exception being their nematocysts (or polar capsules). Thus nematocysts, and the genes that code for their structure, serve as rich sources of information to support the cnidarian origin of Myxozoa. Electronic supplementary material The online version of this article (10.1186/s12862-018-1253-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erez Shpirer
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Arik Diamant
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA.
| | - Dorothée Huchon
- School of Zoology, Tel Aviv University, Tel Aviv, Israel. .,The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
37
|
Myxozoans: Ancient metazoan parasites find a home in phylum Cnidaria. ZOOLOGY 2018; 129:66-68. [PMID: 30170750 DOI: 10.1016/j.zool.2018.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/02/2023]
Abstract
Myxozoans are endoparasites with complex life cycles that alternate between invertebrate and vertebrate hosts. Though considered protozoans for over 150 years, they are now recognized as metazoans, given their multicellularity and ultrastructural features. In recognition of synapomorphies and cnidarian-specific genes, myxozoans were placed recently within the phylum Cnidaria. Although they have lost genetic and structural complexity on the path to parasitism, myxozoans have retained characteristic cnidarian cnidocysts, but use them for initiating host infection. Myxozoans represent at least 20% of phylum Cnidaria, but as a result of rapid evolution, extensive diversification and host specialization, they are probably at least as diverse as their free-living relatives. The ability of myxozoans to infect freshwater, marine and terrestrial hosts implies that Cnidaria are no longer constrained to the aquatic environment.
Collapse
|
38
|
Functional and proteomic analysis of Ceratonova shasta (Cnidaria: Myxozoa) polar capsules reveals adaptations to parasitism. Sci Rep 2017; 7:9010. [PMID: 28827642 PMCID: PMC5566210 DOI: 10.1038/s41598-017-09955-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022] Open
Abstract
Myxozoa is a diverse, speciose group of microscopic parasites, recently placed within the phylum Cnidaria. Myxozoans are highly reduced in size and complexity relative to free-living cnidarians, yet they have retained specialized organelles known as polar capsules, akin to the nematocyst stinging capsules of free-living species. Whereas in free-living cnidarians the stinging capsules are used for prey capture or defense, in myxozoans they have the essential function of initiating the host infection process. To explore the evolutionary adaptation of polar capsules to parasitism, we used as a model organism Ceratonova shasta, which causes lethal disease in salmonids. Here, we report the first isolation of C. shasta myxospore polar capsules using a tailored dielectrophoresis-based microfluidic chip. Using electron microscopy and functional analysis we demonstrated that C. shasta tubules have no openings and are likely used to anchor the spore to the host. Proteomic analysis of C. shasta polar capsules suggested that they have retained typical structural and housekeeping proteins found in nematocysts of jellyfish, sea anemones and Hydra, but have lost the most important functional group in nematocysts, namely toxins. Our findings support the hypothesis that polar capsules and nematocysts are homologous organelles, which have adapted to their distinct functions.
Collapse
|
39
|
Gerdol M, Venier P, Edomi P, Pallavicini A. Diversity and evolution of TIR-domain-containing proteins in bivalves and Metazoa: New insights from comparative genomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:145-164. [PMID: 28109746 DOI: 10.1016/j.dci.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
The Toll/interleukin-1 receptor (TIR) domain has a fundamental role in the innate defence response of plants, vertebrate and invertebrate animals. Mostly found in the cytosolic side of membrane-bound receptor proteins, it mediates the intracellular signalling upon pathogen recognition via heterotypic interactions. Although a number of TIR-domain-containing (TIR-DC) proteins have been characterized in vertebrates, their evolutionary relationships and functional role in protostomes are still largely unknown. Due to the high abundance and diversity of TIR-DC proteins in bivalve molluscs, we investigated this class of marine invertebrates as a case study. The analysis of the available genomic and transcriptomic data allowed the identification of over 400 full-length sequences and their classification in protein families based on sequence homology and domain organization. In addition to TLRs and MyD88 adaptors, bivalves possess a surprisingly large repertoire of intracellular TIR-DC proteins, which are conserved across a broad range of metazoan taxa. Overall, we report the expansion and diversification of TIR-DC proteins in several invertebrate lineages and the identification of many novel protein families possibly involved in both immune-related signalling and embryonic development.
Collapse
Affiliation(s)
- Marco Gerdol
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Paola Venier
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Paolo Edomi
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Alberto Pallavicini
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
40
|
Lai AG, Pouchkina-Stantcheva N, Di Donfrancesco A, Kildisiute G, Sahu S, Aboobaker AA. The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa. BMC Evol Biol 2017; 17:107. [PMID: 28441946 PMCID: PMC5405514 DOI: 10.1186/s12862-017-0949-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Most animals employ telomerase, which consists of a catalytic subunit known as the telomerase reverse transcriptase (TERT) and an RNA template, to maintain telomere ends. Given the importance of TERT and telomere biology in core metazoan life history traits, like ageing and the control of somatic cell proliferation, we hypothesised that TERT would have patterns of sequence and regulatory evolution reflecting the diverse life histories across the Animal Kingdom. RESULTS We performed a complete investigation of the evolutionary history of TERT across animals. We show that although TERT is almost ubiquitous across Metazoa, it has undergone substantial sequence evolution within canonical motifs. Beyond the known canonical motifs, we also identify and compare regions that are highly variable between lineages, but show conservation within phyla. Recent data have highlighted the importance of alternative splice forms of TERT in non-canonical functions and although animals may share some conserved introns, we find that the selection of exons for alternative splicing appears to be highly variable, and regulation by alternative splicing appears to be a very dynamic feature of TERT evolution. We show that even within a closely related group of triclad flatworms, where alternative splicing of TERT was previously correlated with reproductive strategy, we observe highly diverse splicing patterns. CONCLUSIONS Our work establishes that the evolutionary history and structural evolution of TERT involves previously unappreciated levels of change and the emergence of lineage specific motifs. The sequence conservation we describe within phyla suggests that these new motifs likely serve essential biological functions of TERT, which along with changes in splicing, underpin diverse functions of TERT important for animal life histories.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | | | | | - Gerda Kildisiute
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Sounak Sahu
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
41
|
Zhao D, Borkhanuddin MH, Wang W, Liu Y, Cech G, Zhai Y, Székely C. The life cycle of Thelohanellus kitauei (Myxozoa: Myxosporea) infecting common carp (Cyprinus carpio) involves aurantiactinomyxon in Branchiura sowerbyi. Parasitol Res 2016; 115:4317-4325. [DOI: 10.1007/s00436-016-5215-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022]
|
42
|
Okamura B, Gruhl A. Myxozoa + Polypodium: A Common Route to Endoparasitism. Trends Parasitol 2016; 32:268-271. [PMID: 26830727 DOI: 10.1016/j.pt.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/16/2022]
Abstract
Recent evidence places the problematic Polypodium, a parasite of fish eggs, firmly as sister taxon to Myxozoa within the Cnidaria. This resolution suggests a single route to endoparasitism in Cnidaria, with larval stages of a common ancestor exploiting fish as first hosts. It also enables new interpretations and insights regarding evolutionary transitions associated with endoparasitism.
Collapse
Affiliation(s)
- Beth Okamura
- Natural History Museum, Department of Life Sciences, London, UK.
| | - Alexander Gruhl
- Natural History Museum, Department of Life Sciences, London, UK; Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
43
|
Abstract
The Myxozoa comprise over 2,000 species of microscopic obligate parasites that use both invertebrate and vertebrate hosts as part of their life cycle. Although the evolutionary origin of myxozoans has been elusive, a close relationship with cnidarians, a group that includes corals, sea anemones, jellyfish, and hydroids, is supported by some phylogenetic studies and the observation that the distinctive myxozoan structure, the polar capsule, is remarkably similar to the stinging structures (nematocysts) in cnidarians. To gain insight into the extreme evolutionary transition from a free-living cnidarian to a microscopic endoparasite, we analyzed genomic and transcriptomic assemblies from two distantly related myxozoan species, Kudoa iwatai and Myxobolus cerebralis, and compared these to the transcriptome and genome of the less reduced cnidarian parasite, Polypodium hydriforme. A phylogenomic analysis, using for the first time to our knowledge, a taxonomic sampling that represents the breadth of myxozoan diversity, including four newly generated myxozoan assemblies, confirms that myxozoans are cnidarians and are a sister taxon to P. hydriforme. Estimations of genome size reveal that myxozoans have one of the smallest reported animal genomes. Gene enrichment analyses show depletion of expressed genes in categories related to development, cell differentiation, and cell-cell communication. In addition, a search for candidate genes indicates that myxozoans lack key elements of signaling pathways and transcriptional factors important for multicellular development. Our results suggest that the degeneration of the myxozoan body plan from a free-living cnidarian to a microscopic parasitic cnidarian was accompanied by extreme reduction in genome size and gene content.
Collapse
|
44
|
Foox J, Ringuette M, Desser SS, Siddall ME. In silico hybridization enables transcriptomic illumination of the nature and evolution of Myxozoa. BMC Genomics 2015; 16:840. [PMID: 26494377 PMCID: PMC4619090 DOI: 10.1186/s12864-015-2039-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/08/2015] [Indexed: 11/24/2022] Open
Abstract
Background The Myxozoa, a group of oligocellular, obligate endoparasites, has long been poorly understood in an evolutionary context. Recent genome-level sequencing techniques such as RNA-seq have generated large amounts of myxozoan sequence data, providing valuable insight into their evolutionary history. However, sequences from host tissue contamination are present in next-generation sequencing reactions of myxozoan tissue, and differentiating between the two has been inadequately addressed. In order to shed light on the genetic underpinnings of myxozoan biology, assembled contigs generated from these studies that derived from the myxozoan must be decoupled from transcripts derived from host tissue and other contamination. This study describes a pipeline for categorization of transcripts asmyxozoan based on similarity searching with known host and parasite sequences, explores the extent to which host contamination is present in previously existing myxozoan datasets, and implements this pipeline on a newly sequenced transcriptome of Myxobolus pendula, a parasite of the common creek chub gill arch. Methods The insilico hybridization pipeline uses iterative BLAST searching and database-driven e-value comparison to categorize transcripts as deriving from host, parasite, or other contamination. Functional genetic analysis of M. pendula was conducted using further BLAST searching, Hidden Markov Modeling, and sequence alignment and phylogenetic reconstruction. Results Three RNA libraries of encysted M. pendula plasmodia were sequenced and subjected to the method. Nearly half of the final set of contiguous assembly sequences (47.3 %) was identified as putative myxozoan transcripts. Putative contamination was also identified in at least 1/3rd of previously published myxozoan transcripts. The set of M. pendula transcripts was mined for a range of biologically insightful genes, including taxonomically restricted nematocyst structural proteins and nematocyst proteins identified through mass tandem spectrometry of other cnidarians. Several novel findings emerged, including a fourth myxozoan minicollagen gene, putative myxozoan toxin proteins,and extracellular matrix glycoproteins. Conclusions This study serves as a model for the handling of next-generation myxozoan sequence. The need for careful categorization was demonstrated in both previous and new sets of myxozoan sequences. The final set of confidently assigned myxozoan transcripts can be mined for any biologically relevant gene or gene family without spurious misidentification of host contamination as a myxozoan homolog. As exemplified by M. pendula, the repertoire of myxozoan polar capsules may be more complex than previously thought, with an additional minicollagen homolog and putative expression of toxin proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2039-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Foox
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA. .,Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
| | - Maurice Ringuette
- Department of Zoology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Sherwin S Desser
- Department of Zoology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Mark E Siddall
- Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
45
|
Moroz LL. Biodiversity Meets Neuroscience: From the Sequencing Ship (Ship-Seq) to Deciphering Parallel Evolution of Neural Systems in Omic's Era. Integr Comp Biol 2015; 55:1005-17. [PMID: 26163680 DOI: 10.1093/icb/icv084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570-600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the "omic" era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless "experiments" Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience and McKnight Brain Institute, University of Florida, 9505 Ocean Shore Blvd., St Augustine, FL 32080, USA
| |
Collapse
|