1
|
Ren X, Wei Y, Zhao H, Shao J, Zeng F, Wang Z, Li L. A comprehensive review and comparison of L-tryptophan biosynthesis in Saccharomyces cerevisiae and Escherichia coli. Front Bioeng Biotechnol 2023; 11:1261832. [PMID: 38116200 PMCID: PMC10729320 DOI: 10.3389/fbioe.2023.1261832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
L-tryptophan and its derivatives are widely used in the chemical, pharmaceutical, food, and feed industries. Microbial fermentation is the most commonly used method to produce L-tryptophan, which calls for an effective cell factory. The mechanism of L-tryptophan biosynthesis in Escherichia coli, the widely used producer of L-tryptophan, is well understood. Saccharomyces cerevisiae also plays a significant role in the industrial production of biochemicals. Because of its robustness and safety, S. cerevisiae is favored for producing pharmaceuticals and food-grade biochemicals. However, the biosynthesis of L-tryptophan in S. cerevisiae has been rarely summarized. The synthetic pathways and engineering strategies of L-tryptophan in E. coli and S. cerevisiae have been reviewed and compared in this review. Furthermore, the information presented in this review pertains to the existing understanding of how L-tryptophan affects S. cerevisiae's stress fitness, which could aid in developing a novel plan to produce more resilient industrial yeast and E. coli cell factories.
Collapse
Affiliation(s)
- Xinru Ren
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Yue Wei
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Honglu Zhao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China
| | - Li Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| |
Collapse
|
2
|
Kozu F, Shirahama-Noda K, Araki Y, Kira S, Niwa H, Noda T. Isoflurane induces Art2-Rsp5-dependent endocytosis of Bap2 in yeast. FEBS Open Bio 2021; 11:3090-3100. [PMID: 34536986 PMCID: PMC8564346 DOI: 10.1002/2211-5463.13302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Although general anesthesia is indispensable during modern surgical procedures, the mechanism by which inhalation anesthetics act on the synaptic membrane at the molecular and cellular level is largely unknown. In this study, we used yeast cells to examine the effect of isoflurane, an inhalation anesthetic, on membrane proteins. Bap2, an amino acid transporter localized on the plasma membrane, was endocytosed when yeast cells were treated with isoflurane. Depletion of RSP5, an E3 ligase, prevented this endocytosis and Bap2 was ubiquitinated in response to isoflurane, indicating an ubiquitin‐dependent process. Screening all the Rsp5 binding adaptors showed that Art2 plays a central role in this process. These results suggest that isoflurane affects Bap2 via an Art2‐Rsp5‐dependent ubiquitination system.
Collapse
Affiliation(s)
- Fumi Kozu
- Center of Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Japan.,Department of dental anesthesiology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Kanae Shirahama-Noda
- Center of Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Yasuhiro Araki
- Center of Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Shintaro Kira
- Center of Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Hitoshi Niwa
- Department of dental anesthesiology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Takeshi Noda
- Center of Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
3
|
Luethy A, Kindler CH, Cotten JF. Anesthetic pretreatment confers thermotolerance on Saccharomyces cerevisiae yeast. Biochem Biophys Res Commun 2019; 522:479-484. [PMID: 31780265 DOI: 10.1016/j.bbrc.2019.11.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Saccharomyces cerevisiae yeast, when pretreated with elevated temperatures, undergo adaptive changes that promote survival after an otherwise lethal heat stress. The heat shock response, a cellular stress response variant, mediates these adaptive changes. Ethanol, a low-potency anesthetic, promotes thermotolerance possibly through heat shock response activation. Therefore, we hypothesized other anesthetic compounds, like ethanol, may invoke the heat shock response to promote thermotolerance. To test this hypothesis, we pretreated yeast with a series of non-volatile anesthetic and anesthetic-related compounds and quantified survival following lethal heat shock (52 °C for 5 min). Most compounds invoked thermoprotection and promoted survival with a potency proportional to hydrophobicity: tribromoethanol (5.6 mM, peak survival response), trichloroethanol (17.8 mM), dichloroethanol (100 mM), monochloroethanol (316 mM), trifluoroethanol (177.8 mM), ethanol (1 M), isopropanol (1 M), propofol (316 μM), and carbon tetrabromide (32 μM). Thermoprotection conferred by pretreatment with elevated temperatures was "left shifted" by anesthetic co-treatment from (in °C) 35.3 ± 0.1 to 32.2 ± 0.1 with trifluoroethanol (177.8 mM), to 31.2 ± 0.1 with trichloroethanol (17.8 mM), and to 29.1 ± 0.3 with tribromoethanol (5.6 mM). Yeast in postdiauxic shift growth phase, relative to mid-log, responded with greater heat shock survival; and media supplementation with tryptophan and leucine blocked thermoprotection, perhaps by reversing the amino acid starvation response. Our results suggest S. cerevisase may serve as a model organism for understanding anesthetic toxicity and anesthetic preconditioning, a process by which anesthetics promote tissue survival after hypoxic insult.
Collapse
Affiliation(s)
- Anita Luethy
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA; Department of Anesthesia, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland.
| | - Christoph H Kindler
- Department of Anesthesia, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland.
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Huseinovic A, Dekker SJ, Boogaard B, Vermeulen NPE, Kooter JM, Vos JC. Acetaminophen reduces the protein levels of high affinity amino acid permeases and causes tryptophan depletion. Amino Acids 2018; 50:1377-1390. [PMID: 29978260 PMCID: PMC6153950 DOI: 10.1007/s00726-018-2613-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/28/2018] [Indexed: 02/05/2023]
Abstract
In yeast, toxicity of acetaminophen (APAP), a frequently used analgesic and antipyretic drug, depends on ubiquitin-controlled processes. Previously, we showed a remarkable overlap in toxicity profiles between APAP and tyrosine, and a similarity with drugs like rapamycin and quinine, which induce degradation of the amino acid permease Tat2. Therefore, we investigated in yeast whether APAP reduced the expression levels of amino acid permeases. The protein levels of Tat2, Tat1, Mup1 and Hip1 were reduced, while the expression of the general permease Gap1 was increased, consistent with a nutrient starvation response. Overexpression of Tat1 and Tat2, but not Mup1, Hip1 and Gap1 conferred resistance to APAP. A tryptophan auxotrophic strain trp1Δ was more sensitive to APAP than wild-type and addition of tryptophan completely restored the growth restriction of trp1∆ upon APAP exposure, while tyrosine had an additive effect on APAP toxicity. Furthermore, intracellular aromatic amino acid concentrations were reduced upon APAP exposure. This effect was less prominent in ubiquitin-deficient yeast strains that were APAP resistant and showed a reduced degradation of high affinity amino acid permeases. APAP-induced changes in intracellular amino acid concentrations were also detected in hepatoma HepG2 cells indicating significance for humans.
Collapse
Affiliation(s)
- Angelina Huseinovic
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Bob Boogaard
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Jan M Kooter
- AIMMS, Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Araki T, Toh-e A, Kikuchi Y, Watanabe CK, Hachiya T, Noguchi K, Terashima I, Uesono Y. Tetracaine, a local anesthetic, preferentially induces translational inhibition with processing body formation rather than phosphorylation of eIF2α in yeast. Curr Genet 2014; 61:43-53. [DOI: 10.1007/s00294-014-0443-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/24/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
|
6
|
Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure. PLoS One 2013; 8:e73736. [PMID: 24040048 PMCID: PMC3767620 DOI: 10.1371/journal.pone.0073736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/21/2013] [Indexed: 12/22/2022] Open
Abstract
Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.
Collapse
|
7
|
Pressure-induced endocytic degradation of the Saccharomyces cerevisiae low-affinity tryptophan permease Tat1 is mediated by Rsp5 ubiquitin ligase and functionally redundant PPxY motif proteins. EUKARYOTIC CELL 2013; 12:990-7. [PMID: 23666621 DOI: 10.1128/ec.00049-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells of Saccharomyces cerevisiae express two tryptophan permeases, Tat1 and Tat2, which have different characteristics in terms of their affinity for tryptophan and intracellular localization. Although the high-affinity permease Tat2 has been well documented in terms of its ubiquitin-dependent degradation, the low-affinity permease Tat1 has not yet been characterized fully. Here we show that a high hydrostatic pressure of 25 MPa triggers a degradation of Tat1 which depends on Rsp5 ubiquitin ligase and the EH domain-containing protein End3. Tat1 was resistant to a 3-h cycloheximide treatment, suggesting that it is highly stable under normal growth conditions. The ubiquitination of Tat1 most likely occurs at N-terminal lysines 29 and 31. Simultaneous substitution of arginine for the two lysines prevented Tat1 degradation, but substitution of either of them alone did not, indicating that the roles of lysines 29 and 31 are redundant. When cells were exposed to high pressure, Tat1-GFP was completely lost from the plasma membrane, while substantial amounts of Tat1(K29R-K31R)-GFP remained. The HPG1-1 (Rsp5(P514T)) and rsp5-ww3 mutations stabilized Tat1 under high pressure, but any one of the rsp5-ww1, rsp5-ww2, and bul1Δ bul2Δ mutations or single deletions of genes encoding arrestin-related trafficking adaptors did not. However, simultaneous loss of 9-arrestins and Bul1/Bul2 prevented Tat1 degradation at 25 MPa. The results suggest that multiple PPxY motif proteins share some essential roles in regulating Tat1 ubiquitination in response to high hydrostatic pressure.
Collapse
|
8
|
Gaytán BD, Loguinov AV, Lantz SR, Lerot JM, Denslow ND, Vulpe CD. Functional profiling discovers the dieldrin organochlorinated pesticide affects leucine availability in yeast. Toxicol Sci 2013; 132:347-58. [PMID: 23358190 PMCID: PMC3595527 DOI: 10.1093/toxsci/kft018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to organochlorinated pesticides such as dieldrin has been linked to Parkinson’s and Alzheimer’s diseases, endocrine disruption, and cancer, but the cellular and molecular mechanisms of toxicity behind these effects remain largely unknown. Here we demonstrate, using a functional genomics approach in the model eukaryote Saccharomyces cerevisiae, that dieldrin alters leucine availability. This model is supported by multiple lines of congruent evidence: (1) mutants defective in amino acid signaling or transport are sensitive to dieldrin, which is reversed by the addition of exogenous leucine; (2) dieldrin sensitivity of wild-type or mutant strains is dependent upon leucine concentration in the media; (3) overexpression of proteins that increase intracellular leucine confer resistance to dieldrin; (4) leucine uptake is inhibited in the presence of dieldrin; and (5) dieldrin induces the amino acid starvation response. Additionally, we demonstrate that appropriate negative regulation of the Ras/protein kinase A pathway, along with an intact pyruvate dehydrogenase complex, is required for dieldrin tolerance. Many yeast genes described in this study have human orthologs that may modulate dieldrin toxicity in humans.
Collapse
Affiliation(s)
- Brandon D Gaytán
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
9
|
Anesthetic action of volatile anesthetics by using Paramecium as a model. ACTA ACUST UNITED AC 2012; 32:410-414. [PMID: 22684567 DOI: 10.1007/s11596-012-0071-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Indexed: 11/27/2022]
Abstract
Although empirically well understood in their clinical administration, volatile anesthetics are not yet well comprehended in their mechanism studies. A major conundrum emerging from these studies is that there is no validated model to assess the presumed candidate sites of the anesthetics. We undertook this study to test the hypothesis that the single-celled Paramecium could be anesthetized and served as a model organism in the study of anesthetics. We assessed the motion of Paramecium cells with Expert Vision system and the chemoresponse of Paramecium cells with T-maze assays in the presence of four different volatile anesthetics, including isoflurane, sevoflurane, enflurane and ether. Each of those volatiles was dissolved in buffers to give drug concentrations equal to 0.8, 1.0, and 1.2 EC50, respectively, in clinical practice. We could see that after application of volatile anesthetics, the swimming of the Paramecium cells was accelerated and then suppressed, or even stopped eventually, and the index of the chemoresponse of the Paramecium cells (denoted as I ( che )) was decreased. All of the above impacts were found in a concentration-dependent fashion. The biphasic effects of the clinical concentrations of volatile anesthetics on Paramecium simulated the situation of high species in anesthesia, and the inhibition of the chemoresponse also indicated anesthetized. In conclusion, the findings in our studies suggested that the single-celled Paramecium could be anesthetized with clinical concentrations of volatile anesthetics and therefore be utilized as a model organism to study the mechanisms of volatile anesthetics.
Collapse
|
10
|
Palmer LK, Baptiste BA, Fester JC, Perkins JC, Keil RL. RRD1, a component of the TORC1 signalling pathway, affects anaesthetic response in Saccharomyces cerevisiae. Yeast 2010; 26:655-61. [PMID: 19774547 DOI: 10.1002/yea.1712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms of action of volatile anaesthetics remain unknown despite clinical use for over 150 years. While many effects of these agents have been characterized, clear insight into how these effects relate to the physiological state of anaesthesia has not been established. Volatile anaesthetics arrest cell division in Saccharomyces cerevisiae in a manner that parallels the anaesthetic actions of these drugs in mammals. To gain additional insight into the cellular activities of these drugs, we isolated genes that, when present on multi-copy plasmids, render S. cerevisiae resistant to the volatile anaesthetic isoflurane. One of these genes, RRD1, encodes a subunit of the Tap42p-Sit4p-Rrd1p phosphatase complex that functions in the target of rapamycin complex 1 (TORC1) signalling pathway. In addition, we show that mutations in two other genes encoding components of the TORC1 pathway, GLN3 and URE2, also affect yeast anaesthetic response. These findings suggest that TORC1-mediated signalling is involved in cellular response to volatile anaesthetics in S. cerevisiae.
Collapse
Affiliation(s)
- Laura K Palmer
- Division of Mathematics and Natural Sciences, Pennsylvania State University Altoona, College, PA 16601, USA.
| | | | | | | | | |
Collapse
|
11
|
Hiraki T, Abe F. Overexpression of Sna3 stabilizes tryptophan permease Tat2, potentially competing for the WW domain of Rsp5 ubiquitin ligase with its binding protein Bul1. FEBS Lett 2010; 584:55-60. [PMID: 19944104 DOI: 10.1016/j.febslet.2009.11.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/03/2009] [Accepted: 11/20/2009] [Indexed: 11/26/2022]
Abstract
Tryptophan permease Tat2 in Saccharomyces cerevisiae undergoes Rsp5-dependent degradation upon exposure to high hydrostatic pressure and it limits the growth of tryptophan auxotrophs. Overexpression of SNA3 encoding an endosomal/vacuolar protein possessing the PPAY motif allowed growth at 25 MPa, which was potentiated by marked stabilization of Tat2. This appeared to depend on the PPAY motif, which interacted with the WW domain of Rsp5. Subcellular localization of Rsp5 was unchanged by overexpression of either SNA3 or SNA3-AAAY. While the loss of Bul1, a binding protein of Rsp5, or the rsp5-ww3 mutation allowed high-pressure growth, overexpression of BUL1 abolished the Sna3-mediated growth at 25 MPa. These results suggest that Sna3 and Bul1 compete for the WW domain of Rsp5 upon Tat2 ubiquitination.
Collapse
Affiliation(s)
- Toshiki Hiraki
- Molecular Evolution and Adaptation Research, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | |
Collapse
|
12
|
Zaborske JM, Narasimhan J, Jiang L, Wek SA, Dittmar KA, Freimoser F, Pan T, Wek RC. Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem 2009; 284:25254-67. [PMID: 19546227 DOI: 10.1074/jbc.m109.000877] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When cells are subjected to nutritional stress, uncharged tRNAs accumulate and activate Gcn2p phosphorylation of eukaryotic initiation factor-2 (eIF2) and the general amino acid control pathway. The Gcn2p regulatory domain homologous to histidyl-tRNA synthetases is proposed to bind to uncharged tRNA, directly contributing to activation of Gcn2p. Here we apply a microarray technology to analyze genome-wide changes in tRNA charging in yeast upon activation of Gcn2p in response to amino acid starvation and high salinity, a stress not directly linked to nutritional deficiency. This microarray technology is applicable for all eukaryotic cells. Strains were starved for histidine, leucine, or tryptophan and shown to rapidly induce Gcn2p phosphorylation of eIF2. The relative charging level of all tRNAs was measured before and after starvation, and Gcn2p activation and the intracellular levels of the starved amino acid correlate with the observed decrease in tRNA charging. Interestingly, in some cases, tRNAs not charged with the starved amino acid became deacylated more rapidly than tRNAs charged with the starved amino acid. This increase in uncharged tRNA levels occurred although the intracellular levels for these non-starved amino acids remained unchanged. Additionally, treatment of a wild-type strain with high salinity stress showed transient changes in the charging of several different tRNAs. These results suggest that Gcn2p can be activated by many different tRNA species in the cell. These results also depict a complex cellular relationship between tRNA charging, amino acid availability, and non-nutrient stress. These relationships are best revealed by simultaneous monitoring of the charging level of all tRNAs.
Collapse
Affiliation(s)
- John M Zaborske
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Margaret M Sedensky
- Department of Anesthesiology, University Hospitals and Case School of Medicine, Cleveland, Ohio 44106-5007, USA
| | | |
Collapse
|
14
|
De Filippi L, Fournier M, Cameroni E, Linder P, De Virgilio C, Foti M, Deloche O. Membrane stress is coupled to a rapid translational control of gene expression in chlorpromazine-treated cells. Curr Genet 2007; 52:171-85. [PMID: 17710403 DOI: 10.1007/s00294-007-0151-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 11/25/2022]
Abstract
Chlorpromazine (CPZ) is a small permeable cationic amphiphilic molecule that inserts into membrane bilayers and binds to anionic lipids such as poly-phosphoinositides (PIs). Since PIs play important roles in many cellular processes, including signaling and membrane trafficking pathways, it has been proposed that CPZ affects cellular growth functions by preventing the recruitment of proteins with specific PI-binding domains. In this study, we have investigated the biological effects of CPZ in the yeast Saccharomyces cerevisiae. We screened a collection of approximately 4,800 gene knockout mutants, and found that mutants defective in membrane trafficking between the late-Golgi and endosomal compartments are highly sensitive to CPZ. Microscopy and transport analyses revealed that CPZ affects membrane structure of organelles, blocks membrane transport and activates the unfolded protein response (UPR). In addition, CPZ-treatment induces phosphorylation of the translation initiation factor (eIF2alpha), which reduces the general rate of protein synthesis and stimulates the production of Gcn4p, a major transcription factor that is activated in response to environmental stresses. Altogether, our results reveal that membrane stress within the cells rapidly activates an important gene expression program, which is followed by a general inhibition of protein synthesis. Remarkably, the increase of phosphorylated eIF2alpha and protein synthesis inhibition were also detected in CPZ-treated NIH-3T3 fibroblasts, suggesting the existence of a conserved mechanism of translational regulation that operates during a membrane stress.
Collapse
Affiliation(s)
- Loic De Filippi
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Barodka VM, Acheampong E, Powell G, Lobach L, Logan DA, Parveen Z, Armstead V, Mukhtar M. Antimicrobial effects of liquid anesthetic isoflurane on Candida albicans. J Transl Med 2006; 4:46. [PMID: 17094810 PMCID: PMC1664588 DOI: 10.1186/1479-5876-4-46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 11/09/2006] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is a dimorphic fungus that can grow in yeast morphology or hyphal form depending on the surrounding environment. This ubiquitous fungus is present in skin and mucus membranes as a potential pathogen that under opportunistic conditions causes a series of systemic and superficial infections known as candidiasis, moniliasis or simply candidiasis. There has been a steady increase in the prevalence of candidiasis that is expressed in more virulent forms of infection. Although candidiasis is commonly manifested as mucocutaneous disease, life-threatening systemic invasion by this fungus can occur in every part of the body. The severity of candidal infections is associated with its morphological shift such that the hyphal morphology of the fungus is most invasive. Of importance, aberrant multiplication of Candida yeast is also associated with the pathogenesis of certain mucosal diseases. In this study, we assessed the anti-candidal activity of the volatile anesthetic isoflurane in liquid form in comparison with the anti-fungal agent amphotericin B in an in vitro culture system. Exposure of C. albicans to isoflurane (0.3% volume/volume and above) inhibited multiplication of yeast as well as formation of hyphae. These data suggest development of potential topical application of isoflurane for controlling a series of cutaneous and genital infections associated with this fungus. Elucidiation of the mechanism by which isoflurane effects fungal growth could offer therapeutic potential for certain systemic fungal infections.
Collapse
Affiliation(s)
- Viachaslau M Barodka
- Anesthesiology Program For Translational Research, Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Edward Acheampong
- Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Garry Powell
- Anesthesiology Program For Translational Research, Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ludmila Lobach
- Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David A Logan
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, USA
| | - Zahida Parveen
- Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Valerie Armstead
- Anesthesiology Program For Translational Research, Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Muhammad Mukhtar
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Palmer LK, Rannels SL, Kimball SR, Jefferson LS, Keil RL. Inhibition of mammalian translation initiation by volatile anesthetics. Am J Physiol Endocrinol Metab 2006; 290:E1267-75. [PMID: 16434554 DOI: 10.1152/ajpendo.00463.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Volatile anesthetics are essential for modern medical practice, but sites and mechanisms of action for any of their numerous cellular effects remain largely unknown. Previous studies with yeast showed that volatile anesthetics induce nutrient-dependent inhibition of growth through mechanisms involving inhibition of mRNA translation. Studies herein show that the volatile anesthetic halothane inhibits protein synthesis in perfused rat liver at doses ranging from 2 to 6%. A marked disaggregation of polysomes occurs, indicating that inhibition of translation initiation plays a key role. Dose- and time-dependent alterations that decrease the function of a variety of translation initiation processes are observed. At 6% halothane, a rapid and persistent increase in phosphorylation of the alpha-subunit of eukaryotic translation initiation factor (eIF)2 occurs. This is accompanied by inhibition of activity of the guanine nucleotide exchange factor eIF2B that is responsible for GDP-GTP exchange on eIF2. At lower doses, neither eIF2alpha phosphorylation nor eIF2B activity is altered. After extended exposure to 6% halothane, alterations in two separate responses regulated by the target of rapamycin pathway occur: 1) redistribution of eIF4E from its translation-stimulatory association with eIF4G to its translation-inactive complex with eIF4E-binding protein-1; and 2) decreased phosphorylation of ribosomal protein S6 (rpS6) with a corresponding decrease in active forms of a kinase that phosphorylates rpS6 (p70(S6K1)). Changes in the association of eIF4E and eIF4G are observed only after extended exposure to low anesthetic doses. Thus dose- and time-dependent alterations in multiple processes permit liver cells to adapt translation to variable degrees and duration of stress imposed by anesthetic exposure.
Collapse
Affiliation(s)
- Laura K Palmer
- Dept. of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
17
|
Araki T, Uesono Y, Oguchi T, Toh-E A. LAS24/KOG1, a component of the TOR complex 1 (TORC1), is needed for resistance to local anesthetic tetracaine and normal distribution of actin cytoskeleton in yeast. Genes Genet Syst 2006; 80:325-43. [PMID: 16394584 DOI: 10.1266/ggs.80.325] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is known that some local anesthetics inhibit the growth of budding yeast cells. To investigate the pathway of local anesthetics' action, we isolated and characterized mutants that were hyper-sensitive to tetracaine, and at the same time, temperature-sensitive for growth. They were collectively called las (local anesthetic sensitive) mutants. One of the LAS genes, LAS24, was found to be identical to KOG1, which had been independently discovered as a member of the TOR complex 1 (TORC1). Las24p/Kog1p is a widely conserved TOR binding protein containing the NRC domain, HEAT repeats and WD-40 repeats, but its function remains unknown. Like the tor mutants, the las24 mutants were found to have a defect in cell wall integrity and to show sensitivity to rapamycin. Furthermore, Las24p is required not only in TORC1-mediated (rapamycin-sensitive) pathways such as translation initiation control and phosphorylation of Npr1p and Gln3p, but also for the normal distribution of the actin cytoskeleton, which has been regarded as a TORC2-mediated event. Intriguingly, the temperature-sensitivity of the las24 mutant was suppressed by either activation of Tap42/PPase or by down-regulation of the RAS/cAMP pathway. Suppressors of the temperature-sensitivity of the las24-1 mutant were found not to be effective for suppression of the tetracaine-sensitivity of the same mutant. These observations along with the facts that tetracaine and high temperature differentially affected the las24-1 mutant suggest that Las24p/Kog1p is not a target of tetracaine and that the tetracaine-sensitive step may be one of downstream branches of the TORC1 pathway. Consistent with the broad cellular functions exerted by the TOR pathway, we found that Las24p was associated with membranes and was localized at vacuoles, the plasma membrane and small vesicles.
Collapse
Affiliation(s)
- Tomoyuki Araki
- Department of Biological Science, Graduate School of Science, University of Tokyo, Hongo, Japan
| | | | | | | |
Collapse
|
18
|
Palmer LK, Shoemaker JL, Baptiste BA, Wolfe D, Keil RL. Inhibition of translation initiation by volatile anesthetics involves nutrient-sensitive GCN-independent and -dependent processes in yeast. Mol Biol Cell 2005; 16:3727-39. [PMID: 15930127 PMCID: PMC1182311 DOI: 10.1091/mbc.e05-02-0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/11/2022] Open
Abstract
Volatile anesthetics including isoflurane affect all cells examined, but their mechanisms of action remain unknown. To investigate the cellular basis of anesthetic action, we are studying Saccharomyces cerevisiae mutants altered in their response to anesthetics. The zzz3-1 mutation renders yeast isoflurane resistant and is an allele of GCN3. Gcn3p functions in the evolutionarily conserved general amino acid control (GCN) pathway that regulates protein synthesis and gene expression in response to nutrient availability through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). Hyperphosphorylation of eIF2alpha inhibits translation initiation during amino acid starvation. Isoflurane rapidly (in <15 min) inhibits yeast cell division and amino acid uptake. Unexpectedly, phosphorylation of eIF2alpha decreased dramatically upon initial exposure although hyperphosphorylation occurred later. Translation initiation was inhibited by isoflurane even when eIF2alpha phosphorylation decreased and this inhibition was GCN-independent. Maintenance of inhibition required GCN-dependent hyperphosphorylation of eIF2alpha. Thus, two nutrient-sensitive stages displaying unique features promote isoflurane-induced inhibition of translation initiation. The rapid phase is GCN-independent and apparently has not been recognized previously. The maintenance phase is GCN-dependent and requires inhibition of general translation imparted by enhanced eIF2alpha phosphorylation. Surprisingly, as shown here, the transcription activator Gcn4p does not affect anesthetic response.
Collapse
Affiliation(s)
- Laura K Palmer
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033-2390, USA
| | | | | | | | | |
Collapse
|
19
|
Ichimura T, Kubota H, Goma T, Mizushima N, Ohsumi Y, Iwago M, Kakiuchi K, Shekhar HU, Shinkawa T, Taoka M, Ito T, Isobe T. Transcriptomic and Proteomic Analysis of a 14-3-3 Gene-Deficient Yeast. Biochemistry 2004; 43:6149-58. [PMID: 15147199 DOI: 10.1021/bi035421i] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BMH1 and BMH2 encode Saccharomyces cerevisiae 14-3-3 homologues whose exact functions have remained unclear. The present work compares the transcriptomic and proteomic profiles of the wild type and a BMH1/2-deficient S. cerevisiae mutant (bmhDelta) using DNA microarrays and two-dimensional polyacrylamide gel electrophoresis. It is reported here that, although the global patterns of gene and protein expression are very similar between the two types of yeast cells, a subset of genes and proteins (a total of 220 genes) is significantly induced or reduced in the absence of Bmh1/2p. These genes include approximately 60 elements that could be linked to the reported phenotypes of the bmhDelta mutant (e.g., accumulation of glycogen and hypersensitivity to environmental stress) and/or could be the potential downstream targets of interacting partners of Bmh1/2p such as Msn2p and Rtg3p. Importantly, >30% of the identified genes (71 genes) were found to be associated with carbon (C) and nitrogen (N) metabolism and transport, thereby suggesting that Bmh1/2p may play a major role in the regulation of C/N-responsive cellular processes. This study presents the first comprehensive overview of the genes and proteins that are affected by the depletion of Bmh1/2p and extends the scope of knowledge of the regulatory roles of Bmh1/2p in S. cerevisiae.
Collapse
Affiliation(s)
- Tohru Ichimura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation. MOLECULAR MECHANISMS CONTROLLING TRANSMEMBRANE TRANSPORT 2004. [DOI: 10.1007/b97215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Abe F, Iida H. Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol 2003; 23:7566-84. [PMID: 14560004 PMCID: PMC207609 DOI: 10.1128/mcb.23.21.7566-7584.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 06/06/2003] [Accepted: 07/28/2003] [Indexed: 11/20/2022] Open
Abstract
Tryptophan uptake appears to be the Achilles' heel in yeast physiology, since under a variety of seemingly diverse toxic conditions, it becomes the limiting factor for cell growth. When growing cells of Saccharomyces cerevisiae are subjected to high hydrostatic pressure, tryptophan uptake is down-regulated, leading to cell cycle arrest in the G(1) phase. Here we present evidence that the two tryptophan permeases Tat1 and Tat2 are differentially regulated by Rsp5 ubiquitin ligase in response to high hydrostatic pressure. Analysis of high-pressure growth mutants revealed that the HPG1 gene was allelic to RSP5. The HPG1 mutation or the bul1Delta bul2Delta double mutation caused a marked increase in the steady-state level of Tat2 but not of Tat1, although both permeases were degraded at high pressure in an Rsp5-dependent manner. There were marked differences in subcellular localization. Tat1 localized predominantly in the plasma membrane, whereas Tat2 was abundant in the internal membranes. Moreover, Tat1 was associated with lipid rafts, whereas Tat2 localized in bulk lipids. Surprisingly, Tat2 became associated with lipid rafts upon the occurrence of a ubiquitination defect. These results suggest that ubiquitination is an important determinant of the localization and regulation of these tryptophan permeases. Determination of the activation volume (DeltaV( not equal )) for Tat1- and Tat2-mediated tryptophan uptake (89.3 and 50.8 ml/mol, respectively) revealed that both permeases are highly sensitive to membrane perturbation and that Tat1 rather than Tat2 is likely to undergo a dramatic conformational change during tryptophan import. We suggest that hydrostatic pressure is a unique tool for elucidating the dynamics of integral membrane protein functions as well as for probing lipid microenvironments where they localize.
Collapse
Affiliation(s)
- Fumiyoshi Abe
- The DEEPSTAR Group, Japan Marine Science and Technology Center (JAMSTEC), Yokosuka 237-0061, Japan.
| | | |
Collapse
|
22
|
Rodriguez-Hernandez CJ, Sanchez-Perez I, Gil-Mascarell R, Rodríguez-Afonso A, Torres A, Perona R, Murguia JR. The immunosuppressant FK506 uncovers a positive regulatory cross-talk between the Hog1p and Gcn2p pathways. J Biol Chem 2003; 278:33887-95. [PMID: 12813040 DOI: 10.1074/jbc.m305220200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immunosuppressant Tacrolimus (FK506) has increased the survival rates of organ transplantation. FK506 exerts its immunosuppressive effect by inhibition of the protein phosphatase calcineurin in activated T-cells. Unfortunately, FK506 therapy is associated with undesired non-therapeutic effects involving targets other than calcineurin. To identify these targets we have addressed FK506 cellular toxicity in budding yeast. We show that FK506 increased cell sensitivity upon osmotic challenge independently of calcineurin and the FK506-binding proteins Fpr1p, -2p, -3p, and -4p. FK506 also induced strong amino acid starvation and activation of the general control (GCN) pathway. Tryptophan prototrophy or excess tryptophan overcame FK506 toxicity, showing that tryptophan deprivation mediated this effect. Mutation of the GCN3 and -4 genes partially alleviated FK506 toxicity, suggesting that activation of the GCN pathway by FK506 was also involved in osmotic tolerance. FK506 enhanced osmotic stress-dependent Hog1p kinase phosphorylation that was not accompanied by induction of a Hog1p-dependent reporter. Interestingly, deletion of the GCN2 gene suppressed FK506-dependent Hog1p hyperphosphorylation and restored Hog1p-dependent reporter activity. Conversely, deletion of the HOG1 gene impaired FK506-dependent activation of Gcn2p kinase and translation of a GCN4-LacZ reporter, highlighting functional cross-talk between the Gcn2p and Hog1p protein kinases. Taken together, these data demonstrate that both FK506-induced amino acid starvation and activation of the GCN pathway contribute to cell sensitivity to osmotic stress and reveal a positive regulatory loop between the Hog1p and Gcn2p pathways. Given the conserved nature of Gcn2p and Hog1p pathways, this mechanism of FK506 toxicity could be relevant to the non-therapeutic effects of FK506 therapy.
Collapse
|
23
|
Welsch CA, Hagiwara S, Goetschy JF, Movva NR. Ubiquitin pathway proteins influence the mechanism of action of the novel immunosuppressive drug FTY720 in Saccharomyces cerevisiae. J Biol Chem 2003; 278:26976-82. [PMID: 12709439 DOI: 10.1074/jbc.m213144200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FTY720 is an immunosuppressive drug in clinical development for transplant graft protection in humans. This agent is of particular interest because, unlike currently available regimes, it acts to sequester lymphocytes without causing cytotoxicity or blocking differentiation and growth potential. In an effort to elucidate the mechanism of action of FTY720, and identify its downstream effectors, we have screened genomic libraries and spontaneous mutants of the model system Saccharomyces cerevisiae for resistance to FTY720. We identified several proteins and pathways as being involved in the mechanism of action of FTY720. We show specifically that the two amino acid transporters TAT1 and TAT2, the two ubiquitin proteases UBP5 and UBP11, and the heat shock protein CAJ1 confer growth resistance to FTY720 when overexpressed. Another amino acid transporter, GNP1, and the ubiquitin structural gene UBI4 as well as the ubiquitin ligase RSP5, and its binding protein BUL1 confer growth resistance in a mutated form. Supporting the importance of amino acid transport in the growth resistance phenotype of S. cerevisiae to the immunosuppressive agent FTY720, a prototrophic strain was more resistant to FTY720 than the isogenic auxotroph. To further explore these results, the effects on amino acid uptake and protein degradation were measured in the presence of FTY720. Due to the high conservation of these proteins and pathways between yeast and humans, these results may provide valuable insights into the mechanism of action of FTY720 in lymphocyte sequestration in humans.
Collapse
Affiliation(s)
- Carole A Welsch
- Transplantation Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
24
|
Noueiry AO, Ahlquist P. Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:77-98. [PMID: 12651962 DOI: 10.1146/annurev.phyto.41.052002.095717] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The replication of positive-strand RNA viruses is a complex multi-step process involving interactions between the viral genome, virus-encoded replication factors, and host factors. The plant virus brome mosaic virus (BMV) has served as a model for positive-strand RNA virus replication, recombination, and virion assembly. This review addresses recent findings on the identification and characterization of host factors in BMV RNA replication. To date, all characterized host factors facilitate steps that lead to assembly of a functional BMV RNA replication complex. Some of these host factors are required for regulation of viral gene expression. Others are needed to co-regulate BMV RNA translation and recruitment of BMV RNAs from translation to viral RNA replication complexes on the endoplasmic reticulum. Other host factors provide essential lipid modifications in the endoplasmic reticulum membrane or function as molecular chaperones to activate the replication complex. Characterizing the functions of these host factors is revealing basic aspects of virus RNA replication and helping to define the normal functions of these factors in the host.
Collapse
Affiliation(s)
- Amine O Noueiry
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
25
|
Current awareness on yeast. Yeast 2002; 19:1277-84. [PMID: 12400546 DOI: 10.1002/yea.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|