1
|
Ruiz-Bayón A, Cara-Rodríguez C, Sarmiento-Mañús R, Muñoz-Viana R, Lozano FM, Ponce MR, Micol JL. Roles of the Arabidopsis KEULE Gene in Postembryonic Development. Int J Mol Sci 2024; 25:6667. [PMID: 38928373 PMCID: PMC11204279 DOI: 10.3390/ijms25126667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Cytokinesis in plant cells begins with the fusion of vesicles that transport cell wall materials to the center of the cell division plane, where the cell plate forms and expands radially until it fuses with the parental cell wall. Vesicle fusion is facilitated by trans-SNARE complexes, with assistance from Sec1/Munc18 (SM) proteins. The SNARE protein KNOLLE and the SM protein KEULE are required for membrane fusion at the cell plate. Due to the crucial function of KEULE, all Arabidopsis (Arabidopsis thaliana) keule mutants identified to date are seedling lethal. Here, we identified the Arabidopsis serrata4-1 (sea4-1) and sea4-2 mutants, which carry recessive, hypomorphic alleles of KEULE. Homozygous sea4-1 and sea4-2 plants are viable and fertile but have smaller rosettes and fewer leaves at bolting than the wild type. Their leaves are serrated, small, and wavy, with a complex venation pattern. The mutant leaves also develop necrotic patches and undergo premature senescence. RNA-seq revealed transcriptome changes likely leading to reduced cell wall integrity and an increase in the unfolded protein response. These findings shed light on the roles of KEULE in postembryonic development, particularly in the patterning of rosette leaves and leaf margins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain; (A.R.-B.); (C.C.-R.); (R.S.-M.); (R.M.-V.); (F.M.L.); (M.R.P.)
| |
Collapse
|
2
|
Liu X, Lin Y, Wu C, Yang Y, Su D, Xian Z, Zhu Y, Yu C, Hu G, Deng W, Li Z, Bouzayen M, Chen R, Hao Y. The SlARF4-SlHB8 regulatory module mediates leaf rolling in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111790. [PMID: 37454820 DOI: 10.1016/j.plantsci.2023.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Leaf is the main photosynthetic organ in plants and the primary energy source all along the plant life. Given the beneficial role of leaf rolling in improving photosynthetic efficiency and yield in specific environmental conditions, a better understanding of the factors and molecular mechanisms underlying this process is highly suited. Previously, the SlARF4 knocking out mutant exhibited upward curly leaf showed higher resistance to water deficit which driving us to uncover the function of SlARF4 in regulating the curly leaf formation. In this study, we unraveled the unexplored role of the SlARF4-SlHB8 module of transcription factors in the development of leaf rolling. Both SlARF4 loss-of-function and SlHB8 overexpressing tomato plants exhibited upward-rolled leaves, reflecting the active role of the two genes in controlling leaf rolling. Dual-luciferase reporter assays and phenotypic analysis of hybrid progenies suggested that SlHB8 acts downstream of SlARF4 in curly leaf formation. SlARF4 and SlHB8 influence the development of leaf palisade tissues via modulating the expression of genes associated with curly leaf formation. SEM analysis revealed no significant differences in leaf epidermal cells between the two leaf-rolling mutants and the wild type, indicating that curly leaves of arf4 and SlHB8-OE do not result from the asymmetric leaf epidermal cell growth. Our data provide novel insight into the molecular mechanism of abaxial-adaxial determination involving SlARF4 and SlHB8 and reveals that leaf rolling operates via different regulation mechanisms in tomato and Arabidopsis model plant.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuxiang Lin
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Caiyu Wu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yang Yang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Zhiqiang Xian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Yiyi Zhu
- BioGround Biotechnology Institution, International Park of Entrepreneur' Port, Shapingba, Chongqing, China
| | - Canye Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guojian Hu
- UMR990 INRA/INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Mondher Bouzayen
- UMR990 INRA/INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| | - Riyuan Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yanwei Hao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Al-Mosleh S, Mahadevan L. How to Grow a Flat Leaf. PHYSICAL REVIEW LETTERS 2023; 131:098401. [PMID: 37721834 DOI: 10.1103/physrevlett.131.098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/08/2023] [Indexed: 09/20/2023]
Abstract
Growing a flat lamina such as a leaf is almost impossible without some feedback to stabilize long wavelength modes that are easy to trigger since they are energetically cheap. Here we combine the physics of thin elastic plates with feedback control theory to explore how a leaf can remain flat while growing. We investigate both in-plane (metric) and out-of-plane (curvature) growth variation and account for both local and nonlocal feedback laws. We show that a linearized feedback theory that accounts for both spatially nonlocal and temporally delayed effects suffices to suppress long wavelength fluctuations effectively and explains recently observed statistical features of growth in tobacco leaves. Our work provides a framework for understanding the regulation of the shape of leaves and other leaflike laminar objects.
Collapse
Affiliation(s)
- Salem Al-Mosleh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - L Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Departments of Physics, and Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
4
|
Harline K, Roeder AHK. An optimized pipeline for live imaging whole Arabidopsis leaves at cellular resolution. PLANT METHODS 2023; 19:10. [PMID: 36726130 PMCID: PMC9890716 DOI: 10.1186/s13007-023-00987-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Live imaging is the gold standard for determining how cells give rise to organs. However, tracking many cells across whole organs over large developmental time windows is extremely challenging. In this work, we provide a comparably simple method for confocal live imaging entire Arabidopsis thaliana first leaves across early development. Our imaging method works for both wild-type leaves and the complex curved leaves of the jaw-1D mutant. RESULTS We find that dissecting the cotyledons, affixing a coverslip above the samples and mounting samples with perfluorodecalin yields optimal imaging series for robust cellular and organ level analysis. We provide details of our complementary image processing steps in MorphoGraphX software for segmenting, tracking lineages, and measuring a suite of cellular properties. We also provide MorphoGraphX image processing scripts we developed to automate analysis of segmented images and data presentation. CONCLUSIONS Our imaging techniques and processing steps combine into a robust imaging pipeline. With this pipeline we are able to examine important nuances in the cellular growth and differentiation of jaw-D versus WT leaves that have not been demonstrated before. Our pipeline is approachable and easy to use for leaf development live imaging.
Collapse
Affiliation(s)
- Kate Harline
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Pelayo MA, Yamaguchi N, Ito T. One factor, many systems: the floral homeotic protein AGAMOUS and its epigenetic regulatory mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102009. [PMID: 33640614 DOI: 10.1016/j.pbi.2021.102009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
Tissue-specific transcription factors allow cells to specify new fates by exerting control over gene regulatory networks and the epigenetic landscape of a cell. However, our knowledge of the molecular mechanisms underlying cell fate decisions is limited. In Arabidopsis, the MADS-box transcription factor AGAMOUS (AG) plays a central role in regulating reproductive organ identity and meristem determinacy during flower development. During the vegetative phase, AG transcription is repressed by Polycomb complexes and intronic noncoding RNA. Once AG is transcribed in a spatiotemporally regulated manner during the reproductive phase, AG functions with chromatin regulators to change the chromatin structure at key target gene loci. The concerted actions of AG and the transcription factors functioning downstream of AG recruit general transcription machinery for proper cell fate decision. In this review, we describe progress in AG research that has provided important insights into the regulatory and epigenetic mechanisms underlying cell fate determination in plants.
Collapse
Affiliation(s)
- Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
6
|
Huang S, Hou L, Fu W, Liu Z, Li C, Li X, Feng H. An Insertion Mutation in Bra032169 Encoding a Histone Methyltransferase Is Responsible for Early Bolting in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2020; 11:547. [PMID: 32477385 PMCID: PMC7235287 DOI: 10.3389/fpls.2020.00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/09/2020] [Indexed: 05/28/2023]
Abstract
Bolting is an important agronomic character of the Chinese cabbage, but premature bolting can greatly reduce its commercial value, yield, and quality. Here, early-bolting mutant 1 (ebm1) was obtained from a Chinese cabbage doubled haploid (DH) line "FT," by using an isolated microspore culture and ethyl methanesulfonate (EMS) mutagenesis. The ebm1 was found to bolt extremely earlier than the wild type "FT." Genetic analysis indicated that the phenotype of the ebm1 was controlled by a single recessive nuclear gene. Using a mapping population of 1,502 recessive homozygous F2 individuals with the ebm1 phenotype, the ebm1 gene was mapped to between the markers SSRhl-53 and SSRhl-61 on chromosome A04 by using SSR markers, and its physical distance was 73.4 kb. Seven genes were predicted in the target region and then cloned and sequenced; the only difference in the sequences of the ebm1 and "FT" genes was with Bra032169. Unlike that in "FT," the Bra032169 in ebm1 had a novel 53 bp insertion that caused the termination of amino acid coding. The mutation was not consistent with EMS mutagenesis, and thus, may have been caused by spontaneous mutations during the microspore culture. Based on the gene annotation information, Bra032169 was found to encode the histone methyltransferase CURLY LEAF (CLF) in Arabidopsis thaliana. CLF regulates the expression of flowering-related genes. Further genotyping revealed that the early-bolting phenotype was fully co-segregated with the insertion mutation, suggesting that Bra032169 was the most likely candidate gene for ebm1. No significant differences were noted in the Bra032169 expression levels between the ebm1 and "FT." However, the expression levels of the flowering-related genes FLC, FT, AG, and SEP3 were significantly higher in the ebm1 than in the "FT." Thus, the mutation of Bra032169 is responsible for the early-bolting trait in Chinese cabbage. These results provide foundation information to help understand the molecular mechanisms of bolting in the Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Payá-Milans M, Poza-Viejo L, Martín-Uriz PS, Lara-Astiaso D, Wilkinson MD, Crevillén P. Genome-wide analysis of the H3K27me3 epigenome and transcriptome in Brassica rapa. Gigascience 2019; 8:giz147. [PMID: 31800038 PMCID: PMC6892454 DOI: 10.1093/gigascience/giz147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Genome-wide maps of histone modifications have been obtained for several plant species. However, most studies focus on model systems and do not enforce FAIR data management principles. Here we study the H3K27me3 epigenome and associated transcriptome of Brassica rapa, an important vegetable cultivated worldwide. FINDINGS We performed H3K27me3 chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis by 3'-end RNA sequencing from B. rapa leaves and inflorescences. To analyze these data we developed a Reproducible Epigenomic Analysis pipeline using Galaxy and Jupyter, packaged into Docker images to facilitate transparency and reuse. We found that H3K27me3 covers roughly one-third of all B. rapa protein-coding genes and its presence correlates with low transcript levels. The comparative analysis between leaves and inflorescences suggested that the expression of various floral regulatory genes during development depends on H3K27me3. To demonstrate the importance of H3K27me3 for B. rapa development, we characterized a mutant line deficient in the H3K27 methyltransferase activity. We found that braA.clf mutant plants presented pleiotropic alterations, e.g., curly leaves due to increased expression and reduced H3K27me3 levels at AGAMOUS-like loci. CONCLUSIONS We characterized the epigenetic mark H3K27me3 at genome-wide levels and provide genetic evidence for its relevance in B. rapa development. Our work reveals the epigenomic landscape of H3K27me3 in B. rapa and provides novel genomics datasets and bioinformatics analytical resources. We anticipate that this work will lead the way to further epigenomic studies in the complex genome of Brassica crops.
Collapse
Affiliation(s)
- Miriam Payá-Milans
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Laura Poza-Viejo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Patxi San Martín-Uriz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - David Lara-Astiaso
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Mark D Wilkinson
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
8
|
Wang S, Huang H, Han R, Liu C, Qiu Z, Liu G, Chen S, Jiang J. Negative feedback loop between BpAP1 and BpPI/BpDEF heterodimer in Betula platyphylla × B. pendula. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110280. [PMID: 31623773 DOI: 10.1016/j.plantsci.2019.110280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 09/18/2019] [Indexed: 05/15/2023]
Abstract
MADS-box genes encode transcription factors involved in the control of many important developmental processes, especially the flower development of angiosperms. Analysis on gene regulatory relationship between MADS-box genes is useful for understanding the molecular mechanism of flower development. In this study, we focused on the regulatory relationship between MADS-box transcription factors APETALA1 (AP1) and PISTILLATA(PI)/DEFICIENS (DEF) in birch. We found that BpPI was an authentic target gene of BpAP1, and BpAP1 activated the expression of BpPI via directly binding to the CArG box motif. Functional analysis of BpPI showed that overexpression of BpPI may delay flowering via restricting flowering activators, in which BpAP1 was significantly down-regulated. We further investigated the regulatory of BpAP1 by BpPI, and found that BpPI could directly bind to the promoter of BpAP1 to restrict BpAP1 expression. In addition, we also found that BpPI could interact with its hypothetical partner BpDEF to co-regulate BpAP1 in birch. Our results suggested that overexpression of BpPI may delay flowering via restricting flowering activators, and there is a negative feedback loop between BpAP1 and BpPI/BpDEF heterodimer in birch. Our results will bring new evidences for further analysis of the molecular mechanism of flower formation in plants that produced unisexual flowers.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Rui Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Chaoyi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Zhinan Qiu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
9
|
Abstract
Maintenance of genome integrity is a key process in all organisms. DNA polymerases (Pols) are central players in this process as they are in charge of the faithful reproduction of the genetic information, as well as of DNA repair. Interestingly, all eukaryotes possess a large repertoire of polymerases. Three protein complexes, DNA Pol α, δ, and ε, are in charge of nuclear DNA replication. These enzymes have the fidelity and processivity required to replicate long DNA sequences, but DNA lesions can block their progression. Consequently, eukaryotic genomes also encode a variable number of specialized polymerases (between five and 16 depending on the organism) that are involved in the replication of damaged DNA, DNA repair, and organellar DNA replication. This diversity of enzymes likely stems from their ability to bypass specific types of lesions. In the past 10–15 years, our knowledge regarding plant DNA polymerases dramatically increased. In this review, we discuss these recent findings and compare acquired knowledge in plants to data obtained in other eukaryotes. We also discuss the emerging links between genome and epigenome replication.
Collapse
|
10
|
Mateo-Bonmatí E, Esteve-Bruna D, Juan-Vicente L, Nadi R, Candela H, Lozano FM, Ponce MR, Pérez-Pérez JM, Micol JL. INCURVATA11 and CUPULIFORMIS2 Are Redundant Genes That Encode Epigenetic Machinery Components in Arabidopsis. THE PLANT CELL 2018; 30:1596-1616. [PMID: 29915151 PMCID: PMC6096603 DOI: 10.1105/tpc.18.00300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Accepted: 06/14/2018] [Indexed: 05/02/2023]
Abstract
All critical developmental and physiological events in a plant's life cycle depend on the proper activation and repression of specific gene sets, and this often involves epigenetic mechanisms. Some Arabidopsis thaliana mutants with disorders of the epigenetic machinery exhibit pleiotropic defects, including incurved leaves and early flowering, due to the ectopic and heterochronic derepression of developmental regulators. Here, we studied one such mutant class, the incurvata11 (icu11) loss-of-function mutants. We have identified ICU11 as the founding member of a small gene family that we have named CUPULIFORMIS (CP). This family is part of the 2-oxoglutarate/Fe(II)-dependent dioxygenase superfamily. ICU11 and its closest paralog, CP2, have unequally redundant functions: although cp2 mutants are phenotypically wild type, icu11 cp2 double mutants skip vegetative development and flower upon germination. This phenotype is reminiscent of loss-of-function mutants of the Polycomb-group genes EMBRYONIC FLOWER1 (EMF1) and EMF2 Double mutants harboring icu11 alleles and loss-of-function alleles of genes encoding components of the epigenetic machinery exhibit synergistic, severe phenotypes, and some are similar to those of emf mutants. Hundreds of genes are misexpressed in icu11 plants, including SEPALLATA3 (SEP3), and derepression of SEP3 causes the leaf phenotype of icu11 ICU11 and CP2 are nucleoplasmic proteins that act as epigenetic repressors through an unknown mechanism involving histone modification, but not DNA methylation.
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - David Esteve-Bruna
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Lucía Juan-Vicente
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Riad Nadi
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Francisca María Lozano
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
11
|
Wilson-Sánchez D, Martínez-López S, Navarro-Cartagena S, Jover-Gil S, Micol JL. Members of the DEAL subfamily of the DUF1218 gene family are required for bilateral symmetry but not for dorsoventrality in Arabidopsis leaves. THE NEW PHYTOLOGIST 2018; 217:1307-1321. [PMID: 29139551 DOI: 10.1111/nph.14898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Most plant leaves exhibit bilateral symmetry, which has been hypothesized as an inevitable consequence of the existence of the proximodistal and dorsoventral axes. No gene has been described that affects leaf bilateral symmetry but not dorsoventrality in Arabidopsis thaliana. We screened for viable insertional mutations that affect leaf morphology, and out of more than 700 mutants found only one, desigual1-1 (deal1-1), that exhibited bilateral symmetry breaking but no obvious defects in dorsoventrality. We found that deal1-1 is an allele of VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC). Several overlapping regulatory pathways establish the interspersed lobes and indentations along the margin of Arabidopsis thaliana leaves. These pathways involve feedback loops of auxin, the PIN-FORMED1 (PIN1) auxin efflux carrier, and the CUP-SHAPED COTYLEDON2 (CUC2) transcriptional regulator. Early vcc (deal1) leaf primordia fail to acquire bilateral symmetry and instead form ectopic lobes and sinuses. The vcc leaves show aberrant recruitment of marginal cells expressing properly polarized PIN1, resulting in misplaced auxin maxima. Normal PIN1 polarization requires CUC2 expression and CUC2 genetically interacts with VCC; VCC also affects CUC2 expression. VCC has a domain of unknown function, DUF1218, and localizes to the endoplasmic reticulum membrane. VCC acts partially redundantly with its two closest paralogs, DEAL2 and DEAL3, in early leaf margin patterning and is required for bilateral symmetry, but its loss of function does not visibly affect dorsoventrality.
Collapse
Affiliation(s)
- David Wilson-Sánchez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - Sebastián Martínez-López
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| |
Collapse
|
12
|
Zhang X, Jayaweera D, Peters JL, Szecsi J, Bendahmane M, Roberts JA, González-Carranza ZH. The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway. PLoS One 2017; 12:e0189788. [PMID: 29244865 PMCID: PMC5731758 DOI: 10.1371/journal.pone.0189788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/03/2017] [Indexed: 11/26/2022] Open
Abstract
In Arabidopsis, the F-box HAWAIIAN SKIRT (HWS) protein is important for organ growth. Loss of function of HWS exhibits pleiotropic phenotypes including sepal fusion. To dissect the HWS role, we EMS-mutagenized hws-1 seeds and screened for mutations that suppress hws-1 associated phenotypes. We identified shs-2 and shs-3 (suppressor of hws-2 and 3) mutants in which the sepal fusion phenotype of hws-1 was suppressed. shs-2 and shs-3 (renamed hst-23/hws-1 and hst-24/hws-1) carry transition mutations that result in premature terminations in the plant homolog of Exportin-5 HASTY (HST), known to be important in miRNA biogenesis, function and transport. Genetic crosses between hws-1 and mutant lines for genes in the miRNA pathway also suppress the phenotypes associated with HWS loss of function, corroborating epistatic relations between the miRNA pathway genes and HWS. In agreement with these data, accumulation of miRNA is modified in HWS loss or gain of function mutants. Our data propose HWS as a new player in the miRNA pathway, important for plant growth.
Collapse
Affiliation(s)
- Xuebin Zhang
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Dasuni Jayaweera
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Janny L. Peters
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon, France
| | - Jeremy A. Roberts
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Zinnia H. González-Carranza
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
13
|
Muñoz-Nortes T, Pérez-Pérez JM, Ponce MR, Candela H, Micol JL. The ANGULATA7 gene encodes a DnaJ-like zinc finger-domain protein involved in chloroplast function and leaf development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:870-884. [PMID: 28008672 DOI: 10.1111/tpj.13466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid-localized proteins that perform essential functions in leaf growth and development. A large-scale screen previously allowed us to isolate ethyl methanesulfonate-induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7-1 (anu7-1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic-lethal mutations. ANU7 encodes a plant-specific protein that contains a domain similar to the central cysteine-rich domain of DnaJ proteins. The observed genetic interaction of anu7-1 with a loss-of-function allele of GENOMES UNCOUPLED1 suggests that the anu7-1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7-1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid-encoded genes, we found that anu7-1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed.
Collapse
Affiliation(s)
- Tamara Muñoz-Nortes
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| |
Collapse
|
14
|
Yan X, Yan Z, Han Y. RRP42, a Subunit of Exosome, Plays an Important Role in Female Gametophytes Development and Mesophyll Cell Morphogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:981. [PMID: 28642780 PMCID: PMC5463273 DOI: 10.3389/fpls.2017.00981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The exosome complex plays a central and essential role in RNA metabolism. However, current research on functions of exosome subunit in plants is limited. Here, we used an egg cell-specific promoter-controlled CRISPR/Cas9 system to knock out RRP42 which encodes a core subunit of the Arabidopsis exosome and presented evidence that RRP42 is essential for the development of female gametophytes. Next, we designed three different amiRNAs targeting RRP42. The rrp42 knock-down mutants mainly displayed variegated and serrated leaves, especially in cauline leaves. The internal anatomy of cauline leaves displayed irregularly shaped palisade cells and a reduced density of mesophyll cells. Interestingly, we detected highly accumulated mRNAs that encode xyloglucan endotransglucosylase/hydrolases (XTHs) and expansins (EXPAs) during later growth stages in rrp42 knock-down mutants. The mRNA decay kinetics analysis for XTH19, EXPA10, and EXPA11 revealed that RRP42 had a role in the decay of these mRNAs in the cytoplasm. RRP42 is localized to both the nucleus and cytoplasm, and RRP42 is preferentially expressed in cauline leaves during later growth stages. Altogether, our results demonstrate that RRP42 is essential for the development of female gametophytes and plays an important role in mesophyll cell morphogenesis.
Collapse
|
15
|
Gutierrez C, Desvoyes B, Vergara Z, Otero S, Sequeira-Mendes J. Links of genome replication, transcriptional silencing and chromatin dynamics. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:92-99. [PMID: 27816819 DOI: 10.1016/j.pbi.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Genome replication in multicellular organisms involves duplication of both the genetic material and the epigenetic information stored in DNA and histones. In some cases, the DNA replication process provides a window of opportunity for resetting chromatin marks in the genome of the future daughter cells instead of transferring them identical copies. This crucial step of genome replication depends on the correct function of DNA replication factors and the coordination between replication and transcription in proliferating cells. In fact, the histone composition and modification status appears to be intimately associated with the proliferation potential of cells within developing organs. Here we discuss these topics in the light of recent advances in our understanding of how genome replication, transcriptional silencing and chromatin dynamics are coordinated in proliferating cells.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Zaida Vergara
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Sofía Otero
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Joana Sequeira-Mendes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
Lin YF, Chen YY, Hsiao YY, Shen CY, Hsu JL, Yeh CM, Mitsuda N, Ohme-Takagi M, Liu ZJ, Tsai WC. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5051-66. [PMID: 27543606 PMCID: PMC5014156 DOI: 10.1093/jxb/erw273] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
TEOSINTE-BRANCHED/CYCLOIDEA/PCF (TCP) proteins are plant-specific transcription factors known to have a role in multiple aspects of plant growth and development at the cellular, organ and tissue levels. However, there has been no related study of TCPs in orchids. Here we identified 23 TCP genes from the genome sequence of Phalaenopsis equestris Phylogenetic analysis distinguished two homology classes of PeTCP transcription factor families: classes I and II. Class II was further divided into two subclasses, CIN and CYC/TB1. Spatial and temporal expression analysis showed that PePCF10 was predominantly expressed in ovules at early developmental stages and PeCIN8 had high expression at late developmental stages in ovules, with overlapping expression at day 16 after pollination. Subcellular localization and protein-protein interaction analyses revealed that PePCF10 and PeCIN8 could form homodimers and localize in the nucleus. However, PePCF10 and PeCIN8 could not form heterodimers. In transgenic Arabidopsis thaliana plants (overexpression and SRDX, a super repression motif derived from the EAR-motif of the repression domain of tobacco ETHYLENE-RESPONSIVE ELEMENT-BINDING FACTOR 3 and SUPERMAN, dominantly repressed), the two genes helped regulate cell proliferation. Together, these results suggest that PePCF10 and PeCIN8 play important roles in orchid ovule development by modulating cell division.
Collapse
Affiliation(s)
- Yu-Fu Lin
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - You-Yi Chen
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yun Hsiao
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Yu Shen
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Ling Hsu
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Chuan-Ming Yeh
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Satitama University, Saitama, Japan
| | - Nobutaka Mitsuda
- Research Institute of Bioproduction, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Masaru Ohme-Takagi
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Satitama University, Saitama, Japan Research Institute of Bioproduction, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China The Center for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China College of Forestry, South China Agricultural University, Guangzhou, China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Del Olmo I, López JA, Vázquez J, Raynaud C, Piñeiro M, Jarillo JA. Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing. Nucleic Acids Res 2016; 44:5597-614. [PMID: 26980282 PMCID: PMC4937302 DOI: 10.1093/nar/gkw156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/26/2016] [Indexed: 01/07/2023] Open
Abstract
Arabidopsis ESD7 locus encodes the catalytic subunit of the DNA Pol ϵ involved in the synthesis of the DNA leading strand and is essential for embryo viability. The hypomorphic allele esd7-1 is viable but displays a number of pleiotropic phenotypic alterations including an acceleration of flowering time. Furthermore, Pol ϵ is involved in the epigenetic silencing of the floral integrator genes FT and SOC1, but the molecular nature of the transcriptional gene silencing mechanisms involved remains elusive. Here we reveal that ESD7 interacts with components of the PRC2 such as CLF, EMF2 and MSI1, and that mutations in ESD7 cause a decrease in the levels of the H3K27me3 mark present in the chromatin of FT and SOC1. We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin. We unveil the existence of interplay between the DNA replication machinery and the PcG complexes in epigenetic transcriptional silencing. These observations provide an insight into the mechanisms ensuring that the epigenetic code at pivotal loci in developmental control is faithfully transmitted to the progeny of eukaryotic cells.
Collapse
Affiliation(s)
- Iván Del Olmo
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Cécile Raynaud
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
| |
Collapse
|
18
|
Sánchez-García AB, Aguilera V, Micol-Ponce R, Jover-Gil S, Ponce MR. Arabidopsis MAS2, an Essential Gene That Encodes a Homolog of Animal NF-κ B Activating Protein, Is Involved in 45S Ribosomal DNA Silencing. THE PLANT CELL 2015; 27:1999-2015. [PMID: 26139346 PMCID: PMC4531349 DOI: 10.1105/tpc.15.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 05/24/2023]
Abstract
Ribosome biogenesis requires stoichiometric amounts of ribosomal proteins and rRNAs. Synthesis of rRNAs consumes most of the transcriptional activity of eukaryotic cells, but its regulation remains largely unclear in plants. We conducted a screen for ethyl methanesulfonate-induced suppressors of Arabidopsis thaliana ago1-52, a hypomorphic allele of AGO1 (ARGONAUTE1), a key gene in microRNA pathways. We identified nine extragenic suppressors as alleles of MAS2 (MORPHOLOGY OF AGO1-52 SUPPRESSED2). Positional cloning showed that MAS2 encodes the putative ortholog of NKAP (NF-κ B activating protein), a conserved eukaryotic protein involved in transcriptional repression and splicing in animals. The mas2 point mutations behave as informational suppressors of ago1 alleles that cause missplicing. MAS2 is a single-copy gene whose insertional alleles are embryonic lethal. In yeast two-hybrid assays, MAS2 interacted with splicing and ribosome biogenesis proteins, and fluorescence in situ hybridization showed that MAS2 colocalizes with the 45S rDNA at the nucleolar organizer regions (NORs). The artificial microRNA amiR-MAS2 partially repressed MAS2 and caused hypomethylation of 45S rDNA promoters as well as partial NOR decondensation, indicating that MAS2 negatively regulates 45S rDNA expression. Our results thus reveal a key player in the regulation of rRNA synthesis in plants.
Collapse
Affiliation(s)
| | - Verónica Aguilera
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| |
Collapse
|
19
|
Jover-Gil S, Paz-Ares J, Micol JL, Ponce MR. Multi-gene silencing in Arabidopsis: a collection of artificial microRNAs targeting groups of paralogs encoding transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:149-160. [PMID: 25040904 DOI: 10.1111/tpj.12609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Functional redundancy often hampers the analysis of gene families. To overcome this difficulty, we constructed Arabidopsis thaliana lines that expressed artificial microRNAs designed to simultaneously target two to six paralogous genes encoding members of transcription factor families. Of the 576 genes that we chose as targets, only 122 had already been functionally studied at some level. As a simple indicator of the inhibitory effects of our amiRNAs on their targets, we examined the amiRNA-expressing transgenic lines for morphological phenotypes at the rosette stage. Of 338 transgenes tested, 21 caused a visible morphological phenotype in leaves, a proportion that is much higher than that expected as a result of insertional mutagenesis. Also, our collection probably represents many other mutant phenotypes, not just those in leaves. This robust, versatile method enables functional examination of redundant transcription factor paralogs, and is particularly useful for genes that occur in tandem.
Collapse
Affiliation(s)
- Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Alicante, Spain
| | | | | | | |
Collapse
|
20
|
An R, Liu X, Wang R, Wu H, Liang S, Shao J, Qi Y, An L, Yu F. The over-expression of two transcription factors, ABS5/bHLH30 and ABS7/MYB101, leads to upwardly curly leaves. PLoS One 2014; 9:e107637. [PMID: 25268707 PMCID: PMC4182325 DOI: 10.1371/journal.pone.0107637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022] Open
Abstract
Proper leaf development is essential for plant growth and development, and leaf morphogenesis is under the control of intricate networks of genetic and environmental cues. We are interested in dissecting these regulatory circuits genetically and report here the isolation of two Arabidopsis dominant mutants, abnormal shoot5-1D (abs5-1D) and abs7-1D identified through activation tagging screens. Both abs5-1D and abs7-1D display an intriguing upwardly curly leaf phenotype. Molecular cloning showed that the elevated expression of a bHLH transcription factor ABS5/T5L1/bHLH30 or a MYB transcription factor ABS7/MYB101 is the cause for the abnormal leaf phenotypes found in abs5-1D or abs7-1D, respectively. Protoplast transient expression assays confirmed that both ABS5/T5L1 and ABS7/MYB101 are targeted to the nucleus. Interestingly, the expression domains of auxin response reporter DR5::GUS were abnormal in leaves of abs5-1D and ABS5/T5L1 over-expression lines. Moreover, cotyledon venation analysis showed that more areoles and free-ending veins are formed in abs5-1D. We found that the epidermis-specific expressions of ABS5/T5L1 or ABS7/MYB101 driven by the Arabidopsis Meristem Layer 1 promoter (PAtML1) were sufficient to recapitulate the curly leaf phenotype of abs5-1D or abs7-1D. In addition, PAtML1::ABS5 lines exhibited similar changes in DR5::GUS expression patterns as those found in 35S-driven ABS5/T5L1 over-expression lines. Our work demonstrated that enhanced expressions of two transcription factors, ABS5/T5L1 and ABS7/MYB101, are able to alter leaf lamina development and reinforce the notion that leaf epidermis plays critical roles in regulating plant organ morphogenesis.
Collapse
Affiliation(s)
- Rui An
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Rui Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haicui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- * E-mail:
| |
Collapse
|
21
|
Micol-Ponce R, Aguilera V, Ponce MR. A genetic screen for suppressors of a hypomorphic allele of Arabidopsis ARGONAUTE1. Sci Rep 2014; 4:5533. [PMID: 24985352 PMCID: PMC4078309 DOI: 10.1038/srep05533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/13/2014] [Indexed: 12/28/2022] Open
Abstract
ARGONAUTE1 (AGO1) encodes a key component of the complexes mediating microRNA (miRNA) function in Arabidopsis. To study the regulation, action and interactions of AGO1, we conducted a genetic screen to identify second-site mutations modifying the morphological phenotype of ago1-52, a partial loss-of-function allele of AGO1. Unlike null ago1 mutations, the hypomorphic ago1-52 allele does not cause lethality or sterility; however, ago1-52 does produce a morphological phenotype clearly distinct from wild type. In our screen for modifiers of ago1-52, we identified suppressor mutations that partially restore wild-type morphology in the ago1-52 background and we termed these mas (morphology of argonaute1-52 suppressed). We focused on 23 of these putative suppressors. Linkage analysis of the mas mutations together with sequencing of the AGO1 gene in genomic DNA and cDNA from ago1-52 mas plants indicated that 22 of the mas lines contain extragenic suppressors, and one contains an intragenic suppressor that affects splicing of ago1-52. In the presence of the wild-type allele of AGO1, most of the mas mutations cause a mild or no mutant phenotype on their own, indicating that the ago1-52 mutant may provide a sensitized background for examining the interactions of AGO1.
Collapse
Affiliation(s)
- Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
- These authors contributed equally to this work
| | - Verónica Aguilera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
- These authors contributed equally to this work
- Current address: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
22
|
Casanova-Sáez R, Mateo-Bonmatí E, Kangasjärvi S, Candela H, Micol JL. Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2391-404. [PMID: 24663344 PMCID: PMC4036511 DOI: 10.1093/jxb/eru131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The chloroplasts of land plants contain internal membrane systems, the thylakoids, which are arranged in stacks called grana. Because grana have not been found in Cyanobacteria, the evolutionary origin of genes controlling the structural and functional diversification of thylakoidal membranes in land plants remains unclear. The angulata10-1 (anu10-1) mutant, which exhibits pale-green rosettes, reduced growth, and deficient leaf lateral expansion, resulting in the presence of prominent marginal teeth, was isolated. Palisade cells in anu10-1 are larger and less packed than in the wild type, giving rise to large intercellular spaces. The ANU10 gene encodes a protein of unknown function that localizes to both chloroplasts and amyloplasts. In chloroplasts, ANU10 associates with thylakoidal membranes. Mutant anu10-1 chloroplasts accumulate H2O2, and have reduced levels of chlorophyll and carotenoids. Moreover, these chloroplasts are small and abnormally shaped, thylakoidal membranes are less abundant, and their grana are absent due to impaired thylakoid stacking in the anu10-1 mutant. Because the trimeric light-harvesting complex II (LHCII) has been reported to be required for thylakoid stacking, its levels were determined in anu10-1 thylakoids and they were found to be reduced. Together, the data point to a requirement for ANU10 for chloroplast and mesophyll development.
Collapse
Affiliation(s)
- Rubén Casanova-Sáez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
23
|
Xiao D, Wang H, Basnet RK, Zhao J, Lin K, Hou X, Bonnema G. Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach. PLANT PHYSIOLOGY 2014; 164:1309-25. [PMID: 24394778 PMCID: PMC3938622 DOI: 10.1104/pp.113.227348] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/01/2014] [Indexed: 05/20/2023]
Abstract
The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenotypic variation. Using a genetical genomics approach, phenotypic data from a segregating doubled haploid population derived from a cross between cultivar Yellow sarson (oil type) and cultivar Pak choi (vegetable type) were used to identify loci controlling leaf development. Twenty-five colocalized phenotypic quantitative trait loci (QTLs) contributing to natural variation for leaf morphological traits, leaf number, plant architecture, and flowering time were identified. Genetic analysis showed that four colocalized phenotypic QTLs colocalized with flowering time and leaf trait candidate genes, with their cis-expression QTLs and cis- or trans-expression QTLs for homologs of genes playing a role in leaf development in Arabidopsis (Arabidopsis thaliana). The leaf gene Brassica rapa KIP-related protein2_A03 colocalized with QTLs for leaf shape and plant height; Brassica rapa Erecta_A09 colocalized with QTLs for leaf color and leaf shape; Brassica rapa Longifolia1_A10 colocalized with QTLs for leaf size, leaf color, plant branching, and flowering time; while the major flowering time gene, Brassica rapa flowering locus C_A02, colocalized with QTLs explaining variation in flowering time, plant architectural traits, and leaf size. Colocalization of these QTLs points to pleiotropic regulation of leaf development and plant architectural traits in B. rapa.
Collapse
|
24
|
Ferrández-Ayela A, Alonso-Peral MM, Sánchez-García AB, Micol-Ponce R, Pérez-Pérez JM, Micol JL, Ponce MR. Arabidopsis TRANSCURVATA1 encodes NUP58, a component of the nucleopore central channel. PLoS One 2013; 8:e67661. [PMID: 23840761 PMCID: PMC3695937 DOI: 10.1371/journal.pone.0067661] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/20/2013] [Indexed: 01/20/2023] Open
Abstract
The selective trafficking of proteins and RNAs through the nuclear envelope regulates nuclear-cytoplasmic segregation of macromolecules and is mediated by nucleopore complexes (NPCs), which consist of about 400 nucleoporins (Nups) of about 30 types. Extensive studies of nucleoporin function in yeast and vertebrates showed that Nups function in nucleocytoplasmic trafficking and other processes. However, limited studies of plant Nups have identified only a few mutations, which cause pleiotropic phenotypes including reduced growth and early flowering. Here, we describe loss-of-function alleles of Arabidopsis TRANSCURVATA1 (TCU1); these mutations cause increased hypocotyl and petiole length, reticulate and asymmetrically epinastic leaf laminae of reduced size, and early flowering. TCU1 is transcribed in all of the organs and tissues examined, and encodes the putative ortholog of yeast and vertebrate Nup58, a nucleoporin of the Nup62 subcomplex. Nup58 forms the central channel of the NPC and acts directly in translocation of proteins through the nuclear envelope in yeast and vertebrates. Yeast two-hybrid (Y2H) assays identified physical interactions between TCU1/NUP58 and 34 proteins, including nucleoporins, SCF (Skp1/Cul1/F-box) ubiquitin ligase complex components and other nucleoplasm proteins. Genetic interactions were also found between TCU1 and genes encoding nucleoporins, soluble nuclear transport receptors and components of the ubiquitin-proteasome and auxin signaling pathways. These genetic and physical interactions indicate that TCU1/NUP58 is a member of the Nup62 subcomplex of the Arabidopsis NPC. Our findings also suggest regulatory roles for TCU1/NUP58 beyond its function in nucleocytoplasmic trafficking, a hypothesis that is supported by the Y2H and genetic interactions that we observed.
Collapse
Affiliation(s)
| | | | | | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | | | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
- * E-mail:
| |
Collapse
|
25
|
Pérez-Pérez JM, Esteve-Bruna D, González-Bayón R, Kangasjärvi S, Caldana C, Hannah MA, Willmitzer L, Ponce MR, Micol JL. Functional Redundancy and Divergence within the Arabidopsis RETICULATA-RELATED Gene Family. PLANT PHYSIOLOGY 2013; 162:589-603. [PMID: 23596191 PMCID: PMC3668055 DOI: 10.1104/pp.113.217323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/17/2013] [Indexed: 05/20/2023]
Abstract
A number of Arabidopsis (Arabidopsis thaliana) mutants exhibit leaf reticulation, having green veins that stand out against paler interveinal tissues, fewer cells in the interveinal mesophyll, and normal perivascular bundle sheath cells. Here, to examine the basis of leaf reticulation, we analyzed the Arabidopsis RETICULATA-RELATED (RER) gene family, several members of which cause leaf reticulation when mutated. Although transcripts of RE, RER1, and RER3 were mainly detected in the bundle sheath cells of expanded leaves, functional RER3:GREEN FLUORESCENT PROTEIN was visualized in the chloroplast membranes of all photosynthetic cells. Leaf reticulation in the re and rer3 loss-of-function mutants occurred, along with accumulation of reactive oxygen species, in a photoperiod-dependent manner. A comparison of re and rer3 leaf messenger RNA expression profiles showed more than 200 genes were similarly misexpressed in both mutants. In addition, metabolic profiles of mature leaves revealed that several biosynthetic pathways downstream of pyruvate are altered in re and rer3. Double mutant analysis showed that only re rer1 and rer5 rer6 exhibited synergistic phenotypes, indicating functional redundancy. The redundancy between RE and its closest paralog, RER1, was confirmed by overexpressing RER1 in re mutants, which partially suppressed leaf reticulation. Our results show that RER family members can be divided into four functional modules with divergent functions. Moreover, these results provide insights into the origin of the reticulated phenotype, suggesting that the RER proteins functionally interconnect photoperiodic growth, amino acid homeostasis, and reactive oxygen species metabolism during Arabidopsis leaf growth.
Collapse
|
26
|
Esteve-Bruna D, Pérez-Pérez JM, Ponce MR, Micol JL. incurvata13, a novel allele of AUXIN RESISTANT6, reveals a specific role for auxin and the SCF complex in Arabidopsis embryogenesis, vascular specification, and leaf flatness. PLANT PHYSIOLOGY 2013; 161:1303-20. [PMID: 23319550 PMCID: PMC3585598 DOI: 10.1104/pp.112.207779] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Auxin plays a pivotal role in plant development by modulating the activity of SCF ubiquitin ligase complexes. Here, we positionally cloned Arabidopsis (Arabidopsis thaliana) incurvata13 (icu13), a mutation that causes leaf hyponasty and reduces leaf venation pattern complexity and auxin responsiveness. We found that icu13 is a novel recessive allele of AUXIN RESISTANT6 (AXR6), which encodes CULLIN1, an invariable component of the SCF complex. Consistent with a role for auxin in vascular specification, the vascular defects in the icu13 mutant were accompanied by reduced expression of auxin transport and auxin perception markers in provascular cells. This observation is consistent with the expression pattern of AXR6, which we found to be restricted to vascular precursors and hydathodes in wild-type leaf primordia. AXR1, RELATED TO UBIQUITIN1-CONJUGATING ENZYME1, CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME5A, and CULLIN-ASSOCIATED NEDD8-DISSOCIATED1 participate in the covalent modification of CULLIN1 by RELATED TO UBIQUITIN. Hypomorphic alleles of these genes also display simple venation patterns, and their double mutant combinations with icu13 exhibited a synergistic, rootless phenotype reminiscent of that caused by loss of function of MONOPTEROS (MP), which forms an auxin-signaling module with BODENLOS (BDL). The phenotypes of double mutant combinations of icu13 with either a gain-of-function allele of BDL or a loss-of-function allele of MP were synergistic. In addition, a BDL:green fluorescent protein fusion protein accumulated in icu13, and BDL loss of function or MP overexpression suppressed the phenotype of icu13. Our results demonstrate that the MP-BDL module is required not only for root specification in embryogenesis and vascular postembryonic development but also for leaf flatness.
Collapse
|
27
|
Abstract
Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives.
Collapse
Affiliation(s)
- Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
Yang M, Zhang B, Jia J, Yan C, Habaike A, Han Y. RRP41L, a putative core subunit of the exosome, plays an important role in seed germination and early seedling growth in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:165-78. [PMID: 23132787 PMCID: PMC3532249 DOI: 10.1104/pp.112.206706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/01/2012] [Indexed: 05/18/2023]
Abstract
In prokaryotic and eukaryotic cells, the 3'-5'-exonucleolytic decay and processing of RNAs are essential for RNA metabolism. However, the understanding of the mechanism of 3'-5'-exonucleolytic decay in plants is very limited. Here, we report the characterization of an Arabidopsis (Arabidopsis thaliana) transfer DNA insertional mutant that shows severe growth defects in early seedling growth, including delayed germination and cotyledon expansion, thinner yellow/pale-green leaves, and a slower growth rate. High-efficiency thermal asymmetric interlaced polymerase chain reaction analysis showed that the insertional locus was in the sixth exon of AT4G27490, encoding a predicted 3'-5'-exonuclease, that contained a conserved RNase phosphorolytic domain with high similarity to RRP41, designated RRP41L. Interestingly, we detected highly accumulated messenger RNAs (mRNAs) that encode seed storage protein and abscisic acid (ABA) biosynthesis and signaling pathway-related protein during the early growth stage in rrp41l mutants. The mRNA decay kinetics analysis for seed storage proteins, 9-cis-epoxycarotenoid dioxygenases, and ABA INSENSITIVEs revealed that RRP41L catalyzed the decay of these mRNAs in the cytoplasm. Consistent with these results, the rrp41l mutant was more sensitive to ABA in germination and root growth than wild-type plants, whereas overexpression lines of RRP41L were more resistant to ABA in germination and root growth than wild-type plants. RRP41L was localized to both the cytoplasm and nucleus, and RRP41L was preferentially expressed in seedlings. Altogether, our results showed that RRP41L plays an important role in seed germination and early seedling growth by mediating specific cytoplasmic mRNA decay in Arabidopsis.
Collapse
|
29
|
Hyun Y, Yun H, Park K, Ohr H, Lee O, Kim DH, Sung S, Choi Y. The catalytic subunit of Arabidopsis DNA polymerase α ensures stable maintenance of histone modification. Development 2012; 140:156-66. [PMID: 23154417 DOI: 10.1242/dev.084624] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitotic inheritance of identical cellular memory is crucial for development in multicellular organisms. The cell type-specific epigenetic state should be correctly duplicated upon DNA replication to maintain cellular memory during tissue and organ development. Although a role of DNA replication machinery in maintenance of epigenetic memory has been proposed, technical limitations have prevented characterization of the process in detail. Here, we show that INCURVATA2 (ICU2), the catalytic subunit of DNA polymerase α in Arabidopsis, ensures the stable maintenance of repressive histone modifications. The missense mutant allele icu2-1 caused a defect in the mitotic maintenance of vernalization memory. Although neither the recruitment of CURLY LEAF (CLF), a SET-domain component of Polycomb Repressive Complex 2 (PRC2), nor the resultant deposition of the histone mark H3K27me3 required for vernalization-induced FLOWERING LOCUS C (FLC) repression were affected, icu2-1 mutants exhibited unstable maintenance of the H3K27me3 level at the FLC region, which resulted in mosaic FLC de-repression after vernalization. ICU2 maintains the repressive chromatin state at additional PRC2 targets as well as at heterochromatic retroelements. In icu2-1 mutants, the subsequent binding of LIKE-HETEROCHROMATIN PROTEIN 1 (LHP1), a functional homolog of PRC1, at PRC2 targets was also reduced. We demonstrated that ICU2 facilitates histone assembly in dividing cells, suggesting a possible mechanism for ICU2-mediated epigenetic maintenance.
Collapse
Affiliation(s)
- Youbong Hyun
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jover-Gil S, Candela H, Robles P, Aguilera V, Barrero JM, Micol JL, Ponce MR. The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis. ACTA ACUST UNITED AC 2012; 53:1322-33. [DOI: 10.1093/pcp/pcs077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Rubio-Díaz S, Pérez-Pérez JM, González-Bayón R, Muñoz-Viana R, Borrega N, Mouille G, Hernández-Romero D, Robles P, Höfte H, Ponce MR, Micol JL. Cell expansion-mediated organ growth is affected by mutations in three EXIGUA genes. PLoS One 2012; 7:e36500. [PMID: 22586475 PMCID: PMC3344895 DOI: 10.1371/journal.pone.0036500] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/02/2012] [Indexed: 11/19/2022] Open
Abstract
Organ growth depends on two distinct, yet integrated, processes: cell proliferation and post-mitotic cell expansion. Although the regulatory networks of plant cell proliferation during organ growth have begun to be unveiled, the mechanisms regulating post-mitotic cell growth remain mostly unknown. Here, we report the characterization of three EXIGUA (EXI) genes that encode different subunits of the cellulose synthase complex specifically required for secondary cell wall formation. Despite this highly specific role of EXI genes, all the cells within the leaf, even those that do not have secondary walls, display small sizes in the exi mutants. In addition, we found a positive correlation between cell size and the DNA ploidy levels in exi mutant leaves, suggesting that both processes share some regulatory components. Our results are consistent with the hypothesis that the collapsed xylem vessels of the exi mutants hamper water transport throughout the plant, which, in turn, limits the turgor pressure levels required for normal post-mitotic cell expansion during leaf growth.
Collapse
Affiliation(s)
- Silvia Rubio-Díaz
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Alicante, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang F, Li L, Li H, Liu L, Zhang Y, Gao J, Wang X. Transcriptome analysis of rosette and folding leaves in Chinese cabbage using high-throughput RNA sequencing. Genomics 2012; 99:299-307. [PMID: 22387604 DOI: 10.1016/j.ygeno.2012.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
In this study, we report the first use of RNA-sequencing to gain insight into the wide range of transcriptional events that are associated with leafy head development in Chinese cabbage. We generated 53.5 million sequence reads (90 bp in length) from the rosette and heading leaves. The sequence reads were aligned to the recently sequenced Chiifu genome and were analyzed to measure the gene expression levels, to detect alternative splicing events and novel transcripts, to determine the expression of single nucleotide polymorphisms, and to refine the annotated gene structures. The analysis of the global gene expression pattern suggests two important concepts, which govern leafy head formation. Firstly, some stimuli, such as carbohydrate levels, light intensity and endogenous hormones might play a critical role in regulating the leafy head formation. Secondly, the regulation of transcription factors, protein kinases and calcium may also be involved in this developmental process.
Collapse
Affiliation(s)
- Fengde Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Shandong Key Laboratory of Greenhouse Vegetable Biology/Shandong Branch of National Vegetable Improvement Center, Jinan 250100, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Lopez-Vernaza M, Yang S, Müller R, Thorpe F, de Leau E, Goodrich J. Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the polycomb group gene CURLY LEAF. PLoS One 2012; 7:e30715. [PMID: 22363474 PMCID: PMC3281876 DOI: 10.1371/journal.pone.0030715] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/20/2011] [Indexed: 01/11/2023] Open
Abstract
In Arabidopsis, mutations in the Pc-G gene CURLY LEAF (CLF) give early flowering plants with curled leaves. This phenotype is caused by mis-expression of the floral homeotic gene AGAMOUS (AG) in leaves, so that ag mutations largely suppress the clf phenotype. Here, we identify three mutations that suppress clf despite maintaining high AG expression. We show that the suppressors correspond to mutations in FPA and FT, two genes promoting flowering, and in SEPALLATA3 (SEP3) which encodes a co-factor for AG protein. The suppression of the clf phenotype is correlated with low SEP3 expression in all case and reveals that SEP3 has a role in promoting flowering in addition to its role in controlling floral organ identity. Genetic analysis of clf ft mutants indicates that CLF promotes flowering by reducing expression of FLC, a repressor of flowering. We conclude that SEP3 is the key target mediating the clf phenotype, and that the antagonistic effects of CLF target genes masks a role for CLF in promoting flowering.
Collapse
Affiliation(s)
- Manuel Lopez-Vernaza
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Suxin Yang
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Müller
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frazer Thorpe
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erica de Leau
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Kadioglu A, Terzi R, Saruhan N, Saglam A. Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:42-8. [PMID: 22118614 DOI: 10.1016/j.plantsci.2011.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 01/07/2011] [Accepted: 01/20/2011] [Indexed: 05/19/2023]
Abstract
Leaf rolling is known as a typical response to water deficit in numerous species such as rice, maize, wheat and sorghum. However, it results not only from the water deficit but also from other abiotic stress factors such as salt, temperature, heavy metals and UV radiation. In addition to the abiotic factors, herbivores, viruses, bacteria and fungi are biotic factors of leaf rolling. Leaf rolling is an effective protective mechanism from the effects of high light levels in agricultural fields and protects leaves of unirrigated plants from photodamage. The rolling reduces effective leaf area and transpiration, and thus is a potentially useful drought avoidance mechanism in dry areas. The current review focuses on the recent progress in understanding leaf rolling in relation to abiotic and biotic stress factors, the role of signal molecules, and the mechanisms of gene regulation.
Collapse
Affiliation(s)
- Asim Kadioglu
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | | | | | | |
Collapse
|
35
|
Pérez-Pérez JM, Rubio-Díaz S, Dhondt S, Hernández-Romero D, Sánchez-Soriano J, Beemster GTS, Ponce MR, Micol JL. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants. PLANT, CELL & ENVIRONMENT 2011; 34:2200-11. [PMID: 21883289 DOI: 10.1111/j.1365-3040.2011.02415.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes.
Collapse
Affiliation(s)
- José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Centro de Investigación Operativa, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Quesada V, Sarmiento-Mañús R, González-Bayón R, Hricová A, Pérez-Marcos R, Graciá-Martínez E, Medina-Ruiz L, Leyva-Díaz E, Ponce MR, Micol JL. Arabidopsis RUGOSA2 encodes an mTERF family member required for mitochondrion, chloroplast and leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:738-53. [PMID: 21790815 DOI: 10.1111/j.1365-313x.2011.04726.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Little is known about the mechanisms that control transcription of the mitochondrial and chloroplastic genomes, and their interplay within plant cells. Here, we describe the positional cloning of the Arabidopsis RUG2 gene, which encodes a protein that is dual-targeted to mitochondria and chloroplasts, and is homologous with the metazoan mitochondrial transcription termination factors (mTERFs). In the loss-of-function rug2 mutants, most organs were pale and showed reduced growth, and the leaves exhibited both green and pale sectors, with the latter containing sparsely packed mesophyll cells. Chloroplast and mitochondrion development were strongly perturbed in the rug2-1 mutant, particularly in pale leaf sectors, in which chloroplasts were abnormally shaped and reduced in number, thereby impairing photoautotrophic growth. As expected from the pleiotropic phenotypes caused by its loss-of-function alleles, the RUG2 gene was ubiquitously expressed. In a microarray analysis of the mitochondrial and chloroplastic genomes, 56 genes were differentially expressed between rug2-1 and the wild type: most mitochondrial genes were downregulated, whereas the majority of the chloroplastic genes were upregulated. Quantitative RT-PCR analyses showed that the rug2-1 mutation specifically increases expression of the RpoTp nuclear gene, which encodes chloroplastic RNA polymerase. Therefore, the RUG2 nuclear gene seems to be crucial for the maintenance of the correct levels of transcripts in the mitochondria and chloroplasts, which is essential for optimized functions of these organelles and proper plant development. Our results highlight the complexity of the functional interaction between these two organelles and the nucleus.
Collapse
Affiliation(s)
- Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kieffer M, Master V, Waites R, Davies B. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:147-58. [PMID: 21668538 PMCID: PMC3229714 DOI: 10.1111/j.1365-313x.2011.04674.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 05/19/2023]
Abstract
TCP transcription factors constitute a small family of plant-specific bHLH-containing, DNA-binding proteins that have been implicated in the control of cell proliferation in plants. Despite the significant role that is likely to be played by genes that control cell division in the elaboration of plant architecture, functional analysis of this family by forward and reverse genetics has been hampered by genetic redundancy. Here we show that mutants in two related class I TCP genes display a range of growth-related phenotypes, consistent with their dynamic expression patterns; these phenotypes are enhanced in the double mutant. Together, the two genes influence plant stature by promoting cell division in young internodes. Reporter gene analysis and use of SRDX fusions suggested that TCP14 and TCP15 modulate cell proliferation in the developing leaf blade and specific floral tissues; a role that was not apparent in our phenotypic analysis of single or double mutants. However, when the relevant mutants were subjected to computer-aided morphological analysis of the leaves, the consequences of loss of either or both genes became obvious. The effects on cell proliferation of perturbing the function of TCP14 and TCP15 vary with tissue, as has been suggested for other TCP factors. These findings indicate that the precise elaboration of plant form is dependent on the cumulative influence of many TCP factors acting in a context-dependent fashion. The study highlights the need for advanced methods of phenotypic analysis in order to characterize phenotypes and to construct a dynamic model for TCP gene function.
Collapse
Affiliation(s)
- Martin Kieffer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of LeedsLeeds LS2 9JT, UK
| | - Vera Master
- Department of Biology, University of YorkPO Box 373, York YO10 5YW, UK
| | - Richard Waites
- Department of Biology, University of YorkPO Box 373, York YO10 5YW, UK
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of LeedsLeeds LS2 9JT, UK
- *For correspondence (fax +44 1133 233144; e-mail )
| |
Collapse
|
38
|
Liu Z, Jia L, Wang H, He Y. HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4367-81. [PMID: 21610018 PMCID: PMC3153689 DOI: 10.1093/jxb/err167] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/23/2011] [Accepted: 04/25/2011] [Indexed: 05/18/2023]
Abstract
HYPONASTIC LEAVES1 (HYL1) is an important regulator of microRNA (miRNA) biogenesis. Incurvature of rosette leaves in loss-of-function mutants of HYL1 implicates the regulation of leaf flatness by HYL1 via miRNA pathways. Recent studies have identified jba-1D, jaw-1D, and oe-160c, the dominant mutants of MIR166g, MIR319a, and MIR160c genes, respectively, which display three types of leaf curvature. However, it remains unclear whether or how HYL1 controls leaf flatness through the pathways mediated by these miRNAs. To define which miRNAs and target genes are relevant to the hyl1 phenotype in terms of leaf incurvature, the effects of three mutated MIRNA genes and their targets on the direction and extent of leaf curvature in hyl1 mutants were examined. The genetic analysis shows that the hyl1 phenotype is strongly rescued by jba-1D, but not by jaw-1D or oe-160c, whereas the mutant phenotypes of jba-1D, jaw-1D, or oe-160c leaves are compromised by the hyl1 allele. Expression analysis indicates that reduced accumulation of miR166, rather than of miR319a or miR160, causes incurvature of hyl1 leaves, and that miR319a-targeted TCP3 positively regulates the adaxial identity gene PHABULOSA while miR160-targeted ARF16 negatively regulates the abaxial identity gene FILAMENTOUS FLOWER. In these cases, the direction and extent of leaf incurvature are associated with the expression ratio of adaxial to abaxial genes (adaxial to abaxial ratio). HYL1 regulates the balance between adaxial and abaxial identity and modulates leaf flatness by preventing leaf incurvature, wavy margins, and downward curvature. It is concluded that HYL1 monitors the roles of miR165/166, miR319a, and miR160 in leaf flattening through the relative activities of adaxial and abaxial identity genes, thus playing an essential role in leaf development.
Collapse
Affiliation(s)
- Zhongyuan Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
- Graduate School of the Chinese Academy of Sciences, Shanghai 200032, China
| | - Liguo Jia
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
| | - Han Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
- Graduate School of the Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Du J, Miura E, Robischon M, Martinez C, Groover A. The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems. PLoS One 2011; 6:e17458. [PMID: 21386988 PMCID: PMC3046250 DOI: 10.1371/journal.pone.0017458] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/04/2011] [Indexed: 01/22/2023] Open
Abstract
The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody stems. Transgenic Populus (poplar) trees expressing either a miRNA-resistant POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants. Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth. POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during secondary growth.
Collapse
Affiliation(s)
- Juan Du
- Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Forest Service, Davis, California, United States of America
| | - Eriko Miura
- Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Forest Service, Davis, California, United States of America
| | - Marcel Robischon
- Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Forest Service, Davis, California, United States of America
| | - Ciera Martinez
- Plant Biology Graduate Group, University of California Davis, Davis, California, United States of America
| | - Andrew Groover
- Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Forest Service, Davis, California, United States of America
- Plant Biology Graduate Group, University of California Davis, Davis, California, United States of America
| |
Collapse
|
40
|
Pérez-Pérez JM, Candela H, Robles P, López-Torrejón G, del Pozo JC, Micol JL. A Role for AUXIN RESISTANT3 in the Coordination of Leaf Growth. ACTA ACUST UNITED AC 2010; 51:1661-73. [DOI: 10.1093/pcp/pcq123] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
41
|
Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors. Genetics 2010; 186:197-206. [PMID: 20610407 DOI: 10.1534/genetics.110.118703] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The patterning of initiating organs along specific axes of polarity is critical for the proper development of all higher organisms. Plant lateral organs, such as leaves, are derived from the shoot apical meristems located at the growing tips. After initiation, the leaf primordia of species such as Arabidopsis thaliana differentiate into a polarized structure consisting of a proximal petiole and a distal blade, but the molecular mechanisms that control proximal-distal pattern formation are poorly understood. The transcriptional activators BLADE-ON-PETIOLE1 (BOP1) and BOP2 are known to control Arabidopsis lateral organ differentiation by regulating gene expression along the adaxial-abaxial (dorsal-ventral) and proximal-distal polarity axes. Here, we demonstrate that the development of ectopic blade tissue along bop1 bop2 leaf petioles is strongly suppressed in a dosage-dependant manner by mutations in either of two closely related YABBY (YAB) genes, FILAMENTOUS FLOWER (FIL) and YAB3. Three KNOTTED-LIKE HOMEOBOX (KNOX1) genes also make lesser, and partially redundant, contributions to ectopic blade development in bop1 bop2 leaves. Mutation of these YAB and KNOX1 genes together causes nearly complete suppression of bop1 bop2 ectopic organ outgrowth at the morphological and cellular levels. Our data demonstrate that BOP1 and BOP2 regulate leaf patterning by controlling YAB and KNOX1 gene activity in the developing petiole.
Collapse
|
42
|
Hu J, Zhu L, Zeng D, Gao Z, Guo L, Fang Y, Zhang G, Dong G, Yan M, Liu J, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. PLANT MOLECULAR BIOLOGY 2010; 73:283-92. [PMID: 20155303 DOI: 10.1007/s11103-010-9614-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/30/2010] [Indexed: 05/17/2023]
Abstract
Leaf morphology is an important agronomic trait in rice breeding. We isolated three allelic mutants of NARROW AND ROLLED LEAF 1 (nrl1) which showed phenotypes of reduced leaf width and semi-rolled leaves and different degrees of dwarfism. Microscopic analysis indicated that the nrl1-1 mutant had fewer longitudinal veins and smaller adaxial bulliform cells compared with the wild-type. The NRL1 gene was mapped to the chromosome 12 and encodes the cellulose synthase-like protein D4 (OsCslD4). Sequence analyses revealed single base substitutions in the three allelic mutants. Genetic complementation and over-expression of the OsCslD4 gene confirmed the identity of NRL1. The gene was expressed in all tested organs of rice at the heading stage and expression level was higher in vigorously growing organs, such as roots, sheaths and panicles than in elsewhere. In the mutant leaves, however, the expression level was lower than that in the wild-type. We conclude that OsCslD4 encoded by NRL1 plays a critical role in leaf morphogenesis and vegetative development in rice.
Collapse
Affiliation(s)
- Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, 359 Tiyuchang Road, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pérez-Pérez JM, Candela H, Micol JL. Understanding synergy in genetic interactions. Trends Genet 2009; 25:368-76. [PMID: 19665253 DOI: 10.1016/j.tig.2009.06.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
Synergy occurs when the contribution of two mutations to the phenotype of a double mutant exceeds the expectations from the additive effects of the individual mutations. The molecular characterization of genes involved in synergistic interactions has revealed that synergy mainly results from mutations in functionally related genes. Recent research in Arabidopsis thaliana has advanced our understanding of the scenarios resulting in synergistic phenotypes. Those involving homologous loci usually result from various levels of functional redundancy. Some of these loci fail to complement each other or become dose-dependent in certain multiple mutant combinations, suggesting that the effects of haploinsufficiency and redundancy can combine. Synergy involving non-homologous genes probably reflects the topology of the regulatory or metabolic networks and can arise when pathways that converge at a node are disrupted. The Hub genes provide a remarkable example, these genes have an extraordinary number of connections and mutations that interact with many unrelated pathways.
Collapse
Affiliation(s)
- José Manuel Pérez-Pérez
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
44
|
Candela H, Johnston R, Gerhold A, Foster T, Hake S. The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. THE PLANT CELL 2008; 20:2073-87. [PMID: 18757553 PMCID: PMC2553616 DOI: 10.1105/tpc.108.059709] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/15/2008] [Accepted: 07/31/2008] [Indexed: 05/19/2023]
Abstract
Leaf primordia initiate from the shoot apical meristem with inherent polarity; the adaxial side faces the meristem, while the abaxial side faces away from the meristem. Adaxial/abaxial polarity is thought to be necessary for laminar growth of leaves, as mutants lacking either adaxial or abaxial cell types often develop radially symmetric lateral organs. The milkweed pod1 (mwp1) mutant of maize (Zea mays) has adaxialized sectors in the sheath, the proximal part of the leaf. Ectopic leaf flaps develop where adaxial and abaxial cell types juxtapose. Ectopic expression of the HD-ZIPIII gene rolled leaf1 (rld1) correlates with the adaxialized regions. Cloning of mwp1 showed that it encodes a KANADI transcription factor. Double mutants of mwp1-R with a microRNA-resistant allele of rld1, Rld1-N1990, show a synergistic phenotype with polarity defects in sheath and blade and a failure to differentiate vascular and photosynthetic cell types in the adaxialized sectors. The sectored phenotype and timing of the defect suggest that mwp1 is required late in leaf development to maintain abaxial cell fate. The phenotype of mwp1; Rld1 double mutants shows that both genes are also required early in leaf development to delineate leaf margins as well as to initiate vascular and photosynthetic tissues.
Collapse
Affiliation(s)
- Héctor Candela
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, California 94710, USA
| | | | | | | | | |
Collapse
|
45
|
Barrero JM, González-Bayón R, del Pozo JC, Ponce MR, Micol JL. INCURVATA2 encodes the catalytic subunit of DNA Polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana. THE PLANT CELL 2007; 19:2822-38. [PMID: 17873092 PMCID: PMC2048701 DOI: 10.1105/tpc.107.054130] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cell type-specific gene expression patterns are maintained by the stable inheritance of transcriptional states through mitosis, requiring the action of multiprotein complexes that remodel chromatin structure. Genetic and molecular interactions between chromatin remodeling factors and components of the DNA replication machinery have been identified in Schizosaccharomyces pombe, indicating that some epigenetic marks are replicated simultaneously to DNA with the participation of the DNA replication complexes. This model of epigenetic inheritance might be extended to the plant kingdom, as we report here with the positional cloning and characterization of INCURVATA2 (ICU2), which encodes the putative catalytic subunit of the DNA polymerase alpha of Arabidopsis thaliana. The strong icu2-2 and icu2-3 insertional alleles caused fully penetrant zygotic lethality when homozygous and incompletely penetrant gametophytic lethality, probably because of loss of DNA polymerase activity. The weak icu2-1 allele carried a point mutation and caused early flowering, leaf incurvature, and homeotic transformations of sepals into carpels and of petals into stamens. Further genetic analyses indicated that ICU2 interacts with TERMINAL FLOWER2, the ortholog of HETEROCHROMATIN PROTEIN1 of animals and yeasts, and with the Polycomb group (PcG) gene CURLY LEAF. Another PcG gene, EMBRYONIC FLOWER2, was found to be epistatic to ICU2. Quantitative RT-PCR analyses indicated that a number of regulatory genes were derepressed in the icu2-1 mutant, including genes associated with flowering time, floral meristem, and floral organ identity.
Collapse
Affiliation(s)
- José María Barrero
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | | | | | | | | |
Collapse
|
46
|
Poupin MJ, Federici F, Medina C, Matus JT, Timmermann T, Arce-Johnson P. Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 2007; 404:10-24. [PMID: 17920788 DOI: 10.1016/j.gene.2007.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 08/07/2007] [Accepted: 08/09/2007] [Indexed: 11/15/2022]
Abstract
The B class of MADS-box floral homeotic genes specifies petal and stamen identity in angiosperms. While this group is one of the most studied in herbaceous plant species, it has remained largely uncharacterized in woody species such as grapevine. Although the B class PI/GLO and AP3/DEF clades have been extensively characterized in model species, the role of the TM6 subgroup within the AP3 clade is not completely understood, since it is absent in Arabidopsis thaliana. In this study, the coding regions of VvTM6 and VvAP3 and the genomic sequence of VvPI, were cloned. VvPI and AtPI were confirmed to be functional homologues by means of complementation of the pi Arabidopsis mutant. Expression analysis revealed that VvPI and VvAP3 transcripts are restricted almost exclusively to inflorescences, although VvPI was detected at low levels in leaves and roots. VvTM6 expresses throughout the plant, with higher levels in flowers and berries. A detailed chronological study of grape flower progression by light microscopy and temporal expression analysis throughout early and late developmental stages, revealed that VvPI expression increases during pollen maturation and decreases between the events of pollination and fertilization, before the cap fall. On the other hand, VvTM6 is expressed in the last stage of anther development. Specific expression of VvAP3 and VvPI was detected in petals and stamens within the flower, while VvTM6 was also expressed in carpels. Moreover, this work provides the first evidence for expression of a TM6-like gene throughout fruit growth and ripening. Even if these genes belong to the same genetic class they could act in different periods and/or tissues during reproductive organ development.
Collapse
Affiliation(s)
- María Josefina Poupin
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
47
|
Alonso-Peral MM, Candela H, del Pozo JC, Martínez-Laborda A, Ponce MR, Micol JL. TheHVE/CAND1gene is required for the early patterning of leaf venation inArabidopsis. Development 2006; 133:3755-66. [PMID: 16943276 DOI: 10.1242/dev.02554] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hemivenata-1 (hve-1) recessive allele was isolated in a search for natural variations in the leaf venation pattern of Arabidopsis thaliana, where it was seen to cause extremely simple venation in vegetative leaves and cotyledons, increased shoot branching, and reduced root waving and fertility, traits that are reminiscent of some mutants deficient in auxin signaling. Reduced sensitivity to exogenous auxin was found in the hve-1 mutant, which otherwise displayed a wild-type response to auxin transport inhibitors. The HVE gene was positionally cloned and found to encode a CAND1 protein. The hve-1 mutation caused mis-splicing of the transcripts of the HVE/CAND1 gene and a vein phenotype indistinguishable from that of hve-2 and hve-3,two putatively null T-DNA alleles. Inflorescence size and fertility were more affected by hve-2 and hve-3, suggesting that hve-1is hypomorphic. The simple venation pattern of hve plants seems to arise from an early patterning defect. We found that HVE/CAND1 binds to CULLIN1, and that the venation patterns of axr1 and hvemutants are similar, which suggest that ubiquitin-mediated auxin signaling is required for venation patterning in laminar organs, the only exception being cauline leaves. Our analyses of double mutant and transgenic plants indicated that auxin transport and perception act independently to pattern leaf veins,and that the HVE/CAND1 gene acts upstream of ATHB-8 at least in higher order veins, in a pathway that involves AXR1, but not LOP1, PIN1, CVP1 or CVP2.
Collapse
Affiliation(s)
- María Magdalena Alonso-Peral
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Hricová A, Quesada V, Micol JL. The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:942-56. [PMID: 16698900 PMCID: PMC1489898 DOI: 10.1104/pp.106.080069] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 05/09/2023]
Abstract
In many plant species, a subset of the genes of the chloroplast genome is transcribed by RpoTp, a nuclear-encoded plastid-targeted RNA polymerase. Here, we describe the positional cloning of the SCABRA3 (SCA3) gene, which was found to encode RpoTp in Arabidopsis (Arabidopsis thaliana). We studied one weak (sca3-1) and two strong (sca3-2 and sca3-3) alleles of the SCA3 gene, the latter two showing severely impaired plant growth and reduced pigmentation of the cotyledons, leaves, stem, and sepals, all of which were pale green. The leaf surface was extremely crumpled in the sca3 mutants, although epidermal cell size and morphology were not perturbed, whereas the mesophyll cells were less densely packed and more irregular in shape than in the wild type. A significant reduction in the size, morphology, and number of chloroplasts was observed in homozygous sca3-2 individuals whose photoautotrophic growth was consequently perturbed. Microarray analysis showed that several hundred nuclear genes were differentially expressed in sca3-2 and the wild type, about one-fourth of which encoded chloroplast-targeted proteins. Quantitative reverse transcription-PCR analyses showed that the sca3-2 mutation alters the expression of the rpoB, rpoC1, clpP, and accD plastid genes and the SCA3 paralogs RpoTm and RpoTmp, which respectively encode nuclear-encoded mitochondrion or dually targeted RNA polymerases. Double-mutant analysis indicated that RpoTmp and SCA3 play redundant functions in plant development. Our findings support a role for plastids in leaf morphogenesis and indicate that RpoTp is required for mesophyll cell proliferation.
Collapse
Affiliation(s)
- Andrea Hricová
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | | | | |
Collapse
|
49
|
Ochando I, Jover-Gil S, Ripoll JJ, Candela H, Vera A, Ponce MR, Martínez-Laborda A, Micol JL. Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in arabidopsis. PLANT PHYSIOLOGY 2006; 141:607-19. [PMID: 16617092 PMCID: PMC1475466 DOI: 10.1104/pp.106.077149] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/16/2006] [Accepted: 04/07/2006] [Indexed: 05/08/2023]
Abstract
Here, we describe how the semidominant, gain-of-function icu4-1 and icu4-2 alleles of the INCURVATA4 (ICU4) gene alter leaf phyllotaxis and cell organization in the root apical meristem, reduce root length, and cause xylem overgrowth in the stem. The ICU4 gene was positionally cloned and found to encode the ATHB15 transcription factor, a class III homeodomain/leucine zipper family member, recently named CORONA. The icu4-1 and icu4-2 alleles bear the same point mutation that affects the microRNA complementarity site of ICU4 and is identical to those of several semidominant alleles of the class III homeodomain/leucine zipper family members PHABULOSA and PHAVOLUTA. The icu4-1 and icu4-2 mutations significantly increase leaf transcript levels of the ICU4 gene. The null hst-1 allele of the HASTY gene, which encodes a nucleocytoplasmic transporter, synergistically interacts with icu4-1, the double mutant displaying partial adaxialization of rosette leaves and carpels. Our results suggest that the ICU4 gene has an adaxializing function and that it is down-regulated by microRNAs that require the HASTY protein for their biogenesis.
Collapse
Affiliation(s)
- Isabel Ochando
- División de Genética, Universidad Miguel Hernández, Campus de San Juan, 03550 Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
An afternoon stroll through an English garden reveals the breathtaking beauty and enormous diversity of flowering plants. The extreme variation of flower morphologies, combined with the relative simplicity of floral structures and the wealth of floral mutants available, has made the flower an excellent model for studying developmental cell-fate specification, morphogenesis and tissue patterning. Recent molecular genetic studies have begun to reveal the transcriptional regulatory cascades that control early patterning events during flower formation, the dynamics of the gene-regulatory interactions, and the complex combinatorial mechanisms that create a distinct final floral architecture and form.
Collapse
Affiliation(s)
- Beth A Krizek
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, South Carolina 29208, USA
| | | |
Collapse
|