1
|
Kong D, Zhao X, Pan Y, Song N. Gonadal transcriptome analysis of sex-biased gene and genome-wide investigation of dmrt gene family in Acanthogobius ommaturus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101204. [PMID: 38342067 DOI: 10.1016/j.cbd.2024.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Acanthogobius ommaturus is one of the largest goby fish, and widely distributed in the Northwestern Pacific as an annual benthic fish. This study aims to report the gonadal transcriptome of A. ommaturus and identify differentially expressed genes (DEGs) between sexes. A total of 5460 (27.94 %) DEGs were detected from genome, with 3301 (16.89 %) biased towards males and 2159 (11.05 %) towards females. Analysis of 76 known vertebrate sex-related genes revealed multiple key genes, including the male-biased genes dmrt1 (Doublesex and Mab-3 related transcription factor 1) and amh (Anti-Mullerian Hormone), and the female-biased genes foxl2 (Forkhead Box L2) and cyp19a1a (Cytochrome P450 Aromatase 19 Subfamily A1). Furthermore, a genome-wide gene family analysis focused on the most significantly differentially expressed male-biased gene, dmrt1, was conducted using the chromosomal-level genome. Six Aodmrt genes were identified and subjected to phylogenetic and protein interaction network analyses. To validate the expression pattern, quantitative real-time PCR (qRT-PCR) was performed and compared with gonadal transcriptome data. The results showed that only dmrt1 exhibited significant male-bias, while the expression levels and sex differences of other dmrt genes in the gonads were inconclusive. Interestingly, the other dmrt genes displayed higher expression levels in other tissues, suggesting currently unknown functions. In conclusion, this study provides valuable genetic information contributing to the understanding of the sex determination mechanism of A. ommaturus and bony fish.
Collapse
Affiliation(s)
- Delong Kong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xiang Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Yu Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Na Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
2
|
Wilson CA, Postlethwait JH. A maternal-to-zygotic-transition gene block on the zebrafish sex chromosome. G3 (BETHESDA, MD.) 2024; 14:jkae050. [PMID: 38466753 PMCID: PMC11075544 DOI: 10.1093/g3journal/jkae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex-determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting that Chr4R transcriptomics might differ from the rest of the genome. To test this hypothesis, we conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes in the Nadia strain and identified 4 regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brains and livers validated reduced transcripts from Region-2 in somatic cells, but without sex specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. Region-2 lacks protein-coding genes with human orthologs; has zinc finger genes expressed early in zygotic genome activation; has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and a distinct set of repetitive elements. The colocalization of (1) genes silenced in ovaries but not in testes that are (2) expressed in embryos briefly at the onset of zygotic genome activation; (3) maternal-specific genes for translation machinery; (4) maternal-specific spliceosome components; and (5) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a maternal-to-zygotic-transition gene regulatory block.
Collapse
|
3
|
Pappert FA, Dubin A, Torres GG, Roth O. Navigating sex and sex roles: deciphering sex-biased gene expression in a species with sex-role reversal ( Syngnathus typhle). ROYAL SOCIETY OPEN SCIENCE 2024; 11:rsos.231620. [PMID: 38577217 PMCID: PMC10987989 DOI: 10.1098/rsos.231620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Sexual dimorphism, the divergence in morphological traits between males and females of the same species, is often accompanied by sex-biased gene expression. However, the majority of research has focused on species with conventional sex roles, where females have the highest energy burden with both egg production and parental care, neglecting the diversity of reproductive roles found in nature. We investigated sex-biased gene expression in Syngnathus typhle, a sex-role reversed species with male pregnancy, allowing us to separate two female traits: egg production and parental care. Using RNA sequencing, we examined gene expression across organs (brain, head kidney and gonads) at various life stages, encompassing differences in age, sex and reproductive status. While some gene groups were more strongly associated with sex roles, such as stress resistance and immune defence, others were driven by biological sex, such as energy and lipid storage regulation in an organ- and age-specific manner. By investigating how genes regulate and are regulated by changing reproductive roles and resource allocation in a model system with an unconventional life-history strategy, we aim to better understand the importance of sex and sex role in regulating gene expression patterns, broadening the scope of this discussion to encompass a wide range of organisms.
Collapse
Affiliation(s)
- Freya A. Pappert
- Marine Evolutionary Biology, Zoological Institute, Christian-Albrechts-Universität Kiel, Kiel24118, Germany
- Evolutionary Ecology of Marine Fishes, Helmholtz-Centre for Ocean Research Kiel (GEOMAR), Kiel24105, Germany
| | - Arseny Dubin
- Marine Evolutionary Biology, Zoological Institute, Christian-Albrechts-Universität Kiel, Kiel24118, Germany
| | - Guillermo G. Torres
- Institute of Clinical Molecular Biology (IKMB), University Hospital Schleswig-Holstein, Kiel University, Kiel24105, Germany
| | - Olivia Roth
- Marine Evolutionary Biology, Zoological Institute, Christian-Albrechts-Universität Kiel, Kiel24118, Germany
- Evolutionary Ecology of Marine Fishes, Helmholtz-Centre for Ocean Research Kiel (GEOMAR), Kiel24105, Germany
| |
Collapse
|
4
|
Patwary ZP, Zhao M, Paul NA, Cummins SF. Identification of reproductive sex-biased gene expression in Asparagopsis taxiformis (lineage 6) gametophytes. JOURNAL OF PHYCOLOGY 2024; 60:327-342. [PMID: 38156746 DOI: 10.1111/jpy.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The sub-tropical red seaweed Asparagopsis taxiformis is of significant interest due to its ability to store halogenated compounds, including bromoform, which can mitigate methane production in ruminants. Significant scale-up of aquaculture production of this seaweed is required; however, relatively little is known about the molecular mechanisms that control fundamental physiological processes, including the regulatory factors that determine sexual dimorphism in gametophytes. In this study, we used comparative RNA-sequencing analysis between different morphological parts of mature male and female A. taxiformis (lineage 6) gametophytes that resulted in greater number of sex-biased gene expression in tips (containing the reproductive structures for both sexes), compared with the somatic main axis and rhizomes. Further comparative RNA-seq against immature tips was used to identify 62 reproductive sex-biased genes (59 male-biased, 3 female-biased). Of the reproductive male-biased genes, 46% had an unknown function, while others were predicted to be regulatory factors and enzymes involved in signaling. We found that bromoform content obtained from female samples (8.5 ± 1.0 mg·g-1 dry weight) was ~10% higher on average than that of male samples (6.5 ± 1.0 mg·g-1 dry weight), although no significant difference was observed (p > 0.05). There was also no significant difference in the marine bromoform biosynthesis locus gene expression. In summary, our comparative RNA-sequencing analysis provides a first insight into the potential molecular factors relevant to gametogenesis and sexual differentiation in A. taxiformis, with potential benefits for identification of sex-specific markers.
Collapse
Affiliation(s)
- Zubaida Parveen Patwary
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nicholas A Paul
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
5
|
Wilson CA, Postlethwait JH. A maternal-to-zygotic-transition gene block on the zebrafish sex chromosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570431. [PMID: 38106184 PMCID: PMC10723407 DOI: 10.1101/2023.12.06.570431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting the hypothesis that the Chr4R transcriptome might be different from the rest of the genome. We conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes and identified four regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brain and liver validated few transcripts from Region-2 in somatic cells, but without sex-specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. In Region-2, protein-coding genes lack human orthologs; it has zinc finger genes expressed early in zygotic genome activation; it has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and an distinct set of repetitive elements. The colocalization of 1) genes silenced in ovaries but not in testes that are 2) expressed in embryos briefly at the onset of zygotic genome activation; 3) maternal-specific genes for translation machinery; 4) maternal-specific spliceosome components; and 4) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a Maternal-to-Zygotic-Transition Gene Regulatory Block.
Collapse
|
6
|
Hatchett WJ, Jueterbock AO, Kopp M, Coyer JA, Coelho SM, Hoarau G, Lipinska AP. Evolutionary dynamics of sex-biased gene expression in a young XY system: insights from the brown alga genus Fucus. THE NEW PHYTOLOGIST 2023; 238:422-437. [PMID: 36597732 DOI: 10.1111/nph.18710] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Sex-biased gene expression is considered to be an underlying cause of sexually dimorphic traits. Although the nature and degree of sex-biased expression have been well documented in several animal and plant systems, far less is known about the evolution of sex-biased genes in more distant eukaryotic groups. Here, we investigate sex-biased gene expression in two brown algal dioecious species, Fucus serratus and Fucus vesiculosus, where male heterogamety (XX/XY) has recently emerged. We find that in contrast to evolutionary distant plant and animal lineages, male-biased genes do not experience high turnover rates, but instead reveal remarkable conservation of bias and expression levels between the two species, suggesting their importance in sexual differentiation. Genes with consistent male bias were enriched in functions related to gamete production, along with sperm competition and include three flagellar proteins under positive selection. We present one of the first reports, outside of the animal kingdom, showing that male-biased genes display accelerated rates of coding sequence evolution compared with female-biased or unbiased genes. Our results imply that evolutionary forces affect male and female sex-biased genes differently on structural and regulatory levels, resulting in unique properties of differentially expressed transcripts during reproductive development in Fucus algae.
Collapse
Affiliation(s)
- William J Hatchett
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Martina Kopp
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - James A Coyer
- Shoals Marine Laboratory, University of New Hampshire, Durham, NH, 03824, USA
| | - Susana M Coelho
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tuebingen, Germany
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Agnieszka P Lipinska
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tuebingen, Germany
| |
Collapse
|
7
|
Allen SR, Stewart RK, Rogers M, Ruiz IJ, Cohen E, Laederach A, Counter CM, Sawyer JK, Fox DT. Distinct responses to rare codons in select Drosophila tissues. eLife 2022; 11:e76893. [PMID: 35522036 PMCID: PMC9116940 DOI: 10.7554/elife.76893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Codon usage bias has long been appreciated to influence protein production. Yet, relatively few studies have analyzed the impacts of codon usage on tissue-specific mRNA and protein expression. Here, we use codon-modified reporters to perform an organism-wide screen in Drosophila melanogaster for distinct tissue responses to codon usage bias. These reporters reveal a cliff-like decline of protein expression near the limit of rare codon usage in endogenously expressed Drosophila genes. Near the edge of this limit, however, we find the testis and brain are uniquely capable of expressing rare codon-enriched reporters. We define a new metric of tissue-specific codon usage, the tissue-apparent Codon Adaptation Index (taCAI), to reveal a conserved enrichment for rare codon usage in the endogenously expressed genes of both Drosophila and human testis. We further demonstrate a role for rare codons in an evolutionarily young testis-specific gene, RpL10Aa. Optimizing RpL10Aa codons disrupts female fertility. Our work highlights distinct responses to rarely used codons in select tissues, revealing a critical role for codon bias in tissue biology.
Collapse
Affiliation(s)
- Scott R Allen
- Department of Cell Biology, Duke UniversityDurhamUnited States
| | - Rebeccah K Stewart
- Department of Pharmacology and Cancer Biology, Duke UniversityDurhamUnited States
| | - Michael Rogers
- Department of Pharmacology and Cancer Biology, Duke UniversityDurhamUnited States
| | - Ivan Jimenez Ruiz
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Erez Cohen
- Department of Cell Biology, Duke UniversityDurhamUnited States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | | | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke UniversityDurhamUnited States
| | - Donald T Fox
- Department of Cell Biology, Duke UniversityDurhamUnited States
- Department of Pharmacology and Cancer Biology, Duke UniversityDurhamUnited States
| |
Collapse
|
8
|
Lyu Y, Liufu Z, Xiao J, Tang T. A Rapid Evolving microRNA Cluster Rewires Its Target Regulatory Networks in Drosophila. Front Genet 2021; 12:760530. [PMID: 34777478 PMCID: PMC8581666 DOI: 10.3389/fgene.2021.760530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
New miRNAs are evolutionarily important but their functional evolution remains unclear. Here we report that the evolution of a microRNA cluster, mir-972C rewires its downstream regulatory networks in Drosophila. Genomic analysis reveals that mir-972C originated in the common ancestor of Drosophila where it comprises six old miRNAs. It has subsequently recruited six new members in the melanogaster subgroup after evolving for at least 50 million years. Both the young and the old mir-972C members evolved rapidly in seed and non-seed regions. Combining target prediction and cell transfection experiments, we found that the seed and non-seed changes in individual mir-972C members cause extensive target divergence among D. melanogaster, D. simulans, and D. virilis, consistent with the functional evolution of mir-972C reported recently. Intriguingly, the target pool of the cluster as a whole remains relatively conserved. Our results suggest that clustering of young and old miRNAs broadens the target repertoires by acquiring new targets without losing many old ones. This may facilitate the establishment of new miRNAs in existing regulatory networks.
Collapse
Affiliation(s)
- Yang Lyu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juan Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Dechaud C, Miyake S, Martinez-Bengochea A, Schartl M, Volff JN, Naville M. Clustering of Sex-Biased Genes and Transposable Elements in the Genome of the Medaka Fish Oryzias latipes. Genome Biol Evol 2021; 13:6384576. [PMID: 34623422 PMCID: PMC8633743 DOI: 10.1093/gbe/evab230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Although genes with similar expression patterns are sometimes found in the same genomic regions, almost nothing is known about the relative organization in genomes of genes and transposable elements (TEs), which might influence each other at the regulatory level. In this study, we used transcriptomic data from male and female gonads of the Japanese medaka Oryzias latipes to define sexually biased genes and TEs and analyze their relative genomic localization. We identified 20,588 genes expressed in the adult gonads of O. latipes. Around 39% of these genes are differentially expressed between male and female gonads. We further analyzed the expression of TEs using the program SQuIRE and showed that more TE copies are overexpressed in testis than in ovaries (36% vs. 10%, respectively). We then developed a method to detect genomic regions enriched in testis- or ovary-biased genes. This revealed that sex-biased genes and TEs are not randomly distributed in the genome and a part of them form clusters with the same expression bias. We also found a correlation of expression between TE copies and their closest genes, which increases with decreasing intervening distance. Such a genomic organization suggests either that TEs hijack the regulatory sequences of neighboring sexual genes, allowing their expression in germ line cells and consequently new insertions to be transmitted to the next generation, or that TEs are involved in the regulation of sexual genes, and might therefore through their mobility participate in the rewiring of sex regulatory networks.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Sho Miyake
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | | | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany.,Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
10
|
Guéry JC. Sex Differences in Primary HIV Infection: Revisiting the Role of TLR7-Driven Type 1 IFN Production by Plasmacytoid Dendritic Cells in Women. Front Immunol 2021; 12:729233. [PMID: 34512664 PMCID: PMC8432934 DOI: 10.3389/fimmu.2021.729233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) produce type I interferon (IFN-I) during HIV-1 infection in response to TLR7 stimulation. However, IFN-I-signaling has been shown to play opposite effects in HIV-1 and SIV infection. TLR7-driven type I interferon production in pDCs is higher in women than in men due to the cell-intrinsic actions of estrogen and X-chromosome complement. Indeed, TLR7 is encoded on the X-chromosome, and the TLR7 gene escapes the X-chromosome inactivation in immune cells of women which express significantly higher levels of TLR7 protein than male cells. Following HIV infection, women have a lower viremia during acute infection and exhibit stronger antiviral responses than men, which has been attributed to the increased capacity of female pDCs to produce IFN-α upon TLR7-stimulation. However, a deleterious functional impact of an excessive TLR7 response on acute viremia in women has been recently revealed by the analysis of the frequent rs179008 c.32A>T SNP of TLR7. This SNP was identified as a sex-specific protein abundance quantitative trait locus (pQTL) causing a difference in the TLR7 protein dosage and effector function in females only. T allele expression was associated with a lower TLR7 protein synthesis, blunted production of IFN-α by pDCs upon TLR7 stimulation, and an unexpectedly lower viral load during primary HIV-1 infection in women. In the present review, the author will revisit the role of TLR7-driven pDC innate function in the context of HIV-1 infection to discuss at what stage of primary HIV-1 infection the TLR7 rs179008 T allele is likely to be protective in women.
Collapse
Affiliation(s)
- Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| |
Collapse
|
11
|
Whittle CA, Kulkarni A, Extavour CG. Evolutionary dynamics of sex-biased genes expressed in cricket brains and gonads. J Evol Biol 2021; 34:1188-1211. [PMID: 34114713 DOI: 10.1111/jeb.13889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Sex-biased gene expression, particularly sex-biased expression in the gonad, has been linked to rates of protein sequence evolution (nonsynonymous to synonymous substitutions, dN/dS) in animals. However, in insects, sex-biased expression studies remain centred on a few holometabolous species. Moreover, other major tissue types such as the brain remain underexplored. Here, we studied sex-biased gene expression and protein evolution in a hemimetabolous insect, the cricket Gryllus bimaculatus. We generated novel male and female RNA-seq data for two sexual tissue types, the gonad and somatic reproductive system, and for two core components of the nervous system, the brain and ventral nerve cord. From a genome-wide analysis, we report several core findings. Firstly, testis-biased genes had accelerated evolution, as compared to ovary-biased and unbiased genes, which was associated with positive selection events. Secondly, although sex-biased brain genes were much less common than for the gonad, they exhibited a striking tendency for rapid protein sequence evolution, an effect that was stronger for the female than male brain. Further, some sex-biased brain genes were linked to sexual functions and mating behaviours, which we suggest may have accelerated their evolution via sexual selection. Thirdly, a tendency for narrow cross-tissue expression breadth, suggesting low pleiotropy, was observed for sex-biased brain genes, suggesting relaxed purifying selection, which we speculate may allow enhanced freedom to evolve adaptive protein functional changes. The findings of rapid evolution of testis-biased genes and male and female-biased brain genes are discussed with respect to pleiotropy, positive selection and the mating biology of this cricket.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
12
|
Herrig DK, Vertacnik KL, Kohrs AR, Linnen CR. Support for the adaptive decoupling hypothesis from whole-transcriptome profiles of a hypermetamorphic and sexually dimorphic insect, Neodiprion lecontei. Mol Ecol 2021; 30:4551-4566. [PMID: 34174126 DOI: 10.1111/mec.16041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Though seemingly bizarre, the dramatic morphological and ecological transformation that occurs when immature life stages metamorphose into reproductive adults is one of the most successful developmental strategies on the planet. The adaptive decoupling hypothesis (ADH) proposes that metamorphosis is an adaptation for breaking developmental links between traits expressed in different life stages, thereby facilitating their independent evolution when exposed to opposing selection pressures. Here, we draw inspiration from the ADH to develop a conceptual framework for understanding changes in gene expression across ontogeny. We hypothesized that patterns of stage-biased and sex-biased gene expression are the product of both decoupling mechanisms and selection history. To test this hypothesis, we characterized transcriptome-wide patterns of gene-expression traits for three ecologically distinct larval stages (all male) and adult males and females of a hypermetamorphic insect (Neodiprion lecontei). We found that stage-biased gene expression was most pronounced between larval and adult males, which is consistent with the ADH. However, even in the absence of a metamorphic transition, considerable stage-biased expression was observed among morphologically and behaviourally distinct larval stages. Stage-biased expression was also observed across ecologically relevant Gene Ontology categories and genes, highlighting the role of ecology in shaping patterns of gene expression. We also found that the magnitude and prevalence of stage-biased expression far exceeded adult sex-biased expression. Overall, our results highlight how the ADH can shed light on transcriptome-wide patterns of gene expression in organisms with complex life cycles. For maximal insight, detailed knowledge of organismal ecology is also essential.
Collapse
Affiliation(s)
- Danielle K Herrig
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Kim L Vertacnik
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Anna R Kohrs
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
13
|
Hosseini S, Schmitt AO, Tetens J, Brenig B, Simianer H, Sharifi AR, Gültas M. In Silico Prediction of Transcription Factor Collaborations Underlying Phenotypic Sexual Dimorphism in Zebrafish ( Danio rerio). Genes (Basel) 2021; 12:873. [PMID: 34200177 PMCID: PMC8227731 DOI: 10.3390/genes12060873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022] Open
Abstract
The transcriptional regulation of gene expression in higher organisms is essential for different cellular and biological processes. These processes are controlled by transcription factors and their combinatorial interplay, which are crucial for complex genetic programs and transcriptional machinery. The regulation of sex-biased gene expression plays a major role in phenotypic sexual dimorphism in many species, causing dimorphic gene expression patterns between two different sexes. The role of transcription factor (TF) in gene regulatory mechanisms so far has not been studied for sex determination and sex-associated colour patterning in zebrafish with respect to phenotypic sexual dimorphism. To address this open biological issue, we applied bioinformatics approaches for identifying the predicted TF pairs based on their binding sites for sex and colour genes in zebrafish. In this study, we identified 25 (e.g., STAT6-GATA4; JUN-GATA4; SOX9-JUN) and 14 (e.g., IRF-STAT6; SOX9-JUN; STAT6-GATA4) potentially cooperating TFs based on their binding patterns in promoter regions for sex determination and colour pattern genes in zebrafish, respectively. The comparison between identified TFs for sex and colour genes revealed several predicted TF pairs (e.g., STAT6-GATA4; JUN-SOX9) are common for both phenotypes, which may play a pivotal role in phenotypic sexual dimorphism in zebrafish.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Functional Breeding Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Institute of Veterinary Medicine, University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
| | - Armin Otto Schmitt
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Jens Tetens
- Functional Breeding Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
| | - Bertram Brenig
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Institute of Veterinary Medicine, University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
| | - Henner Simianer
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
- Faculty of Agriculture, South Westphalia University of Applied Sciences, 59494 Soest, Germany
| |
Collapse
|
14
|
Jiang H, Lin JQ, Sun L, Xu YC, Fang SG. Sex-Biased Gene Expression and Evolution in the Cerebrum and Syrinx of Chinese Hwamei ( Garrulax canorus). Genes (Basel) 2021; 12:genes12040569. [PMID: 33919806 PMCID: PMC8070764 DOI: 10.3390/genes12040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
It is common that males and females display sexual dimorphisms, which usually result from sex-biased gene expression. Chinese hwamei (Garrulax canorus) is a good model for studying sex-biased gene expression because the song between the sexes is quite different. In this study, we analyze cerebrum and syrinx sex-biased gene expression and evolution using the de novo assembled Chinese hwamei transcriptome. In both the cerebrum and syrinx, our study revealed that most female-biased genes were actively expressed in females only, while most male-biased genes were actively expressed in both sexes. In addition, both male- and female-biased genes were enriched on the putative Z chromosome, suggesting the existence of sexually antagonistic genes and the insufficient dosage compensation of the Z-linked genes. We also identified a 9 Mb sex linkage region on the putative 4A chromosome which enriched more than 20% of female-biased genes. Resultantly, male-biased genes in both tissues had significantly higher Ka/Ks and effective number of codons (ENCs) than unbiased genes, and this suggested that male-biased genes which exhibit accelerated divergence may have resulted from positive selection. Taken together, our results initially revealed the reasons for the differences in singing behavior between males and females of Chinese hwamei.
Collapse
Affiliation(s)
- Hua Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.-Q.L.); (L.S.)
| | - Jian-Qing Lin
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.-Q.L.); (L.S.)
| | - Li Sun
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.-Q.L.); (L.S.)
| | - Yan-Chun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation, Harbin 150040, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.-Q.L.); (L.S.)
- Correspondence: ; Tel.: +86-571-88206472
| |
Collapse
|
15
|
Yang L, Jiang H, Chen J, Lei Y, Sun N, Lv W, Near TJ, He S. Comparative Genomics Reveals Accelerated Evolution of Fright Reaction Genes in Ostariophysan Fishes. Front Genet 2019; 10:1283. [PMID: 31921316 PMCID: PMC6936194 DOI: 10.3389/fgene.2019.01283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
The ostariophysian fishes are the most species-rich clade in freshwaters. This diversification has been suggested to be associated with the fright reaction presented in most ostariophysians. However, the genetic forces that underlie fright reaction remains poorly understood. In the present study, through integrating behavioral, physiological, transcriptomic, and evolutionary genomic analyses, we found that the fright reaction has a broad impact on zebrafish at multiple levels, including changes in swimming behaviors, cortisol levels, and gene expression patterns. In total, 1,555 and 1,599 differentially expressed genes were identified in olfactory mucosae and brain of zebrafish, respectively, with a greater number upregulated after the fright reaction. Functional annotation showed that response to stress and signal transduction were strongly represented, which is directly associated with the fright reaction. These differentially expressed genes were shown to be evolved accelerated under the influence of positive selection, indicating that protein-coding evolution has played a major role in fright reaction. We found the basal vomeronasal type 2 receptors (v2r) gene, v2rl1, displayed significantly decrease expression after fright reaction, which suggests that v2rs may be important to detect the alarm substance and induce the fright reaction. Collectively, based on our transcriptome and evolutionary genomics analyses, we suggest that transcriptional plasticity of gene may play an important role in fright reaction in ostariophysian fishes.
Collapse
Affiliation(s)
- Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Sun
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT, United States
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Dechaud C, Volff JN, Schartl M, Naville M. Sex and the TEs: transposable elements in sexual development and function in animals. Mob DNA 2019; 10:42. [PMID: 31700550 PMCID: PMC6825717 DOI: 10.1186/s13100-019-0185-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Transposable elements are endogenous DNA sequences able to integrate into and multiply within genomes. They constitute a major source of genetic innovations, as they can not only rearrange genomes but also spread ready-to-use regulatory sequences able to modify host gene expression, and even can give birth to new host genes. As their evolutionary success depends on their vertical transmission, transposable elements are intrinsically linked to reproduction. In organisms with sexual reproduction, this implies that transposable elements have to manifest their transpositional activity in germ cells or their progenitors. The control of sexual development and function can be very versatile, and several studies have demonstrated the implication of transposable elements in the evolution of sex. In this review, we report the functional and evolutionary relationships between transposable elements and sexual reproduction in animals. In particular, we highlight how transposable elements can influence expression of sexual development genes, and how, reciprocally, they are tightly controlled in gonads. We also review how transposable elements contribute to the organization, expression and evolution of sexual development genes and sex chromosomes. This underscores the intricate co-evolution between host functions and transposable elements, which regularly shift from a parasitic to a domesticated status useful to the host.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX USA
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| |
Collapse
|
17
|
Wan ZY, Lin G, Yue G. Genes for sexual body size dimorphism in hybrid tilapia (Oreochromis sp. x Oreochromis mossambicus). AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Sarangdhar MA, Chaubey D, Srikakulam N, Pillai B. Parentally inherited long non-coding RNA Cyrano is involved in zebrafish neurodevelopment. Nucleic Acids Res 2019; 46:9726-9735. [PMID: 30011017 PMCID: PMC6182166 DOI: 10.1093/nar/gky628] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
Transfer of genetic material from parents to progeny via fusion of gametes is a way to ensure flow of information from one generation to the next. Apart from the genetic material, gametes provide a rich source of other factors such as RNA and proteins which can control traits of the embryo. Non-coding RNAs are not only carriers of regulatory information but can also encode memory of events of parental life. Here, we explore the possibility of parental inheritance of non-coding RNAs, especially long non-coding RNAs. Meta-analysis of RNA-seq data revealed several non-coding RNAs present in zebrafish oocyte, sperm and 2cell-stage. The embryo is transcriptionally silent at this stage, we rationalize that all the RNAs detectable at 2cell-stage are deposited either by sperm or oocyte or both and thus inherited. In the inherited pool, we noticed a conserved lncRNA, Cyrano previously known for zebrafish brain development. Knockdown of inherited Cyrano by miR-7 without changing zygotic Cyrano altered brain morphology at 24 hpf and 48 hpf. This defect could be partially rescued by injecting full length Cyrano lncRNA or a mutant resilient to knock-down by miR-7. In future, there is ample scope to check the possibility of inherited lncRNAs as carriers of memory of parental life events and building blocks that set up an initial platform for development.
Collapse
Affiliation(s)
- Mayuresh Anant Sarangdhar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Divya Chaubey
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Nagesh Srikakulam
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
19
|
Bolívar P, Mugal CF, Rossi M, Nater A, Wang M, Dutoit L, Ellegren H. Biased Inference of Selection Due to GC-Biased Gene Conversion and the Rate of Protein Evolution in Flycatchers When Accounting for It. Mol Biol Evol 2019; 35:2475-2486. [PMID: 30085180 PMCID: PMC6188562 DOI: 10.1093/molbev/msy149] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rate of recombination impacts on rates of protein evolution for at least two reasons: it affects the efficacy of selection due to linkage and influences sequence evolution through the process of GC-biased gene conversion (gBGC). We studied how recombination, via gBGC, affects inferences of selection in gene sequences using comparative genomic and population genomic data from the collared flycatcher (Ficedula albicollis). We separately analyzed different mutation categories (“strong”-to-“weak,” “weak-to-strong,” and GC-conservative changes) and found that gBGC impacts on the distribution of fitness effects of new mutations, and leads to that the rate of adaptive evolution and the proportion of adaptive mutations among nonsynonymous substitutions are underestimated by 22–33%. It also biases inferences of demographic history based on the site frequency spectrum. In light of this impact, we suggest that inferences of selection (and demography) in lineages with pronounced gBGC should be based on GC-conservative changes only. Doing so, we estimate that 10% of nonsynonymous mutations are effectively neutral and that 27% of nonsynonymous substitutions have been fixed by positive selection in the flycatcher lineage. We also find that gene expression level, sex-bias in expression, and the number of protein–protein interactions, but not Hill–Robertson interference (HRI), are strong determinants of selective constraint and rate of adaptation of collared flycatcher genes. This study therefore illustrates the importance of disentangling the effects of different evolutionary forces and genetic factors in interpretation of sequence data, and from that infer the role of natural selection in DNA sequence evolution.
Collapse
Affiliation(s)
- Paulina Bolívar
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Carina F Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Matteo Rossi
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Alexander Nater
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mi Wang
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Ludovic Dutoit
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Hosseini S, Ha NT, Simianer H, Falker-Gieske C, Brenig B, Franke A, Hörstgen-Schwark G, Tetens J, Herzog S, Sharifi AR. Genetic mechanism underlying sexual plasticity and its association with colour patterning in zebrafish (Danio rerio). BMC Genomics 2019; 20:341. [PMID: 31060508 PMCID: PMC6503382 DOI: 10.1186/s12864-019-5722-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Elevated water temperature, as is expected through climate change, leads to masculinization in fish species with sexual plasticity, resulting in changes in population dynamics. These changes are one important ecological consequence, contributing to the risk of extinction in small and inbred fish populations under natural conditions, due to male-biased sex ratio. Here we investigated the effect of elevated water temperature during embryogenesis on sex ratio and sex-biased gene expression profiles between two different tissues, namely gonad and caudal fin of adult zebrafish males and females, to gain new insights into the molecular mechanisms underlying sex determination (SD) and colour patterning related to sexual attractiveness. RESULTS Our study demonstrated sex ratio imbalances with 25.5% more males under high-temperature condition, resulting from gonadal masculinization. The result of transcriptome analysis showed a significantly upregulated expression of male SD genes (e.g. dmrt1, amh, cyp11c1 and sept8b) and downregulation of female SD genes (e.g. zp2.1, vtg1, cyp19a1a and bmp15) in male gonads compared to female gonads. Contrary to expectations, we found highly differential expression of colour pattern (CP) genes in the gonads, suggesting the 'neofunctionalisation' of those genes in the zebrafish reproduction system. However, in the caudal fin, no differential expression of CP genes was identified, suggesting the observed differences in colouration between males and females in adult fish may be due to post-transcriptional regulation of key enzymes involved in pigment synthesis and distribution. CONCLUSIONS Our study demonstrates male-biased sex ratio under high temperature condition and support a polygenic SD (PSD) system in laboratory zebrafish. We identify a subset of pathways (tight junction, gap junction and apoptosis), enriched for SD and CP genes, which appear to be co-regulated in the same pathway, providing evidence for involvement of those genes in the regulation of phenotypic sexual dimorphism in zebrafish.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany. .,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany.
| | - Ngoc-Thuy Ha
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Henner Simianer
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Bertram Brenig
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany.,Institute of Veterinary Medicine, University of Goettingen, Goettingen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Jens Tetens
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Sebastian Herzog
- Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,Department for Computational Neuroscience, 3rd Physics Institute-Biophysics, University of Goettingen, Goettingen, Germany
| | - Ahmad Reza Sharifi
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| |
Collapse
|
21
|
Sanderson BJ, Wang L, Tiffin P, Wu Z, Olson MS. Sex-biased gene expression in flowers, but not leaves, reveals secondary sexual dimorphism in Populus balsamifera. THE NEW PHYTOLOGIST 2019; 221:527-539. [PMID: 30252135 DOI: 10.1111/nph.15421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/29/2018] [Indexed: 05/11/2023]
Abstract
Because sexual dimorphism in plants is often less morphologically conspicuous than in animals, studies of sex-biased gene expression may provide a quantitative metric to better address their commonality, molecular pathways, consistency across tissues and taxa, and evolution. The presence of sex-biased gene expression in tissues other than the androecium or gynoecium, termed secondary sexual characters, suggests that these traits arose after the initial evolution of dioecy. Patterns of sequence evolution may provide evidence of positive selection that drove sexual specialization. We compared gene expression in male and female flowers and leaves of Populus balsamifera to assess the extent of sex-biased expression, and tested whether sex-biased genes exhibit elevated rates of protein evolution. Sex-biased expression was pervasive in floral tissue, but nearly absent in leaf tissue. Female-biased genes in flowers were associated with photosynthesis, whereas male-biased genes were associated with mitochondrial function. Sex-biased genes did not exhibit elevated rates of protein evolution, contrary to results from other studies in animals and plants. Our results suggest that the ecological and physiological constraints associated with the energetics of flowering, rather than sexual conflict, have probably shaped the differences in male and female gene expression in P. balsamifera.
Collapse
Affiliation(s)
- Brian J Sanderson
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409, USA
| | - Li Wang
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Zhiqiang Wu
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409, USA
| |
Collapse
|
22
|
Ghiselli F, Iannello M, Puccio G, Chang PL, Plazzi F, Nuzhdin SV, Passamonti M. Comparative Transcriptomics in Two Bivalve Species Offers Different Perspectives on the Evolution of Sex-Biased Genes. Genome Biol Evol 2018; 10:1389-1402. [PMID: 29897459 PMCID: PMC6007409 DOI: 10.1093/gbe/evy082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has become a central tool for evolutionary biology, and a better knowledge of understudied taxa represents the foundation for future work. In this study, we characterized the transcriptome of male and female mature gonads in the European clam Ruditapes decussatus, compared with that in the Manila clam Ruditapes philippinarum providing, for the first time in bivalves, information about transcription dynamics and sequence evolution of sex-biased genes. In both the species, we found a relatively low number of sex-biased genes (1,284, corresponding to 41.3% of the orthologous genes between the two species), probably due to the absence of sexual dimorphism, and the transcriptional bias is maintained in only 33% of the orthologs. The dN/dS is generally low, indicating purifying selection, with genes where the female-biased transcription is maintained between the two species showing a significantly higher dN/dS. Genes involved in embryo development, cell proliferation, and maintenance of genome stability show a faster sequence evolution. Finally, we report a lack of clear correlation between transcription level and evolutionary rate in these species, in contrast with studies that reported a negative correlation. We discuss such discrepancy and call into question some methodological approaches and rationales generally used in this type of comparative studies.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Peter L Chang
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Federico Plazzi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Sergey V Nuzhdin
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
23
|
Pauletto M, Manousaki T, Ferraresso S, Babbucci M, Tsakogiannis A, Louro B, Vitulo N, Quoc VH, Carraro R, Bertotto D, Franch R, Maroso F, Aslam ML, Sonesson AK, Simionati B, Malacrida G, Cestaro A, Caberlotto S, Sarropoulou E, Mylonas CC, Power DM, Patarnello T, Canario AVM, Tsigenopoulos C, Bargelloni L. Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish. Commun Biol 2018; 1:119. [PMID: 30271999 PMCID: PMC6123679 DOI: 10.1038/s42003-018-0122-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Alexandros Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Bruno Louro
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Viet Ha Quoc
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Roberta Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Francesco Maroso
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | | | | | | | | | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via Edmund Mach 1, 38010, San Michele all'Adige, Trento, Italy
| | - Stefano Caberlotto
- Valle Cà Zuliani Società Agricola Srl, Via Timavo 76, 34074, Monfalcone, Gorizia, Italy
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Costantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Deborah M Power
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Adelino V M Canario
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Costas Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy.
| |
Collapse
|
24
|
Catalán A, Macias-Muñoz A, Briscoe AD. Evolution of Sex-Biased Gene Expression and Dosage Compensation in the Eye and Brain of Heliconius Butterflies. Mol Biol Evol 2018; 35:2120-2134. [DOI: 10.1093/molbev/msy111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ana Catalán
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
- Section of Evolutionary Biology, Department of Biology II, Ludwig Maximilians Universität, Planegg-Martinsried, Germany
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| |
Collapse
|
25
|
Darolti I, Wright AE, Pucholt P, Berlin S, Mank JE. Slow evolution of sex-biased genes in the reproductive tissue of the dioecious plant Salix viminalis. Mol Ecol 2018; 27:694-708. [PMID: 29274186 PMCID: PMC5901004 DOI: 10.1111/mec.14466] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
The relative rate of evolution for sex‐biased genes has often been used as a measure of the strength of sex‐specific selection. In contrast to studies in a wide variety of animals, far less is known about the molecular evolution of sex‐biased genes in plants, particularly in dioecious angiosperms. Here, we investigate the gene expression patterns and evolution of sex‐biased genes in the dioecious plant Salix viminalis. We observe lower rates of sequence evolution for male‐biased genes expressed in the reproductive tissue compared to unbiased and female‐biased genes. These results could be partially explained by the lower codon usage bias for male‐biased genes leading to elevated rates of synonymous substitutions compared to unbiased genes. However, the stronger haploid selection in the reproductive tissue of plants, together with pollen competition, would also lead to higher levels of purifying selection acting to remove deleterious variation. Future work should focus on the differential evolution of haploid‐ and diploid‐specific genes to understand the selective dynamics acting on these loci.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alison E Wright
- Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Pascal Pucholt
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Array and Analysis Facility, Department of Medical Science, Uppsala University, Uppsala, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Congrains C, Campanini EB, Torres FR, Rezende VB, Nakamura AM, de Oliveira JL, Lima ALA, Chahad-Ehlers S, Sobrinho IS, de Brito RA. Evidence of Adaptive Evolution and Relaxed Constraints in Sex-Biased Genes of South American and West Indies Fruit Flies (Diptera: Tephritidae). Genome Biol Evol 2018; 10:380-395. [PMID: 29346618 PMCID: PMC5786236 DOI: 10.1093/gbe/evy009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with sex-biased expression in species with incipient differentiation, we analyzed male and female transcriptomes of Anastrepha fraterculus and Anastrepha obliqua, a pair of species that have diverged recently, likely in the presence of gene flow. Using these data, we inferred differentiation indexes and evolutionary rates and tested for signals of selection in thousands of genes expressed in head and reproductive transcriptomes from both species. Our results indicate that sex-biased and reproductive-biased genes evolve faster than unbiased genes in both species, which is due to both adaptive pressure and relaxed constraints. Furthermore, among male-biased genes evolving under positive selection, we identified some related to sexual functions such as courtship behavior and fertility. These findings suggest that sex-biased genes may have played important roles in the establishment of reproductive isolation between these species, due to a combination of selection and drift, and unveil a plethora of genetic markers useful for more studies in these species and their differentiation.
Collapse
Affiliation(s)
- Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Emeline B Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Felipe R Torres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Víctor B Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Aline M Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - André L A Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - Reinaldo A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| |
Collapse
|
27
|
Morandin C, Mikheyev AS, Pedersen JS, Helanterä H. Evolutionary constraints shape caste-specific gene expression across 15 ant species. Evolution 2017; 71:1273-1284. [PMID: 28262920 DOI: 10.1111/evo.13220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
Development of polymorphic phenotypes from similar genomes requires gene expression differences. However, little is known about how morph-specific gene expression patterns vary on a broad phylogenetic scale. We hypothesize that evolution of morph-specific gene expression, and consequently morph-specific phenotypic evolution, may be constrained by gene essentiality and the amount of pleiotropic constraints. Here, we use comparative transcriptomics of queen and worker morphs, that is, castes, from 15 ant species to understand the constraints of morph-biased gene expression. In particular, we investigate how measures of evolutionary constraints at the sequence level (expression level, connectivity, and number of gene ontology [GO] terms) correlate with morph-biased expression. Our results show that genes indeed vary in their potential to become morph-biased. The existence of genes that are constrained in becoming caste-biased potentially limits the evolutionary decoupling of the caste phenotypes, that is, it might result in "caste load" occasioning from antagonistic fitness variation, similarly to sexually antagonistic fitness variation between males and females. On the other hand, we suggest that genes under low constraints are released from antagonistic variation and thus more likely to be co-opted for morph specific use. Overall, our results suggest that the factors that affect sequence evolutionary rates and evolution of plastic expression may largely overlap.
Collapse
Affiliation(s)
- Claire Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900, Hanko, Finland
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.,Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Jes Søe Pedersen
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900, Hanko, Finland
| |
Collapse
|