1
|
Lieberman DE, Worthington S, Schell LD, Parkent CM, Devinsky O, Carmody RN. Comparing measured dietary variation within and between tropical hunter-gatherer groups to the Paleo Diet. Am J Clin Nutr 2023; 118:549-560. [PMID: 37343704 DOI: 10.1016/j.ajcnut.2023.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Although human diets varied considerably before the spread of agriculture, public perceptions of preagricultural diets have been strongly influenced by the Paleo Diet, which prescribes percentage calorie ranges of 19-35% protein, 22-40% carbohydrate, and 28-47% fat, and prohibits foods with added sugar, dairy, grains, most starchy tubers, and legumes. However, the empirical basis for Paleolithic nutrition remains unclear, with some of its assumptions challenged by the archaeological record and theoretical first principles. OBJECTIVES We assessed the variation in diets among tropical hunter-gatherers, including the effect of collection methods on implied macronutrient percentages. METHODS We analyzed data on animal food, plant food, and honey consumption by weight and kcal from 15 high-quality published ethnographic studies representing 11 recent tropical hunter-gatherer groups. We used Bayesian analyses to perform inference and included data collection methods and environmental variables as predictors in our models. RESULTS Our analyses reveal high levels of variation in animal versus plant foods consumed and in corresponding percentages of protein, fat, and carbohydrates. In addition, studies that weighed food items consumed in and out of camp and across seasons and years reported higher consumption of animal foods, which varied with annual mean temperature. CONCLUSIONS The ethnographic evidence from tropical foragers refutes the concept of circumscribed macronutrient ranges modeling preagricultural diets.
Collapse
Affiliation(s)
- Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
| | - Steven Worthington
- Institute for Quantitative Social Science, Harvard University, Cambridge, MA, United States
| | - Laura D Schell
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Christine M Parkent
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States; Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, United States
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
| |
Collapse
|
2
|
de Leusse C, Roman C, Roquelaure B, Fabre A. Estimating the prevalence of congenital disaccharidase deficiencies using allele frequencies from gnomAD. Arch Pediatr 2022; 29:599-603. [PMID: 36167617 DOI: 10.1016/j.arcped.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND There are currently three known congenital disaccharidase deficiencies: congenital lactase deficiency (CLD), congenital sucrase-isomaltase deficiency (CSD), and congenital trehalase deficiency (CTD). No congenital deficiency has been described for maltase-glucoamylase (MGAM). METHODS A literature search was performed in PubMed for the pathogenic variants CLD, CSD, and CTD and the articles retrieved were analyzed to estimate the prevalence of congenital disaccharidase deficiencies. RESULTS Based on reported variants, the estimated prevalence was 1.3 per 106 births (95% CI: 1.1-1.7) for CLD, and 31.4 per 106 births (95% CI: 28.3-34.8) for CSD. Using data on previously reported variants and variants predicted to be loss-of-function in gnomAD, the overall estimated prevalence was 2.3 per 106 births (95% CI: 1.9-2.9) for CLD, 57.6 per 106 births (95% CI:52.5-63.2) for CSD, and 9.2 per 106 births (95% CI: 2.5-3.7) for CTD. CONCLUSION The prevalence of CSD was found to be relatively high, while for other congenital disaccharidase deficiencies, the estimated prevalence was very low.
Collapse
Affiliation(s)
- C de Leusse
- AP-HM, Hôpital de la Timone Enfants, Service de pédiatrie multidisciplinaire, Marseille, France
| | - C Roman
- AP-HM, Hôpital de la Timone Enfants, Service de pédiatrie multidisciplinaire, Marseille, France
| | - B Roquelaure
- AP-HM, Hôpital de la Timone Enfants, Service de pédiatrie multidisciplinaire, Marseille, France
| | - A Fabre
- AP-HM, Hôpital de la Timone Enfants, Service de pédiatrie multidisciplinaire, Marseille, France; Aix Marseille Univ, INSERM, MMG, Marseille, France.
| |
Collapse
|
3
|
Brun A, Mendez-Aranda D, Magallanes ME, Karasov WH, Martínez Del Rio C, Baldwin MW, Caviedes-Vidal E. Duplications and Functional Convergence of Intestinal Carbohydrate-Digesting Enzymes. Mol Biol Evol 2021; 37:1657-1666. [PMID: 32061124 DOI: 10.1093/molbev/msaa034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vertebrate diets and digestive physiologies vary tremendously. Although the contribution of ecological and behavioral features to such diversity is well documented, the roles and identities of individual intestinal enzymes shaping digestive traits remain largely unexplored. Here, we show that the sucrase-isomaltase (SI)/maltase-glucoamylase (MGAM) dual enzyme system long assumed to be the conserved disaccharide and starch digestion framework in all vertebrates is absent in many lineages. Our analyses indicate that independent duplications of an ancestral SI gave rise to the mammalian-specific MGAM, as well as to other duplicates in fish and birds. Strikingly, the duplicated avian enzyme exhibits similar activities to MGAM, revealing an unexpected case of functional convergence. Our results highlight digestive enzyme variation as a key uncharacterized component of dietary diversity in vertebrates.
Collapse
Affiliation(s)
- Antonio Brun
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI.,Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | | | - Melisa E Magallanes
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI
| | | | | | - Enrique Caviedes-Vidal
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.,Departamento de Bioquímica y Ciencias Biológicas, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
4
|
Freitas L, Mesquita RD, Schrago CG. Survey for positively selected coding regions in the genome of the hematophagous tsetse fly Glossina morsitans identifies candidate genes associated with feeding habits and embryonic development. Genet Mol Biol 2020; 43:e20180311. [PMID: 32555940 PMCID: PMC7288665 DOI: 10.1590/1678-4685-gmb-2018-0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/23/2019] [Indexed: 11/22/2022] Open
Abstract
Tsetse flies are responsible for the transmission of Trypanossoma sp. to vertebrate animals in Africa causing huge health issues and economic loss. The availability of the genome sequence of Glossina morsitans enabled the discovery of several genes related to medically important phenotypes and novel physiological features. However, a genome-wide scan for coding regions that underwent positive selection is still missing, which is surprising given the evolution of traits associated with the hematophagy in this lineage. In this study, we employed an experimental design that controlled for the rate of false positives and we performed a scan of 3,318 G. morsitans genes. We found 145 genes with significant historical signal of positive selection. These genes were categorized into 18 functional classes after careful manual annotation. Based on their attributed functions, we identified candidate genes related with feeding habits and embryonic development. When our results were contrasted with gene expression data, we confirmed that most genes that underwent adaptive molecular evolution were frequently expressed in organs associated with key physiological evolutionary innovations in the G. morsitans lineage, namely, the salivary gland, the midgut, fat body tissue, and in the spermatophore.
Collapse
Affiliation(s)
- Lucas Freitas
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil.,Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Bioquímica, Laboratório de Bioinformática, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Rafael D Mesquita
- Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Bioquímica, Laboratório de Bioinformática, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Carlos G Schrago
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Yuan M, Zhang L, Zhang Q, Zhang L, Li M, Wang X, Feng R, Tang P. Mitogenome evolution in ladybirds: Potential association with dietary adaptation. Ecol Evol 2020; 10:1042-1053. [PMID: 32015863 PMCID: PMC6988538 DOI: 10.1002/ece3.5971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Dietary shifts can alter the relative availability of different nutrients and are therefore associated with metabolic adaptation in animals. The Coccinellidae (ladybirds) exhibits three major types of feeding habits and provides a useful model to study the effects of dietary changes on the evolution of mitogenomes, which encode proteins directly involved in energy metabolism. Here, mitogenomes of three coccinellid species were newly sequenced. These data were combined with other ten previously sequenced coccinellid mitogenomes to explore the relationship between mitogenome evolution and diets. Our results indicate that mitogenomic data can be effectively used to resolve phylogenetic relationships of Coccinellidae. Strong codon usage bias in coccinellid mitogenomes was predominantly determined by nucleotide composition. The 13 mitochondrial protein-coding genes (PCGs) globally evolved under negative constraints, with some PCGs showing a stronger purifying selection. Six PCGs (nad3, nad4L, and nad5 from Complex I; cox1 and cox3 from Complex IV; and atp6 from Complex V) displayed signs of positive selection. Of these, adaptive changes in cox3 were potentially associated with metabolic differences resulting from dietary shifts in Coccinellidae. Our results provide insights into the adaptive evolution of coccinellid mitogenomes in response to both dietary shifts and other life history traits.
Collapse
Affiliation(s)
- Ming‐Long Yuan
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Li‐Jun Zhang
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Qi‐Lin Zhang
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
| | - Li Zhang
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Min Li
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Xiao‐Tong Wang
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Run‐Qiu Feng
- State Key Laboratory of Grassland Agro‐EcosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pei‐An Tang
- Collaborative Innovation Center for Modern Grain Circulation and SafetyCollege of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| |
Collapse
|
6
|
Zhao S, Zhang T, Liu Q, Wu H, Su B, Shi P, Chen H. Identifying Lineage-Specific Targets of Natural Selection by a Bayesian Analysis of Genomic Polymorphisms and Divergence from Multiple Species. Mol Biol Evol 2019; 36:1302-1315. [PMID: 30840083 DOI: 10.1093/molbev/msz046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We present a method that jointly analyzes the polymorphism and divergence sites in genomic sequences of multiple species to identify the genes under natural selection and pinpoint the occurrence time of selection to a specific lineage of the species phylogeny. This method integrates population genetics models using a Bayesian Poisson random field framework and combines information over all gene loci to boost the power for detecting selection. The method provides posterior distributions of the fitness effects of each gene along with parameters associated with the evolutionary history, including the species divergence time and effective population size of external species. The results of simulations demonstrate that our method achieves a high power to identify genes under positive selection for a wide range of selection intensity and provides reasonably accurate estimates of the population genetic parameters. The proposed method is applied to genomic sequences of humans, chimpanzees, gorillas, and orangutans and identifies a list of lineage-specific targets of positive selection. The positively selected genes in the human lineage are enriched in pathways of gene expression regulation, immune system and metabolism, etc. Our analysis provides insights into natural evolution in the coding regions of humans and great apes and thus serves as a basis for further molecular and functional studies.
Collapse
Affiliation(s)
- Shilei Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Qi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Hua Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Lindo J, Haas R, Hofman C, Apata M, Moraga M, Verdugo RA, Watson JT, Viviano Llave C, Witonsky D, Beall C, Warinner C, Novembre J, Aldenderfer M, Di Rienzo A. The genetic prehistory of the Andean highlands 7000 years BP though European contact. SCIENCE ADVANCES 2018; 4:eaau4921. [PMID: 30417096 PMCID: PMC6224175 DOI: 10.1126/sciadv.aau4921] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/12/2018] [Indexed: 05/02/2023]
Abstract
The peopling of the Andean highlands above 2500 m in elevation was a complex process that included cultural, biological, and genetic adaptations. Here, we present a time series of ancient whole genomes from the Andes of Peru, dating back to 7000 calendar years before the present (BP), and compare them to 42 new genome-wide genetic variation datasets from both highland and lowland populations. We infer three significant features: a split between low- and high-elevation populations that occurred between 9200 and 8200 BP; a population collapse after European contact that is significantly more severe in South American lowlanders than in highland populations; and evidence for positive selection at genetic loci related to starch digestion and plausibly pathogen resistance after European contact. We do not find selective sweep signals related to known components of the human hypoxia response, which may suggest more complex modes of genetic adaptation to high altitude.
Collapse
Affiliation(s)
- John Lindo
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Randall Haas
- Department of Anthropology, University of California, Davis, CA 95616, USA
| | - Courtney Hofman
- Department of Anthropology, University of Oklahoma, Norman, OK 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
| | - Mario Apata
- Programa de Genética Humana, ICBM, Universidad de Chile, Santiago, Chile
| | - Mauricio Moraga
- Programa de Genética Humana, ICBM, Universidad de Chile, Santiago, Chile
- Departamento de Antropología, Universidad de Chile, Santiago, Chile
| | - Ricardo A. Verdugo
- Programa de Genética Humana, ICBM, Universidad de Chile, Santiago, Chile
- Departamento de Oncología Básico-Clínica, Universidad de Chile, Santiago, Chile
| | - James T. Watson
- Arizona State Museum and School of Anthropology, University of Arizona, Tucson, AZ 85721, USA
| | | | - David Witonsky
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Cynthia Beall
- Department of Anthropology, Case Western University, Cleveland, OH 44106, USA
| | - Christina Warinner
- Department of Anthropology, University of Oklahoma, Norman, OK 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Mark Aldenderfer
- School of Social Sciences, Humanities, and Arts, University of California, Merced, Merced, CA 95343, USA
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Seidelmann SB, Feofanova E, Yu B, Franceschini N, Claggett B, Kuokkanen M, Puolijoki H, Ebeling T, Perola M, Salomaa V, Shah A, Coresh J, Selvin E, MacRae CA, Cheng S, Boerwinkle E, Solomon SD. Genetic Variants in SGLT1, Glucose Tolerance, and Cardiometabolic Risk. J Am Coll Cardiol 2018; 72:1763-1773. [PMID: 30286918 PMCID: PMC6403489 DOI: 10.1016/j.jacc.2018.07.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Loss-of-function mutations in the SGLT1 (sodium/glucose co-transporter-1) gene result in a rare glucose/galactose malabsorption disorder and neonatal death if untreated. In the general population, variants related to intestinal glucose absorption remain uncharacterized. OBJECTIVES The goal of this study was to identify functional SGLT1 gene variants and characterize their clinical consequences. METHODS Whole exome sequencing was performed in the ARIC (Atherosclerosis Risk in Communities) study participants enrolled from 4 U.S. communities. The association of functional, nonsynonymous substitutions in SGLT1 with 2-h oral glucose tolerance test results was determined. Variants related to impaired glucose tolerance were studied, and Mendelian randomization analysis of cardiometabolic outcomes was performed. RESULTS Among 5,687 European-American subjects (mean age 54 ± 6 years; 47% male), those who carried a haplotype of 3 missense mutations (frequency of 6.7%)-Asn51Ser, Ala411Thr, and His615Gln-had lower 2-h glucose and odds of impaired glucose tolerance than noncarriers (β-coefficient: -8.0; 95% confidence interval [CI]: -12.7 to -3.3; OR: 0.71; 95% CI: 0.59 to 0.86, respectively). The association of the haplotype with oral glucose tolerance test results was consistent in a replication sample of 2,791 African-American subjects (β = -16.3; 95% CI: -36.6 to 4.1; OR: 0.39; 95% CI: 0.17 to 0.91) and an external European-Finnish population sample of 6,784 subjects (β = -3.2; 95% CI: -6.4 to -0.02; OR: 0.81; 95% CI: 0.68 to 0.98). Using a Mendelian randomization approach in the index cohort, the estimated 25-year effect of a reduction of 20 mg/dl in 2-h glucose via SGLT1 inhibition would be reduced prevalent obesity (OR: 0.43; 95% CI: 0.23 to 0.63), incident diabetes (hazard ratio [HR]: 0.58; 95% CI: 0.35 to 0.81), heart failure (HR: 0.53; 95% CI: 0.24 to 0.83), and death (HR: 0.66; 95% CI: 0.42 to 0.90). CONCLUSIONS Functionally damaging missense variants in SGLT1 protect from diet-induced hyperglycemia in multiple populations. Reduced intestinal glucose uptake may protect from long-term cardiometabolic outcomes, providing support for therapies that target SGLT1 function to prevent and treat metabolic conditions.
Collapse
Affiliation(s)
- Sara B Seidelmann
- Cardiovascular Division, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Division of Cardiovascular Imaging, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Elena Feofanova
- Epidemiology, Human Genetics & Environmental Sciences, UTHealth School of Public Health, Houston, Texas
| | - Bing Yu
- Epidemiology, Human Genetics & Environmental Sciences, UTHealth School of Public Health, Houston, Texas
| | - Nora Franceschini
- Department of Epidemiology, UNC Gilling Global School of Public Health, Chapel Hill, North Carolina
| | - Brian Claggett
- Cardiovascular Division, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Mikko Kuokkanen
- National Institute for Health and Welfare, Helsinki, Finland; University of Helsinki, Diabetes and Obesity Research Program, Helsinki, Finland
| | | | - Tapani Ebeling
- Department of Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland; University of Helsinki, Diabetes and Obesity Research Program, Helsinki, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Amil Shah
- Cardiovascular Division, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, and Welch Center for Prevention, Epidemiology, and Clinical Research and Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, and Welch Center for Prevention, Epidemiology, and Clinical Research and Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Calum A MacRae
- Cardiovascular Division, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Susan Cheng
- Cardiovascular Division, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Eric Boerwinkle
- Epidemiology, Human Genetics & Environmental Sciences, UTHealth School of Public Health, Houston, Texas; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Scott D Solomon
- Cardiovascular Division, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
9
|
Review: Using physiologically based models to predict population responses to phytochemicals by wild vertebrate herbivores. Animal 2018; 12:s383-s398. [PMID: 30251623 DOI: 10.1017/s1751731118002264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To understand how foraging decisions impact individual fitness of herbivores, nutritional ecologists must consider the complex in vivo dynamics of nutrient-nutrient interactions and nutrient-toxin interactions associated with foraging. Mathematical modeling has long been used to make foraging predictions (e.g. optimal foraging theory) but has largely been restricted to a single currency (e.g. energy) or using simple indices of nutrition (e.g. fecal nitrogen) without full consideration of physiologically based interactions among numerous co-ingested phytochemicals. Here, we describe a physiologically based model (PBM) that provides a mechanistic link between foraging decisions and demographic consequences. Including physiological mechanisms of absorption, digestion and metabolism of phytochemicals in PBMs allows us to estimate concentrations of ingested and interacting phytochemicals in the body. Estimated phytochemical concentrations more accurately link intake of phytochemicals to changes in individual fitness than measures of intake alone. Further, we illustrate how estimated physiological parameters can be integrated with the geometric framework of nutrition and into integral projection models and agent-based models to predict fitness and population responses of vertebrate herbivores to ingested phytochemicals. The PBMs will improve our ability to understand the foraging decisions of vertebrate herbivores and consequences of those decisions and may help identify key physiological mechanisms that underlie diet-based ecological adaptations.
Collapse
|
10
|
Li X, Yang S, Dong K, Tang Z, Li K, Fan B, Wang Z, Liu B. Identification of positive selection signatures in pigs by comparing linkage disequilibrium variances. Anim Genet 2017; 48:600-605. [DOI: 10.1111/age.12574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 11/26/2022]
Affiliation(s)
- X. Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education; Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei 430070 China
- The Cooperative Innovation Center for Sustainable Pig Production; Wuhan Hubei 430070 China
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton AB T6G 2P5 Canada
| | - S. Yang
- College of Animal Science and Technology; Zhejiang A&F University; Lin'an Zhejiang 311300 China
| | - K. Dong
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Z. Tang
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - K. Li
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - B. Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education; Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei 430070 China
| | - Z. Wang
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton AB T6G 2P5 Canada
| | - B. Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education; Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei 430070 China
- The Cooperative Innovation Center for Sustainable Pig Production; Wuhan Hubei 430070 China
| |
Collapse
|
11
|
Fernández CI, Wiley AS. Rethinking the starch digestion hypothesis forAMY1copy number variation in humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:645-657. [DOI: 10.1002/ajpa.23237] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/09/2017] [Accepted: 04/16/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Catalina I. Fernández
- Indiana University Bloomington; 701 E. Kirkwood Avenue Bloomington Indiana 47405-7100
| | - Andrea S. Wiley
- Indiana University Bloomington; 701 E. Kirkwood Avenue Bloomington Indiana 47405-7100
| |
Collapse
|
12
|
Al-Daghri NM, Pontremoli C, Cagliani R, Forni D, Alokail MS, Al-Attas OS, Sabico S, Riva S, Clerici M, Sironi M. Susceptibility to type 2 diabetes may be modulated by haplotypes in G6PC2, a target of positive selection. BMC Evol Biol 2017; 17:43. [PMID: 28173748 PMCID: PMC5297017 DOI: 10.1186/s12862-017-0897-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum enzyme glucose-6-phosphatase catalyzes the common terminal reaction in the gluconeogenic/glycogenolytic pathways and plays a central role in glucose homeostasis. In most mammals, different G6PC subunits are encoded by three paralogous genes (G6PC, G6PC2, and G6PC3). Mutations in G6PC and G6PC3 are responsible for human mendelian diseases, whereas variants in G6PC2 are associated with fasting glucose (FG) levels. RESULTS We analyzed the evolutionary history of G6Pase genes. Results indicated that the three paralogs originated during early vertebrate evolution and that negative selection was the major force shaping diversity at these genes in mammals. Nonetheless, site-wise estimation of evolutionary rates at corresponding sites revealed weak correlations, suggesting that mammalian G6Pases have evolved different structural features over time. We also detected pervasive positive selection at mammalian G6PC2. Most selected residues localize in the C-terminal protein region, where several human variants associated with FG levels also map. This region was re-sequenced in ~560 subjects from Saudi Arabia, 185 of whom suffering from type 2 diabetes (T2D). The frequency of rare missense and nonsense variants was not significantly different in T2D and controls. Association analysis with two common missense variants (V219L and S342C) revealed a weak but significant association for both SNPs when analyses were conditioned on rs560887, previously identified in a GWAS for FG. Two haplotypes were significantly associated with T2D with an opposite effect direction. CONCLUSIONS We detected pervasive positive selection at mammalian G6PC2 genes and we suggest that distinct haplotypes at the G6PC2 locus modulate susceptibility to T2D.
Collapse
Affiliation(s)
- Nasser M Al-Daghri
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | | | - Rachele Cagliani
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| | - Majed S Alokail
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Omar S Al-Attas
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Shaun Sabico
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Stefania Riva
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, via F.lli Cervi 93, Segrate, 20090, Milan, Italy. .,Don Gnocchi Foundation, ONLUS, Milan, 20148, Italy.
| | - Manuela Sironi
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| |
Collapse
|
13
|
Chaudet MM, Rose DR. Divergent evolution for diverse substrate recognition by family 31 glycoside hydrolases. Biochem Cell Biol 2016; 94:323-30. [PMID: 27459002 DOI: 10.1139/bcb-2016-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Carbohydrates make up an important component of our diet, contributing a significant portion to our total caloric intake. The ability to harvest these molecules for energy is reliant on the activity of carbohydrate-active enzymes. Family 31 α-glucosidases are a group of glycoside hydrolases that has been shown to play a key role in the metabolic process of hydrolyzing dietary starch into monomers of glucose. The purpose of the research presented here is to explore evolutionary changes that occurred within this family of glycoside hydrolases, and to relate these divergences to observed structural differences in relation to predicted substrate preferences. Here we report specific single amino acid changes that are believed to have arisen through evolution, and are directly related to the ability of these enzymes to bind different starch-based glycans. Through phylogenetic analysis we observed a number of evolutionary adaptions that we believe resulted in duplicated genes that allow for the efficient utilization of dietary starch.
Collapse
Affiliation(s)
- M M Chaudet
- University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.,University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - D R Rose
- University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.,University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|