1
|
Kim W, Schmidt N, Jost M, Mkala EM, Winkler S, Hu G, Heitkam T, Wanke S. Diverging repeatomes in holoparasitic Hydnoraceae uncover a playground of genome evolution. THE NEW PHYTOLOGIST 2025. [PMID: 40515553 DOI: 10.1111/nph.70280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 05/18/2025] [Indexed: 06/16/2025]
Abstract
The transition from an autotrophic to a heterotrophic lifestyle is associated with numerous genomic changes. These often involve large genomic alterations, potentially driven by repetitive DNAs. Despite their recognized role in shaping plant genomes, the contribution of repetitive DNAs to parasitic plant genome evolution remains largely unexplored. This study presents the first analysis of repetitive DNAs in Hydnoraceae genomes, a plant family whose members are holoparasitic. Repetitive DNAs were identified and annotated de novo. Abundant transposable elements and 35S ribosomal DNA in the Hydnora visseri genome were reconstructed in silico. Their patterns of abundance and presence-absence were individually and comparatively analyzed. Both Hydnoraceae genera, Hydnora and Prosopanche, exhibit distinct repeatome profiles which challenge our current understanding of repeatome and rDNA evolution. The Hydnora genomes are dominated by long terminal repeat retrotransposons, while the Prosopanche genomes vary greatly in their repeat composition: Prosopanche bonacinae with a highly abundant single DNA transposon and Prosopanche panguanensis with over 15% 5S rDNA, compared to ≤ 0.1% in the Hydnora genomes. The repeat profiles align with the phylogeny, geographical distribution, and host shifts of the Hydnoraceae, indicating a potential role of repetitive DNAs in shaping Hydnoraceae genomes to adapt to the parasitic lifestyle.
Collapse
Affiliation(s)
- Woorin Kim
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, 60325, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Nicola Schmidt
- Institute of Biology I, RWTH Aachen University, 52074, Aachen, Germany
| | - Matthias Jost
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, 60325, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hefei, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
| | - Sylke Winkler
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
- Dresden-Concept Genome Center, 01307, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hefei, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
| | - Tony Heitkam
- Institute of Biology I, RWTH Aachen University, 52074, Aachen, Germany
| | - Stefan Wanke
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, 60325, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
- Departamento de Botánica, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| |
Collapse
|
2
|
Najera P, Dratler OA, Mai AB, Elizarraras M, Vanchinathan R, Gonzales CA, Meisel RP. Testis- and ovary-expressed polo-like kinase transcripts and gene duplications affect male fertility when expressed in the Drosophila melanogaster germline. G3 (BETHESDA, MD.) 2025; 15:jkae273. [PMID: 39566185 PMCID: PMC11708218 DOI: 10.1093/g3journal/jkae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Polo-like kinases (Plks) are essential for spindle attachment to the kinetochore during prophase and the subsequent dissociation after anaphase in both mitosis and meiosis. There are structural differences in the spindle apparatus among mitosis, male meiosis, and female meiosis. It is therefore possible that alleles of Plk genes could improve kinetochore attachment or dissociation in spermatogenesis or oogenesis, but not both. These opposing effects could result in sexually antagonistic selection at Plk loci. In addition, Plk genes have been independently duplicated in many different evolutionary lineages within animals. This raises the possibility that Plk gene duplication may resolve sexual conflicts over mitotic and meiotic functions. We investigated this hypothesis by comparing the evolution, gene expression, and functional effects of the single Plk gene in Drosophila melanogaster (polo) and the duplicated Plks in D. pseudoobscura (Dpse-polo and Dpse-polo-dup1). Dpse-polo-dup1 is expressed primarily in testis, while other Drosophila Plk genes have broader expression profiles. We found that the protein-coding sequence of Dpse-polo-dup1 is evolving significantly faster than a canonical polo gene across all functional domains, yet the essential structure of the encoded protein has been retained. We present additional evidence that the faster evolution of Dpse-polo-dup1 is driven by the adaptive fixation of amino acid substitutions. We also found that over or ectopic expression of polo or Dpse-polo in the D. melanogaster male germline resulted in greater male infertility than expression of Dpse-polo-dup1. Last, expression of Dpse-polo or an ovary-derived transcript of polo in the male germline caused males to sire female-biased broods, suggesting that some Plk transcripts can affect the meiotic transmission of the sex chromosomes in the male germline. However, there was no sex bias in the progeny when Dpse-polo-dup1 was ectopically expressed, or a testis-derived transcript of polo was overexpressed in the D. melanogaster male germline. Our results therefore suggest that Dpse-polo-dup1 may have experienced positive selection to improve its regulation of the male meiotic spindle, resolving sexual conflict over meiotic Plk functions. Alternatively, Dpse-polo-dup1 may encode a hypomorphic Plk that has reduced deleterious effects when overexpressed in the male germline. Similarly, testis transcripts of D. melanogaster polo may be optimized for regulating the male meiotic spindle, and we provide evidence that the untranslated regions of the polo transcript may be involved in sex-specific germline functions.
Collapse
Affiliation(s)
- Paola Najera
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Olivia A Dratler
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander B Mai
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Miguel Elizarraras
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Rahul Vanchinathan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Prediger C, Ferreira EA, Zorzato SV, Hua-Van A, Klasson L, Miller WJ, Yassin A, Madi-Ravazzi L. Saltational Episodes of Reticulate Evolution in the Drosophila saltans Species Group. Mol Biol Evol 2024; 41:msae250. [PMID: 39661651 DOI: 10.1093/molbev/msae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Phylogenomics reveals reticulate evolution to be widespread across taxa, but whether reticulation is due to low statistical power or it is a true evolutionary pattern remains a field of study. Here, we investigate the phylogeny and quantify reticulation in the Drosophila saltans species group, a Neotropical clade of the subgenus Sophophora comprising 23 species whose relationships have long been problematic. Phylogenetic analyses revealed conflicting topologies between the X chromosome, autosomes and the mitochondria. We extended the ABBA-BABA test of asymmetry in phylogenetic discordance to cases where no "true" species tree could be inferred, and applied our new test (called 2A2B) to whole genome data and to individual loci. We used four strategies, two based on our new assemblies using either conserved genes or ≥50 kb-long syntenic blocks with conserved collinearity across Neotropical Sophophora, and two consisted of windows from pseudo-reference genomes aligned to either an ingroup or outgroup species. Evidence for reticulation varied among the strategies, being lowest in the synteny-based approach, where it did not exceed ∼7% of the blocks in the most conflicting species quartets. High incidences of reticulation were restricted to three nodes on the tree that coincided with major paleogeographical events in South America. Our results identify possible technical biases in quantifying reticulate evolution and indicate that episodic rapid radiations have played a major role in the evolution of a largely understudied Neotropical clade.
Collapse
Affiliation(s)
- Carolina Prediger
- Department of Biology, UNESP-São Paulo State University, São José do Rio Preto, São Paulo, Brazil
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Erina A Ferreira
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Samara Videira Zorzato
- Department of Biology, UNESP-São Paulo State University, São José do Rio Preto, São Paulo, Brazil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), CNRS, MNHN, EPHE, Sorbonne Université, Univ. des Antilles, Paris, France
| | - Aurélie Hua-Van
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Wolfgang J Miller
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), CNRS, MNHN, EPHE, Sorbonne Université, Univ. des Antilles, Paris, France
| | - Lilian Madi-Ravazzi
- Department of Biology, UNESP-São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Witt KE, Villanea FA. Computational Genomics and Its Applications to Anthropological Questions. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 186 Suppl 78:e70010. [PMID: 40071816 PMCID: PMC11898561 DOI: 10.1002/ajpa.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 03/15/2025]
Abstract
The advent of affordable genome sequencing and the development of new computational tools have established a new era of genomic knowledge. Sequenced human genomes number in the tens of thousands, including thousands of ancient human genomes. The abundance of data has been met with new analysis tools that can be used to understand populations' demographic and evolutionary histories. Thus, a variety of computational methods now exist that can be leveraged to answer anthropological questions. This includes novel likelihood and Bayesian methods, machine learning techniques, and a vast array of population simulators. These computational tools provide powerful insights gained from genomic datasets, although they are generally inaccessible to those with less computational experience. Here, we outline the theoretical workings behind computational genomics methods, limitations and other considerations when applying these computational methods, and examples of how computational methods have already been applied to anthropological questions. We hope this review will empower other anthropologists to utilize these powerful tools in their own research.
Collapse
Affiliation(s)
- Kelsey E. Witt
- Department of Genetics and Biochemistry and Center for Human GeneticsClemson UniversityClemsonSouth CarolinaUSA
| | | |
Collapse
|
5
|
Vello F, Filippini F, Righetto I. Bioinformatics Goes Viral: I. Databases, Phylogenetics and Phylodynamics Tools for Boosting Virus Research. Viruses 2024; 16:1425. [PMID: 39339901 PMCID: PMC11437414 DOI: 10.3390/v16091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Computer-aided analysis of proteins or nucleic acids seems like a matter of course nowadays; however, the history of Bioinformatics and Computational Biology is quite recent. The advent of high-throughput sequencing has led to the production of "big data", which has also affected the field of virology. The collaboration between the communities of bioinformaticians and virologists already started a few decades ago and it was strongly enhanced by the recent SARS-CoV-2 pandemics. In this article, which is the first in a series on how bioinformatics can enhance virus research, we show that highly useful information is retrievable from selected general and dedicated databases. Indeed, an enormous amount of information-both in terms of nucleotide/protein sequences and their annotation-is deposited in the general databases of international organisations participating in the International Nucleotide Sequence Database Collaboration (INSDC). However, more and more virus-specific databases have been established and are progressively enriched with the contents and features reported in this article. Since viruses are intracellular obligate parasites, a special focus is given to host-pathogen protein-protein interaction databases. Finally, we illustrate several phylogenetic and phylodynamic tools, combining information on algorithms and features with practical information on how to use them and case studies that validate their usefulness. Databases and tools for functional inference will be covered in the next article of this series: Bioinformatics goes viral: II. Sequence-based and structure-based functional analyses for boosting virus research.
Collapse
Affiliation(s)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (F.V.); (I.R.)
| | | |
Collapse
|
6
|
Mello B, Schrago CG. Modeling Substitution Rate Evolution across Lineages and Relaxing the Molecular Clock. Genome Biol Evol 2024; 16:evae199. [PMID: 39332907 PMCID: PMC11430275 DOI: 10.1093/gbe/evae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 09/29/2024] Open
Abstract
Relaxing the molecular clock using models of how substitution rates change across lineages has become essential for addressing evolutionary problems. The diversity of rate evolution models and their implementations are substantial, and studies have demonstrated their impact on divergence time estimates can be as significant as that of calibration information. In this review, we trace the development of rate evolution models from the proposal of the molecular clock concept to the development of sophisticated Bayesian and non-Bayesian methods that handle rate variation in phylogenies. We discuss the various approaches to modeling rate evolution, provide a comprehensive list of available software, and examine the challenges and advancements of the prevalent Bayesian framework, contrasting them to faster non-Bayesian methods. Lastly, we offer insights into potential advancements in the field in the era of big data.
Collapse
Affiliation(s)
- Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| |
Collapse
|
7
|
Korábek O, Hausdorf B. Accelerated mitochondrial evolution and asymmetric fitness of hybrids contribute to the persistence of Helix thessalica in the Helix pomatia range. Mol Ecol 2024; 33:e17474. [PMID: 39031116 DOI: 10.1111/mec.17474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Interbreeding and introgression between recently diverged species is common. However, the processes that prevent these species from merging where they co-occur are not well understood. We studied the mechanisms that allowed an isolated group of populations of the snail Helix thessalica to persist within the range of the related Helix pomatia despite high gene flow. Using genomic cline analysis, we found that the nuclear gene flow between the two taxa across the mosaic hybrid zone was not different from that expected under neutral admixture, but that the exchange of mtDNA was asymmetric. Tests showed that there is relaxed selection in the mitochondrial genome of H. thessalica and that the substitution rate is elevated compared to that of H. pomatia. A lack of hybrids that combine the mtDNA of H. thessalica with a mainly (>46%) H. pomatia genomic background indicates that the nuclear-encoded mitochondrial proteins of H. pomatia are not well adapted to the more rapidly evolving proteins and RNAs encoded by the mitochondrion of H. thessalica. The presumed reduction of fitness of hybrids with the fast-evolving mtDNA of H. thessalica and a high H. pomatia ancestry, similar to 'Darwin's Corollary to Haldane's rule', resulted in a relative loss of H. pomatia nuclear ancestry compared to H. thessalica ancestry in the hybrid zone. This probably prevents the H. thessalica populations from merging quickly with the surrounding H. pomatia populations and supports the hypothesis that incompatibilities between rapidly evolving mitochondrial genes and nuclear genes contribute to speciation.
Collapse
Affiliation(s)
- Ondřej Korábek
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum, Hamburg, Germany
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Bernhard Hausdorf
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum, Hamburg, Germany
- Universität Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Banović P, Foucault-Simonin A, Papić L, Savić S, Potkonjak A, Jurišić A, Radenković M, Mijatović D, Simin V, Bogdan I, Zając Z, Kulisz J, Woźniak A, Hartmann D, Perner J, Wu-Chuang A, Mateos-Hernandez L, Moutailler S, Cabezas-Cruz A. One health approach to study human health risks associated with Dermanyssus gallinae mites. Heliyon 2024; 10:e30539. [PMID: 38742058 PMCID: PMC11089355 DOI: 10.1016/j.heliyon.2024.e30539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Despite the significant health risks associated with Dermanyssus gallinae infestations in humans, they are often overlooked. This study investigated a household case of D. gallinae infestation and explored the resulting clinical manifestations and risk of infection in family members. Microfluidic PCR was employed for high-throughput screening of pathogens in collected mites and blood samples from both chickens and family members. Morphological and molecular examinations confirmed the identity of the mites as D. gallinae sensu stricto (s.s.), with evidence indicating recent blood feeding. Results indicated that the mites exclusively harbored various pathogens, including Bartonella spp., Ehrlichia spp., Apicomplexa, and Theileria spp. Blood samples from family members and poultry tested negative for these pathogens, suggesting a potential reservoir role for D. gallinae. The study further identified haplotypes of D. gallinae, classifying them into D. gallinae s.s., cosmopolitan haplogroup A. Serological analysis revealed elevated IgE seroreactivity against mite proteins in the family member with bite lesions. Antibodies against Bartonella spp. were detected in this individual, indicating exposure to the pathogen. In summary, this study sheds light on the clinical manifestations, pathogen detection, and genetic characterization of D. gallinae infestations, underscoring the necessity of adopting comprehensive approaches to manage such infestations effectively.
Collapse
Affiliation(s)
- Pavle Banović
- Clinic for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, Novi Sad, 21000, Serbia
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21000, Serbia
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Luka Papić
- Veterinary clinic “Darvin”, Bate Brkića 32, Novi Sad, 21000, Serbia
| | - Sara Savić
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
- Scientific Veterinary Institute “Novi Sad”, 21000, Novi Sad, Serbia
| | - Aleksandar Potkonjak
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Aleksandar Jurišić
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
- Department for Environmental and Plant Protection, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Marko Radenković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Dragana Mijatović
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
- Department for Research & Monitoring of Rabies & Other Zoonoses, Pasteur Institute Novi Sad, 21000, Novi Sad, Serbia
| | - Verica Simin
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
- Department of Microbiology, Pasteur Institute Novi Sad, 21000, Novi Sad, Serbia
| | - Ivana Bogdan
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
- Department of Microbiology, Pasteur Institute Novi Sad, 21000, Novi Sad, Serbia
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - David Hartmann
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandez
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
9
|
Wu W, Feng X, Wang N, Shao S, Liu M, Si F, Chen L, Jin C, Xu S, Guo Z, Zhong C, Shi S, He Z. Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:824-843. [PMID: 38372488 DOI: 10.1111/jipb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
Collapse
Affiliation(s)
- Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, 511462, China
| | - Nan Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fa Si
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linhao Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
10
|
Sharma Y, Ishu, Shumayla, Dixit S, Singh K, Upadhyay SK. Decoding the features and potential roles of respiratory burst oxidase homologs in bread wheat. CURRENT PLANT BIOLOGY 2024; 37:100315. [DOI: 10.1016/j.cpb.2023.100315] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
11
|
Madhu, Sharma A, Kaur A, Singh K, Upadhyay SK. Modulation in gene expression and enzyme activity suggested the roles of monodehydroascorbate reductase in development and stress response in bread wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111902. [PMID: 37879539 DOI: 10.1016/j.plantsci.2023.111902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Monodehydroascorbate reductase (MDHAR) is a crucial enzymatic antioxidant of the ascorbate-glutathione pathway involved in reactive oxygen species scavenging. Herein, we identified 15 TaMDHAR genes in bread wheat. Phylogenetic analysis revealed their clustering into three groups, which are also related to the subcellular localization in the peroxisome matrix, peroxisome membrane, and chloroplast. Each TaMDHAR protein consisted of two conserved domains; Pyr_redox and Pyr_redox_2 of the pyridine nucleotide disulfide oxidoreductase family. The occurrence of diverse groups of cis-regulatory elements in the promoter region and their interaction with numerous transcription factors suggest assorted functions of TaMDHARs in growth and development and in light, phytohormones, and stress responses. Expression analysis in various tissues further revealed their importance in vegetative and reproductive development. In addition, the differential gene expression and enhanced enzyme activity during drought, heat, and salt treatments exposed their role in abiotic stress response. Interaction of MDHARs with various antioxidant enzymes and biochemicals related to the ascorbate-glutathione cycle exposed their synchronized functioning. Interaction with auxin indicated the probability of cross-talk between antioxidants and auxin signaling. The miR168a, miR169, miR172 and others interaction with various TaMDHARs further directed their association with developmental processes and stress responses. The current study provides extensive information about the importance of TaMDHARs, moreover, the precise role of each gene needs to be established in future studies.
Collapse
Affiliation(s)
- Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
12
|
Grakh K, Mittal D, Prakash A, Kumar R, Jindal N. uspA gene-based phylogenetic analysis and antigenic epitope prediction for Escherichia coli strains of avian origin. Front Vet Sci 2023; 10:1183048. [PMID: 38188721 PMCID: PMC10767999 DOI: 10.3389/fvets.2023.1183048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pathogenic Escherichia coli (E. coli) is responsible for various local and systemic infections in animal and human populations. Conventional methods for the detection and identification of E. coli are time-consuming and less reliable for atypical strains. The uspA gene has been widely used as a target for the detection of E. coli. The present study was aimed at phylogenetic analysis of the uspA gene sequences to determine the evolutionary relationships between the strains and other members of the Enterobacteriaceae family. In addition, the unique differences in the sequences of the current study with Salmonella and Shigella species were tested using Tajima's molecular clock test. Antigenic epitope prediction was performed to locate the B-cell epitope region of the UspA protein. Two E. coli isolates of avian origin and strains from the National Center for Biotechnology Information (NCBI) database were used for prediction. The Immune Epitope Database (IEDB) server, Bepitope, ABCpred, SVMTrip, and ElliPro server were used to identify B-cell epitopes. The 3D structure was predicted using SWISS-MODEL. Phylogenetic analysis of the isolates from the current study revealed that both OM837340 and OM837341 sequences from the current study had maximum nucleotide homology (nt) of 99.87%-100% with E. coli isolates and minimum nt homology of 84.08% with Salmonella enteritidis and S. Hissar. The isolates in the current study had a homology of 98.87%, while the homology with Shigella species was 99.25%. Seven silent mutations were observed in the coding region of the UspA protein of ECO9LTBW (current study). Modeling of the UspA protein revealed a maximum homology of 67.86% with the Protein Data Bank in Europe (PDBe), also validated by the Ramachandran plot. No significant differences were found in the coding regions of uspA of Salmonella, Shigella, and E. coli with Tajima's test. For the E. coli isolates, a total of 24 linear B-cell and seven discontinuous epitopes were predicted using in-silico analysis. When the results of the predicted peptides were compared, two peptides, namely ARPYNA and YSDLYTGLIDVNLGDMQKRISEE, were found suitable candidates. In conclusion, the uspA gene appears to be conserved among E. coli isolates and can be used for molecular detection.
Collapse
Affiliation(s)
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | | | | | |
Collapse
|
13
|
Jäkel T, Raisch L, Richter S, Wirth M, Birenbaum D, Ginting S, Khoprasert Y, Mackenstedt U, Wassermann M. Morphological and molecular phylogenetic characterization of Sarcocystis kani sp. nov. and other novel, closely related Sarcocystis spp. infecting small mammals and colubrid snakes in Asia. Int J Parasitol Parasites Wildl 2023; 22:184-198. [PMID: 37915771 PMCID: PMC10615900 DOI: 10.1016/j.ijppaw.2023.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
We investigated the morphology and phylogenetic relationships of novel and previously recognized Sarcocystis spp. infecting small mammals and colubrid snakes in Asia. The nuclear 18S rRNA and mitochondrial cox1 of Sarcocystis sp.1 from mangrove snakes (Boiga dendrophila) in Thailand and Sarcocystis sp.2 from a ricefield rat (Rattus argentiventer) in Sumatra were partially sequenced. Sporocysts of Sarcocystis sp.1 induced development of sarcocysts in experimentally infected rats, which showed a unique ultrastructure that was observed previously by S.P. Kan in rats from Malaysia; therefore, we describe this species as Sarcocystis kani sp. nov. Its integration into the 18S rRNA phylogeny of Sarcocystis spp. cycling between small mammals and colubrid snakes helped clarify relationships among the so-called S. zuoi-complex of molecularly cryptic species: Sarcocystis kani sp. nov., S. sp.2, S. attenuati, S. scandentiborneensis, and S. zuoi were all included in this clade. Tree topology was resolved into dichotomies congruent with the morphological disparities between the taxa. However, cox1 gene sequencing (including newly sequenced S. singaporensis and S. zamani) revealed that Sarcocystis kani, S. attenuati, and S. scandentiborneensis were identical suggesting a recent, common ancestry. To identify other distinctive features, lineage-specific molecular patterns within both genes were examined revealing that all 18S rRNA sequences of the S. zuoi - complex possess a unique, 7-nt long motif in helix 38 of domain V7 that was different in S. clethrionomyelaphis which branched off basally from the complex. Three-dimensional homology modelling of COX1 protein structure identified amino acid substitutions within the barcode area specific for the S. zuoi-complex and substantial divergence in structurally important amino acids between Sarcocystis species of snakes as definitive hosts and other lineages of the Sarcocystidae. We discuss the utility of selected genes for species delimitation of the Sarcocystis spp. under investigation, which probably evolved during recent radiations of their intermediate and definitive hosts.
Collapse
Affiliation(s)
- Thomas Jäkel
- University of Hohenheim, Institute of Biology, Department of Parasitology, Stuttgart, Germany
- Department of Agriculture, Plant Protection Research and Development Office, Bangkok, Thailand
| | - Lisa Raisch
- University of Hohenheim, Institute of Biology, Department of Parasitology, Stuttgart, Germany
| | - Sarah Richter
- University of Hohenheim, Institute of Biology, Department of Parasitology, Stuttgart, Germany
| | - Mareike Wirth
- University of Hohenheim, Institute of Biology, Department of Parasitology, Stuttgart, Germany
| | - Damaris Birenbaum
- University of Hohenheim, Institute of Biology, Department of Parasitology, Stuttgart, Germany
| | | | - Yuvaluk Khoprasert
- Department of Agriculture, Plant Protection Research and Development Office, Bangkok, Thailand
| | - Ute Mackenstedt
- University of Hohenheim, Institute of Biology, Department of Parasitology, Stuttgart, Germany
| | - Marion Wassermann
- University of Hohenheim, Institute of Biology, Department of Parasitology, Stuttgart, Germany
- University of Hohenheim, Center of Biodiversity and Integrative Taxonomy, Stuttgart, Germany
| |
Collapse
|
14
|
Friedrich M. Parallel Losses of Blue Opsin Correlate with Compensatory Neofunctionalization of UV-Opsin Gene Duplicates in Aphids and Planthoppers. INSECTS 2023; 14:774. [PMID: 37754742 PMCID: PMC10531960 DOI: 10.3390/insects14090774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Expanding on previous efforts to survey the visual opsin repertoires of the Hemiptera, this study confirms that homologs of the UV- and LW-opsin subfamilies are conserved in all Hemiptera, while the B-opsin subfamily is missing from the Heteroptera and subgroups of the Sternorrhyncha and Auchenorrhyncha, i.e., aphids (Aphidoidea) and planthoppers (Fulgoroidea), respectively. Unlike in the Heteroptera, which are characterized by multiple independent expansions of the LW-opsin subfamily, the lack of B-opsin correlates with the presence of tandem-duplicated UV-opsins in aphids and planthoppers. Available data on organismal wavelength sensitivities and retinal gene expression patterns lead to the conclusion that, in both groups, one UV-opsin paralog shifted from ancestral UV peak sensitivity to derived blue sensitivity, likely compensating for the lost B-opsin. Two parallel bona fide tuning site substitutions compare to 18 non-corresponding amino acid replacements in the blue-shifted UV-opsin paralogs of aphids and planthoppers. Most notably, while the aphid blue-shifted UV-opsin clade is characterized by a replacement substitution at one of the best-documented UV/blue tuning sites (Rhodopsin site 90), the planthopper blue-shifted UV-opsin paralogs retained the ancestral lysine at this position. Combined, the new findings identify aphid and planthopper UV-opsins as a new valuable data sample for studying adaptive opsin evolution.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA;
- Department of Ophthalmological, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Ren Z, Shi Q, Xu S, Xu J, Yin Y, Lin Z, Xu S, Ma X, Liu Y, Zhu G, He X, Lu J, Li Y, Zhang W, Liu J, Yang Y, Han ET, Cao J, Lu F. Elicitation of T-cell-derived IFN-γ-dependent immunity by highly conserved Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII). Parasit Vectors 2023; 16:269. [PMID: 37553591 PMCID: PMC10410920 DOI: 10.1186/s13071-023-05897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease has been underestimated. Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII) is an essential ligand for reticulocyte recognition and host cell invasion by P. ovale curtisi. However, the genomic variation, antigenicity and immunogenicity of PocDBP-RII remain major knowledge gaps. METHODS A total of 93 P. ovale curtisi samples were collected from migrant workers who returned to China from 17 countries in Africa between 2012 and 2016. The genetic polymorphism, natural selection and copy number variation (CNV) were investigated by sequencing and real-time PCR. The antigenicity and immunogenicity of the recombinant PocDBP-RII (rPocDBP-RII) protein were further examined, and the humoral and cellular responses of immunized mice were assessed using protein microarrays and flow cytometry. RESULTS Efficiently expressed and purified rPocDBP-RII (39 kDa) was successfully used as an antigen for immunization in mice. The haplotype diversity (Hd) of PocDBP-RII gene was 0.105, and the nucleotide diversity index (π) was 0.00011. No increased copy number was found among the collected isolates of P. ovale curtisi. Furthermore, rPocDBP-RII induced persistent antigen-specific antibody production with a serum IgG antibody titer of 1: 16,000. IFN-γ-producing T cells, rather than IL-10-producing cells, were activated in response to the stimulation of rPocDBP-RII. Compared to PBS-immunized mice (negative control), there was a higher percentage of CD4+CD44highCD62L- T cells (effector memory T cells) and CD8+CD44highCD62L+ T cells (central memory T cells) in rPocDBP-RII‑immunized mice. CONCLUSIONS PocDBP-RII sequences were highly conserved in clinical isolates of P. ovale curtisi. rPocDBP-RII protein could mediate protective blood-stage immunity through IFN-γ-producing CD4+ and CD8+ T cells and memory T cells, in addition to inducing specific antibodies. Our results suggested that rPocDBP-RII protein has potential as a vaccine candidate to provide assessment and guidance for malaria control and elimination activities.
Collapse
Affiliation(s)
- Zhenyu Ren
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiyang Shi
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Simin Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Changshu Second People's Hospital, Suzhou, 215500, Jiangsu, People's Republic of China
| | - Jiahui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yi Yin
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhijie Lin
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Sui Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Xiaoqin Ma
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Xinlong He
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jingyuan Lu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yinyue Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Wenwen Zhang
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiali Liu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yun Yang
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China.
| | - Feng Lu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Affiliated Hospital of Yangzhou University, Yangzhou, 225000, People's Republic of China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
16
|
Meghana R, Anand PP, Vardhanan YS. Molecular and morphometric analyses reveal host-specific cryptic speciation in a mite species, Tetranychus neocaledonicus (Andre, 1933) (Acari: Tetranychidae). Zootaxa 2023; 5306:61-96. [PMID: 37518535 DOI: 10.11646/zootaxa.5306.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 08/01/2023]
Abstract
Host- and habitat-induced morphological shape and size variations are common in phytophagous and parasitic taxa. Several integrated morphological and molecular techniques have been commonly used to understand host-induced morpho-cryptic species forms. Compared to other arthropods, cryptic speciation was more common in Acari. This study focused on the host-specific morphological cryptic shape and size variations of Tetranychus neocaledonicus, collected from moringa and cassava hosts. We used geometric morphometric analysis to uncover the shape and size of inter-and intra-spider mite populations, and discovered that host-specific shape and size variations existed in spider mites regardless of sex. Interestingly, there was no phylogenetic signal in spider mites, implying that the morpho-cryptic speciation of T. neocaledonicus is solely based on the host-induced selection. The molecular clock hypothesis was accepted in our CO1 and 18s rRNA phylogeny analyses, and spider mites collected from both hosts were genetically less diverse. We conclude that T. neocaledonicus exhibited morphologically detectable cryptic population diversity in each host but that these populations are evolutionarily young form. Apart from these host-induced variations, we also monitored the impact of the clearing agent (lactic acid) on the shape and size of T. neocaledonicus; from this study, we proved that the clearing agent significantly alters the taxonomically important morphological traits of spider mites irrespective of the mites' sex, as confirmed by multivariate statistical analysis. This is the first study report to investigated the host-induced morphological variations of spider mites and the impact of a clearing agent.
Collapse
Affiliation(s)
- R Meghana
- Biochemistry & Toxicology Division; Department of Zoology; University of Calicut; Kerala; India.
| | - P P Anand
- Biochemistry & Toxicology Division; Department of Zoology; University of Calicut; Kerala; India.
| | - Y Shibu Vardhanan
- Biochemistry & Toxicology Division; Department of Zoology; University of Calicut; Kerala; India.
| |
Collapse
|
17
|
Toma GA, Dos Santos N, Dos Santos R, Rab P, Kretschmer R, Ezaz T, Bertollo LAC, Liehr T, Porto-Foresti F, Hatanaka T, Tanomtong A, Utsunomia R, Cioffi MB. Cytogenetics Meets Genomics: Cytotaxonomy and Genomic Relationships among Color Variants of the Asian Arowana Scleropages formosus. Int J Mol Sci 2023; 24:ijms24109005. [PMID: 37240350 DOI: 10.3390/ijms24109005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Scleropages formosus (Osteoglossiformes, Teleostei) represents one of the most valued ornamental fishes, yet it is critically endangered due to overexploitation and habitat destruction. This species encompasses three major color groups that naturally occur in allopatric populations, but the evolutionary and taxonomic relationships of S. formosus color varieties remain uncertain. Here, we utilized a range of molecular cytogenetic techniques to characterize the karyotypes of five S. formosus color phenotypes, which correspond to naturally occurring variants: the red ones (Super Red); the golden ones (Golden Crossback and Highback Golden); the green ones (Asian Green and Yellow Tail Silver). Additionally, we describe the satellitome of S. formosus (Highback Golden) by applying a high-throughput sequencing technology. All color phenotypes possessed the same karyotype structure 2n = 50 (8m/sm + 42st/a) and distribution of SatDNAs, but different chromosomal locations of rDNAs, which were involved in a chromosome size polymorphism. Our results show indications of population genetic structure and microstructure differences in karyotypes of the color phenotypes. However, the findings do not clearly back up the hypothesis that there are discrete lineages or evolutionary units among the color phenotypes of S. formosus, but another case of interspecific chromosome stasis cannot be excluded.
Collapse
Affiliation(s)
- Gustavo A Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | | | | | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Tariq Ezaz
- Institute for Aplied Ecology, University of Canberra, Canberra 2617, Australia
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | | | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | | | - Marcelo B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
18
|
Said KB, Alsolami A, Alshammari F, Alshammari KF, Alazmi M, Bhardwaj T, Najm MZ, Singh R, Kausar MA. Molecular evolutionary model based on phylogenetic and mutation analysis of SARS-CoV-2 spike protein sequences from Asian countries: A phylogenomic approach. INFORMATICS IN MEDICINE UNLOCKED 2023; 38:101221. [PMID: 36974160 PMCID: PMC10030443 DOI: 10.1016/j.imu.2023.101221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
The lethal pathogenic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has caused the COVID-19 pandemic, posing serious risks to people. The clove-like spike (S) protein that distinguishes coronaviruses from other viruses is important for viral pathogenicity, evolution, and transmission. The investigation of the unique structural mutations of the SARS-CoV-2 spike protein among 34 Asian countries, as well as the resulting phylogenetic relationship, provided critical information in understanding the pathogenesis. This can be utilized for the discovery of possible treatments and vaccine development. The current study analyzed and depicted phylogenetic and evolutionary models useful for understanding SARS-CoV-2 human-human transmission dynamics in Asian regions with shared land borders. Further, integrated bioinformatics analysis was performed to predict the pathogenic potential and stability of 53 mutational positions among 34 coronavirus strains. Mutations at positions N969K, D614G and S884F have deleterious effects on protein function. These findings are crucial because the Asian mutations could potentially provide a vaccine candidate with co-protection against all SARS-CoV-2 strains. This region is vulnerable because of the high population density and the volume of domestic and international travel for business and tourism. These discoveries would also aid in the development of plans for governments and the general populace to implement all required biocontainment protocols common to all countries.
Collapse
Affiliation(s)
- Kamaleldin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Ha'il, Ha'il, 55476, Saudi Arabia
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha'il, Ha'il, 55476, Saudi Arabia
| | - Fawaz Alshammari
- Department of Dermatology, College of Medicine, University of Ha'il, Ha'il, 55476, Saudi Arabia
| | - Khalid Farhan Alshammari
- Department of Internal Medicine, College of Medicine at University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Meshari Alazmi
- Department of Information and Computer Science, College of Computer Science and Engineering, University of Ha'il, Ha'il, 81481, Saudi Arabia
| | - Tulika Bhardwaj
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | | | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia (Central University), New Delhi, 110025, India
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il, 2440, Saudi Arabia
| |
Collapse
|
19
|
Bracci AN, Dallmann A, Ding Q, Hubisz MJ, Caballero M, Koren A. The evolution of the human DNA replication timing program. Proc Natl Acad Sci U S A 2023; 120:e2213896120. [PMID: 36848554 PMCID: PMC10013799 DOI: 10.1073/pnas.2213896120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/23/2023] [Indexed: 03/01/2023] Open
Abstract
DNA is replicated according to a defined spatiotemporal program that is linked to both gene regulation and genome stability. The evolutionary forces that have shaped replication timing programs in eukaryotic species are largely unknown. Here, we studied the molecular causes and consequences of replication timing evolution across 94 humans, 95 chimpanzees, and 23 rhesus macaques. Replication timing differences recapitulated the species' phylogenetic tree, suggesting continuous evolution of the DNA replication timing program in primates. Hundreds of genomic regions had significant replication timing variation between humans and chimpanzees, of which 66 showed advances in replication origin firing in humans, while 57 were delayed. Genes overlapping these regions displayed correlated changes in expression levels and chromatin structure. Many human-chimpanzee variants also exhibited interindividual replication timing variation, pointing to ongoing evolution of replication timing at these loci. Association of replication timing variation with genetic variation revealed that DNA sequence evolution can explain replication timing variation between species. Taken together, DNA replication timing shows substantial and ongoing evolution in the human lineage that is driven by sequence alterations and could impact regulatory evolution at specific genomic sites.
Collapse
Affiliation(s)
- Alexa N. Bracci
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Anissa Dallmann
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Qiliang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Melissa J. Hubisz
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY14853
| | - Madison Caballero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
20
|
Falniowski A, Jaszczyńska A, Osikowski A, Hofman S. Litthabitellidae: a new family of the Truncatelloidea (Mollusca: Caenogastropoda). J NAT HIST 2023. [DOI: 10.1080/00222933.2023.2168573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Andrzej Falniowski
- Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Aleksandra Jaszczyńska
- Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Artur Osikowski
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Kraków, Poland
| | - Sebastian Hofman
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
21
|
Bahri BA, Parvathaneni RK, Spratling WT, Saxena H, Sapkota S, Raymer PL, Martinez-Espinoza AD. Whole genome sequencing of Clarireedia aff. paspali reveals potential pathogenesis factors in Clarireedia species, causal agents of dollar spot in turfgrass. Front Genet 2023; 13:1033437. [PMID: 36685867 PMCID: PMC9849252 DOI: 10.3389/fgene.2022.1033437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Dollar spot is one of the most damaging diseases in turfgrass, reducing its quality and playability. Two species, Clarireedia monteithiana and C. jacksonii (formerly Sclerotinia homoeocarpa) have been reported so far in the United States To study the Clarireedia genome, two isolates H2 and H3, sampled from seashore paspalum in Hawaii in 2019 were sequenced via Illumina paired-end sequencing by synthesis technology and PacBio SMRT sequencing. Both isolates were identified as C. aff. paspali, a novel species in the United States Using short and long reads, C. aff. paspali H3 contained 193 contigs with 48.6 Mbp and presented the most completed assembly and annotation among Clarireedia species. Out of the 13,428 protein models from AUGUSTUS, 349 cytoplasmic effectors and 13 apoplastic effectors were identified by EffectorP. To further decipher Clarireedia pathogenicity, C. aff. paspali genomes (H2 and H3), as well as available C. jacksonii (LWC-10 and HRI11), C. monteithiana (DRR09 and RB-19) genomes were screened for fifty-four pathogenesis determinants, previously identified in S. sclerotiorum. Seventeen orthologs of pathogenicity genes have been identified in Clarireedia species involved in oxalic acid production (pac1, nox1), mitogen-activated protein kinase cascade (pka1, smk3, ste12), appressorium formation (caf1, pks13, ams2, rgb1, rhs1) and glycolytic pathway (gpd). Within these genes, 366 species-specific SNPs were recorded between Clarireedia species; twenty-eight were non-synonymous and non-conservative. The predicted protein structure of six of these genes showed superimposition of the models among Clarireedia spp. The genomic variations revealed here could potentially lead to differences in pathogenesis and other physiological functions among Clarireedia species.
Collapse
Affiliation(s)
- Bochra Amina Bahri
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,*Correspondence: Bochra Amina Bahri,
| | - Rajiv Krishna Parvathaneni
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | | | - Harshita Saxena
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | - Suraj Sapkota
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States
| | - Paul L. Raymer
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | | |
Collapse
|
22
|
Nema S, Krishna S, Tiwari A, Bharti PK. Limited genetic diversity and expression profile of Plasmodium falciparum haem detoxification protein: a possible diagnostic target. Trans R Soc Trop Med Hyg 2022; 116:1162-1171. [PMID: 35724244 DOI: 10.1093/trstmh/trac055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Haem detoxification protein (HDP) is a significant protein in the erythrocytic stage of the Plasmodium lifecycle. HDP could be of paramount interest as a diagnostic biomarker for accurate diagnosis of malaria. We thus explored HDP genetic variation, expression levels of HDP and immune response. METHODS Phylogenetic analysis was carried out using Pfhdp orthologues sequences of various Plasmodium species. Blood samples were collected from patients in central India. Pfhdp gene was amplified, and sequenced by sanger DNA sequencing. B-cell epitopes were identified in PfHDP using Bepipred Linear Epitope Prediction 2.0, and median-joining network was constructed using global PfHDP sequences. Pfhdp expression levels during erythrocytic stage were assessed using real-time qPCR at 4-h intervals. An IgG immune response against synthetic PfHDP peptides was analysed using ELISA. RESULTS Phylogenetic analysis revealed the conserved nature of Pfhdp gene. Diversity analysis revealed one non-synonymous mutation (F91L) among all isolates. Neutrality tests indicated negative selection for Pfhdp gene. HDP was expressed throughout the erythrocytic cycle, and comparatively, high expression was observed in the late trophozoite and schizont stages. High IgG response against both peptides was observed, and no polymorphism was seen in any of the seven predicted B-cell epitopes. CONCLUSIONS Findings of the present study indicate the possibility of HDP being exploited as a diagnostic biomarker for Plasmodium falciparum malaria after proteomic validation studies.
Collapse
Affiliation(s)
- Shrikant Nema
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India.,School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal, 462 023, Madhya Pradesh, India
| | - Sri Krishna
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal, 462 023, Madhya Pradesh, India
| | - Praveen Kumar Bharti
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India
| |
Collapse
|
23
|
Mushtaq NU, Alghamdi KM, Saleem S, Shajar F, Tahir I, Bahieldin A, Rehman RU, Hakeem KR. Selenate and selenite transporters in proso millet: Genome extensive detection and expression studies under salt stress and selenium. FRONTIERS IN PLANT SCIENCE 2022; 13:1060154. [PMID: 36531352 PMCID: PMC9748351 DOI: 10.3389/fpls.2022.1060154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Crops are susceptible to a variety of stresses and amongst them salinity of soil is a global agronomic challenge that has a detrimental influence on crop yields, thus posing a severe danger to our food security. Therefore, it becomes imperative to examine how plants respond to salt stress, develop a tolerance that allows them to live through higher salt concentrations and choose species that can endure salt stress. From the perspective of food, security millets can be substituted to avoid hardships because of their efficiency in dealing with salt stress. Besides, this problem can also be tackled by using beneficial exogenous elements. Selenium (Se) which exists as selenate or selenite is one such cardinal element that has been reported to alleviate salt stress. The present study aimed for identification of selenate and selenite transporters in proso millet (Panicum miliaceum L.), their expression under NaCl (salt stress) and Na2SeO3 (sodium selenite)treatments. This study identified eight transporters (RLM65282.1, RLN42222.1, RLN18407.1, RLM74477.1, RLN41904.1, RLN17428.1, RLN17268.1, RLM65753.1) that have a potential role in Se uptake in proso millet. We analyzed physicochemical properties, conserved structures, sub-cellular locations, chromosome location, molecular phylogenetic analysis, promoter regions prediction, protein-protein interactions, three-dimensional structure modeling and evaluation of these transporters. The analysis revealed the chromosome location and the number of amino acids present in these transporters as RLM65282.1 (16/646); RLN42222.1 (1/543); RLN18407.1 (2/483); RLM74477.1 (15/474); RLN41904.1 (1/521); RLN17428.1 (2/522); RLN17268.1(2/537);RLM65753.1 (16/539). The sub-cellular locations revealed that all the selenite transporters are located in plasma membrane whereas among selenate transporters RLM65282.1 and RLM74477.1 are located in mitochondria and RLN42222.1 and RLN18407.1 in chloroplast. The transcriptomic studies revealed that NaCl stress decreased the expression of both selenate and selenite transporters in proso millet and the applications of exogenous 1µM Se (Na2SeO3) increased the expression of these Se transporter genes. It was also revealed that selenate shows similar behavior as sulfate, while selenite transport resembles phosphate. Thus, it can be concluded that phosphate and sulphate transporters in millets are responsible for Se uptake.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid M. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Faamiya Shajar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
24
|
Kaur A, Sharma A, Madhu, Dixit S, Singh K, Upadhyay SK. OSCA Genes in Bread Wheat: Molecular Characterization, Expression Profiling, and Interaction Analyses Indicated Their Diverse Roles during Development and Stress Response. Int J Mol Sci 2022; 23:14867. [PMID: 36499199 PMCID: PMC9737358 DOI: 10.3390/ijms232314867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The hyperosmolality-gated calcium-permeable channels (OSCA) are pore-forming transmembrane proteins that function as osmosensors during various plant developmental processes and stress responses. In our analysis, through in silico approaches, a total of 42 OSCA genes are identified in the Triticum aestivum genome. A phylogenetic analysis reveals the close clustering of the OSCA proteins of Arabidopsis thaliana, Oryza sativa, and T. aestivum in all the clades, suggesting their origin before the divergence of dicots and monocots. Furthermore, evolutionary analyses suggest the role of segmental and tandem duplication events (Des) and purifying selection pressure in the expansion of the OSCA gene family in T. aestivum. Expression profiling in various tissue developmental stages and under abiotic and biotic stress treatments reveals the probable functioning of OSCA genes in plant development and the stress response in T. aestivum. In addition, protein-protein and protein-chemical interactions reveal that OSCA proteins might play a putative role in Ca2+-mediated developmental processes and adaptive responses. The miRNA interaction analysis strengthens the evidence for their functioning in various biological processes and stress-induced signaling cascades. The current study could provide a foundation for the functional characterization of TaOSCA genes in future studies.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | | | - Sameer Dixit
- Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
25
|
Mitochondrial DNA variation of the caracal (Caracal caracal) in Iran and range-wide phylogeographic comparisons. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Ge J, Wang Q, Chen G, Kassegne K, Zhang H, Yu J, Tang J, Wang B, Lu F, Cao J, Han ET, Cheng Y. Immunogenicity and antigenicity of a conserved fragment of the rhoptry-associated membrane antigen of Plasmodium vivax. Parasit Vectors 2022; 15:428. [PMID: 36380374 PMCID: PMC9664424 DOI: 10.1186/s13071-022-05561-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Plasmodium vivax rhoptry-associated membrane antigen (RAMA) is a glycophosphatidylinositol-anchored membrane protein currently under consideration as a malaria vaccine candidate. Immunoglobulin G (IgG) antibodies induced by P. vivax RAMA (PvRAMA) have been proved to persist over 12 months in the sera of people infected with P. vivax. It has also been shown that through stimulation of peripheral blood mononuclear cells with PvRAMA in vitro, the antigen can induce CD4+ T cells to produce interleukin-10. However, the genetic diversity of the RAMA gene in isolates of P. vivax (pvrama) and the immunogenicity of PvRAMA in animals remain unclear. Methods Genomic DNA was extracted from blood samples (n = 25) of patients in Jiangsu Province, China with imported infections of P. vivax from endemic countries in South and Southeast Asia. The extract genomic DNA was used as templates to amplify the P. vivax rama gene (pvrama) by PCR, and the PCR products were then sequenced and analyzed by the DnaSP, MEGA, and GeneDoc software packages. Recombinant PvRAMA (rPvRAMA) protein was expressed and purified, and then used to immunize mice. Levels of total IgG and different IgG subclasses of rPvRAMA-immunized mice were evaluated by enzyme-linked immunosorbent assay. Also, spleen cells of rPvRAMA-immunized mice were stimulated with rPvRAMA in vitro and levels of T cells were measured by flow cytometry. Results The average pairwise nucleotide diversity (π) of the pvrama gene was 0.00190, and the haplotype diversity (Hd) was 0.982. The C-terminal of PvRAMA showed lower haplotype diversity compared to the N-terminal and was completely conserved at amino acid sites related to erythrocyte binding. To further characterize immunogenicity of the C-terminal of PvRAMA, mice were immunized with rPvRAMA antigen. The rPvRAMA protein induced antibody responses, with the end-point titer ranging from 1:10,000 to 1:5,120,000. IgG1 was the predominant IgG subclass in rPvRAMA-immunized mice, followed by IgG2b. In addition, levels of CD4+ and CD8+ T cells in the rPvRAMA-stimulated group were significantly higher than those in the phosphate-buffered saline-stimulated group (normal control group). Conclusions The high conservation at specific amino acid sites and the high immunogenicity of the C-terminal of PvRAMA indicate the presence of conserved epitopes able to generate broadly reactive humoral and cellular immune responses. These findings support the potential of PvRAMA to serve as a vaccine candidate against P. vivax infection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05561-8.
Collapse
|
27
|
Koshimizu S, Minamino N, Nishiyama T, Yoro E, Sato M, Wakazaki M, Toyooka K, Ebine K, Sakakibara K, Ueda T, Yano K. Phylogenetic distribution and expression pattern analyses identified a divergent basal body assembly protein involved in land plant spermatogenesis. THE NEW PHYTOLOGIST 2022; 236:1182-1196. [PMID: 35842793 DOI: 10.1111/nph.18385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Land plant spermatozoids commonly possess characteristic structures such as the spline, which consists of a microtubule array, the multilayered structure (MLS) in which the uppermost layer is a continuum of the spline, and multiple flagella. However, the molecular mechanisms underpinning spermatogenesis remain to be elucidated. We successfully identified candidate genes involved in spermatogenesis, deeply divergent BLD10s, by computational analyses combining multiple methods and omics data. We then examined the functions of BLD10s in the liverwort Marchantia polymorpha and the moss Physcomitrium patens. MpBLD10 and PpBLD10 are required for normal basal body (BB) and flagella formation. Mpbld10 mutants exhibited defects in remodeling of the cytoplasm and nucleus during spermatozoid formation, and thus MpBLD10 should be involved in chromatin reorganization and elimination of the cytoplasm during spermiogenesis. We identified orthologs of MpBLD10 and PpBLD10 in diverse Streptophyta and found that MpBLD10 and PpBLD10 are orthologous to BLD10/CEP135 family proteins, which function in BB assembly. However, BLD10s evolved especially quickly in land plants and MpBLD10 might have acquired additional functions in spermatozoid formation through rapid molecular evolution.
Collapse
Affiliation(s)
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Emiko Yoro
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| |
Collapse
|
28
|
Hofman S, Grego J, Beran L, Jaszczyńska A, Osikowski A, Falniowski A. Kerkia Radoman, 1978 (Caenogastropoda: Hydrobiidae): endemism, apparently morphostatic evolution and cryptic speciation. MOLLUSCAN RESEARCH 2022. [DOI: 10.1080/13235818.2022.2129943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sebastian Hofman
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | | | - Luboš Beran
- Regional Office Kokořínsko – Máchův kraj Protected Landscape Area Administration, Mělník, Czech Republic
| | - Aleksandra Jaszczyńska
- Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Artur Osikowski
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Kraków, Poland
| | - Andrzej Falniowski
- Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
29
|
Kazama Y, Kitoh M, Kobayashi T, Ishii K, Krasovec M, Yasui Y, Abe T, Kawano S, Filatov DA. A CLAVATA3-like Gene Acts as a Gynoecium Suppression Function in White Campion. Mol Biol Evol 2022; 39:msac195. [PMID: 36166820 PMCID: PMC9550985 DOI: 10.1093/molbev/msac195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How do separate sexes originate and evolve? Plants provide many opportunities to address this question as they have diverse mating systems and separate sexes (dioecy) that evolved many times independently. The classic "two-factor" model for evolution of separate sexes proposes that males and females can evolve from hermaphrodites via the spread of male and female sterility mutations that turn hermaphrodites into females and males, respectively. This widely accepted model was inspired by early genetic work in dioecious white campion (Silene latifolia) that revealed the presence of two sex-determining factors on the Y-chromosome, though the actual genes remained unknown. Here, we report identification and functional analysis of the putative sex-determining gene in S. latifolia, corresponding to the gynoecium suppression factor (GSF). We demonstrate that GSF likely corresponds to a Y-linked CLV3-like gene that is specifically expressed in early male flower buds and encodes the protein that suppresses gynoecium development in S. latifolia. Interestingly, GSFY has a dysfunctional X-linked homolog (GSFX) and their synonymous divergence (dS = 17.9%) is consistent with the age of sex chromosomes in this species. We propose that female development in S. latifolia is controlled via the WUSCHEL-CLAVATA feedback loop, with the X-linked WUSCHEL-like and Y-linked CLV3-like genes, respectively. Evolution of dioecy in the S. latifolia ancestor likely involved inclusion of ancestral GSFY into the nonrecombining region on the nascent Y-chromosome and GSFX loss of function, which resulted in disbalance of the WUSCHEL-CLAVATA feedback loop between the sexes and ensured gynoecium suppression in males.
Collapse
Affiliation(s)
- Yusuke Kazama
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Japan
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Moe Kitoh
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Japan
| | - Taiki Kobayashi
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Marc Krasovec
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Future Center Initiative, The University of Tokyo, 178-4-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
30
|
Chamnanya S, Yanola J, Nachaiwieng W, Lumjuan N, Walton C, Somboon P. Novel real-time PCR assay detects widespread distribution of knock down resistance (kdr) mutations associated with pyrethroid resistance in the mosquito, Culex quinquefasciatus, in Thailand. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105172. [PMID: 35973764 DOI: 10.1016/j.pestbp.2022.105172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Susceptibility to pyrethroids in the mosquito Culex quinquefasciatus, the major vector of lymphatic filariasis, is being seriously threatened worldwide. Knockdown resistance (kdr), caused by mutations in the voltage gated sodium channel (VGSC) gene, particularly the L1014F mutation, is an important resistance mechanism. Our aim was to develop a real-time PCR with melt curve analysis to evaluate the distribution of the L1014F mutation in Cx. quinquefasciatus throughout Thailand and to determine the polymorphism pattern of a VGSC gene fragment spanning the L1014F mutation. A total of 3760 females from 18 localities across five regions of Thailand were bio-assayed by exposure to 0.05% deltamethrin WHO papers, showing mortality rates ranging from 2.4% to 83.0%. Genotyping of 753 dead and surviving mosquitoes using our novel real-time PCR assay with melt curve analysis and tetra-primer allele-specific PCR revealed the mutant F1014 allele is closely associated with the deltamethrin resistance phenotype. The L1014F mutation was found at high frequency throughout Thailand, particularly in the North. However, some survivors were homozygous for wild type L1014 allele, which were further sequenced for the IIP-IIS6 region of VGSC gene. The haplotype network of phenotypically characterized individuals indicated the presence of other possible kdr alleles/resistance mechanisms at play including two novel mutations, V978E and D992E. The finding of new putative kdr alleles and widespread distribution of the F1014 allele emphasizes the significant role of kdr mutations in pyrethroid resistance in Thai Cx. quinquefasciatus populations. Monitoring kdr variations and phenotypic resistance is critical for managing resistance in Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Saowanee Chamnanya
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jintana Yanola
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | - Nongkran Lumjuan
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Catherine Walton
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
31
|
Prevalence of pvmrp1 Polymorphisms and Its Contribution to Antimalarial Response. Microorganisms 2022; 10:microorganisms10081482. [PMID: 35893540 PMCID: PMC9394237 DOI: 10.3390/microorganisms10081482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
As more sporadic cases of chloroquine resistance occur (CQR) in Plasmodium vivax (P. vivax) malaria, molecular markers have become an important tool to monitor the introduction and spread of drug resistance. P. vivax multidrug resistance-associated protein 1 (PvMRP1), as one of the members of the ATP-binding cassette (ABC) transporters, may modulate this phenotype. In this study, we investigated the gene mutations and copy number variations (CNVs) in the pvmrp1 in 102 P. vivax isolates from China, the Republic of Korea (ROK), Myanmar, Papua New Guinea (PNG), Pakistan, the Democratic People’s Republic of Korea (PRK), and Cambodia. And we also obtained 72 available global pvmrp1 sequences deposited in the PlasmoDB database to investigate the genetic diversity, haplotype diversity, natural selection, and population structure of pvmrp1. In total, 29 single nucleotide polymorphisms reflected in 23 non-synonymous, five synonymous mutations and one gene deletion were identified, and CNVs were found in 2.9% of the isolates. Combined with the antimalarial drug susceptibility observed in the previous in vitro assays, except the prevalence of S354N between the two CQ sensitivity categories revealed a significant difference, no genetic mutations or CNVs associated with drug sensitivity were found. The genetic polymorphism analysis of 166 isolates worldwide found that the overall nucleotide diversity (π) of pvmrp1 was 0.0011, with 46 haplotypes identified (Hd = 0.9290). The ratio of non-synonymous to synonymous mutations (dn/ds = 0.5536) and the neutrality tests statistic Fu and Li’s D* test (Fu and Li’s D* = −3.9871, p < 0.02) suggests that pvmrp1 had evolved under a purifying selection. Due to geographical differences, genetic differentiation levels of pvmrp1 in different regions were different to some extent. Overall, this study provides a new idea for finding CQR molecular monitoring of P. vivax and provides more sequences of pvmrp1 in Asia for subsequent research. However, further validation is still needed through laboratory and epidemiological field studies of P. vivax samples from more regions.
Collapse
|
32
|
Johri P, Gout JF, Doak TG, Lynch M. A Population-Genetic Lens into the Process of Gene Loss Following Whole-Genome Duplication. Mol Biol Evol 2022; 39:msac118. [PMID: 35639978 PMCID: PMC9206413 DOI: 10.1093/molbev/msac118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Whole-genome duplications (WGDs) have occurred in many eukaryotic lineages. However, the underlying evolutionary forces and molecular mechanisms responsible for the long-term retention of gene duplicates created by WGDs are not well understood. We employ a population-genomic approach to understand the selective forces acting on paralogs and investigate ongoing duplicate-gene loss in multiple species of Paramecium that share an ancient WGD. We show that mutations that abolish protein function are more likely to be segregating in retained WGD paralogs than in single-copy genes, most likely because of ongoing nonfunctionalization post-WGD. This relaxation of purifying selection occurs in only one WGD paralog, accompanied by the gradual fixation of nonsynonymous mutations and reduction in levels of expression, and occurs over a long period of evolutionary time, "marking" one locus for future loss. Concordantly, the fitness effects of new nonsynonymous mutations and frameshift-causing indels are significantly more deleterious in the highly expressed copy compared with their paralogs with lower expression. Our results provide a novel mechanistic model of gene duplicate loss following WGDs, wherein selection acts on the sum of functional activity of both duplicate genes, allowing the two to wander in expression and functional space, until one duplicate locus eventually degenerates enough in functional efficiency or expression that its contribution to total activity is too insignificant to be retained by purifying selection. Retention of duplicates by such mechanisms predicts long times to duplicate-gene loss, which should not be falsely attributed to retention due to gain/change in function.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47405, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
33
|
Gong W, Filatov DA. Evolution of the sex-determining region in Ginkgo biloba. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210229. [PMID: 35306884 PMCID: PMC8935300 DOI: 10.1098/rstb.2021.0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Sex chromosomes or sex-determining regions (SDR) have been discovered in many dioecious plant species, including the iconic 'living fossil' Ginkgo biloba, though the location and size of the SDR in G. biloba remain contradictory. Here we resolve these controversies and analyse the evolution of the SDR in this species. Based on transcriptome sequencing data from four genetic crosses we reconstruct male- and female-specific genetic maps and locate the SDR to the middle of chromosome 2. Integration of the genetic maps with the genome sequence reveals that recombination in and around the SDR is suppressed in a region of about 50 Mb in both males and females. However, occasional recombination does occur except a small, less than 5 Mb long region that does not recombine in males. Based on synonymous divergence between homologous X- and Y-linked genes in this region, we infer that the Ginkgo SDR is fairly old-at least of Cretaceous origin. The analysis of substitution rates and gene expression reveals only slight Y-degeneration. These results are consistent with findings in other dioecious plants with homomorphic sex chromosomes, where the SDR is typically small and evolves in a region with pre-existing reduced recombination, surrounded by long actively recombining pseudoautosomal regions. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Wei Gong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Dmitry A. Filatov
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
34
|
Cornuault J, Sanmartín I. A road map for phylogenetic models of species trees. Mol Phylogenet Evol 2022; 173:107483. [DOI: 10.1016/j.ympev.2022.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
35
|
Balakirev AE, Abramov AV, Phuong BX, Rozhnov VV. Natural Diversity and Phylogeny of Asian Red-Cheeked Squirrels (Rodentia, Sciuridae, Dremomys) in Eastern Indochina. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Based on new molecular data for mitochondrial (Cyt b) and nuclear (IRBP, RAG1) genes, as well as an extensive analysis of morphological material, we accessed actual species taxonomy and relationships among Asian red-cheeked squirrels Dremomys distributed in eastern Indochina and southern China. Phylogenetic analyses demonstrated that Asian red-cheeked squirrels, which are currently attributed to D. rufigenis, are not homogenic but instead consisted of two independent species-level clades—northern and south-central. The latter clade was additionally subdivided into two highly divergent clades based on Cyt b gene phylogeny. In spite of multidimensional statistics approach applied (PCA) only minor cranial differences were found between populations of study what lay a basis to treat it as cryptic species. Based on our findings, red-cheeked squirrels inhabit northern Vietnam and southern China, which are usually attributed to D. rufigenis, should be treated as distinct genetic species D. ornatus Thomas, 1914. In ones turn, based on its peculiar external morphology we can attribute the specimens from southern and central Vietnam to D. rufigenis proper and treat them as D. rufigenisfuscus Bonhote, 1907 and D. r. laomache Bonhote, 1921, respectively.
Collapse
|
36
|
Sharma H, Sharma A, Rajput R, Sidhu S, Dhillon H, Verma PC, Pandey A, Upadhyay SK. Molecular Characterization, Evolutionary Analysis, and Expression Profiling of BOR Genes in Important Cereals. PLANTS (BASEL, SWITZERLAND) 2022; 11:911. [PMID: 35406892 PMCID: PMC9002812 DOI: 10.3390/plants11070911] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Boron (B) is an essential micronutrient of plants. Plants grapple with a narrow range of B between its toxicity and deficiency. B homeostasis mechanism is required to rescue plants from such a quagmire. B transporters are specialized proteins involved in the homeostasis of B. In the present study, a total of 29 BOR genes were identified in five major cereals, including three BORs in each Brachypodium distachyon and Sorghum bicolor, four in Oryza sativa, six in Zea mays, and 13 in Triticum aestivum. Multiple sequence alignments, domain structure analyses, and phylogenetic analysis indicated the conserved nature of the BOR protein family. Duplication events and Ka/Ks analysis of TaBORs showed the role of segmental duplication events and purifying selection in the expansion of the BOR family in T. aestivum. Furthermore, in silico expression and co-expression analyses under biotic and abiotic stress conditions depicted their involvement in combating such conditions. Moreover, qRT-PCR of TaBORs in B treatment suggested the roles of BOR genes in B stress management. The present study hints at the conserved nature of BOR proteins and their different aspects. The study will lay down a way for several crop improvement programs.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; (H.S.); (A.S.)
- Department of Bio-Technology, I.K. Gujral Punjab Technical University, Kapurthala 144603, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; (H.S.); (A.S.)
| | - Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (R.R.); (A.P.)
| | - Sukhjeet Sidhu
- Department of Biotechnology, SUSCET, Tangori, Mohali 140306, India;
| | - Harpal Dhillon
- Centre for Infectious Disease and Vector Research, Department of Nematology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA;
| | - Praveen Chandra Verma
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow 226001, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (R.R.); (A.P.)
| | | |
Collapse
|
37
|
Saitou M, Masuda N, Gokcumen O. Similarity-Based Analysis of Allele Frequency Distribution among Multiple Populations Identifies Adaptive Genomic Structural Variants. Mol Biol Evol 2022; 39:msab313. [PMID: 34718708 PMCID: PMC8896759 DOI: 10.1093/molbev/msab313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Structural variants have a considerable impact on human genomic diversity. However, their evolutionary history remains mostly unexplored. Here, we developed a new method to identify potentially adaptive structural variants based on a similarity-based analysis that incorporates genotype frequency data from 26 populations simultaneously. Using this method, we analyzed 57,629 structural variants and identified 576 structural variants that show unusual population differentiation. Of these putatively adaptive structural variants, we further showed that 24 variants are multiallelic and overlap with coding sequences, and 20 variants are significantly associated with GWAS traits. Closer inspection of the haplotypic variation associated with these putatively adaptive and functional structural variants reveals deviations from neutral expectations due to: 1) population differentiation of rapidly evolving multiallelic variants, 2) incomplete sweeps, and 3) recent population-specific negative selection. Overall, our study provides new methodological insights, documents hundreds of putatively adaptive variants, and introduces evolutionary models that may better explain the complex evolution of structural variants.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Naoki Masuda
- Department of Mathematics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Computational and Data-Enabled Science and Engineering Program, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
38
|
Sharma A, Sharma H, Rajput R, Pandey A, Upadhyay SK. Molecular Characterization Revealed the Role of Thaumatin-Like Proteins of Bread Wheat in Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 12:807448. [PMID: 35087559 PMCID: PMC8786798 DOI: 10.3389/fpls.2021.807448] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 05/19/2023]
Abstract
Thaumatin-like proteins (TLPs) are related to pathogenesis-related-5 (PR-5) family and involved in stress response. Herein, a total of 93 TLP genes were identified in the genome of Triticum aestivum. Further, we identified 26, 27, 39, and 37 TLP genes in the Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Zea mays genomes for comparative characterization, respectively. They could be grouped into small and long TLPs with conserved thaumatin signature motif. Tightly clustered genes exhibited conserved gene and protein structure. The physicochemical analyses suggested significant differences between small and long TLPs. Evolutionary analyses suggested the role of duplication events and purifying selection in the expansion of the TLP gene family. Expression analyses revealed the possible roles of TLPs in plant development and abiotic and fungal stress response. Recombinant expression of TaTLP2-B in Saccharomyces cerevisiae provided significant tolerance against cold, heat, osmotic, and salt stresses. The results depicted the importance of TLPs in cereal crops that would be highly useful in future crop improvement programs.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Botany, Panjab University, Chandigarh, India
| | - Himanshu Sharma
- Department of Botany, Panjab University, Chandigarh, India
- Department of Biotechnology, I.K. Gujral Punjab Technical University, Jalandhar, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
39
|
Sicard A, Saponari M, Vanhove M, Castillo AI, Giampetruzzi A, Loconsole G, Saldarelli P, Boscia D, Neema C, Almeida RPP. Introduction and adaptation of an emerging pathogen to olive trees in Italy. Microb Genom 2021; 7. [PMID: 34904938 PMCID: PMC8767334 DOI: 10.1099/mgen.0.000735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930–2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.
Collapse
Affiliation(s)
- Anne Sicard
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A.,PHIM Plant Health Institute, Univ Montpellier, INRAE, Institut Agro, CIRAD, IRD, Montpellier, France
| | - Maria Saponari
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Mathieu Vanhove
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| | - Andreina I Castillo
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| | - Annalisa Giampetruzzi
- University of Bari Aldo Moro, Department of Soil, Plant and Food Sciences, Piazza Umberto I, 70121 Bari, Italy
| | - Giuliana Loconsole
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Pasquale Saldarelli
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Donato Boscia
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Claire Neema
- PHIM Plant Health Institute, Univ Montpellier, INRAE, Institut Agro, CIRAD, IRD, Montpellier, France
| | - Rodrigo P P Almeida
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| |
Collapse
|
40
|
Saitou M, Resendez S, Pradhan AJ, Wu F, Lie NC, Hall NJ, Zhu Q, Reinholdt L, Satta Y, Speidel L, Nakagome S, Hanchard NA, Churchill G, Lee C, Atilla-Gokcumen GE, Mu X, Gokcumen O. Sex-specific phenotypic effects and evolutionary history of an ancient polymorphic deletion of the human growth hormone receptor. SCIENCE ADVANCES 2021; 7:eabi4476. [PMID: 34559564 PMCID: PMC8462886 DOI: 10.1126/sciadv.abi4476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The common deletion of the third exon of the growth hormone receptor gene (GHRd3) in humans is associated with birth weight, growth after birth, and time of puberty. However, its evolutionary history and the molecular mechanisms through which it affects phenotypes remain unresolved. We present evidence that this deletion was nearly fixed in the ancestral population of anatomically modern humans and Neanderthals but underwent a recent adaptive reduction in frequency in East Asia. We documented that GHRd3 is associated with protection from severe malnutrition. Using a novel mouse model, we found that, under calorie restriction, Ghrd3 leads to the female-like gene expression in male livers and the disappearance of sexual dimorphism in weight. The sex- and diet-dependent effects of GHRd3 in our mouse model are consistent with a model in which the allele frequency of GHRd3 varies throughout human evolution as a response to fluctuations in resource availability.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Skyler Resendez
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Fuguo Wu
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Natasha C. Lie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Nancy J. Hall
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qihui Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (Graduate University for Advanced Studies), Kanagawa Prefecture, Japan
| | - Leo Speidel
- University College London, Genetics Institute, London, UK
- The Francis Crick Institute, London, UK
| | | | - Neil A. Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | | | - Xiuqian Mu
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
41
|
Hernández DG, Rivera C, Cande J, Zhou B, Stern DL, Berman GJ. A framework for studying behavioral evolution by reconstructing ancestral repertoires. eLife 2021; 10:e61806. [PMID: 34473052 PMCID: PMC8445618 DOI: 10.7554/elife.61806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra- and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual's behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.
Collapse
Affiliation(s)
- Damián G Hernández
- Department of Physics, Emory UniversityAtlantaUnited States
- Department of Medical Physics, Centro Atómico Bariloche and Instituto BalseiroBarilocheArgentina
| | | | - Jessica Cande
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Baohua Zhou
- Department of Physics, Emory UniversityAtlantaUnited States
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gordon J Berman
- Department of Physics, Emory UniversityAtlantaUnited States
- Department of Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
42
|
Genetic diversity and expression profile of Plasmodium falciparum Pf34 gene supports its immunogenicity. Curr Res Transl Med 2021; 69:103308. [PMID: 34425378 DOI: 10.1016/j.retram.2021.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE OF THE STUDY Genetic variation is one of the major obstacles in the development of effective vaccines. A multivalent malaria vaccine is required to increase efficacy and confer long term protection. In this context, we analysed the genetic diversity, expression profile, and immune response against Pf34. METHODS Phylogenetic analysis was carried out using Pf34 orthologues sequences of various Plasmodium species. Genetic diversity was analysed by PCR amplification and Sanger dideoxy sequencing of Pf34 gene from Plasmodium falciparum positive human blood samples. The expression level of Pf34 gene was studied during erythrocytic stage by real time qPCR at four-hour interval, and immune response against synthetic peptides of Pf34 (P1 and P2) was analysed using ELISA. RESULTS Phylogenetic analysis revealed the conserved nature of Pf34 gene. Genetic diversity analysis showed that majority (92%) of Plasmodium falciparum isolates in available database bore wild type Pf34 gene (Hd = 0.160 ± 0.030, π = 0.00021), including the present study (89.3%). The P. falciparum specific amino acid repeats (NNDK, NNDLK, and NNNNNN) in the B cell epitope regions were conserved. Furthermore, Pf34 gene is expressed throughout the erythrocytic cycle and comparatively high expression was observed in early ring and schizont stage. High IgG response was observed against both the peptides P1 and P2 of Pf34 containing asparagine NNNNNN and NNDLK repeat respectively. CONCLUSION The limited genetic diversity, presence of conserved amino acid repeats within B cell epitope and high IgG response suggests that Pf34 may be a potential vaccine candidate for malaria. However, further validation studies are required.
Collapse
|
43
|
Yang B, Liu H, Xu QW, Sun YF, Xu S, Zhang H, Tang JX, Zhu GD, Liu YB, Cao J, Cheng Y. Genetic Diversity Analysis of Surface-Related Antigen (SRA) in Plasmodium falciparum Imported From Africa to China. Front Genet 2021; 12:688606. [PMID: 34421996 PMCID: PMC8378275 DOI: 10.3389/fgene.2021.688606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum surface-related antigen (SRA) is located on the surfaces of gametocyte and merozoite and has the structural and functional characteristics of potential targets for multistage vaccine development. However, little information is available regarding the genetic polymorphism of pfsra. To determine the extent of genetic variation about P. falciparum by characterizing the sra sequence, 74 P. falciparum samples were collected from migrant workers who returned to China from 12 countries of Africa between 2015 and 2019. The full length of the sra gene was amplified and sequenced. The average pairwise nucleotide diversities (π) of P. falciparum sra gene was 0.00132, and the haplotype diversity (Hd) was 0.770. The average number of nucleotide differences (k) for pfsra was 3.049. The ratio of non-synonymous (dN) to synonymous (dS) substitutions across sites (dN/dS) was 1.365. Amino acid substitutions of P. falciparum SRA could be categorized into 35 unique amino acid variants. Neutrality tests showed that the polymorphism of PfSRA was maintained by positive diversifying selection, which indicated its role as a potential target of protective immune responses and a vaccine candidate. Overall, the ability of the N-terminal of PfSRA antibodies to evoke inhibition of merozoite invasion of erythrocytes and conserved amino acid at low genetic diversity suggest that the N-terminal of PfSRA could be evaluated as a vaccine candidate against P. falciparum infection.
Collapse
Affiliation(s)
- Bo Yang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hong Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qin-Wen Xu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yi-Fan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Sui Xu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, China
| | - Hao Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jian-Xia Tang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, China
| | - Guo-Ding Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, China
| | - Yao-Bao Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, China
| | - Jun Cao
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
44
|
Chaianantakul N, Sungkapong T, Changpad J, Thongma K, Sim-Ut S, Kaewthamasorn M. Genetic polymorphism of the extracellular region in surface associated interspersed 1.1 gene of Plasmodium falciparum field isolates from Thailand. Malar J 2021; 20:343. [PMID: 34399778 PMCID: PMC8365296 DOI: 10.1186/s12936-021-03876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background A novel variable surface antigens (VSAs), Surface-associated interspersed proteins (SUFRINs), is a protein that is modified on the surface of infected red blood cell (iRBC). Modified proteins on the iRBC surface cause severe malaria, which can lead to death throughout the life cycle of a malaria parasite. Previous study suggested that SURFIN1.1 is an immunogenic membrane-associated protein which was encoded by using the surf1.1 gene expressed during the trophozoite and schizont stages. This study aimed to identify the regions of SURFIN1.1 and investigate the genetic diversity of the extracellular region of the surf1.1 gene. Methods A total of 32 blood samples from falciparum malaria cases that were diagnosed in Si Sa Ket Province, Thailand were collected. Plasmodium genomic DNA was extracted, and the extracellular region of surf1.1 gene was amplified using the polymerase chain reaction (PCR). A sequence analysis was then performed to obtain the number of haplotypes (H), the haplotype diversity (Hd), and the segregating sites (S), while the average number of nucleotide differences between two sequences (Pi); in addition, neutrality testing, Tajima’s D test, Fu and Li’s D* and F* statistics was also performed. Results From a total of 32 patient-isolated samples, 31 DNA sequences were obtained and analysed for surf1.1 gene extracellular region polymorphism. Researchers observed six distinct haplotypes in the current research area. Haplotype frequencies were 61.3%, 16.2%, and 12.9% for H1, H2, and H3, respectively. The remaining haplotype (H4-H6) frequency was 3.2% for each haplotype. Hd was 0.598 ± 0.089 with the Pi of 0.00381, and S was 15. The most common amino acid polymorphic site was E251Q; other sites included N48D, I49V, E228D, E235S, L265F, K267T, E276Q, and S288F. Fu and Li’s D* test value was − 1.24255, Fu and Li’s F* test value was − 1.10175, indicating a tendency toward negative balancing selection acting on the surf1.1 N-terminal region. The most polymorphic region was variable 2 (Var2) while cysteine-rich domain (CRD) was conserved in both the amino acid and nucleotide extracellular region of surf1.1 gene. Conclusions The Thai surf1.1 N-terminal region was well-conserved with only a few polymorphic sites remaining. In this study, the data regarding current bearing on the polymorphism of extracellular region of surf1.1 gene were reported, which might impact the biological roles of P. falciparum. In addition, may possibly serve as a suitable candidate for future development of SURFIN-based vaccines regarding malaria control. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03876-y. The regions of SURFIN1.1 were identified: SURFIN1.1 is comprised of extracellular, transmembrane (TM), and intracellular regions. Nucleotide and amino acid sequences of the extracellular region of P. falciparum SURFIN1.1 from a total of 31 field isolates were obtained and analyzed for genetic polymorphism: six different haplotypes were identified. The extracellular region of the SURFIN1.1 among field isolates was conserved, especially in the cysteine-rich domain (CRD) sub-region. High polymorphism was shown in the variable region 2 (Var2), followed by N-terminal (N-ter) and variable region 1 (Var1), respectively. The findings presented herein may enable the discovery and development of a novel SURFIN-based vaccine for prevention and control of malaria.
Collapse
Affiliation(s)
- Natpasit Chaianantakul
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Tippawan Sungkapong
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jirapinya Changpad
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Keawalin Thongma
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sasiwimon Sim-Ut
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
45
|
Lewin TD, Royall AH, Holland PWH. Dynamic Molecular Evolution of Mammalian Homeobox Genes: Duplication, Loss, Divergence and Gene Conversion Sculpt PRD Class Repertoires. J Mol Evol 2021; 89:396-414. [PMID: 34097121 PMCID: PMC8208926 DOI: 10.1007/s00239-021-10012-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
The majority of homeobox genes are highly conserved across animals, but the eutherian-specific ETCHbox genes, embryonically expressed and highly divergent duplicates of CRX, are a notable exception. Here we compare the ETCHbox genes of 34 mammalian species, uncovering dynamic patterns of gene loss and tandem duplication, including the presence of a large tandem array of LEUTX loci in the genome of the European rabbit (Oryctolagus cuniculus). Despite extensive gene gain and loss, all sampled species possess at least two ETCHbox genes, suggesting their collective role is indispensable. We find evidence for positive selection and show that TPRX1 and TPRX2 have been the subject of repeated gene conversion across the Boreoeutheria, homogenising their sequences and preventing divergence, especially in the homeobox region. Together, these results are consistent with a model where mammalian ETCHbox genes are dynamic in evolution due to functional overlap, yet have collective indispensable roles.
Collapse
Affiliation(s)
- Thomas D Lewin
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Amy H Royall
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Peter W H Holland
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
46
|
Korunes KL, Machado CA, Noor MAF. Inversions shape the divergence of Drosophila pseudoobscura and Drosophila persimilis on multiple timescales. Evolution 2021; 75:1820-1834. [PMID: 34041743 DOI: 10.1111/evo.14278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023]
Abstract
By shaping meiotic recombination, chromosomal inversions can influence genetic exchange between hybridizing species. Despite the recognized importance of inversions in evolutionary processes such as divergence and speciation, teasing apart the effects of inversions over time remains challenging. For example, are their effects on sequence divergence primarily generated through creating blocks of linkage disequilibrium prespeciation or through preventing gene flux after speciation? We provide a comprehensive look into the influence of inversions on gene flow throughout the evolutionary history of a classic system: Drosophila pseudoobscura and Drosophila persimilis. We use extensive whole-genome sequence data to report patterns of introgression and divergence with respect to chromosomal arrangements. Overall, we find evidence that inversions have contributed to divergence patterns between D. pseudoobscura and D. persimilis over three distinct timescales: (1) segregation of ancestral polymorphism early in the speciation process, (2) gene flow after the split of D. pseudoobscura and D. persimilis, but prior to the split of D. pseudoobscura subspecies, and (3) recent gene flow between sympatric D. pseudoobscura and D. persimilis, after the split of D. pseudoobscura subspecies. We discuss these results in terms of our understanding of evolution in this classic system and provide cautions for interpreting divergence measures in other systems.
Collapse
Affiliation(s)
- Katharine L Korunes
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, 27708
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Mohamed A F Noor
- Department of Biology, Duke University, Durham, North Carolina, 27708
| |
Collapse
|
47
|
Ma PF, Liu YL, Jin GH, Liu JX, Wu H, He J, Guo ZH, Li DZ. The Pharus latifolius genome bridges the gap of early grass evolution. THE PLANT CELL 2021; 33:846-864. [PMID: 33630094 PMCID: PMC8226297 DOI: 10.1093/plcell/koab015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 05/07/2023]
Abstract
The grass family (Poaceae) includes all commercial cereal crops and is a major contributor to biomass in various terrestrial ecosystems. The ancestry of all grass genomes includes a shared whole-genome duplication (WGD), named rho (ρ) WGD, but the evolutionary significance of ρ-WGD remains elusive. We sequenced the genome of Pharus latifolius, a grass species (producing a true spikelet) in the subfamily Pharoideae, a sister lineage to the core Poaceae including the (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) and Bambusoideae, Oryzoideae, and Pooideae (BOP) clades. Our results indicate that the P. latifolius genome has evolved slowly relative to cereal grass genomes, as reflected by moderate rates of molecular evolution, limited chromosome rearrangements and a low rate of gene loss for duplicated genes. We show that the ρ-WGD event occurred approximately 98.2 million years ago (Ma) in a common ancestor of the Pharoideae and the PACMAD and BOP grasses. This was followed by contrasting patterns of diploidization in the Pharus and core Poaceae lineages. The presence of two FRIZZY PANICLE-like genes in P. latifolius, and duplicated MADS-box genes, support the hypothesis that the ρ-WGD may have played a role in the origin and functional diversification of the spikelet, an adaptation in grasses related directly to cereal yields. The P. latifolius genome sheds light on the origin and early evolution of grasses underpinning the biology and breeding of cereals.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Gui-Hua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Jun He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Author for correspondence: (D.-Z.L)
| |
Collapse
|
48
|
Falniowski A, Grego J, Rysiewska A, Osikowski A, Hofman S. A new genus and species of Hydrobiidae Stimpson, 1865 (Caenogastropoda, Truncatelloidea) from Peloponnese, Greece. Zookeys 2021; 1037:161-179. [PMID: 34054319 PMCID: PMC8149381 DOI: 10.3897/zookeys.1037.64038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
Minute caenogastropod brackish-water gastropods, formerly classified as Hydrobia, are important elements of the brackish-water fauna and were objects of intensive study for many years. Until now, five genera have been distinguished, most of them represented by a number of species, but rather indistinguishable without molecular data (cytochrome oxidase subunit I - COI). In the eastern Mediterranean region, they are still poorly studied. In this paper, we present a new species of "Hydrobia" from the brackish Moustos spring, Arkadia, eastern Peloponnese, Greece. The shell, protoconch, radula, female reproductive organs, and penis are described and illustrated, together with the molecular (COI) relationships with other hydrobiids. All data confirm that these snails represent a distinct taxon, which must be classified as a new species belonging to a new genus. The formal descriptions are given. The closest, sister taxon is Salenthydrobia Wilke, 2003. The molecularly estimated time of divergence, 5.75 ± 0.49 Mya, coincides with 5.33 Mya, which is the time of the Oligocene flooding that terminated the Messinian salinity crisis. During the latter period, brackish "Lago-Mare" habitats were most probably suitable for the last common ancestor of Salenthydrobia and the newly described genus. Later, the Pliocene flooding isolated the Apennine and Peloponnese populations, promoting speciation.
Collapse
Affiliation(s)
- Andrzej Falniowski
- Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland Jagiellonian University Krakow Poland
| | - Jozef Grego
- Horná Mičiná 219, SK-97401 Banská Bystrica, Slovakia Unaffiliated Banská Bystrica Slovakia
| | - Aleksandra Rysiewska
- Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland Jagiellonian University Krakow Poland
| | - Artur Osikowski
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Kraków, Poland University of Agriculture Krakow Poland
| | - Sebastian Hofman
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland Jagiellonian University Kraków Poland
| |
Collapse
|
49
|
Donohoe O, Zhang H, Delrez N, Gao Y, Suárez NM, Davison AJ, Vanderplasschen A. Genomes of Anguillid Herpesvirus 1 Strains Reveal Evolutionary Disparities and Low Genetic Diversity in the Genus Cyprinivirus. Microorganisms 2021; 9:microorganisms9050998. [PMID: 34063135 PMCID: PMC8148134 DOI: 10.3390/microorganisms9050998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Anguillid herpesvirus 1 (AngHV-1) is a pathogen of eels and a member of the genus Cyprinivirus in the family Alloherpesviridae. We have compared the biological and genomic features of different AngHV-1 strains, focusing on their growth kinetics in vitro and genetic content, diversity, and recombination. Comparisons based on three core genes conserved among alloherpesviruses revealed that AngHV-1 exhibits a slower rate of change and less positive selection than other cypriniviruses. We propose that this may be linked to major differences in host species and corresponding epidemiological circumstances. Efforts to derive evolutionary rate estimates for cypriniviruses under various theoretical models were ultimately unrewarding. We highlight the potential value of future collaborative efforts towards generating short-term evolutionary rate estimates based on known sequence sampling dates. Finally, we revealed that there is significantly less genetic diversity in core gene sequences within cyprinivirus species clades compared to species in the family Herpesviridae. This suggests that cyprinivirus species may have undergone much more vigorous purifying selection post species clade divergence. We discuss whether this may be linked to biological and anthropogenic factors or to sampling bias, and we propose that the comparison of short-term evolutionary rates between species may provide further insights into these differences.
Collapse
Affiliation(s)
- Owen Donohoe
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (O.D.); (H.Z.); (N.D.); (Y.G.)
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Co. N37 HD68 Westmeath, Ireland
| | - Haiyan Zhang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (O.D.); (H.Z.); (N.D.); (Y.G.)
| | - Natacha Delrez
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (O.D.); (H.Z.); (N.D.); (Y.G.)
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (O.D.); (H.Z.); (N.D.); (Y.G.)
| | - Nicolás M. Suárez
- MRC-Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (N.M.S.); (A.J.D.)
| | - Andrew J. Davison
- MRC-Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (N.M.S.); (A.J.D.)
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (O.D.); (H.Z.); (N.D.); (Y.G.)
- Correspondence: ; Tel.: +32-4-366-42-64; Fax: +32-4-366-42-61
| |
Collapse
|
50
|
Ellison CE, Kagda MS, Cao W. Telomeric TART elements target the piRNA machinery in Drosophila. PLoS Biol 2020; 18:e3000689. [PMID: 33347429 PMCID: PMC7785250 DOI: 10.1371/journal.pbio.3000689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 01/05/2021] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
Coevolution between transposable elements (TEs) and their hosts can be antagonistic, where TEs evolve to avoid silencing and the host responds by reestablishing TE suppression, or mutualistic, where TEs are co-opted to benefit their host. The TART-A TE functions as an important component of Drosophila telomeres but has also reportedly inserted into the Drosophila melanogaster nuclear export factor gene nxf2. We find that, rather than inserting into nxf2, TART-A has actually captured a portion of nxf2 sequence. We show that TART-A produces abundant Piwi-interacting small RNAs (piRNAs), some of which are antisense to the nxf2 transcript, and that the TART-like region of nxf2 is evolving rapidly. Furthermore, in D. melanogaster, TART-A is present at higher copy numbers, and nxf2 shows reduced expression, compared to the closely related species Drosophila simulans. We propose that capturing nxf2 sequence allowed TART-A to target the nxf2 gene for piRNA-mediated repression and that these 2 elements are engaged in antagonistic coevolution despite the fact that TART-A is serving a critical role for its host genome. Co-evolution between transposable elements (TEs) and their hosts can be antagonistic, where TEs evolve to avoid silencing and the host responds by re-establishing TE suppression, or mutualistic, where TEs are co-opted to benefit their host. This study shows that a specialized Drosophila retrotransposon that functions as a telomere has captured a portion of a host piRNA gene which may allow it to evade silencing.
Collapse
Affiliation(s)
- Christopher E. Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| | - Meenakshi S. Kagda
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|