1
|
Lamb K, Debban CL, Galloway LF. Phylogeography and paleoclimatic range dynamics explain variable outcomes to contact across a species' range. Mol Ecol 2024; 33:e17450. [PMID: 38973501 DOI: 10.1111/mec.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Replicability of divergence after contact is a poorly characterized process, particularly in the contexts of phylogeography and postglacial range dynamics within species. Using contact zones located at the leading-, mid- and rear-edges of a species' range, we examined variation in outcomes to contact between divergent lineages of Campanula americana. We investigated whether contact zones vary in quantity and directionality of gene flow, how phylogeographic structure differs between contact zones, and how historic range dynamics may affect outcomes to contact. We found that all contact zones formed at similar times via primary contact yet detected significant admixture in only the rear-edge (RE) contact zone. In the northern leading-edge contact zone and the mid-range Virginia contact zone, gene flow was minimal and asymmetric. In the southern RE contact zone, gene flow was strong and symmetric. Asymmetric admixture in the leading-edge and Virginia contact zones matches the directionality of a known cosmopolitan cytonuclear incompatibility between lineages of C. americana. Our results emphasize the dependence of speciation processes on phylogeographic structure, evolutionary history and range dynamics.
Collapse
Affiliation(s)
- Keric Lamb
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine L Debban
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
D'Anatro A, Calvelo J, Feijóo M, Giorello FM. Differential expression analyses and detection of SNP loci associated with environmental variables: Are salinity and temperature factors involved in population differentiation and speciation in Odontesthes? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101262. [PMID: 38861850 DOI: 10.1016/j.cbd.2024.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Environmental factors play a key role in individual adaptation to different local conditions. Because of this, studies about the physiological and genetic responses of individuals exposed to different natural environments offer clues about mechanisms involved in population differentiation, and as a subsequent result, speciation. Marine environments are especially suited to survey this kind of phenomena because they commonly harbor species adapted to different local conditions along a geographic continuum. Silversides belonging to Odontesthes are commonly distributed in tropical and temperate regions of South America and exhibit noticeable phenotypic plasticity, which allows them to adapt to contrasting environments. In this study, the genetic expression of O. argentinensis sampled along the Uruguayan Atlantic coast and estuarine adjacent areas was investigated. In addition, the correlation between individual genotypes and environmental variables was also analysed in O. argentinensis and O. bonariensis. Results obtained suggest a differential expression pattern of low magnitude among individuals from the different areas sampled and a correlation between several SNP loci and environmental variables. The analyses carried out did not show a clear differentiation among individuals sampled along different salinity regimens, but enriched GOTerms seem to be driven by water oxygen content. On the other hand, a total of 46 SNPs analysed in O. argentinensis and O. bonariensis showed a correlation with salinity and temperature. Although none of the correlated SNPs and corresponding genes from our both analyses were directly associated with hypoxia, genes related to the cardiovascular system and muscle cell differentiation were found. All these genes are interesting candidates for future studies since they are closely related to the differentially expressed genes. Although salinity was also mentioned as an important parameter limiting introgression between O. argentinensis and O. bonariensis, it was found that salinity does not drive differential expression in O. argentinensis, but rather oxygen levels. Moreover, salinity does not directly affect the structure and genetic divergence of the populations, they appear to be structured based on their degree of isolation and geographical distance between them. Further studies, like genome-wide analyses, could help to elucidate additional genes adapted to the different environments in these silverside species.
Collapse
Affiliation(s)
- Alejandro D'Anatro
- Laboratorio de Evolución y Sistemática, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| | - Javier Calvelo
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Matías Feijóo
- Centro Universitario Regional Este, Sede Treinta y Tres, Universidad de la República, Treinta y Tres, Uruguay
| | - Facundo M Giorello
- Espacio de Biología Vegetal del Noreste, Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| |
Collapse
|
3
|
Layton KKS, Brieuc MSO, Castilho R, Diaz-Arce N, Estévez-Barcia D, Fonseca VG, Fuentes-Pardo AP, Jeffery NW, Jiménez-Mena B, Junge C, Kaufmann J, Leinonen T, Maes SM, McGinnity P, Reed TE, Reisser CMO, Silva G, Vasemägi A, Bradbury IR. Predicting the future of our oceans-Evaluating genomic forecasting approaches in marine species. GLOBAL CHANGE BIOLOGY 2024; 30:e17236. [PMID: 38519845 DOI: 10.1111/gcb.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
Climate change is restructuring biodiversity on multiple scales and there is a pressing need to understand the downstream ecological and genomic consequences of this change. Recent advancements in the field of eco-evolutionary genomics have sought to include evolutionary processes in forecasting species' responses to climate change (e.g., genomic offset), but to date, much of this work has focused on terrestrial species. Coastal and offshore species, and the fisheries they support, may be even more vulnerable to climate change than their terrestrial counterparts, warranting a critical appraisal of these approaches in marine systems. First, we synthesize knowledge about the genomic basis of adaptation in marine species, and then we discuss the few examples where genomic forecasting has been applied in marine systems. Next, we identify the key challenges in validating genomic offset estimates in marine species, and we advocate for the inclusion of historical sampling data and hindcasting in the validation phase. Lastly, we describe a workflow to guide marine managers in incorporating these predictions into the decision-making process.
Collapse
Affiliation(s)
- K K S Layton
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - R Castilho
- University of the Algarve, Faro, Portugal
- Centre for Marine Sciences, University of the Algarve, Faro, Portugal
- Pattern Institute, Faro, Portugal
| | - N Diaz-Arce
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - D Estévez-Barcia
- Department of Fish and Shellfish, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - V G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - A P Fuentes-Pardo
- Department of Immunology, Genetics and Pathology, SciLifeLab Data Centre, Uppsala University, Uppsala, Sweden
| | - N W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - B Jiménez-Mena
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - C Junge
- Institute of Marine Research, Tromso, Norway
| | | | - T Leinonen
- Natural Resources Institute Finland, Helsinki, Finland
| | - S M Maes
- Flanders Research Institute for Agriculture, Fisheries and Food, Ostend, Belgium
| | - P McGinnity
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - T E Reed
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - C M O Reisser
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - G Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, Lisbon, Portugal
| | - A Vasemägi
- Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Estonian University of Life Sciences, Tartu, Estonia
| | - I R Bradbury
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
4
|
Andersson L, Bekkevold D, Berg F, Farrell ED, Felkel S, Ferreira MS, Fuentes-Pardo AP, Goodall J, Pettersson M. How Fish Population Genomics Can Promote Sustainable Fisheries: A Road Map. Annu Rev Anim Biosci 2024; 12:1-20. [PMID: 37906837 DOI: 10.1146/annurev-animal-021122-102933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Maintenance of genetic diversity in marine fishes targeted by commercial fishing is a grand challenge for the future. Most of these species are abundant and therefore important for marine ecosystems and food security. Here, we present a road map of how population genomics can promote sustainable fisheries. In these species, the development of reference genomes and whole genome sequencing is key, because genetic differentiation at neutral loci is usually low due to large population sizes and gene flow. First, baseline allele frequencies representing genetically differentiated populations within species must be established. These can then be used to accurately determine the composition of mixed samples, forming the basis for population demographic analysis to inform sustainably set fish quotas. SNP-chip analysis is a cost-effective method for determining baseline allele frequencies and for population identification in mixed samples. Finally, we describe how genetic marker analysis can transform stock identification and management.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Edward D Farrell
- Killybegs Fishermen's Organisation, Killybegs, County Donegal, Ireland
| | - Sabine Felkel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Angela P Fuentes-Pardo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Jake Goodall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
5
|
Małachowicz M, Krasnov A, Wenne R. Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations. Cells 2023; 12:2760. [PMID: 38067188 PMCID: PMC10706248 DOI: 10.3390/cells12232760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Adaptation to environmental variation caused by global climate change is a significant aspect of fisheries management and ecology. A reduction in ocean salinity is visible in near-shore areas, especially in the Baltic Sea, where it is affecting the Atlantic cod population. Cod is one of the most significant teleost species, with high ecological and economical value worldwide. The population of cod in the Baltic Sea has been traditionally divided into two subpopulations (western and eastern) existing in higher- and lower-salinity waters, respectively. In recent decades, both Baltic cod subpopulations have declined massively. One of the reasons for the poor condition of cod in the Baltic Sea is environmental factors, including salinity. Thus, in this study, an oligonucleotide microarray was applied to explore differences between Baltic cod subpopulations in response to salinity fluctuations. For this purpose, an exposure experiment was conducted consisting of salinity elevation and reduction, and gene expression was measured in gill tissue. We found 400 differentially expressed genes (DEGs) involved in the immune response, metabolism, programmed cell death, cytoskeleton, and extracellular matrix that showed a subpopulation-dependent pattern. These findings indicate that osmoregulation in Baltic cod is a complex process, and that western and eastern Baltic cod subpopulations respond differently to salinity changes.
Collapse
Affiliation(s)
- Magdalena Małachowicz
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| | - Aleksei Krasnov
- Department of Fish Health, Nofima—Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, NO-1431 Ås, Norway;
| | - Roman Wenne
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| |
Collapse
|
6
|
Helmerson C, Weist P, Brieuc MSO, Maurstad MF, Schade FM, Dierking J, Petereit C, Knutsen H, Metcalfe J, Righton D, André C, Krumme U, Jentoft S, Hanel R. Evidence of hybridization between genetically distinct Baltic cod stocks during peak population abundance(s). Evol Appl 2023; 16:1359-1376. [PMID: 37492148 PMCID: PMC10363836 DOI: 10.1111/eva.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
Range expansions can lead to increased contact of divergent populations, thus increasing the potential of hybridization events. Whether viable hybrids are produced will most likely depend on the level of genomic divergence and associated genomic incompatibilities between the different entities as well as environmental conditions. By taking advantage of historical Baltic cod (Gadus morhua) otolith samples combined with genotyping and whole genome sequencing, we here investigate the genetic impact of the increased spawning stock biomass of the eastern Baltic cod stock in the mid 1980s. The eastern Baltic cod is genetically highly differentiated from the adjacent western Baltic cod and locally adapted to the brackish environmental conditions in the deeper Eastern basins of the Baltic Sea unsuitable for its marine counterparts. Our genotyping results show an increased proportion of eastern Baltic cod in western Baltic areas (Mecklenburg Bay and Arkona Basin)-indicative of a range expansion westwards-during the peak population abundance in the 1980s. Additionally, we detect high frequencies of potential hybrids (including F1, F2 and backcrosses), verified by whole genome sequencing data for a subset of individuals. Analysis of mitochondrial genomes further indicates directional gene flow from eastern Baltic cod males to western Baltic cod females. Our findings unravel that increased overlap in distribution can promote hybridization between highly divergent populations and that the hybrids can be viable and survive under specific and favourable environmental conditions. However, the observed hybridization had seemingly no long-lasting impact on the continuous separation and genetic differentiation between the unique Baltic cod stocks.
Collapse
Affiliation(s)
- Cecilia Helmerson
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | - Peggy Weist
- Thünen Institute of Fisheries EcologyBremerhavenGermany
| | - Marine Servane Ono Brieuc
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
- Institute of Marine ResearchBergenNorway
| | - Marius F. Maurstad
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | | | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research KielGermany
| | | | - Halvor Knutsen
- Institute of Marine ResearchBergenNorway
- Centre for Coastal ResearchUniversity of AgderKristiansandNorway
| | - Julian Metcalfe
- Centre for Environment Fisheries and Aquaculture ScienceLowestoftUK
| | - David Righton
- Centre for Environment Fisheries and Aquaculture ScienceLowestoftUK
| | - Carl André
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Uwe Krumme
- Thünen Institute of Baltic Sea FisheriesRostockGermany
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | | |
Collapse
|
7
|
Baltazar‐Soares M, Britton JR, Pinder A, Harrison AJ, Nunn AD, Quintella BR, Mateus CS, Bolland JD, Dodd JR, Almeida PR, Dominguez Almela V, Andreou D. Seascape genomics reveals limited dispersal and suggests spatially varying selection among European populations of sea lamprey ( Petromyzon marinus). Evol Appl 2023; 16:1169-1183. [PMID: 37360030 PMCID: PMC10286227 DOI: 10.1111/eva.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Sea lamprey Petromyzon marinus is an anadromous and semelparous fish without homing behaviors. Despite being a freshwater, free-living organism for a large part of their life cycle, its adulthood is spent as a parasite of marine vertebrates. In their native European range, while it is well-established that sea lampreys comprise a single nearly-panmictic population, few studies have further explored the evolutionary history of natural populations. Here, we performed the first genome-wide characterization of sea lamprey's genetic diversity in their European natural range. The objectives were to investigate the connectivity among river basins and explore evolutionary processes mediating dispersal during the marine phase, with the sequencing of 186 individuals from 8 locations spanning the North Eastern Atlantic coast and the North Sea with double-digest RAD-sequencing, obtaining a total of 30,910 bi-allelic SNPs. Population genetic analyses reinforced the existence of a single metapopulation encompassing freshwater spawning sites within the North Eastern Atlantic and the North Sea, though the prevalence of private alleles at northern latitudes suggested some limits to the species' dispersal. Seascape genomics suggested a scenario where oxygen concentration and river runoffs impose spatially varying selection across their distribution range. Exploring associations with the abundance of potential hosts further suggested that hake and cod could also impose selective pressures, although the nature of such putative biotic interactions was unresolved. Overall, the identification of adaptive seascapes in a panmictic anadromous species could contribute to conservation practices by providing information for restoration activities to mitigate local extinctions on freshwater sites.
Collapse
Affiliation(s)
- Miguel Baltazar‐Soares
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
- MARE – Marine and Environmental Sciences CentreISPA – Instituto UniversitárioLisbonPortugal
- Department of BiologyUniversity of TurkuTurkuFinland
| | - J. Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| | - Adrian Pinder
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| | - Andrew J. Harrison
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| | - Andrew D. Nunn
- University of HullHull International Fisheries InstituteHullUK
| | - Bernardo R. Quintella
- MARE—Marine and Environmental Sciences CentreUniversity of ÉvoraÉvoraPortugal
- Department of Animal BiologyFaculty of Sciences, University of LisbonLisbonPortugal
| | - Catarina S. Mateus
- MARE—Marine and Environmental Sciences CentreUniversity of ÉvoraÉvoraPortugal
| | | | - Jamie R. Dodd
- University of HullHull International Fisheries InstituteHullUK
| | - Pedro R. Almeida
- MARE—Marine and Environmental Sciences CentreUniversity of ÉvoraÉvoraPortugal
- Department of Biology, School of Sciences and TechnologyUniversity of ÉvoraÉvoraPortugal
| | - Victoria Dominguez Almela
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| | - Demetra Andreou
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| |
Collapse
|
8
|
Rutterford LA, Simpson SD, Bogstad B, Devine JA, Genner MJ. Sea temperature is the primary driver of recent and predicted fish community structure across Northeast Atlantic shelf seas. GLOBAL CHANGE BIOLOGY 2023; 29:2510-2521. [PMID: 36896634 DOI: 10.1111/gcb.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/07/2022] [Indexed: 05/31/2023]
Abstract
Climate change has strongly influenced the distribution and abundance of marine fish species, leading to concern about effects of future climate on commercially harvested stocks. Understanding the key drivers of large-scale spatial variation across present-day marine assemblages enables predictions of future change. Here we present a unique analysis of standardised abundance data for 198 marine fish species from across the Northeast Atlantic collected by 23 surveys and 31,502 sampling events between 2005 and 2018. Our analyses of the spatially comprehensive standardised data identified temperature as the key driver of fish community structure across the region, followed by salinity and depth. We employed these key environmental variables to model how climate change will affect both the distributions of individual species and local community structure for the years 2050 and 2100 under multiple emissions scenarios. Our results consistently indicate that projected climate change will lead to shifts in species communities across the entire region. Overall, the greatest community-level changes are predicted at locations with greater warming, with the most pronounced effects at higher latitudes. Based on these results, we suggest that future climate-driven warming will lead to widespread changes in opportunities for commercial fisheries across the region.
Collapse
Affiliation(s)
- Louise A Rutterford
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk, UK
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Stephen D Simpson
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | | | - Jennifer A Devine
- Institute of Marine Research (IMR), Bergen, Norway
- National Institute of Water and Atmospheric Research (NIWA) Ltd, Nelson, New Zealand
| | - Martin J Genner
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Lotterhos KE. The paradox of adaptive trait clines with nonclinal patterns in the underlying genes. Proc Natl Acad Sci U S A 2023; 120:e2220313120. [PMID: 36917658 PMCID: PMC10041142 DOI: 10.1073/pnas.2220313120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 03/16/2023] Open
Abstract
Multivariate climate change presents an urgent need to understand how species adapt to complex environments. Population genetic theory predicts that loci under selection will form monotonic allele frequency clines with their selective environment, which has led to the wide use of genotype-environment associations (GEAs). This study used a set of simulations to elucidate the conditions under which allele frequency clines are more or less likely to evolve as multiple quantitative traits adapt to multivariate environments. Phenotypic clines evolved with nonmonotonic (i.e., nonclinal) patterns in allele frequencies under conditions that promoted unique combinations of mutations to achieve the multivariate optimum in different parts of the landscape. Such conditions resulted from interactions among landscape, demography, pleiotropy, and genetic architecture. GEA methods failed to accurately infer the genetic basis of adaptation under a range of scenarios due to first principles (clinal patterns did not evolve) or statistical issues (clinal patterns evolved but were not detected due to overcorrection for structure). Despite the limitations of GEAs, this study shows that a back-transformation of multivariate ordination can accurately predict individual multivariate traits from genotype and environmental data regardless of whether inference from GEAs was accurate. In addition, frameworks are introduced that can be used by empiricists to quantify the importance of clinal alleles in adaptation. This research highlights that multivariate trait prediction from genotype and environmental data can lead to accurate inference regardless of whether the underlying loci display clinal or nonmonotonic patterns.
Collapse
Affiliation(s)
- Katie E. Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA01908
| |
Collapse
|
10
|
Wenne R. Single Nucleotide Polymorphism Markers with Applications in Conservation and Exploitation of Aquatic Natural Populations. Animals (Basel) 2023; 13:1089. [PMID: 36978629 PMCID: PMC10044284 DOI: 10.3390/ani13061089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
An increasing number of aquatic species have been studied for genetic polymorphism, which extends the knowledge on their natural populations. One type of high-resolution molecular marker suitable for studying the genetic diversity of large numbers of individuals is single nucleotide polymorphism (SNP). This review is an attempt to show the range of applications of SNPs in studies of natural populations of aquatic animals. In recent years, SNPs have been used in the genetic analysis of wild and enhanced fish and invertebrate populations in natural habitats, exploited migratory species in the oceans, migratory anadromous and freshwater fish and demersal species. SNPs have been used for the identification of species and their hybrids in natural environments, to study the genetic consequences of restocking for conservation purposes and the negative effects on natural populations of fish accidentally escaping from culture. SNPs are very useful for identifying genomic regions correlated with phenotypic variants relevant for wildlife protection, management and aquaculture. Experimental size-selective catches of populations created in tanks have caused evolutionary changes in life cycles of fishes. The research results have been discussed to clarify whether the fish populations in natural conditions can undergo changes due to selective harvesting targeting the fastest-growing fishes.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
11
|
Johannesson K, Leder EH, André C, Dupont S, Eriksson SP, Harding K, Havenhand JN, Jahnke M, Jonsson PR, Kvarnemo C, Pavia H, Rafajlović M, Rödström EM, Thorndyke M, Blomberg A. Ten years of marine evolutionary biology-Challenges and achievements of a multidisciplinary research initiative. Evol Appl 2023; 16:530-541. [PMID: 36793681 PMCID: PMC9923476 DOI: 10.1111/eva.13389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences. What are the footprints of CeMEB, and how will the centre continue to play a national and international role as an important node of marine evolutionary research? In this perspective article, we first look back over the 10 years of CeMEB activities and briefly survey some of the many achievements of CeMEB. We furthermore compare the initial goals, as formulated in the grant application, with what has been achieved, and discuss challenges and milestones along the way. Finally, we bring forward some general lessons that can be learnt from a research funding of this type, and we also look ahead, discussing how CeMEB's achievements and lessons can be used as a springboard to the future of marine evolutionary biology.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Erica H. Leder
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
- Natural History MuseumUniversity of OsloOsloNorway
| | - Carl André
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Sam Dupont
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
- International Atomic Energy AgencyPrincipality of MonacoMonaco
| | - Susanne P. Eriksson
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
| | - Karin Harding
- Department of Biology and Environmental ScienceUniversity of GothenburgGothenburgSweden
| | - Jonathan N. Havenhand
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Marlene Jahnke
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Per R. Jonsson
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Charlotta Kvarnemo
- Department of Biology and Environmental ScienceUniversity of GothenburgGothenburgSweden
| | - Henrik Pavia
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Marina Rafajlović
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Eva Marie Rödström
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Michael Thorndyke
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
- Department of Genomics Research in Ecology & Evolution in Nature (GREEN)Groningen Institute for Evolutionary Life Sciences (GELIFES)De Rijksuniversiteit GroningenGroningenThe Netherlands
| | - Anders Blomberg
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Weist P, Jentoft S, Tørresen OK, Schade FM, Pampoulie C, Krumme U, Hanel R. The role of genomic signatures of directional selection and demographic history in the population structure of a marine teleost with high gene flow. Ecol Evol 2022; 12:e9602. [PMID: 36514551 PMCID: PMC9731920 DOI: 10.1002/ece3.9602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Recent studies have uncovered patterns of genomic divergence in marine teleosts where panmixia due to high gene flow has been the general paradigm. These signatures of divergent selection are often impacted by structural variants, acting as "supergenes" facilitating local adaptation. The highly dispersing European plaice (Pleuronectes platessa)-in which putative structural variants (i.e., inversions) have been identified-has successfully colonized the brackish water ecosystem of the Baltic Sea. Thus, the species represents an ideal opportunity to investigate how the interplay of gene flow, structural variants, natural selection, past demographic history, and gene flow impacts on population (sub)structuring in marine systems. Here, we report on the generation of an annotated draft plaice genome assembly in combination with population sequencing data-following the salinity gradient from the Baltic Sea into the North Sea together with samples from Icelandic waters-to illuminate genome-wide patterns of divergence. Neutral markers pointed at large-scale panmixia across the European continental shelf associated with high gene flow and a common postglacial colonization history of shelf populations. However, based on genome-wide outlier loci, we uncovered signatures of population substructuring among the European continental shelf populations, i.e., suggesting signs of ongoing selection. Genome-wide selection analyses (xp-EHH) and the identification of genes within genomic regions of recent selective sweeps-overlapping with the outlier loci-suggest that these represent the signs of divergent selection. Our findings provide support for genomic divergence driven by local adaptation in the face of high gene flow and elucidate the relative importance of demographic history versus adaptive divergence in shaping the contemporary population genetic structure of a marine teleost. The role of the putative inversion(s) in the substructuring-and potentially ongoing adaptation-was seemingly not substantial.
Collapse
Affiliation(s)
- Peggy Weist
- Thünen Institute of Fisheries EcologyBremerhavenGermany
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | - Ole K. Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | | | | | - Uwe Krumme
- Thünen Institute of Baltic Sea FisheriesRostockGermany
| | | |
Collapse
|
14
|
Nedoluzhko A, Orlova SY, Kurnosov DS, Orlov AM, Galindo-Villegas J, Rastorguev SM. Genomic Signatures of Freshwater Adaptation in Pacific Herring ( Clupea pallasii). Genes (Basel) 2022; 13:genes13101856. [PMID: 36292743 PMCID: PMC9601299 DOI: 10.3390/genes13101856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as “genomic islands of divergence”. Moreover, the Tajima’s D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait—osmoregulation.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, 191187 Saint Petersburg, Russia
- Limited Liability Company ELGENE, 109029 Moscow, Russia
| | - Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 107140 Moscow, Russia
- Laboratory of Genetic Basis of Identification, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Denis S. Kurnosov
- Research Group of Intraspecific Differentiation, Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), 690091 Vladivostok, Russia
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology of the Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
- Department of Ichthyology and Hydrobiology, Tomsk State University, 634050 Tomsk, Russia
- Laboratory of Marine Biology, Caspian Institute of Biological Resources, Russian Academy of Sciences, 367000 Makhachkala, Russia
| | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Sergey M. Rastorguev
- Limited Liability Company ELGENE, 109029 Moscow, Russia
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| |
Collapse
|
15
|
Canales‐Aguirre CB, Larson WA, McKinney GJ, Claure CE, Rocha JD, Ceballos SG, Cádiz MI, Yáñez JM, Gomez‐Uchida D. Neutral and adaptive loci reveal fine-scale population structure in Eleginops maclovinus from north Patagonia. Ecol Evol 2022; 12:e9343. [PMID: 36225825 PMCID: PMC9530513 DOI: 10.1002/ece3.9343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Patagonia is an understudied area, especially when it comes to population genomic studies with relevance to fishery management. However, the dynamic and heterogeneous landscape in this area can harbor an important but cryptic genetic population structure. Once such information is revealed, it can be integrated into the management of infrequently investigated species. Eleginops maclovinus is a protandrous hermaphrodite species with economic importance for local communities that are currently managed as a single genetic unit. In this study, we sampled five locations distributed across a salinity cline from Northern Patagonia to investigate the genetic population structure of E. maclovinus. We used restriction site-associated DNA (RAD) sequencing and outlier tests to obtain neutral and adaptive loci, using FST and GEA approaches. We identified a spatial pattern of structuration with gene flow and spatial selection by environmental association. Neutral and adaptive loci showed two and three genetic groups, respectively. The effective population sizes estimated ranged from 572 (Chepu) to 14,454 (Chaitén) and were influenced more by locality than by salinity cline. We found loci putatively associated with salinity suggesting that salinity may act as a selective driver in E. maclovinus populations. These results suggest a complex interaction between genetic drift, gene flow, and natural selection in this area. Our findings also suggest several evolutionary significant units in this area, and the information should be integrated into the management of this species. We discussed the significance of these results for fishery management and suggest future directions to improve our understanding of how E. maclovinus has adapted to the dynamic waters of Northern Patagonia.
Collapse
Affiliation(s)
| | - Wesley A. Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science CenterAuke Bay LaboratoriesJuneauAlaskaUSA
| | | | - C. Eliza Claure
- Centro i~mar, Universidad de Los LagosPuerto MonttChile
- Núcleo Milenio INVASALConcepciónChile
| | - J. Dellis Rocha
- Centro i~mar, Universidad de Los LagosPuerto MonttChile
- Núcleo Milenio INVASALConcepciónChile
| | - Santiago G. Ceballos
- Centro Austral de Investigaciones Científicas (CADIC‐CONICET)UshuaiaTierra del FuegoArgentina
- Universidad Nacional de Tierra del Fuego (ICPA‐UNTDF)UshuaiaArgentina
| | - María I. Cádiz
- Núcleo Milenio INVASALConcepciónChile
- Department of BiologyAarhus UniversityAarhus CDenmark
| | - José M. Yáñez
- Núcleo Milenio INVASALConcepciónChile
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileLa PintanaSantiagoChile
| | - Daniel Gomez‐Uchida
- Núcleo Milenio INVASALConcepciónChile
- Genomics in Ecology, Evolution & Conservation Lab (GEECLAB), Departamento de Zoología. Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
| |
Collapse
|
16
|
Provost K, Shue SY, Forcellati M, Smith BT. The Genomic Landscapes of Desert Birds Form over Multiple Time Scales. Mol Biol Evol 2022; 39:6711078. [PMID: 36134537 PMCID: PMC9577548 DOI: 10.1093/molbev/msac200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spatial models show that genetic differentiation between populations can be explained by factors ranging from geographic distance to environmental resistance across the landscape. However, genomes exhibit a landscape of differentiation, indicating that multiple processes may mediate divergence in different portions of the genome. We tested this idea by comparing alternative geographic predctors of differentiation in ten bird species that co-occur in Sonoran and Chihuahuan Deserts of North America. Using population-level genomic data, we described the genomic landscapes across species and modeled conditions that represented historical and contemporary mechanisms. The characteristics of genomic landscapes differed across species, influenced by varying levels of population structuring and admixture between deserts, and the best-fit models contrasted between the whole genome and partitions along the genome. Both historical and contemporary mechanisms were important in explaining genetic distance, but particularly past and current environments, suggesting that genomic evolution was modulated by climate and habitat There were also different best-ftit models across genomic partitions of the data, indicating that these regions capture different evolutionary histories. These results show that the genomic landscape of differentiation can be associated with alternative geographic factors operating on different portions of the genome, which reflect how heterogeneous patterns of genetic differentiation can evolve across species and genomes.
Collapse
Affiliation(s)
| | - Stephanie Yun Shue
- Bergen County Academies, Hackensack, NJ, USA,Biological Sciences, University of California Berkeley, Berkeley, CA, USA
| | - Meghan Forcellati
- Bergen County Academies, Hackensack, NJ, USA,Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
17
|
Westram AM, Faria R, Johannesson K, Butlin R, Barton N. Inversions and parallel evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210203. [PMID: 35694747 PMCID: PMC9189493 DOI: 10.1098/rstb.2021.0203] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.
Collapse
Affiliation(s)
- Anja M Westram
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Roger Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nick Barton
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|
18
|
Jiménez‐Mena B, Flávio H, Henriques R, Manuzzi A, Ramos M, Meldrup D, Edson J, Pálsson S, Ásta Ólafsdóttir G, Ovenden JR, Nielsen EE. Fishing for DNA? Designing baits for population genetics in target enrichment experiments: Guidelines, considerations and the new tool supeRbaits. Mol Ecol Resour 2022; 22:2105-2119. [PMID: 35178874 PMCID: PMC9313901 DOI: 10.1111/1755-0998.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Targeted sequencing is an increasingly popular next-generation sequencing (NGS) approach for studying populations that involves focusing sequencing efforts on specific parts of the genome of a species of interest. Methodologies and tools for designing targeted baits are scarce but in high demand. Here, we present specific guidelines and considerations for designing capture sequencing experiments for population genetics for both neutral genomic regions and regions subject to selection. We describe the bait design process for three diverse fish species: Atlantic salmon, Atlantic cod and tiger shark, which was carried out in our research group, and provide an evaluation of the performance of our approach across both historical and modern samples. The workflow used for designing these three bait sets has been implemented in the R-package supeRbaits, which encompasses our considerations and guidelines for bait design for the benefit of researchers and practitioners. The supeRbaits R-package is user-friendly and versatile. It is written in C++ and implemented in R. supeRbaits and its manual are available from Github: https://github.com/BelenJM/supeRbaits.
Collapse
Affiliation(s)
- Belén Jiménez‐Mena
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Hugo Flávio
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Romina Henriques
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Alice Manuzzi
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | - Dorte Meldrup
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Janette Edson
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Snæbjörn Pálsson
- Faculty of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
| | | | - Jennifer R. Ovenden
- Molecular Fisheries Laboratory, School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Einar Eg Nielsen
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| |
Collapse
|
19
|
Velotta JP, McCormick SD, Whitehead A, Durso CS, Schultz ET. Repeated Genetic Targets of Natural Selection Underlying Adaptation of Fishes to Changing Salinity. Integr Comp Biol 2022; 62:357-375. [PMID: 35661215 DOI: 10.1093/icb/icac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Stephen D McCormick
- USGS, Eastern Ecological Science Center, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA, 01003USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, USA
| | - Catherine S Durso
- Department of Computer Science, University of Denver, Denver, CO 80210, USA
| | - Eric T Schultz
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
20
|
Geburzi JC, Heuer N, Homberger L, Kabus J, Moesges Z, Ovenbeck K, Brandis D, Ewers C. An environmental gradient dominates ecological and genetic differentiation of marine invertebrates between the North and Baltic Sea. Ecol Evol 2022; 12:e8868. [PMID: 35600684 PMCID: PMC9121054 DOI: 10.1002/ece3.8868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Environmental gradients have emerged as important barriers to structuring populations and species distributions. We set out to test whether the strong salinity gradient from the marine North Sea to the brackish Baltic Sea in northern Europe represents an ecological and genetic break, and to identify life history traits that correlate with the strength of this break. We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data, and data on the distribution, salinity tolerance, and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta, and Gastrotricha. We included seven non‐native species covering a broad range of times since introduction, in order to gain insight into the pace of adaptation and differentiation. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times, and migration rates between North and Baltic Sea populations, and analyzed correlations between genetic and life history data. The majority of investigated species is either genetically differentiated and/or adapted to the lower salinity conditions of the Baltic Sea. Species exhibiting population structure have a range of patterns of genetic diversity in comparison with the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Two of the non‐native species showed signs of genetic differentiation, their times since introduction to the Baltic Sea being about 80 and >700 years, respectively. Our results indicate that the transition from North Sea to Baltic Sea represents a genetic and ecological break: The diversity of genetic patterns points toward independent trajectories in the Baltic compared with the North Sea, and ecological differences with regard to salinity tolerance are common. The North Sea–Baltic Sea region provides a unique setting to study evolutionary adaptation during colonization processes at different stages by jointly considering native and non‐native species.
Collapse
Affiliation(s)
- Jonas C. Geburzi
- Mangrove Ecology Leibniz Centre for Tropical Marine Research (ZMT) Bremen Germany
- Department of Organismic and Evolutionary Biology Museum of Comparative Zoology Harvard University Cambridge Massachusetts USA
- Zoological Museum Kiel University Kiel Germany
| | - Nele Heuer
- Zoological Museum Kiel University Kiel Germany
| | | | - Jana Kabus
- Zoological Museum Kiel University Kiel Germany
- Department Aquatic Ecotoxicology Institute of Ecology Diversity and Evolution Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Zoe Moesges
- Zoological Museum Kiel University Kiel Germany
| | | | | | | |
Collapse
|
21
|
Matschiner M, Barth JMI, Tørresen OK, Star B, Baalsrud HT, Brieuc MSO, Pampoulie C, Bradbury I, Jakobsen KS, Jentoft S. Supergene origin and maintenance in Atlantic cod. Nat Ecol Evol 2022; 6:469-481. [PMID: 35177802 PMCID: PMC8986531 DOI: 10.1038/s41559-022-01661-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Supergenes are sets of genes that are inherited as a single marker and encode complex phenotypes through their joint action. They are identified in an increasing number of organisms, yet their origins and evolution remain enigmatic. In Atlantic cod, four megabase-scale supergenes have been identified and linked to migratory lifestyle and environmental adaptations. Here we investigate the origin and maintenance of these four supergenes through analysis of whole-genome-sequencing data, including a new long-read-based genome assembly for a non-migratory Atlantic cod individual. We corroborate the finding that chromosomal inversions underlie all four supergenes, and we show that they originated at different times between 0.40 and 1.66 million years ago. We reveal gene flux between supergene haplotypes where migratory and stationary Atlantic cod co-occur and conclude that this gene flux is driven by gene conversion, on the basis of an increase in GC content in exchanged sites. Additionally, we find evidence for double crossover between supergene haplotypes, leading to the exchange of an ~275 kilobase fragment with genes potentially involved in adaptation to low salinity in the Baltic Sea. Our results suggest that supergenes can be maintained over long timescales in the same way as hybridizing species, through the selective purging of introduced genetic variation. Atlantic cod carries four supergenes linked to migratory lifestyle and environmental adaptations. Using whole-genome sequencing, the authors show that the genome inversions that underlie the supergenes originated at different times and show gene flux between supergene haplotypes.
Collapse
Affiliation(s)
- Michael Matschiner
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway. .,Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland. .,Natural History Museum, University of Oslo, Oslo, Norway.
| | - Julia Maria Isis Barth
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Ole Kristian Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Helle Tessand Baalsrud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marine Servane Ono Brieuc
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Ian Bradbury
- Fisheries and Oceans Canada, St John's, Newfoundland and Labrador, Canada
| | - Kjetill Sigurd Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
22
|
Ackiss AS, Magee MR, Sass GG, Turnquist K, McIntyre PB, Larson WA. Genomic and environmental influences on resilience in a cold-water fish near the edge of its range. Evol Appl 2021; 14:2794-2814. [PMID: 34950230 PMCID: PMC8674893 DOI: 10.1111/eva.13313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Small, isolated populations present a challenge for conservation. The dueling effects of selection and drift in a limited pool of genetic diversity make the responses of small populations to environmental perturbations erratic and difficult to predict. This is particularly true at the edge of a species range, where populations often persist at the limits of their environmental tolerances. Populations of cisco, Coregonus artedi, in inland lakes have experienced numerous extirpations along the southern edge of their range in recent decades, which are thought to result from environmental degradation and loss of cold, well-oxygenated habitat as lakes warm. Yet, cisco extirpations do not show a clear latitudinal pattern, suggesting that local environmental factors and potentially local adaptation may influence resilience. Here, we used genomic tools to investigate the nature of this pattern of resilience. We used restriction site-associated DNA capture (Rapture) sequencing to survey genomic diversity and differentiation in southern inland lake cisco populations and compared the frequency of deleterious mutations that potentially influence fitness across lakes. We also examined haplotype diversity in a region of the major histocompatibility complex involved in stress and immune system response. We correlated these metrics to spatial and environmental factors including latitude, lake size, and measures of oxythermal habitat and found significant relationships between genetic metrics and broad and local factors. High levels of genetic differentiation among populations were punctuated by a phylogeographic break and residual patterns of isolation-by-distance. Although the prevalence of deleterious mutations and inbreeding coefficients was significantly correlated with latitude, neutral and non-neutral genetic diversity were most strongly correlated with lake surface area. Notably, differences among lakes in the availability of estimated oxythermal habitat left no clear population genomic signature. Our results shed light on the complex dynamics influencing these isolated populations and provide valuable information for their conservation.
Collapse
Affiliation(s)
- Amanda S. Ackiss
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- U.S. Geological SurveyGreat Lakes Science CenterAnn ArborMichiganUSA
| | | | - Greg G. Sass
- Escanaba Lake Research StationWisconsin Department of Natural ResourcesBoulder JunctionWisconsinUSA
| | - Keith Turnquist
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Peter B. McIntyre
- Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- National Oceanographic and Atmospheric AdministrationNational Marine Fisheries ServiceAlaska Fisheries Science CenterAuke Bay LaboratoriesJuneauAlaskaUSA
| |
Collapse
|
23
|
Ferrari G, Atmore LM, Jentoft S, Jakobsen KS, Makowiecki D, Barrett JH, Star B. An accurate assignment test for extremely low-coverage whole-genome sequence data. Mol Ecol Resour 2021; 22:1330-1344. [PMID: 34779123 DOI: 10.1111/1755-0998.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Genomic assignment tests can provide important diagnostic biological characteristics, such as population of origin or ecotype. Yet, assignment tests often rely on moderate- to high-coverage sequence data that can be difficult to obtain for fields such as molecular ecology and ancient DNA. We have developed a novel approach that efficiently assigns biologically relevant information (i.e., population identity or structural variants such as inversions) in extremely low-coverage sequence data. First, we generate databases from existing reference data using a subset of diagnostic single nucleotide polymorphisms (SNPs) associated with a biological characteristic. Low-coverage alignment files are subsequently compared to these databases to ascertain allelic state, yielding a joint probability for each association. To assess the efficacy of this approach, we assigned haplotypes and population identity in Heliconius butterflies, Atlantic herring, and Atlantic cod using chromosomal inversion sites and whole-genome data. We scored both modern and ancient specimens, including the first whole-genome sequence data recovered from ancient Atlantic herring bones. The method accurately assigns biological characteristics, including population membership, using extremely low-coverage data (as low as 0.0001x) based on genome-wide SNPs. This approach will therefore increase the number of samples in evolutionary, ecological and archaeological research for which relevant biological information can be obtained.
Collapse
Affiliation(s)
- Giada Ferrari
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lane M Atmore
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel Makowiecki
- Department of Environmental Archaeology and Human Paleoecology, Institute of Archaeology, Nicolaus Copernicus University, Torun, Poland
| | - James H Barrett
- McDonald Institute for Archaeological Research, Department of Archaeology, University of Cambridge, Cambridge, UK.,Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Sjöqvist C, Delgado LF, Alneberg J, Andersson AF. Ecologically coherent population structure of uncultivated bacterioplankton. THE ISME JOURNAL 2021; 15:3034-3049. [PMID: 33953362 PMCID: PMC8443644 DOI: 10.1038/s41396-021-00985-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Bacterioplankton are main drivers of biogeochemical cycles and important components of aquatic food webs. While sequencing-based studies have revealed how bacterioplankton communities are structured in time and space, relatively little is known about intraspecies diversity patterns and their ecological relevance. Here, we use the newly developed software POGENOM (POpulation GENomics from Metagenomes) to investigate genomic diversity and differentiation in metagenome-assembled genomes from the Baltic Sea, and investigate their genomic variation using metagenome data spanning a 1700 km transect and covering seasonal variation at one station. The majority of the investigated species, representing several major bacterioplankton clades, displayed population structures correlating significantly with environmental factors such as salinity and temperature. Population differentiation was more pronounced over spatial than temporal scales. We discovered genes that have undergone adaptation to different salinity regimes, potentially responsible for the populations' existence along with the salinity range. This in turn implies the broad existence of ecotypes that may remain undetected by rRNA gene sequencing. Our findings emphasize the importance of physiological barriers, and highlight the role of adaptive divergence as a structuring mechanism of bacterioplankton species.
Collapse
Affiliation(s)
- Conny Sjöqvist
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden ,grid.13797.3b0000 0001 2235 8415Åbo Akademi University, Faculty of Science and Engineering, Environmental and Marine Biology, Åbo, Finland
| | - Luis Fernando Delgado
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Johannes Alneberg
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Anders F. Andersson
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| |
Collapse
|
25
|
Kitada S, Nakamichi R, Kishino H. Understanding population structure in an evolutionary context: population-specific FST and pairwise FST. G3-GENES GENOMES GENETICS 2021; 11:6364900. [PMID: 34549777 PMCID: PMC8527463 DOI: 10.1093/g3journal/jkab316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023]
Abstract
Populations are shaped by their history. It is crucial to interpret population structure in an evolutionary context. Pairwise FST measures population structure, whereas population-specific FST measures deviation from the ancestral population. To understand the current population structure and a population’s history of range expansion, we propose a representation method that overlays population-specific FST estimates on a sampling location map, and on an unrooted neighbor-joining tree and a multi-dimensional scaling plot inferred from a pairwise FST distance matrix. We examined the usefulness of our procedure using simulations that mimicked population colonization from an ancestral population and by analyzing published human, Atlantic cod, and wild poplar data. Our results demonstrated that population-specific FST values identify the source population and trace the evolutionary history of its derived populations. Conversely, pairwise FST values represent the current population structure. By integrating the results of both estimators, we obtained a new picture of the population structure that incorporates evolutionary history. The generalized least squares estimate of genome-wide population-specific FST indicated that the wild poplar population expanded its distribution to the north, where daylight hours are long in summer, to coastal areas with abundant rainfall, and to the south where summers are dry. Genomic data highlight the power of the bias-corrected moment estimators of FST, whether global, pairwise, or population-specific, that provide unbiased estimates of FST. All FST moment estimators described in this paper have reasonable processing times and are useful in population genomics studies.
Collapse
Affiliation(s)
- Shuichi Kitada
- Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | | | - Hirohisa Kishino
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.,The Research Institute of Evolutionary Biology, Tokyo 138-0098, Japan
| |
Collapse
|
26
|
O’Donnell TP, Sullivan TJ. Low-coverage whole-genome sequencing reveals molecular markers for spawning season and sex identification in Gulf of Maine Atlantic cod ( Gadus morhua, Linnaeus 1758). Ecol Evol 2021; 11:10659-10671. [PMID: 34367604 PMCID: PMC8328444 DOI: 10.1002/ece3.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
Atlantic cod (Gadus morhua, Linnaeus 1758) in the western Gulf of Maine are managed as a single stock despite several lines of evidence supporting two spawning groups (spring and winter) that overlap spatially, while exhibiting seasonal spawning isolation. Low-coverage whole-genome sequencing was used to evaluate the genomic population structure of Atlantic cod spawning groups in the western Gulf of Maine and Georges Bank using 222 individuals collected over multiple years. Results indicated low total genomic differentiation, while also showing strong differentiation between spring and winter-spawning groups at specific regions of the genome. Guided regularized random forest and ranked F ST methods were used to select panels of single nucleotide polymorphisms (SNPs) that could reliably distinguish spring and winter-spawning Atlantic cod (88.5% assignment rate), as well as males and females (95.0% assignment rate) collected in the western Gulf of Maine. These SNP panels represent a valuable tool for fisheries research and management of Atlantic cod in the western Gulf of Maine that will aid investigations of stock production and support accuracy of future assessments.
Collapse
Affiliation(s)
| | - Timothy J. Sullivan
- Gloucester Marine Genomics InstituteGloucesterMAUSA
- USDA – National Institute of Food and AgricultureKansas CityMOUSA
| |
Collapse
|
27
|
Martínez-García L, Ferrari G, Oosting T, Ballantyne R, van der Jagt I, Ystgaard I, Harland J, Nicholson R, Hamilton-Dyer S, Baalsrud HT, Brieuc MSO, Atmore LM, Burns F, Schmölcke U, Jakobsen KS, Jentoft S, Orton D, Hufthammer AK, Barrett JH, Star B. Historical Demographic Processes Dominate Genetic Variation in Ancient Atlantic Cod Mitogenomes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.671281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ancient DNA (aDNA) approaches have been successfully used to infer the long-term impacts of climate change, domestication, and human exploitation in a range of terrestrial species. Nonetheless, studies investigating such impacts using aDNA in marine species are rare. Atlantic cod (Gadus morhua), is an economically important species that has experienced dramatic census population declines during the last century. Here, we investigated 48 ancient mitogenomes from historical specimens obtained from a range of archeological excavations in northern Europe dated up to 6,500 BCE. We compare these mitogenomes to those of 496 modern conspecifics sampled across the North Atlantic Ocean and adjacent seas. Our results confirm earlier observations of high levels of mitogenomic variation and a lack of mutation-drift equilibrium—suggestive of population expansion. Furthermore, our temporal comparison yields no evidence of measurable mitogenomic changes through time. Instead, our results indicate that mitogenomic variation in Atlantic cod reflects past demographic processes driven by major historical events (such as oscillations in sea level) and subsequent gene flow rather than contemporary fluctuations in stock abundance. Our results indicate that historical and contemporaneous anthropogenic pressures such as commercial fisheries have had little impact on mitogenomic diversity in a wide-spread marine species with high gene flow such as Atlantic cod. These observations do not contradict evidence that overfishing has had negative consequences for the abundance of Atlantic cod and the importance of genetic variation in implementing conservation strategies. Instead, these observations imply that any measures toward the demographic recovery of Atlantic cod in the eastern Atlantic, will not be constrained by recent loss of historical mitogenomic variation.
Collapse
|
28
|
Goehlich H, Sartoris L, Wagner KS, Wendling CC, Roth O. Pipefish Locally Adapted to Low Salinity in the Baltic Sea Retain Phenotypic Plasticity to Cope With Ancestral Salinity Levels. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic adaptation and phenotypic plasticity facilitate the migration into new habitats and enable organisms to cope with a rapidly changing environment. In contrast to genetic adaptation that spans multiple generations as an evolutionary process, phenotypic plasticity allows acclimation within the life-time of an organism. Genetic adaptation and phenotypic plasticity are usually studied in isolation, however, only by including their interactive impact, we can understand acclimation and adaptation in nature. We aimed to explore the contribution of adaptation and plasticity in coping with an abiotic (salinity) and a biotic (Vibriobacteria) stressor using six different populations of the broad-nosed pipefishSyngnathus typhlethat originated from either high [14–17 Practical Salinity Unit (PSU)] or low (7–11 PSU) saline environments along the German coastline of the Baltic Sea. We exposed wild caught animals, to either high (15 PSU) or low (7 PSU) salinity, representing native and novel salinity conditions and allowed animals to mate. After male pregnancy, offspring was split and each half was exposed to one of the two salinities and infected withVibrio alginolyticusbacteria that were evolved at either of the two salinities in a fully reciprocal design. We investigated life-history traits of fathers and expression of 47 target genes in mothers and offspring. Pregnant males originating from high salinity exposed to low salinity were highly susceptible to opportunistic fungi infections resulting in decreased offspring size and number. In contrast, no signs of fungal infection were identified in fathers originating from low saline conditions suggesting that genetic adaptation has the potential to overcome the challenges encountered at low salinity. Offspring from parents with low saline origin survived better at low salinity suggesting genetic adaptation to low salinity. In addition, gene expression analyses of juveniles indicated patterns of local adaptation,trans-generational plasticity and developmental plasticity. In conclusion, our study suggests that pipefish are locally adapted to the low salinity in their environment, however, they are retaining phenotypic plasticity, which allows them to also cope with ancestral salinity levels and prevailing pathogens.
Collapse
|
29
|
Puncher GN, Rowe S, Rose GA, Parent GJ, Wang Y, Pavey SA. Life-stage-dependent supergene haplotype frequencies and metapopulation neutral genetic patterns of Atlantic cod, Gadus morhua, from Canada's Northern cod stock region and adjacent areas. JOURNAL OF FISH BIOLOGY 2021; 98:817-828. [PMID: 33244791 DOI: 10.1111/jfb.14632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
Among highly migratory fish species, nursery areas occupied by juveniles often differ from adult habitats. To better understand the spatial dynamics of Canada's Northern cod stock, juveniles caught off the east coast of Newfoundland and Labrador were compared to adults from the same region as well as individuals from other areas in Atlantic Canada using double-digest restriction site-associated DNA sequencing-derived single nucleotide polymorphisms. A reduced proportion of homozygotes with a chromosomal inversion located in linkage group 1 (LG1) was detected between juvenile and adult samples in the Northern cod stock region, potentially indicating age-dependent habitat use or ontogenetic selection for attributes associated with the many genes located in LG1. No selectively neutral genetic differences were found between samples from the Northern cod stock; nevertheless, significant differences were found between some of these samples and cod collected from St. Pierre Bank, Bay of Fundy, Browns Bank and the southern Scotian Shelf. Clustering analysis of variants at neutral loci provided evidence for three major genetic units: (a) the Newfoundland Atlantic Coast, (b) eastern and southern Gulf of St. Lawrence and Burgeo Bank and (c) the Bay of Fundy, Browns Bank and southern Scotian Shelf. Both adaptive and neutral population structure within the Northern cod stock should be considered by managers to promote demographic rebuilding of the stock.
Collapse
Affiliation(s)
- Gregory Neils Puncher
- Department of Biological Sciences, Canadian Rivers Institute, University of New Brunswick, Saint John, Canada
- Genomics Laboratory, Maurice-Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Canada
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, Canada
| | - Sherrylynn Rowe
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, Canada
| | - George A Rose
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| | - Geneviève J Parent
- Genomics Laboratory, Maurice-Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Canada
| | - Yanjun Wang
- Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, Canada
| | - Scott A Pavey
- Department of Biological Sciences, Canadian Rivers Institute, University of New Brunswick, Saint John, Canada
| |
Collapse
|
30
|
Quintela M, Richter‐Boix À, Bekkevold D, Kvamme C, Berg F, Jansson E, Dahle G, Besnier F, Nash RDM, Glover KA. Genetic response to human-induced habitat changes in the marine environment: A century of evolution of European sprat in Landvikvannet, Norway. Ecol Evol 2021; 11:1691-1718. [PMID: 33613998 PMCID: PMC7882954 DOI: 10.1002/ece3.7160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
Habitat changes represent one of the five most pervasive threats to biodiversity. However, anthropogenic activities also have the capacity to create novel niche spaces to which species respond differently. In 1880, one such habitat alterations occurred in Landvikvannet, a freshwater lake on the Norwegian coast of Skagerrak, which became brackish after being artificially connected to the sea. This lake is now home to the European sprat, a pelagic marine fish that managed to develop a self-recruiting population in barely few decades. Landvikvannet sprat proved to be genetically isolated from the three main populations described for this species; that is, Norwegian fjords, Baltic Sea, and the combination of North Sea, Kattegat, and Skagerrak. This distinctness was depicted by an accuracy self-assignment of 89% and a highly significant F ST between the lake sprat and each of the remaining samples (average of ≈0.105). The correlation between genetic and environmental variation indicated that salinity could be an important environmental driver of selection (3.3% of the 91 SNPs showed strong associations). Likewise, Isolation by Environment was detected for salinity, although not for temperature, in samples not adhering to an Isolation by Distance pattern. Neighbor-joining tree analysis suggested that the source of the lake sprat is in the Norwegian fjords, rather than in the Baltic Sea despite a similar salinity profile. Strongly drifted allele frequencies and lower genetic diversity in Landvikvannet compared with the Norwegian fjords concur with a founder effect potentially associated with local adaptation to low salinity. Genetic differentiation (F ST) between marine and brackish sprat is larger in the comparison Norway-Landvikvannet than in Norway-Baltic, which suggests that the observed divergence was achieved in Landvikvannet in some 65 generations, that is, 132 years, rather than gradually over thousands of years (the age of the Baltic Sea), thus highlighting the pace at which human-driven evolution can happen.
Collapse
Affiliation(s)
| | - Àlex Richter‐Boix
- CREAFCampus de BellaterraAutonomous University of BarcelonaBarcelonaSpain
| | - Dorte Bekkevold
- DTU‐Aqua National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | | | | | - Geir Dahle
- Institute of Marine ResearchBergenNorway
| | | | - Richard D. M. Nash
- Centre for EnvironmentFisheries and Aquaculture Science (Cefas)LowestoftUK
| | - Kevin A. Glover
- Institute of Marine ResearchBergenNorway
- Institute of BiologyUniversity of BergenBergenNorway
| |
Collapse
|
31
|
Under the radar: genetic assessment of Rio Grande Shiner (Notropis jemezanus) and Speckled Chub (Macrhybopsis aestivalis), two Rio Grande basin endemic cyprinids that have experienced recent range contractions. CONSERV GENET 2021. [DOI: 10.1007/s10592-020-01328-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
|
33
|
Berdan EL, Fuller RC, Kozak GM. Genomic landscape of reproductive isolation in Lucania killifish: The role of sex loci and salinity. J Evol Biol 2020; 34:157-174. [PMID: 33118222 PMCID: PMC7894299 DOI: 10.1111/jeb.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 01/24/2023]
Abstract
Adaptation to different environments can directly and indirectly generate reproductive isolation between species. Bluefin killifish (Lucania goodei) and rainwater killifish (L. parva) are sister species that have diverged across a salinity gradient and are reproductively isolated by habitat, behavioural, extrinsic and intrinsic post-zygotic isolation. We asked if salinity adaptation contributes indirectly to other forms of reproductive isolation via linked selection and hypothesized that low recombination regions, such as sex chromosomes or chromosomal rearrangements, might facilitate this process. We conducted QTL mapping in backcrosses between L. parva and L. goodei to explore the genetic architecture of salinity tolerance, behavioural isolation and intrinsic isolation. We mapped traits relative to a chromosome that has undergone a centric fusion in L. parva (relative to L. goodei). We found that the sex locus appears to be male determining (XX-XY), was located on the fused chromosome and was implicated in intrinsic isolation. QTL associated with salinity tolerance were spread across the genome and did not overly co-localize with regions associated with behavioural or intrinsic isolation. This preliminary analysis of the genetic architecture of reproductive isolation between Lucania species does not support the hypothesis that divergent natural selection for salinity tolerance led to behavioural and intrinsic isolation as a by-product. Combined with previous studies in this system, our work suggests that adaptation as a function of salinity contributes to habitat isolation and that reinforcement may have contributed to the evolution of behavioural isolation instead, possibly facilitated by linkage between behavioural isolation and intrinsic isolation loci on the fused chromosome.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Rebecca C Fuller
- Department of Animal Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts-Dartmouth, Dartmouth, MA, USA
| |
Collapse
|
34
|
Johannesson K, Le Moan A, Perini S, André C. A Darwinian Laboratory of Multiple Contact Zones. Trends Ecol Evol 2020; 35:1021-1036. [DOI: 10.1016/j.tree.2020.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
|
35
|
Jansson E, Besnier F, Malde K, André C, Dahle G, Glover KA. Genome wide analysis reveals genetic divergence between Goldsinny wrasse populations. BMC Genet 2020; 21:118. [PMID: 33036553 PMCID: PMC7547435 DOI: 10.1186/s12863-020-00921-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies. Results After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33,235 SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global FST among these populations was 0.015–0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and ~ 1% within Scandinavia. SNPs showing large divergence (FST > 0.15) were picked as candidate diagnostic markers for population assignment. One hundred seventy-three of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species’ Scandinavian distribution range. Sixty-nine of these SNPs were significantly (p < 0.05) differentiated (mean FST_173_loci = 0.065, FST_69_loci = 0.140). Using these validated SNPs, individuals were assigned with high probability (≥ 94%) to their populations of origin. Conclusions Goldsinny wrasse displays a highly polymorphic genome, and substantial population genomic structure. Diversifying selection likely affects population structuring globally and within Scandinavia. The diagnostic loci identified now provide a promising and cost-efficient tool to investigate goldsinny wrasse populations further.
Collapse
Affiliation(s)
- Eeva Jansson
- Institute of Marine Research, P. O. Box 1870, Nordnes, 5817, Bergen, Norway.
| | - Francois Besnier
- Institute of Marine Research, P. O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Ketil Malde
- Institute of Marine Research, P. O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Carl André
- Department of Marine Sciences-Tjärnö, University of Gothenburg, 45296, Strömstad, Sweden
| | - Geir Dahle
- Institute of Marine Research, P. O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Kevin A Glover
- Institute of Marine Research, P. O. Box 1870, Nordnes, 5817, Bergen, Norway.,Institute of Biology, University of Bergen, P. O. Box 7803, 5020, Bergen, Norway
| |
Collapse
|
36
|
A Nanopore Based Chromosome-Level Assembly Representing Atlantic Cod from the Celtic Sea. G3-GENES GENOMES GENETICS 2020; 10:2903-2910. [PMID: 32641450 PMCID: PMC7466986 DOI: 10.1534/g3.120.401423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently available genome assemblies for Atlantic cod (Gadus morhua) have been constructed from fish belonging to the Northeast Arctic Cod (NEAC) population; a migratory population feeding in the Barents Sea. These assemblies have been crucial for the development of genetic markers which have been used to study population differentiation and adaptive evolution in Atlantic cod, pinpointing four discrete islands of genomic divergence located on linkage groups 1, 2, 7 and 12. In this paper, we present a high-quality reference genome from a male Atlantic cod representing a southern population inhabiting the Celtic sea. The genome assembly (gadMor_Celtic) was produced from long-read nanopore data and has a combined contig length of 686 Mb with an N50 of 10 Mb. Integrating contigs with genetic linkage mapping information enabled us to construct 23 chromosome sequences which mapped with high confidence to the latest NEAC population assembly (gadMor3) and allowed us to characterize, to an extent not previously reported large chromosomal inversions on linkage groups 1, 2, 7 and 12. In most cases, inversion breakpoints could be located within single nanopore contigs. Our results suggest the presence of inversions in Celtic cod on linkage groups 6, 11 and 21, although these remain to be confirmed. Further, we identified a specific repetitive element that is relatively enriched at predicted centromeric regions. Our gadMor_Celtic assembly provides a resource representing a 'southern' cod population which is complementary to the existing 'northern' population based genome assemblies and represents the first step toward developing pan-genomic resources for Atlantic cod.
Collapse
|
37
|
Quintela M, Kvamme C, Bekkevold D, Nash RDM, Jansson E, Sørvik AG, Taggart JB, Skaala Ø, Dahle G, Glover KA. Genetic analysis redraws the management boundaries for the European sprat. Evol Appl 2020; 13:1906-1922. [PMID: 32908594 PMCID: PMC7463317 DOI: 10.1111/eva.12942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sustainable fisheries management requires detailed knowledge of population genetic structure. The European sprat is an important commercial fish distributed from Morocco to the Arctic circle, Baltic, Mediterranean, and Black seas. Prior to 2018, annual catch advice on sprat from the International Council for the Exploration of the Sea (ICES) was based on five putative stocks: (a) North Sea, (b) Kattegat-Skagerrak and Norwegian fjords, (c) Baltic Sea, (d) West of Scotland-southern Celtic Seas, and (e) English Channel. However, there were concerns that the sprat advice on stock size estimates management plan inadequately reflected the underlying biological units. Here, we used ddRAD sequencing to develop 91 SNPs that were thereafter used to genotype approximately 2,500 fish from 40 locations. Three highly distinct and relatively homogenous genetic groups were identified: (a) Norwegian fjords; (b) Northeast Atlantic including the North Sea, Kattegat-Skagerrak, Celtic Sea, and Bay of Biscay; and (c) Baltic Sea. Evidence of genetic admixture and possibly physical mixing was detected in samples collected from the transition zone between the North and Baltic seas, but not between any of the other groups. These results have already been implemented by ICES with the decision to merge the North Sea and the Kattegat-Skagerrak sprat to be assessed as a single unit, thus demonstrating that genetic data can be rapidly absorbed to align harvest regimes and biological units.
Collapse
Affiliation(s)
| | | | - Dorte Bekkevold
- DTU-Aqua National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | | | | | | | - John B Taggart
- Institute of Aquaculture School of Natural Sciences University of Stirling Stirling UK
| | | | - Geir Dahle
- Institute of Marine Research Bergen Norway
| | - Kevin A Glover
- Institute of Marine Research Bergen Norway
- Institute of Biology University of Bergen Bergen Norway
| |
Collapse
|
38
|
Oomen RA, Kuparinen A, Hutchings JA. Consequences of Single-Locus and Tightly Linked Genomic Architectures for Evolutionary Responses to Environmental Change. J Hered 2020; 111:319-332. [PMID: 32620014 PMCID: PMC7423069 DOI: 10.1093/jhered/esaa020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
Genetic and genomic architectures of traits under selection are key factors influencing evolutionary responses. Yet, knowledge of their impacts has been limited by a widespread assumption that most traits are controlled by unlinked polygenic architectures. Recent advances in genome sequencing and eco-evolutionary modeling are unlocking the potential for integrating genomic information into predictions of population responses to environmental change. Using eco-evolutionary simulations, we demonstrate that hypothetical single-locus control of a life history trait produces highly variable and unpredictable harvesting-induced evolution relative to the classically applied multilocus model. Single-locus control of complex traits is thought to be uncommon, yet blocks of linked genes, such as those associated with some types of structural genomic variation, have emerged as taxonomically widespread phenomena. Inheritance of linked architectures resembles that of single loci, thus enabling single-locus-like modeling of polygenic adaptation. Yet, the number of loci, their effect sizes, and the degree of linkage among them all occur along a continuum. We review how linked architectures are often associated, directly or indirectly, with traits expected to be under selection from anthropogenic stressors and are likely to play a large role in adaptation to environmental disturbance. We suggest using single-locus models to explore evolutionary extremes and uncertainties when the trait architecture is unknown, refining parameters as genomic information becomes available, and explicitly incorporating linkage among loci when possible. By overestimating the complexity (e.g., number of independent loci) of the genomic architecture of traits under selection, we risk underestimating the complexity (e.g., nonlinearity) of their evolutionary dynamics.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
| | - Anna Kuparinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jeffrey A Hutchings
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
| |
Collapse
|
39
|
Wenne R, Bernaś R, Kijewska A, Poćwierz-Kotus A, Strand J, Petereit C, Plauška K, Sics I, Árnyasi M, Kent MP. SNP genotyping reveals substructuring in weakly differentiated populations of Atlantic cod (Gadus morhua) from diverse environments in the Baltic Sea. Sci Rep 2020; 10:9738. [PMID: 32546719 PMCID: PMC7298039 DOI: 10.1038/s41598-020-66518-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/11/2020] [Indexed: 01/02/2023] Open
Abstract
Atlantic cod (Gadus morhua) is one of the most important fish species in northern Europe for several reasons including its predator status in marine ecosystems, its historical role in fisheries, its potential in aquaculture and its strong public profile. However, due to over-exploitation in the North Atlantic and changes in the ecosystem, many cod populations have been reduced in size and genetic diversity. Cod populations in the Baltic Proper, Kattegat and North Sea have been analyzed using a species specific single nucleotide polymorphism (SNP) array. Using a subset of 8,706 SNPs, moderate genetic differences were found between subdivisions in three traditionally delineated cod management stocks: Kattegat, western and eastern Baltic. However, an FST measure of population differentiation based on allele frequencies from 588 outlier loci for 2 population groups, one including 5 western and the other 4 eastern Baltic populations, indicated high genetic differentiation. In this paper, differentiation has been demonstrated not only between, but also within western and eastern Baltic cod stocks for the first time, with salinity appearing to be the most important environmental factor influencing the maintenance of cod population divergence between the western and eastern Baltic Sea.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland.
| | - Rafał Bernaś
- Department of Migratory Fishes in Rutki, Inland Fisheries Institute, Olsztyn, 10-719, Poland
| | - Agnieszka Kijewska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Anita Poćwierz-Kotus
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Jakob Strand
- Arctic Research Centre, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Christoph Petereit
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Research Division 3: Marine Ecology, Research Unit: Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Bruno-Lorenzen-Schule Schleswig, Spielkoppel 6, 24837, Schleswig, Germany
| | - Kęstas Plauška
- Fisheries Service under the Ministry of Agriculture Division of Fisheries Research & Science, Smiltynes 1, 91001, Klaipeda, Lithuania
| | - Ivo Sics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| | - Mariann Árnyasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box, 5003, Aas, Norway
| | - Matthew P Kent
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box, 5003, Aas, Norway
| |
Collapse
|
40
|
Signals of selection in the mitogenome provide insights into adaptation mechanisms in heterogeneous habitats in a widely distributed pelagic fish. Sci Rep 2020; 10:9081. [PMID: 32493917 PMCID: PMC7270097 DOI: 10.1038/s41598-020-65905-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/04/2020] [Indexed: 11/08/2022] Open
Abstract
Oceans are vast, dynamic, and complex ecosystems characterized by fluctuations in environmental parameters like sea surface temperature (SST), salinity, oxygen availability, and productivity. Environmental variability acts as the driver of organismal evolution and speciation as organisms strive to cope with the challenges. We investigated the evolutionary consequences of heterogeneous environmental conditions on the mitogenome of a widely distributed small pelagic fish of Indian ocean, Indian oil sardine, Sardinella longiceps. Sardines were collected from different eco-regions of the Indian Ocean and selection patterns analyzed in coding and non-coding regions. Signals of diversifying selection were observed in key functional regions involved in OXPHOS indicating OXPHOS gene regulation as the critical factor to meet enhanced energetic demands. A characteristic control region with 38–40 bp tandem repeat units under strong selective pressure as evidenced by sequence conservation and low free energy values was also observed. These changes were prevalent in fishes from the South Eastern Arabian Sea (SEAS) followed by the Northern Arabian Sea (NAS) and rare in Bay of Bengal (BoB) populations. Fishes belonging to SEAS exhibited accelerated substitution rate mainly due to the selective pressures to survive in a highly variable oceanic environment characterized by seasonal hypoxia, variable SST, and food availability.
Collapse
|
41
|
De Wit P, Jonsson PR, Pereyra RT, Panova M, André C, Johannesson K. Spatial genetic structure in a crustacean herbivore highlights the need for local considerations in Baltic Sea biodiversity management. Evol Appl 2020; 13:974-990. [PMID: 32431747 PMCID: PMC7232771 DOI: 10.1111/eva.12914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
Incorporating species' eco-evolutionary responses to human-caused disturbances remains a challenge in marine management efforts. A prerequisite is knowledge of geographic structure and scale of genetic diversity and connectivity-the so-called seascape genetic patterns. The Baltic Sea is an excellent model system for studies linking seascape genetics with effects of anthropogenic stress. However, seascape genetic patterns in this area are only described for a few species and are completely unknown for invertebrate herbivores, which constitute a critical part of the ecosystem. This information is crucial for sustainable management, particularly under future scenarios of rapid environmental change. Here, we investigate the population genetic structure among 31 locations throughout the Baltic Sea, of which 45% were located in marine protected areas, in one of the most important herbivores of this region, the isopod crustacean Idotea balthica, using an array of 33,774 genome-wide SNP markers derived from 2b-RAD sequencing. In addition, we generate a biophysical connectivity matrix for I. balthica from a combination of oceanographic current models and estimated life history traits. We find population structure on scales of hundreds of kilometers across the Baltic Sea, where genomic patterns in most cases closely match biophysical connectivity, indicating passive transport with oceanographic currents as an important mean of dispersal in this species. We also find a reduced genetic diversity in terms of heterozygosity along the main salinity gradient of the Baltic Sea, suggesting periods of low population size. Our results provide crucial information for the management of a key ecosystem species under expected changes in temperature and salinity following global climate change in a marine coastal area.
Collapse
Affiliation(s)
- Pierre De Wit
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
| | - Per R. Jonsson
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
| | | | - Marina Panova
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
| | - Carl André
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
| | | |
Collapse
|
42
|
Korshunova T, Malmberg K, Prkić J, Petani A, Fletcher K, Lundin K, Martynov A. Fine-scale species delimitation: speciation in process and periodic patterns in nudibranch diversity. Zookeys 2020; 917:15-50. [PMID: 32206016 PMCID: PMC7076062 DOI: 10.3897/zookeys.917.47444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 11/12/2022] Open
Abstract
Using the nudibranch genus Amphorina as a model, ongoing speciation is demonstrated, as well as how periodic-like patterns in colouration can be included in an integrated method of fine-scale species delimitation. By combining several methods, including BPP analysis and the study of molecular, morphological, and ecological data from a large number of specimens within a broad geographic range from northern Europe to the Mediterranean, five species are recognised within the genus Amphorina, reviewed here for the first time. Two new species from the southwestern coast of Sweden are described, A. viriola sp. nov. and A. andra sp. nov. Evidence is provided of a recent speciation process between the two closely related, yet separate, species which inhabit the same geographic localities but demonstrate strict water depth differentiation, with one species inhabiting the shallow brackish top layer above the halocline and the other species inhabiting the underlying saltier water. The results presented here are of relevance for currently debated issues such as conservation in relation to speciation, fine species delimitation, and integration of molecular, morphological and ecological information in biodiversity studies. The periodic approach to biological taxonomy has considerable practical potential for various organismal groups.
Collapse
Affiliation(s)
- Tatiana Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia Koltzov Institute of Developmental Biology RAS Moscow Russia.,Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia Moscow State University Moscow Russia
| | - Klas Malmberg
- Aquatilis, Nostravägen 11, S-41743, Gothenburg, Sweden Aquatilis Gothenburgh Sweden
| | - Jakov Prkić
- Getaldiceva 11, C 21000 Split, Croatia Unaffiliated Split Croatia
| | - Alen Petani
- Put Kotlara 6, C 23000 Zadar, Croatia Unaffiliated Zadar Croatia
| | - Karin Fletcher
- Port Orchard, Washington, 98366, USA Unaffiliated Port Orchard United States of America
| | - Kennet Lundin
- Gothenburg Natural History Museum, Box 7283, SE-40235, Gothenburg, Sweden Gothenburg Natural History Museum Gothenburg Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-40530, Gothenburg, Sweden Gothenburg Global Biodiversity Centre Gothenburg Sweden
| | - Alexander Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia Moscow State University Moscow Russia
| |
Collapse
|
43
|
Ríos N, Casanova A, Hermida M, Pardo BG, Martínez P, Bouza C, García G. Population Genomics in Rhamdia quelen (Heptapteridae, Siluriformes) Reveals Deep Divergence and Adaptation in the Neotropical Region. Genes (Basel) 2020; 11:genes11010109. [PMID: 31963477 PMCID: PMC7017130 DOI: 10.3390/genes11010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Rhamdia quelen, a Neotropical fish with hybridization between highly divergent mitochondrial DNA (mtDNA) lineages, represents an interesting evolutionary model. Previous studies suggested that there might be demographic differences between coastal lagoons and riverine environments, as well as divergent populations that could be reproductively isolated. Here, we investigated the genetic diversity pattern of this taxon in the Southern Neotropical Basin system that includes the La Plata Basin, Patos-Merin lagoon basin and the coastal lagoons draining to the SW Atlantic Ocean, through a population genomics approach using 2b-RAD-sequencing-derived single nucleotide polymorphisms (SNPs). The genomic scan identified selection footprints associated with divergence and suggested local adaptation environmental drivers. Two major genomic clusters latitudinally distributed in the Northern and Southern basins were identified, along with consistent signatures of divergent selection between them. Population structure based on the whole set of loci and on the presumptive neutral vs. adaptive loci showed deep genomic divergence between the two major clusters. Annotation of the most consistent SNPs under divergent selection revealed some interesting candidate genes for further functional studies. Moreover, signals of adaptation to a coastal lagoon environment mediated by purifying selection were found. These new insights provide a better understanding of the complex evolutionary history of R. quelen in the southernmost basin of the Neotropical region.
Collapse
Affiliation(s)
- Néstor Ríos
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay;
- Correspondence: ; Tel.: +598-25258618 (ext. 140)
| | - Adrián Casanova
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
| | - Miguel Hermida
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
| | - Belén G. Pardo
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Carmen Bouza
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Graciela García
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay;
| |
Collapse
|
44
|
Xu G, Bian C, Nie Z, Li J, Wang Y, Xu D, You X, Liu H, Gao J, Li H, Liu K, Yang J, Li Q, Shao N, Zhuang Y, Fang D, Jiang T, Lv Y, Huang Y, Gu R, Xu J, Ge W, Shi Q, Xu P. Genome and population sequencing of a chromosome-level genome assembly of the Chinese tapertail anchovy (Coilia nasus) provides novel insights into migratory adaptation. Gigascience 2020; 9:giz157. [PMID: 31895412 PMCID: PMC6939831 DOI: 10.1093/gigascience/giz157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/28/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Seasonal migration is one of the most spectacular events in nature; however, the molecular mechanisms related to this phenomenon have not been investigated in detail. The Chinese tapertail, or Japanese grenadier anchovy, Coilia nasus, is a valuable migratory fish of high economic importance and special migratory dimorphism (with certain individuals as non-migratory residents). RESULTS In this study, an 870.0-Mb high-quality genome was assembled by the combination of Illumina and Pacific Biosciences sequencing. Approximately 812.1 Mb of scaffolds were linked to 24 chromosomes using a high-density genetic map from a family of 104 full siblings and their parents. In addition, population sequencing of 96 representative individuals from diverse areas along the putative migration path identified 150 candidate genes, which are mainly enriched in 3 Ca2+-related pathways. Based on integrative genomic and transcriptomic analyses, we determined that the 3 Ca2+-related pathways are critical for promotion of migratory adaption. A large number of molecular markers were also identified, which distinguished migratory individuals and non-migratory freshwater residents. CONCLUSIONS We assembled a chromosome-level genome for the Chinese tapertail anchovy. The genome provided a valuable genetic resource for understanding of migratory adaption and population genetics and will benefit the aquaculture and management of this economically important fish.
Collapse
Affiliation(s)
- Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Binhu District, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhijuan Nie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
| | - Yuyu Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Dongpo Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
| | - Hongbo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Jiancao Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Jian Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Nailin Shao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Yanbing Zhuang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Dian Fang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Tao Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ruobo Gu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Binhu District, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| |
Collapse
|
45
|
Kess T, Bentzen P, Lehnert SJ, Sylvester EVA, Lien S, Kent MP, Sinclair‐Waters M, Morris C, Wringe B, Fairweather R, Bradbury IR. Modular chromosome rearrangements reveal parallel and nonparallel adaptation in a marine fish. Ecol Evol 2020; 10:638-653. [PMID: 32015832 PMCID: PMC6988541 DOI: 10.1002/ece3.5828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Genomic architecture and standing variation can play a key role in ecological adaptation and contribute to the predictability of evolution. In Atlantic cod (Gadus morhua), four large chromosomal rearrangements have been associated with ecological gradients and migratory behavior in regional analyses. However, the degree of parallelism, the extent of independent inheritance, and functional distinctiveness of these rearrangements remain poorly understood. Here, we use a 12K single nucleotide polymorphism (SNP) array to demonstrate extensive individual variation in rearrangement genotype within populations across the species range, suggesting that local adaptation to fine-scale ecological variation is enabled by rearrangements with independent inheritance. Our results demonstrate significant association of rearrangements with migration phenotype and environmental gradients across the species range. Individual rearrangements exhibit functional modularity, but also contain loci showing multiple environmental associations. Clustering in genetic distance trees and reduced differentiation within rearrangements across the species range are consistent with shared variation as a source of contemporary adaptive diversity in Atlantic cod. Conversely, we also find that haplotypes in the LG12 and LG1 rearranged region have diverged across the Atlantic, despite consistent environmental associations. Exchange of these structurally variable genomic regions, as well as local selective pressures, has likely facilitated individual diversity within Atlantic cod stocks. Our results highlight the importance of genomic architecture and standing variation in enabling fine-scale adaptation in marine species.
Collapse
Affiliation(s)
- Tony Kess
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Paul Bentzen
- Biology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Sarah J. Lehnert
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Emma V. A. Sylvester
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Sigbjørn Lien
- Department of Animal and Aquacultural SciencesFaculty of BiosciencesCentre for Integrative GeneticsNorwegian University of Life SciencesÅsNorway
| | - Matthew P. Kent
- Department of Animal and Aquacultural SciencesFaculty of BiosciencesCentre for Integrative GeneticsNorwegian University of Life SciencesÅsNorway
| | - Marion Sinclair‐Waters
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Corey Morris
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Brendan Wringe
- Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNSCanada
| | | | - Ian R. Bradbury
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
- Biology DepartmentDalhousie UniversityHalifaxNSCanada
| |
Collapse
|
46
|
Phylogeographic evidence that the distribution of cryptic euryhaline species in the Gambusia punctata species group in Cuba was shaped by the archipelago geological history. Mol Phylogenet Evol 2019; 144:106712. [PMID: 31862460 DOI: 10.1016/j.ympev.2019.106712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/22/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
Abstract
The main drivers of diversification of freshwater fishes in Cuba are not yet well understood. For example, salt tolerance was thought as the main factor involved in the diversification of Gambusia punctata species group in this archipelago. However, evidence from a recent DNA barcoding survey suggested the presence of cryptic species and no correlation between species delimitation and level of salinity. In this study, we analyzed the cryptic diversification of G. punctata species group in Cuba, based on a comprehensive sampling of its distribution and including habitats with different salinity levels. We evaluated the patterns of molecular divergence of the samples by sequencing a set of mitochondrial DNA (mtDNA) regions and genotyping nine nuclear microsatellite loci. We also used cytochrome b gene (cytb) partial sequences and these microsatellite loci to analyze population structure inside putative species. Five mtDNA well-differentiated haplogroups were found, four of them also identified by the analysis of the microsatellite polymorphism which corresponds to two already recognized species, G. punctata, and G. rhizophorae, and three putative new species. The extent of hybrid zones between these groups is also described. In each group, populations inhabiting environments with contrasting salinity levels were identified, indicating a generalized trait not specific to G. rhizophorae. The geographic distribution of the groups suggested a strong association with major relict territories of the Cuban Archipelago that was periodically joined or split-up by changes in seawater levels and land uplifts. Salinity tolerance might have facilitated sporadic and long-distance oversea dispersal but did not prevent speciation in the Cuban archipelago.
Collapse
|
47
|
McQueen K, Mion M, Hilvarsson A, Casini M, Olesen HJ, Hüssy K, Radtke K, Krumme U. Effects of freezing on length and mass measurements of Atlantic cod Gadus morhua in the Baltic Sea. JOURNAL OF FISH BIOLOGY 2019; 95:1486-1495. [PMID: 31631337 DOI: 10.1111/jfb.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
An aggregated sample of 925 Atlantic cod Gadus morhua collected by four countries in different regions of the Baltic Sea during different seasons were measured (total length, LT = 161-890 mm and weighed (mass, M = 45-6900 g) both before freezing and after defrosting. The cod were found to decrease significantly in both LT and M following death and frozen storage. There was an average (±SD) change in LT of -2.91% (±0.05%) following freezing, independent of starting LT . Total M changed by -2.65% (±0.14%), independent of starting mass. Shrinkage of LT and M did not differ significantly between 1 and 4 months frozen storage, though LT shrinkage was significantly greater after 1 or 4 months in the freezer compared with after 5 days. There was significant variation in LT and M shrinkage between regions of capture. A significant negative relationship between condition of cod and LT or M change was also observed. Equations to back-calculate fresh LT and M from thawed LT , M and standard length (LS ), gutted LT , gutted LS and gutted M are provided.
Collapse
Affiliation(s)
- Kate McQueen
- Thünen Institute of Baltic Sea Fisheries, Rostock, Germany
| | - Monica Mion
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| | - Annelie Hilvarsson
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| | - Michele Casini
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| | - Hans J Olesen
- Technical University of Denmark, National Institute of Aquatic Resources, Kgs. Lyngby, Denmark
| | - Karin Hüssy
- Technical University of Denmark, National Institute of Aquatic Resources, Kgs. Lyngby, Denmark
| | | | - Uwe Krumme
- Thünen Institute of Baltic Sea Fisheries, Rostock, Germany
| |
Collapse
|
48
|
Clucas GV, Lou RN, Therkildsen NO, Kovach AI. Novel signals of adaptive genetic variation in northwestern Atlantic cod revealed by whole-genome sequencing. Evol Appl 2019; 12:1971-1987. [PMID: 31700539 PMCID: PMC6824067 DOI: 10.1111/eva.12861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/14/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
Selection can create complex patterns of adaptive differentiation among populations in the wild that may be relevant to management. Atlantic cod in the Northwest Atlantic are at a fraction of their historical abundance and a lack of recovery within the Gulf of Maine has created concern regarding the misalignment of fisheries management structures with biological population structure. To address this and investigate genome-wide patterns of variation, we used low-coverage sequencing to perform a region-wide, whole-genome analysis of fine-scale population structure. We sequenced 306 individuals from 20 sampling locations in U.S. and Canadian waters, including the major spawning aggregations in the Gulf of Maine in addition to spawning aggregations from Georges Bank, southern New England, the eastern Scotian Shelf, and St. Pierre Bank. With genotype likelihoods estimated at almost 11 million loci, we found large differences in haplotype frequencies of previously described chromosomal inversions between Canadian and U.S. sampling locations and also among U.S. sampling locations. Our whole-genome resolution also revealed novel outlier peaks, some of which showed significant genetic differentiation among sampling locations. Comparisons between allochronic winter- and spring-spawning populations revealed highly elevated relative (FST ) and absolute (dxy ) genetic differentiation near genes involved in reproduction, particularly genes associated with the brain-pituitary-gonadal axis, which likely control timing of spawning, contributing to prezygotic isolation. We also found genetic differentiation associated with heat shock proteins and other genes of functional relevance, with complex patterns that may point to multifaceted selection pressures and local adaptation among spawning populations. We provide a high-resolution picture of U.S. Atlantic cod population structure, revealing greater complexity than is currently recognized in management. Our genome-scan approach likely underestimates the full suite of adaptive differentiation among sampling locations. Nevertheless, it should inform the revision of stock boundaries to preserve adaptive genetic diversity and evolutionary potential of cod populations.
Collapse
Affiliation(s)
- Gemma V. Clucas
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - R. Nicolas Lou
- Department of Natural ResourcesCornell UniversityIthacaNYUSA
| | | | - Adrienne I. Kovach
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| |
Collapse
|
49
|
Malachowicz M, Wenne R. Microarray analysis of gene expression of Atlantic cod from different Baltic Sea regions: Adaptation to salinity. Mar Genomics 2019. [DOI: 10.1016/j.margen.2019.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Rodríguez-Ramilo ST, Baranski M, Moghadam H, Grove H, Lien S, Goddard ME, Meuwissen THE, Sonesson AK. Strong selection pressures maintain divergence on genomic islands in Atlantic cod (Gadus morhua L.) populations. Genet Sel Evol 2019; 51:61. [PMID: 31664896 PMCID: PMC6819574 DOI: 10.1186/s12711-019-0503-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/16/2019] [Indexed: 11/15/2022] Open
Abstract
Background Two distinct populations have been extensively studied in Atlantic cod (Gadus morhua L.): the Northeast Arctic cod (NEAC) population and the coastal cod (CC) population. The objectives of the current study were to identify genomic islands of divergence and to propose an approach to quantify the strength of selection pressures using whole-genome single nucleotide polymorphism (SNP) data. After applying filtering criteria, information on 93 animals (9 CC individuals, 50 NEAC animals and 34 CC × NEAC crossbred individuals) and 3,123,434 autosomal SNPs were used. Results Four genomic islands of divergence were identified on chromosomes 1, 2, 7 and 12, which were mapped accurately based on SNP data and which extended in size from 11 to 18 Mb. These regions differed considerably between the two populations although the differences in the rest of the genome were small due to considerable gene flow between the populations. The estimates of selection pressures showed that natural selection was substantially more important than genetic drift in shaping these genomic islands. Our data confirmed results from earlier publications that suggested that genomic islands are due to chromosomal rearrangements that are under strong selection and reduce recombination between rearranged and non-rearranged segments. Conclusions Our findings further support the hypothesis that selection and reduced recombination in genomic islands may promote speciation between these two populations although their habitats overlap considerably and migrations occur between them.
Collapse
Affiliation(s)
- Silvia T Rodríguez-Ramilo
- GenPhySE, INRA, 24 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France. .,Departamento de Mejora Genética Animal, INIA, Crta. A Coruña Km. 7,5, Madrid, 28040, Spain.
| | - Matthew Baranski
- NOFIMA Marine, Osloveien 1, Ås, 1430, Norway.,Mowi ASA, Sandviksboder 77AB, Bergen, 5035, Norway
| | - Hooman Moghadam
- NOFIMA Marine, Osloveien 1, Ås, 1430, Norway.,Salmobreed, Sandviksboder 3A, Bergen, 5035, Norway
| | - Harald Grove
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Arboretveien 6, Ås, 1430, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Arboretveien 6, Ås, 1430, Norway
| | - Mike E Goddard
- Biosciences Research Division, Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, 3083, Australia.,Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Theo H E Meuwissen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Arboretveien 6, Ås, 1430, Norway
| | | |
Collapse
|