1
|
Jensen LJ. Functional, Structural and Proteomic Effects of Ageing in Resistance Arteries. Int J Mol Sci 2024; 25:2601. [PMID: 38473847 DOI: 10.3390/ijms25052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The normal ageing process affects resistance arteries, leading to various functional and structural changes. Systolic hypertension is a common occurrence in human ageing, and it is associated with large artery stiffening, heightened pulsatility, small artery remodeling, and damage to critical microvascular structures. Starting from young adulthood, a progressive elevation in the mean arterial pressure is evidenced by clinical and epidemiological data as well as findings from animal models. The myogenic response, a protective mechanism for the microcirculation, may face disruptions during ageing. The dysregulation of calcium entry channels (L-type, T-type, and TRP channels), dysfunction in intracellular calcium storage and extrusion mechanisms, altered expression of potassium channels, and a change in smooth muscle calcium sensitization may contribute to the age-related dysregulation of myogenic tone. Flow-mediated vasodilation, a hallmark of endothelial function, is compromised in ageing. This endothelial dysfunction is related to increased oxidative stress, lower nitric oxide bioavailability, and a low-grade inflammatory response, further exacerbating vascular dysfunction. Resistance artery remodeling in ageing emerges as a hypertrophic response of the vessel wall that is typically observed in conjunction with outward remodeling (in normotension), or as inward hypertrophic remodeling (in hypertension). The remodeling process involves oxidative stress, inflammation, reorganization of actin cytoskeletal components, and extracellular matrix fiber proteins. Reactive oxygen species (ROS) signaling and chronic low-grade inflammation play substantial roles in age-related vascular dysfunction. Due to its role in the regulation of vascular tone and structural proteins, the RhoA/Rho-kinase pathway is an important target in age-related vascular dysfunction and diseases. Understanding the intricate interplay of these factors is crucial for developing targeted interventions to mitigate the consequences of ageing on resistance arteries and enhance the overall vascular health.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
2
|
Wooldridge A, Chan C, Spaans F, Quon A, Steinback C, Davenport M, Davidge S, Cooke CL. Increased stiffness of omental arteries from late pregnant women at advanced maternal age. Biosci Rep 2023; 43:BSR20230819. [PMID: 37493195 PMCID: PMC10447229 DOI: 10.1042/bsr20230819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023] Open
Abstract
Advanced maternal age (≥35 years) is a risk factor for poor pregnancy outcomes. Pregnancy requires extensive maternal vascular adaptations, and with age, our blood vessels become stiffer and change in structure (collagen and elastin). However, the effect of advanced maternal age on the structure of human resistance arteries during pregnancy is unknown. As omental resistance arteries contribute to blood pressure regulation, assessing their structure in pregnancy may inform on the causal mechanisms underlying pregnancy complications in women of advanced maternal age. Omental fat biopsies were obtained from younger (<35 years) or advanced maternal age (≥35 years) women during caesarean delivery (n = 7-9/group). Arteries (200-300 µm) were isolated and passive mechanical properties (circumferential stress and strain) assessed with pressure myography. Collagen (Masson's Trichrome) and elastin (Verhoff) were visualized histologically and % positively-stained area was assessed. Median maternal age was 32 years (range 25-34) for younger, and 38 years (range 35-42) for women of advanced maternal age. Circumferential strain was lower in arteries from advanced maternal age versus younger women but circumferential stress was not different. Omental artery collagen levels were similar, while elastin levels were lower with advanced maternal age versus younger pregnancies. The collagen:elastin ratio was greater in arteries from advanced maternal age versus younger women. In conclusion, omental arteries from women of advanced maternal age were less compliant with less elastin compared with arteries of younger controls, which may affect how vascular stressors are tolerated during pregnancy. Understanding how vascular aging affects pregnancy adaptations may contribute to better pregnancy outcomes.
Collapse
Affiliation(s)
- Amy L. Wooldridge
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Christy Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anita Quon
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Craig D. Steinback
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Margie H. Davenport
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T. Davidge
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christy-Lynn M. Cooke
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Razan MR, Amissi S, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. Moderate-Intensity Exercise Improves Mesenteric Arterial Function in Male UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) Rats: A Shift in the Relative Importance of Endothelium-Derived Relaxing Factors (EDRF). Biomedicines 2023; 11:biomedicines11041129. [PMID: 37189747 DOI: 10.3390/biomedicines11041129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The beneficial cardiovascular effects of exercise are well documented, however the mechanisms by which exercise improves vascular function in diabetes are not fully understood. This study investigates whether there are (1) improvements in blood pressure and endothelium-dependent vasorelaxation (EDV) and (2) alterations in the relative contribution of endothelium-derived relaxing factors (EDRF) in modulating mesenteric arterial reactivity in male UC Davis type-2 diabetes mellitus (UCD-T2DM) rats, following an 8-week moderate-intensity exercise (MIE) intervention. EDV to acetylcholine (ACh) was measured before and after exposure to pharmacological inhibitors. Contractile responses to phenylephrine and myogenic tone were determined. The arterial expressions of endothelial nitric oxide (NO) synthase (eNOS), cyclooxygenase (COX), and calcium-activated potassium channel (KCa) channels were also measured. T2DM significantly impaired EDV, increased contractile responses and myogenic tone. The impairment of EDV was accompanied by elevated NO and COX importance, whereas the contribution of prostanoid- and NO-independent (endothelium-derived hyperpolarization, EDH) relaxation was not apparent compared to controls. MIE 1) enhanced EDV, while it reduced contractile responses, myogenic tone and systolic blood pressure (SBP), and 2) caused a shift away from a reliance on COX toward a greater reliance on EDH in diabetic arteries. We provide the first evidence of the beneficial effects of MIE via the altered importance of EDRF in mesenteric arterial relaxation in male UCD-T2DM rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Said Amissi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Rifat Ara Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
4
|
Applewhite B, Gupta A, Wei Y, Yang X, Martinez L, Rojas MG, Andreopoulos F, Vazquez-Padron RI. Periadventitial β-aminopropionitrile-loaded nanofibers reduce fibrosis and improve arteriovenous fistula remodeling in rats. Front Cardiovasc Med 2023; 10:1124106. [PMID: 36926045 PMCID: PMC10011136 DOI: 10.3389/fcvm.2023.1124106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
Background Arteriovenous fistula (AVF) postoperative stenosis is a persistent healthcare problem for hemodialysis patients. We have previously demonstrated that fibrotic remodeling contributes to AVF non-maturation and lysyl oxidase (LOX) is upregulated in failed AVFs compared to matured. Herein, we developed a nanofiber scaffold for the periadventitial delivery of β-aminopropionitrile (BAPN) to determine whether unidirectional periadventitial LOX inhibition is a suitable strategy to promote adaptive AVF remodeling in a rat model of AVF remodeling. Methods Bilayer poly (lactic acid) ([PLA)-]- poly (lactic-co-glycolic acid) ([PLGA)] scaffolds were fabricated with using a two-step electrospinning process to confer directionality. BAPN-loaded and vehicle control scaffolds were wrapped around the venous limb of a rat femoral-epigastric AVF during surgery. AVF patency and lumen diameter were followed monitored using Doppler ultrasound surveillance and flow was measured before euthanasia. AVFs were harvested after 21 days for histomorphometry and immunohistochemistry. AVF compliance was measured using pressure myography. RNA from AVF veins was sequenced to analyze changes in gene expression due to LOX inhibition. Results Bilayer periadventitial nanofiber scaffolds extended BAPN release compared to the monolayer design (p < 0.005) and only released BAPN in one direction. Periadventitial LOX inhibition led to significant increases in AVF dilation and flow after 21 days. Histologically, BAPN trended toward increased lumen and significantly reduced fibrosis compared to control scaffolds (p < 0.01). Periadventitial BAPN reduced downregulated markers associated with myofibroblast differentiation including SMA, FSP-1, LOX, and TGF-β while increasing the contractile marker MYH11. RNA sequencing revealed differential expression of matrisome genes. Conclusion Periadventitial BAPN treatment reduces fibrosis and promotes AVF compliance. Interestingly, the inhibition of LOX leads to increased accumulation of contractile VSMC while reducing myofibroblast-like cells. Periadventitial LOX inhibition alters the matrisome to improve AVF vascular remodeling.
Collapse
Affiliation(s)
- Brandon Applewhite
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Aavni Gupta
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yuntao Wei
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiaofeng Yang
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Miguel G. Rojas
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Fotios Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | | |
Collapse
|
5
|
Moriconi D, Nannipieri M, Armenia S, Boutouryie P, Taddei S, Bruno RM. Morbid obesity is associated with hypertrophic outward remodeling and increased stiffness of small conduit arteries: An ultra-high frequency ultrasound study. Nutr Metab Cardiovasc Dis 2023; 33:408-415. [PMID: 36604263 DOI: 10.1016/j.numecd.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND AIMS Although many studies have been published on the effect of obesity on large and small arteries, there are no data in the literature regarding the effect of obesity on medium-sized arteries, and in particular of small conduit arteries. The aim of the present study was to investigate whether patients with severe obesity presented structural or functional alterations in different arterial segments. METHODS AND RESULTS 34 patients with severe obesity (BMI≥35 kg/m2) and 34 age-and sex-matched normal weight patients were recruited as controls. Aortic stiffness (carotid-femoral pulse wave velocity) and wave reflection (augmentation index) were recorded. Ultrasound images of common carotid, radial and interdigital arteries were acquired for the assessment of wall-to-lumen ratio, wall cross-sectional area (WCSA), compliance, distensibility coefficient (DC) and Young's elastic modulus (Einc). Insulin sensitivity was calculated by oral glucose sensitivity index (OGIS). No differences between groups in carotid artery remodeling were found, while WCSA of the radial and interdigital arteries were higher in obese group than in controls. As regard the parameters of vascular elasticity, the DC of radial and interdigital arteries were lower (p = 0.025 and p = 0.001, respectively), as well as the Einc of radial arteries was higher (p = 0.021), in subject with obesity compared to controls. All these correlations were consistent after adjustment for the main covariates. Finally, in a multiple regression analysis OGIS was and independent determinant of interdigital artery DC (R2 = 0.29, p = 0.001). CONCLUSIONS For the first time, we describe an outward remodeling and increased stiffness in small conduit arteries in severe obesity.
Collapse
Affiliation(s)
- Diego Moriconi
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Pierre Boutouryie
- Service de Pharmacologie, AP-HP, Hôpital Europeen Georges Pompidou, France; Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Rosa Maria Bruno
- Service de Pharmacologie, AP-HP, Hôpital Europeen Georges Pompidou, France; Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| |
Collapse
|
6
|
Ojha KR, Shin SY, Padgham S, Leon Olmedo F, Guo B, Han G, Woodman C, Trache A. Age-Associated Dysregulation of Integrin Function in Vascular Smooth Muscle. Front Physiol 2022; 13:913673. [PMID: 35874532 PMCID: PMC9301045 DOI: 10.3389/fphys.2022.913673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Arterial aging results in a progressive reduction in elasticity of the vessel wall and an impaired ability of aged blood vessels to control local blood flow and pressure. Recently, a new concept has emerged that the stiffness and decreased contractility of vascular smooth muscle (VSM) cells are important contributors to age-induced arterial dysfunction. This study investigated the hypothesis that aging alters integrin function in a matrix stiffness-dependent manner, which contributes to decreased VSM contractility in aged soleus muscle feed arteries (SFA). The effect of RGD-binding integrins on contractile function of cannulated SFA isolated from young (4 months) and old (24 months) Fischer 344 rats was assessed by measuring constrictor responses to norepinephrine, phenylephrine, and angiotensin II. Results indicated that constrictor responses in presence of RGD were impaired in old compared to young SFA. VSM cells isolated from young and old SFA were used for functional experiments using atomic force microscopy and high-resolution imaging. Aging was associated with a modulation of integrin β1 recruitment at cell-matrix adhesions that was matrix and substrate stiffness dependent. Our data showed that substrate stiffening drives altered integrin β1 expression in aging, while soft substrates abolish age-induced differences in overall integrin β1 expression. In addition, substrate stiffness and matrix composition contribute to the modulation of SMα-actin cytoskeleton architecture with soft substrates reducing age effects. Our results provide new insights into age-induced structural changes at VSM cell level that translates to decreased functionality of aged resistance soleus feed arteries.
Collapse
Affiliation(s)
- Krishna Raj Ojha
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Song Yi Shin
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Samuel Padgham
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Frida Leon Olmedo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Bohong Guo
- Department of Epidemiology and Statistics, Texas A&M University Health Science Center, College Station, TX, United States
| | - Gang Han
- Department of Epidemiology and Statistics, Texas A&M University Health Science Center, College Station, TX, United States
| | - Christopher Woodman
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- *Correspondence: Andreea Trache,
| |
Collapse
|
7
|
Abstract
Vascular smooth muscle cells (VSMC) are now considered important contributors to the pathophysiological and biophysical mechanisms underlying arterial stiffening in aging. Here, we review mechanisms whereby VSMC stiffening alters vascular function and contributes to the changes in vascular stiffening observed in aging and cardiovascular disease. Vascular stiffening in arterial aging was historically associated with changes in the extracellular matrix; however, new evidence suggests that endothelial and vascular smooth muscle cell stiffness also contribute to overall blood vessel stiffness. Furthermore, VSMC play an integral role in regulating matrix deposition and vessel wall contractility via interaction between the actomyosin contractile unit and adhesion structures that anchor the cell within the extracellular matrix. Aged-induce phenotypic modulation of VSMC from a contractile to a synthetic phenotype is associated with decreased cellular contractility and increased cell stiffness. Aged VSMC also display reduced mechanosensitivity and adaptation to mechanical signals from their microenvironment due to impaired intracellular signaling. Finally, evidence for decreased contractility in arteries from aged animals demonstrate that changes at the cellular level result in decreased functional properties at the tissue level.
Collapse
|
8
|
Cheon S, Tomcho JC, Edwards JM, Bearss NR, Waigi E, Joe B, McCarthy CG, Wenceslau CF. Opioids Cause Sex-Specific Vascular Changes via Cofilin-Extracellular Signal-Regulated Kinase Signaling: Female Mice Present Higher Risk of Developing Morphine-Induced Vascular Dysfunction than Male Mice. J Vasc Res 2021; 58:392-402. [PMID: 34521095 PMCID: PMC8612963 DOI: 10.1159/000517555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have shown that chronic use of prescription or illicit opioids leads to an increased risk of cardiovascular events and pulmonary arterial hypertension. Indices of vascular age and arterial stiffness are also shown to be increased in opioid-dependent patients, with the effects being more marked in women. There are currently no studies investigating sex-specific vascular dysfunction in opioid use, and the mechanisms leading to opioid-induced vascular damage remain unknown. We hypothesized that exposure to exogenous opioids causes sex-specific vascular remodeling that will be more pronounced in female. Acknowledging the emerging roles of cofilins and extracellular signal-regulated kinases (ERKs) in mediating actin dynamics, we investigated the effects of morphine on these molecules. Twenty-four hour exposure to morphine increased inactivated cofilin and activated ERKs in resistance arteries from female mice, which may promote stress fiber over-assembly. We also performed continuous intraluminal infusion of morphine in pressurized resistance arteries from male and female mice using culture pressure myographs. We observed that morphine reduced the vascular diameter in resistance arteries from female, but not male mice. These results have significant implications for the previously unexplored role of exogenous opioids as a modifiable cardiovascular risk factor, especially in women.
Collapse
MESH Headings
- Actin Depolymerizing Factors/metabolism
- Analgesics, Opioid/toxicity
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Hemodynamics/drug effects
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/enzymology
- Mesenteric Arteries/pathology
- Mesenteric Arteries/physiopathology
- Mice, Inbred C57BL
- Morphine/toxicity
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Rats, Sprague-Dawley
- Sex Factors
- Signal Transduction
- Vascular Remodeling/drug effects
- Mice
- Rats
Collapse
Affiliation(s)
- Soyoung Cheon
- Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, Ohio, USA
| | - Jeremy C Tomcho
- Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, Ohio, USA
| | - Jonnelle M Edwards
- Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, Ohio, USA
| | - Nicole R Bearss
- Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, Ohio, USA
| | - Emily Waigi
- Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, Ohio, USA
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, Ohio, USA
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, Ohio, USA
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, Ohio, USA
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
9
|
Tropea T, Mandalà M. Caloric restriction enhances vascular tone of cerebral and mesenteric resistance arteries in aged rats. Mech Ageing Dev 2021; 197:111520. [PMID: 34129890 DOI: 10.1016/j.mad.2021.111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022]
Abstract
Vascular changes of tone and biomechanical properties induced by ageing increase the risk for cardiovascular diseases. Caloric restriction (CR) has been shown to protect against cardiovascular diseases and improve endothelial dysfunction in cerebral resistance arteries. We hypothesise that CR will enhance vascular tone and structural properties of cerebral resistance arteries and exert comparable beneficial effects on the systemic vasculature of aged rat model. Eighteen-month-old male Sprague-Dawley rats were feed either ad libitum or restricted to 60 % of calorie consumption up to 24 months of age, when body weight (BW) measurements were taken and functional and structural properties of resistance arteries were assessed using a pressure myograph. In cerebral arteries, CR increased myogenic tone (p < 0.001) and distensibility (p < 0.01) in response to intraluminal pressure and concentration-dependent constriction to KCl (p < 0.001). In mesenteric arteries constriction in response to KCl was increased (p < 0.0001) and wall thickness reduced (p < 0.01) in CR rats. BW was reduced (p < 0.0001) in FR rats. Our findings demonstrate that CR improves vascular tone of resistance arteries regardless the type of stimulus and independently of the vascular bed. CR may be a beneficial dietary approach to prevent age-related vascular diseases.
Collapse
Affiliation(s)
- Teresa Tropea
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom; Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy; Department of Obstetrics, Gynecology and Reproductive Science, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
10
|
Edwards JM, Roy S, Galla SL, Tomcho JC, Bearss NR, Waigi EW, Mell B, Cheng X, Saha P, Vijay-Kumar M, McCarthy CG, Joe B, Wenceslau CF. FPR-1 (Formyl Peptide Receptor-1) Activation Promotes Spontaneous, Premature Hypertension in Dahl Salt-Sensitive Rats. Hypertension 2021; 77:1191-1202. [PMID: 33641367 DOI: 10.1161/hypertensionaha.120.16237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jonnelle M Edwards
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Shaunak Roy
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sarah L Galla
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jeremy C Tomcho
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Nicole R Bearss
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily W Waigi
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Blair Mell
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xi Cheng
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Piu Saha
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Matam Vijay-Kumar
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cameron G McCarthy
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Camilla F Wenceslau
- From the Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
11
|
Benny M, Hernandez DR, Sharma M, Yousefi K, Kulandavelu S, Batlahally S, Zambrano R, Chen P, Martinez EC, Schmidt AF, Shehadeh LA, Vasquez-Padron RI, Wu S, Velazquez OC, Young KC. Neonatal hyperoxia exposure induces aortic biomechanical alterations and cardiac dysfunction in juvenile rats. Physiol Rep 2020; 8:e14334. [PMID: 31925922 PMCID: PMC6954121 DOI: 10.14814/phy2.14334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Supplemental oxygen (O2) therapy in preterm infants impairs lung development, but the impact of O2 on long‐term systemic vascular structure and function has not been well‐explored. The present study tested the hypothesis that neonatal O2 therapy induces long‐term structural and functional alterations in the systemic vasculature, resulting in vascular stiffness observed in children and young adults born preterm. Newborn Sprague‐Dawley rats were exposed to normoxia (21% O2) or hyperoxia (85% O2) for 1 and 3 weeks. A subgroup exposed to 3 weeks hyperoxia was recovered in normoxia for an additional 3 weeks. Aortic stiffness was assessed by pulse wave velocity (PWV) using Doppler ultrasound and pressure myography. Aorta remodeling was assessed by collagen deposition and expression. Left ventricular (LV) function was assessed by echocardiography. We found that neonatal hyperoxia exposure increased vascular stiffness at 3 weeks, which persisted after normoxic recovery at 6 weeks of age. These findings were accompanied by increased PWV, aortic remodeling, and altered LV function as evidenced by decreased ejection fraction, cardiac output, and stroke volume. Importantly, these functional changes were associated with increased collagen deposition in the aorta. Together, these findings demonstrate that neonatal hyperoxia induces early and sustained biomechanical alterations in the systemic vasculature and impairs LV function. Early identification of preterm infants who are at risk of developing systemic vascular dysfunction will be crucial in developing targeted prevention strategies that may improve the long‐term cardiovascular outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Diana R Hernandez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Mayank Sharma
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Keyvan Yousefi
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida.,Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Shathiyah Kulandavelu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida.,The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Sunil Batlahally
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Eliana C Martinez
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida.,The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Augusto F Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Lina A Shehadeh
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida.,Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Omaida C Velazquez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Karen C Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
12
|
Hernandez DR, Applewhite B, Martinez L, Laurito T, Tabbara M, Rojas MG, Wei Y, Selman G, Knysheva M, Velazquez OC, Salman LH, Andreopoulos FM, Shiu YT, Vazquez-Padron RI. Inhibition of Lysyl Oxidase with β-aminopropionitrile Improves Venous Adaptation after Arteriovenous Fistula Creation. KIDNEY360 2020; 2:270-278. [PMID: 34322674 PMCID: PMC8315119 DOI: 10.34067/kid.0005012020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The arteriovenous fistula (AVF) is the preferred hemodialysis access for end-stage renal disease (ESRD) patients. Yet, establishment of a functional AVF presents a challenge, even for the most experienced surgeons, since postoperative stenosis frequently occludes the AVF. Stenosis results from the loss of compliance in fibrotic areas of the fistula which turns intimal hyperplasia into an occlusive feature. Fibrotic remodeling depends on deposition and crosslinking of collagen by lysyl oxidase (LOX), an enzyme that catalyzes the deamination of lysine and hydroxylysine residues, facilitating intra/intermolecular covalent bonds. We postulate that pharmacological inhibition of lysyl oxidase (LOX) increases postoperative venous compliance and prevents stenosis in a rat AVF model. METHODS LOX gene expression and vascular localization were assayed in rat AVFs and human pre-access veins, respectively. Collagen crosslinking was measured in humans AVFs that matured or failed, and in rat AVFs treated with β-aminopropionitrile (BAPN), an irreversible LOX inhibitor. BAPN was either injected systemically or delivered locally around rat AVFs using nanofiber scaffolds. The major endpoints were AVF blood flow, wall fibrosis, collagen crosslinking, and vascular distensibility. RESULTS Non-maturation of human AVFs was associated with higher LOX deposition in pre-access veins (N=20, P=0.029), and increased trivalent crosslinks (N=18, P=0.027) in human AVF tissues. Systemic and local inhibition of LOX increased AVF distensibility, while reducing wall fibrosis and collagen crosslinking in rat fistulas. CONCLUSIONS Our results demonstrate that BAPN-mediated inhibition of LOX significantly improves vascular remodeling in experimental fistulas.
Collapse
Affiliation(s)
- Diana R. Hernandez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Brandon Applewhite
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida,Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Tyler Laurito
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Miguel G. Rojas
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Yuntao Wei
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Guillermo Selman
- Division of Nephrology and Hypertension, Albany Medical College, Albany, New York
| | - Marina Knysheva
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Loay H. Salman
- Division of Nephrology and Hypertension, Albany Medical College, Albany, New York
| | - Fotios M. Andreopoulos
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
13
|
Roy S, Edwards JM, Tomcho JC, Schreckenberger Z, Bearss NR, Zhang Y, Morgan EE, Cheng X, Spegele AC, Vijay-Kumar M, McCarthy CG, Koch LG, Joe B, Wenceslau CF. Intrinsic Exercise Capacity and Mitochondrial DNA Lead to Opposing Vascular-Associated Risks. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa029. [PMID: 33363281 PMCID: PMC7749784 DOI: 10.1093/function/zqaa029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023]
Abstract
Exercise capacity is a strong predictor of all-cause morbidity and mortality in humans. However, the associated hemodynamic traits that link this valuable indicator to its subsequent disease risks are numerable. Additionally, exercise capacity has a substantial heritable component and genome-wide screening indicates a vast amount of nuclear and mitochondrial DNA (mtDNA) markers are significantly associated with traits of physical performance. A long-term selection experiment in rats confirms a divide for cardiovascular risks between low- and high-capacity runners (LCR and HCR, respectively), equipping us with a preclinical animal model to uncover new mechanisms. Here, we evaluated the LCR and HCR rat model system for differences in vascular function at the arterial resistance level. Consistent with the known divide between health and disease, we observed that LCR rats present with resistance artery and perivascular adipose tissue dysfunction compared to HCR rats that mimic qualities important for health, including improved vascular relaxation. Uniquely, we show by generating conplastic strains, which LCR males with mtDNA of female HCR (LCR-mtHCR/Tol) present with improved vascular function. Conversely, HCR-mtLCR/Tol rats displayed indices for cardiac dysfunction. The outcome of this study suggests that the interplay between the nuclear genome and the maternally inherited mitochondrial genome with high intrinsic exercise capacity is a significant factor for improved vascular physiology, and animal models developed on an interaction between nuclear and mtDNA are valuable new tools for probing vascular risk factors in the offspring.
Collapse
Affiliation(s)
- Shaunak Roy
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Jonnelle M Edwards
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Jeremy C Tomcho
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Zachary Schreckenberger
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Nicole R Bearss
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Youjie Zhang
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Eric E Morgan
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences,Department of Radiology Nationwide Children's Hospital, OH, USA
| | - Xi Cheng
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Adam C Spegele
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Matam Vijay-Kumar
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Cameron G McCarthy
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Lauren G Koch
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Bina Joe
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Camilla Ferreira Wenceslau
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences,Address correspondence to C.F.W. (e-mail: )
| |
Collapse
|
14
|
McCallinhart PE, Biwer LA, Clark OE, Isakson BE, Lilly B, Trask AJ. Myoendothelial Junctions of Mature Coronary Vessels Express Notch Signaling Proteins. Front Physiol 2020; 11:29. [PMID: 32116749 PMCID: PMC7010921 DOI: 10.3389/fphys.2020.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Myoendothelial junctions (MEJs) within the fenestrae of the internal elastic lamina (IEL) are critical sites that allow for endothelial cell (EC) - vascular smooth muscle cell (VSMC) contact and communication. Vascular Notch signaling is a critical determinant of normal vasculogenesis and remodeling, and it regulates cell phenotype via contact between ECs and VSMCs. To date, no studies have linked Notch signaling to the MEJ despite it requiring cell-cell contact. Furthermore, very little is known about Notch in the adult coronary circulation or the localization of Notch signaling and activity within the mature intact blood vessel. OBJECTIVE We tested the hypothesis that vascular Notch signaling between ECs and VSMCs occurs at MEJs. METHODS AND RESULTS Notch receptor and ligand immunofluorescence was performed in human coronary EC and VSMC co-cultures across transwell inserts (in vitro MEJs) and in the intact mouse coronary circulation. Human coronary VSMC Notch activity induced by human coronary ECs at the in vitro MEJ was assessed using a CBF-luciferase construct. We observed Jagged1, Notch1, Notch2, and Notch3 expression within the in vitro and in vivo MEJs. We also demonstrated a 3-fold induction (p < 0.001) of human coronary VSMC Notch signaling by ECs at the in vitro MEJ, which was completely blocked by the Notch inhibitor, DAPT (p < 0.01). CONCLUSION We demonstrate for the first time in mature blood vessels that Notch receptors and ligands are expressed within and are active at coronary MEJs, demonstrating a previously unrecognized mode of Notch signaling regulation between the endothelium and smooth muscle.
Collapse
Affiliation(s)
- Patricia E. McCallinhart
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lauren A. Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Olivia E. Clark
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Brenda Lilly
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Aaron J. Trask
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
15
|
Edwards JM, Roy S, Tomcho JC, Schreckenberger ZJ, Chakraborty S, Bearss NR, Saha P, McCarthy CG, Vijay-Kumar M, Joe B, Wenceslau CF. Microbiota are critical for vascular physiology: Germ-free status weakens contractility and induces sex-specific vascular remodeling in mice. Vascul Pharmacol 2020; 125-126:106633. [PMID: 31843471 PMCID: PMC7036036 DOI: 10.1016/j.vph.2019.106633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Commensal microbiota within a holobiont contribute to the overall health of the host via mutualistic symbiosis. Disturbances in such symbiosis is prominently correlated with a variety of diseases affecting the modern society of humans including cardiovascular diseases, which are the number one contributors to human mortality. Given that a hallmark of all cardiovascular diseases is changes in vascular function, we hypothesized that depleting microbiota from a holobiont would induce vascular dysfunction. To test this hypothesis, young mice of both sexes raised in germ-free conditions were examined vascular contractility and structure. Here we observed that male and female germ-free mice presented a decrease in contraction of resistance arteries. These changes were more pronounced in germ-free males than in germ-free females mice. Furthermore, there was a distinct change in vascular remodeling between males and females germ-free mice. Resistance arteries from male germ-free mice demonstrated increased vascular stiffness, as shown by the leftward shift in the stress-strain curve and inward hypotrophic remodeling, a characteristic of chronic reduction in blood flow. On the other hand, resistance arteries from germ-free female mice were similar in the stress-strain curves to that of conventionally raised mice, but were distinctly different and showed outward hypertrophic remodeling, a characteristic seen in aging. Interestingly, we observed that reactive oxygen species (ROS) generation from bone marrow derived neutrophils is blunted in female germ-free mice, but it is exacerbated in male germ-free mice. In conclusion, these observations indicate that commensal microbiota of a holobiont are central to maintain proper vascular function and structure homeostasis, especially in males.
Collapse
Affiliation(s)
- Jonnelle M Edwards
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Shaunak Roy
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Jeremy C Tomcho
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Zachary J Schreckenberger
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Saroj Chakraborty
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Nicole R Bearss
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Piu Saha
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Cameron G McCarthy
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Matam Vijay-Kumar
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA
| | - Camilla F Wenceslau
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA.
| |
Collapse
|
16
|
Cornelissen A, Simsekyilmaz S, Liehn E, Rusu M, Schaaps N, Afify M, Florescu R, Almalla M, Borinski M, Vogt F. Apolipoprotein E deficient rats generated via zinc-finger nucleases exhibit pronounced in-stent restenosis. Sci Rep 2019; 9:18153. [PMID: 31796798 PMCID: PMC6890749 DOI: 10.1038/s41598-019-54541-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
The long-term success of coronary stent implantation is limited by in-stent restenosis (ISR). In spite of a broad variety of animal models available, an ideal high-throughput model of ISR has been lacking. Apolipoprotein E (apoE) deficient rats enable the evaluation of human-sized coronary stents while at the same time providing an atherogenic phenotype. Whereas apoE deficient rats have been proposed as animal model of atherosclerosis, to date it is unknown whether they also develop pronounced ISR. We sought to assess ISR after abdominal aorta stent implantation in apoE deficient rats. A total of 42 rats (16 wildtype, 13 homozygous apoE−/− and 13 heterozygous apoE+/− rats) underwent abdominal aorta stent implantation. After 28 days blood samples were analyzed to characterize lipid profiles. ISR was assessed by histomorphometric means. Homozygous apoE−/− rats exhibited significantly higher total cholesterol and low-density cholesterol levels than wildtype apoE+/+ and heterozygous apoE+/− rats. ISR was significantly pronounced in homozygous apoE−/− rats as compared to wildtype apoE+/+ (p = <0.0001) and heterozygous apoE+/− rats (p = 0.0102) on western diet. Abdominal aorta stenting of apoE−/− rats is a reliable model to investigate ISR after stent implantation and thus can be used for the evaluation of novel stent concepts. Apolipoprotein E (apoE) deficient rats have been proposed as animal model of atherosclerosis. We investigated the development of restenosis 28 days after stent implantation into the abdominal aorta of wildtype apoE+/+, homozygous apoE−/− and heterozygous apoE+/− rats, respectively. Homozygous apoE−/− rats exhibited significantly higher LDL and significantly lower HDL cholesterol levels compared to wildtype apoE+/+ and heterozygous apoE+/− rats. Restenosis after stent implantation was significantly pronounced in western-diet-fed homozygous apoE−/− rats, accompanied by a significantly increased neointimal thickness. Thus, apoE knockout rats exhibit elevated restenosis and might provide a novel tool for testing of innovative stent concepts.
Collapse
Affiliation(s)
- Anne Cornelissen
- University Hospital RWTH Aachen, Division of Cardiology, Pneumology, Angiology and Critical Care, Aachen, Germany.
| | - Sakine Simsekyilmaz
- University Hospital RWTH Aachen, Division of Cardiology, Pneumology, Angiology and Critical Care, Aachen, Germany
| | - Elisa Liehn
- University Hospital RWTH Aachen, Division of Cardiology, Pneumology, Angiology and Critical Care, Aachen, Germany
| | - Mihaela Rusu
- University Hospital RWTH Aachen, Division of Cardiology, Pneumology, Angiology and Critical Care, Aachen, Germany
| | - Nicole Schaaps
- University Hospital RWTH Aachen, Division of Cardiology, Pneumology, Angiology and Critical Care, Aachen, Germany
| | - Mamdouh Afify
- University Hospital RWTH Aachen, Division of Cardiology, Pneumology, Angiology and Critical Care, Aachen, Germany
| | - Roberta Florescu
- University Hospital RWTH Aachen, Division of Cardiology, Pneumology, Angiology and Critical Care, Aachen, Germany
| | - Mohammad Almalla
- University Hospital RWTH Aachen, Division of Cardiology, Pneumology, Angiology and Critical Care, Aachen, Germany
| | - Mauricio Borinski
- University Hospital RWTH Aachen, Division of Cardiology, Pneumology, Angiology and Critical Care, Aachen, Germany
| | - Felix Vogt
- University Hospital RWTH Aachen, Division of Cardiology, Pneumology, Angiology and Critical Care, Aachen, Germany
| |
Collapse
|
17
|
McCarthy CG, Wenceslau CF, Calmasini FB, Klee NS, Brands MW, Joe B, Webb RC. Reconstitution of autophagy ameliorates vascular function and arterial stiffening in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2019; 317:H1013-H1027. [PMID: 31469290 DOI: 10.1152/ajpheart.00227.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insufficient autophagy has been proposed as a mechanism of cellular aging, as this leads to the accumulation of dysfunctional macromolecules and organelles. Premature vascular aging occurs in hypertension. In fact, many factors that contribute to the deterioration of vascular function as we age are accelerated in clinical and experimental hypertension. Previously, we have reported decreased autophagy in arteries from spontaneously hypertensive rats (SHRs); however, the effects of restoring autophagic activity on blood pressure and vascular function are currently unknown. We hypothesized that reconstitution of arterial autophagy in SHRs would decrease blood pressure and improve endothelium-dependent relaxation. We treated 14- to 18-wk-old Wistar rats (n = 7 vehicle and n = 8 trehalose) and SHRs (n = 7/group) with autophagy activator trehalose (2% in drinking water) for 28 days. Blood pressure was measured by radiotelemetry, and vascular function and structure were measured in isolated mesenteric resistance arteries (MRAs) using wire and pressure myographs, respectively. Treatment with trehalose had no effect on blood pressure in SHRs; however, isolated MRAs presented enhanced relaxation to acetylcholine, in a cyclooxygenase- and reactive oxygen species-dependent manner. Similarly, trehalose treatment shifted the relaxation to the Rho kinase (ROCK) inhibitor Y-27632 to the right, indicating reduced ROCK activity. Finally, trehalose treatment decreased arterial stiffness as indicated by the slope of the stress-strain curve. Overall these data indicate that reconstitution of arterial autophagy in SHRs improves endothelial and vascular smooth muscle function, which could synergize to prevent stiffening. As a result, restoration of autophagic activity could be a novel therapeutic for premature vascular aging in hypertension.NEW & NOTEWORTHY This work supports the concept that diminished arterial autophagy contributes to premature vascular aging in hypertension and that therapeutic reconstitution of autophagic activity can ameliorate this phenotype. As vascular age is a new clinically used index for cardiovascular risk, understanding this mechanism may assist in the development of new drugs to prevent premature vascular aging in hypertension.
Collapse
Affiliation(s)
- Cameron G McCarthy
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Camilla F Wenceslau
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Nicole S Klee
- Department of Physiology, Augusta University, Augusta, Georgia
| | | | - Bina Joe
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
18
|
Wenceslau CF, McCarthy CG, Szasz T, Calmasini FB, Mamenko M, Webb RC. Formyl peptide receptor-1 activation exerts a critical role for the dynamic plasticity of arteries via actin polymerization. Pharmacol Res 2019; 141:276-290. [PMID: 30639374 DOI: 10.1016/j.phrs.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/20/2022]
Abstract
Several human diseases, include cancer and stroke are characterized by changes in immune system activation and vascular contractility. However, the mechanistic foundation of a vascular immuno-physiology network is still largely unknown. Formyl peptide receptor-1 (FPR-1), which plays a vital role in the function of the innate immune system, is widely expressed in arteries, but its role in vascular plasticity is unclear. We questioned why a receptor that is crucial for immune defense, and cell motility in leukocytes, would be expressed in vascular smooth muscle cells (VSMCs). We hypothesized that activation of FPR-1 in arteries is important for the temporal reorganization of actin filaments, and consequently, changes in vascular function, similar to what is observed in neutrophils. To address our hypothesis, we used FPR-1 knockout and VSMCs lacking FPR-1. We observed that FPR-1 activation induces actin polymerization in wild type VSMCs. Absence of FPR-1 in the vasculature significantly decreased vascular contraction and induced loss of myogenic tone to elevated intraluminal pressures via disruption of actin polymerization. Actin polymerization activator ameliorated these responses. In conclusion, we have established a novel role for FPR-1 in VSMC contractility and motility, similar to the one observed in sentinel cells of the innate immune system. This discovery is fundamental for vascular immuno-pathophysiology, given that FPR-1 in VSMCs not only functions as an immune system receptor, but it also has an important role for the dynamic plasticity of arteries.
Collapse
Affiliation(s)
- Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA; Department of Physiology, Augusta University, Augusta, GA, USA.
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, USA; Department of Physiology, Augusta University, Augusta, GA, USA
| | - Theodora Szasz
- Department of Physiology, Augusta University, Augusta, GA, USA
| | | | - Mykola Mamenko
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, GA, USA
| |
Collapse
|
19
|
Seawright JW, Sreenivasappa H, Gibbs HC, Padgham S, Shin SY, Chaponnier C, Yeh AT, Trzeciakowski JP, Woodman CR, Trache A. Vascular Smooth Muscle Contractile Function Declines With Age in Skeletal Muscle Feed Arteries. Front Physiol 2018; 9:856. [PMID: 30108507 PMCID: PMC6079263 DOI: 10.3389/fphys.2018.00856] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Aging induces a progressive decline in vasoconstrictor responses in central and peripheral arteries. This study investigated the hypothesis that vascular smooth muscle (VSM) contractile function declines with age in soleus muscle feed arteries (SFA). Contractile function of cannulated SFA isolated from young (4 months) and old (24 months) Fischer 344 rats was assessed by measuring constrictor responses of denuded (endothelium removed) SFA to norepinephrine (NE), phenylephrine (PE), and angiotensin II (Ang II). In addition, we investigated the role of RhoA signaling in modulation of VSM contractile function. Structural and functional characteristics of VSM cells were evaluated by fluorescence imaging and atomic force microscopy (AFM). Results indicated that constrictor responses to PE and Ang II were significantly impaired in old SFA, whereas constrictor responses to NE were preserved. In the presence of a Rho-kinase inhibitor (Y27632), constrictor responses to NE, Ang II, and PE were significantly reduced in young and old SFA. In addition, the age-group difference in constrictor responses to Ang II was eliminated. ROCK1 and ROCK2 content was similar in young and old VSM cells, whereas pROCK1 and pROCK2 were significantly elevated in old VSM cells. Aging was associated with a reduction in smooth muscle α-actin stress fibers and recruitment of proteins to cell-matrix adhesions. Old VSM cells presented an increase in integrin adhesion to the matrix and smooth muscle γ-actin fibers that was associated with increased cell stiffness. In conclusion, our results indicate that VSM contractile function declined with age in SFA. The decrement in contractile function was mediated in part by RhoA/ROCK signaling. Upregulation of pROCK in old VSM cells was not able to rescue contractility in old SFA. Collectively, these results indicate that changes at the VSM cell level play a central role in the reduced contractile function of aged SFA.
Collapse
Affiliation(s)
- John W Seawright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Harini Sreenivasappa
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Samuel Padgham
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Song Y Shin
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Christine Chaponnier
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Jerome P Trzeciakowski
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Christopher R Woodman
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States.,Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
20
|
Hayoz S, Pettis J, Bradley V, Segal SS, Jackson WF. Increased amplitude of inward rectifier K + currents with advanced age in smooth muscle cells of murine superior epigastric arteries. Am J Physiol Heart Circ Physiol 2017; 312:H1203-H1214. [PMID: 28432059 PMCID: PMC6146378 DOI: 10.1152/ajpheart.00679.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 01/15/2023]
Abstract
Inward rectifier K+ channels (KIR) may contribute to skeletal muscle blood flow regulation and adapt to advanced age. Using mouse abdominal wall superior epigastric arteries (SEAs) from either young (3-6 mo) or old (24-26 mo) male C57BL/6 mice, we investigated whether SEA smooth muscle cells (SMCs) express functional KIR channels and how aging may affect KIR function. Freshly dissected SEAs were either enzymatically dissociated to isolate SMCs for electrophysiological recording (perforated patch) and mRNA expression or used intact for pressure myography. With 5 mM extracellular K+ concentration ([K+]o), exposure of SMCs to the KIR blocker Ba2+ (100 μM) had no significant effect (P > 0.05) on whole cell currents elicited by membrane potentials spanning -120 to -30 mV. Raising [K+]o to 15 mM activated Ba2+-sensitive KIR currents between -120 and -30 mV, which were greater in SMCs from old mice than in SMCs from young mice (P < 0.05). Pressure myography of SEAs revealed that while aging decreased maximum vessel diameter by ~8% (P < 0.05), it had no significant effect on resting diameter, myogenic tone, dilation to 15 mM [K+]o, Ba2+-induced constriction in 5 mM [K+]o, or constriction induced by 15 mM [K+]o in the presence of Ba2+ (P > 0.05). Quantitative RT-PCR revealed SMC expression of KIR2.1 and KIR2.2 mRNA that was not affected by age. Barium-induced constriction of SEAs from young and old mice suggests an integral role for KIR in regulating resting membrane potential and vasomotor tone. Increased functional expression of KIR channels during advanced age may compensate for other age-related changes in SEA function.NEW & NOTEWORTHY Ion channels are integral to blood flow regulation. We found greater functional expression of inward rectifying K+ channels in smooth muscle cells of resistance arteries of mouse skeletal muscle with advanced age. This adaptation to aging may contribute to the maintenance of vasomotor tone and blood flow regulation during exercise.
Collapse
Affiliation(s)
- Sebastien Hayoz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Jessica Pettis
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Vanessa Bradley
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan;
| |
Collapse
|
21
|
Whidden MA, Basgut B, Kirichenko N, Erdos B, Tümer N. Altered potassium ATP channel signaling in mesenteric arteries of old high salt-fed rats. J Exerc Nutrition Biochem 2016; 20:58-64. [PMID: 27508155 PMCID: PMC4977904 DOI: 10.20463/jenb.2016.06.20.2.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022] Open
Abstract
[Purpose] Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries [Methods] Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. [Results] Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. [Conclusion] These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli.
Collapse
Affiliation(s)
- Melissa A Whidden
- Department of Kinesiology, West Chester University, West Chester USA
| | - Bilgen Basgut
- Department of Pharmacology, Near East University, Northern Cyprus Turkey
| | - Nataliya Kirichenko
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center GainesvilleUSA; Department of Pharmacology and Therapeutics, University of Florida, GainesvilleUSA
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington USA
| | - Nihal Tümer
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center GainesvilleUSA; Department of Pharmacology and Therapeutics, University of Florida, GainesvilleUSA
| |
Collapse
|
22
|
Jelinic M, Tare M, Conrad KP, Parry LJ. Differential effects of relaxin deficiency on vascular aging in arteries of male mice. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9803. [PMID: 26109313 PMCID: PMC4480228 DOI: 10.1007/s11357-015-9803-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Exogenous treatment with the naturally occurring peptide relaxin increases arterial compliance and reduces vascular stiffness. In contrast, relaxin deficiency reduces the passive compliance of small renal arteries through geometric and compositional vascular remodeling. The role of endogenous relaxin on passive mechanical wall properties in other vascular beds is unknown. Importantly, no studies have investigated the effects of aging in arteries of relaxin-deficient mice. Therefore, we tested the hypothesis that mesenteric and femoral arteries stiffen with aging, and this is exacerbated with relaxin deficiency. Male wild-type (Rln (+/+)) and relaxin knockout (Rln (-/-)) mice were aged to 3, 6, 12, 18, and 23 months. Passive mechanical wall properties were assessed by pressure myography. In both genotypes, there was a significant increase in circumferential stiffening in mesenteric arteries with aging, whereas in the femoral artery, aging reduced volume compliance. This was associated with a reduced ability of the artery to lengthen with aging. The predominant phenotype observed in Rln (-/-) mice was reduced volume compliance in young mice in both mesenteric and femoral arteries. In summary, aging induces circumferential stiffening in mesenteric arteries and axial stiffening in femoral arteries. Passive mechanical wall properties of Rln (-/-) mouse arteries predominantly differ at younger ages compared with Rln (+/+) mice, suggesting that a lack of endogenous relaxin only has a minor effect on vascular aging.
Collapse
Affiliation(s)
- Maria Jelinic
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Marianne Tare
- />Department of Physiology and School of Rural Health, Monash University, Melbourne, VIC Australia
| | - Kirk P. Conrad
- />Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL USA
| | - Laura J. Parry
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
23
|
Western diet consumption promotes vascular remodeling in non-senescent mice consistent with accelerated senescence, but does not modify vascular morphology in senescent ones. Exp Gerontol 2014; 55:1-11. [DOI: 10.1016/j.exger.2014.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/20/2014] [Accepted: 03/02/2014] [Indexed: 11/17/2022]
|
24
|
Abstract
OBJECTIVES Age-related arterial stiffening and reduction of arterial elasticity are attenuated in individuals with high levels of cardiorespiratory fitness. Viscosity is another mechanical characteristic of the arterial wall; however, the effects of age and cardiorespiratory fitness have not been determined. We examined the associations among age, cardiorespiratory fitness and carotid arterial wall viscosity. METHODS A total of 111 healthy men, aged 25-39 years (young) and 40-64 years (middle-aged), were divided into either cardiorespiratory fit or unfit groups on the basis of peak oxygen uptake. The common carotid artery was measured noninvasively by tonometry and automatic tracking of B-mode images to obtain instantaneous pressure and diameter hysteresis loops, and we calculated the effective compliance, isobaric compliance and viscosity index. RESULTS In the middle-aged men, the viscosity index was larger in the unfit group than in the fit group (2533 vs. 2018 mmHg·s/mm, respectively: P<0.05), but this was not the case in the young men. In addition, effective and isobaric compliance were increased, and viscosity index was increased with advancing age, but these parameters were unaffected by cardiorespiratory fitness level. CONCLUSION These results suggest that the wall viscosity in the central artery is increased with advancing age and that the age-associated increase in wall viscosity may be attenuated in cardiorespiratory fit men.
Collapse
|
25
|
Ohanian J, Liao A, Forman SP, Ohanian V. Age-related remodeling of small arteries is accompanied by increased sphingomyelinase activity and accumulation of long-chain ceramides. Physiol Rep 2014; 2:2/5/e12015. [PMID: 24872355 PMCID: PMC4098743 DOI: 10.14814/phy2.12015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structure and function of large arteries alters with age leading to increased risk of cardiovascular disease. Age‐related large artery remodeling and arteriosclerosis is associated with increased collagen deposition, inflammation, and endothelial dysfunction. Bioactive sphingolipids are known to regulate these processes, and are also involved in aging and cellular senescence. However, less is known about age‐associated alterations in small artery morphology and function or whether changes in arterial sphingolipids occur in aging. We show that mesenteric small arteries from old sheep have increased lumen diameter and media thickness without a change in media to lumen ratio, indicative of outward hypertrophic remodeling. This remodeling occurred without overt changes in blood pressure or pulse pressure indicating it was a consequence of aging per se. There was no age‐associated change in mechanical properties of the arteries despite an increase in total collagen content and deposition of collagen in a thickened intima layer in arteries from old animals. Analysis of the sphingolipid profile showed an increase in long‐chain ceramide (C14–C20), but no change in the levels of sphingosine or sphingosine‐1‐phosphate in arteries from old compared to young animals. This was accompanied by a parallel increase in acid and neutral sphingomyelinase activity in old arteries compared to young. This study demonstrates remodeling of small arteries during aging that is accompanied by accumulation of long‐chain ceramides. This suggests that sphingolipids may be important mediators of vascular aging. In this study, we have investigated remodeling of small arteries in a large animal model of aging, the sheep. We show that there is age‐related formation of neointima and increased collagen deposition that is accompanied by changes in sphingolipid metabolism resulting in ceramide accumulation in the tissues. These are the first data implicating sphingolipids as important mediators of vascular aging in small arteries. Given that aging is a major risk factor for cardiovascular disease, our study opens a new area for further research into the mechanisms that underlie vascular remodeling in aging.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Aiyin Liao
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Simon P Forman
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Vasken Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Hayoz S, Bradley V, Boerman EM, Nourian Z, Segal SS, Jackson WF. Aging increases capacitance and spontaneous transient outward current amplitude of smooth muscle cells from murine superior epigastric arteries. Am J Physiol Heart Circ Physiol 2014; 306:H1512-24. [PMID: 24705555 DOI: 10.1152/ajpheart.00492.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Large conductance Ca(2+)-activated K(+) channels (BKCa) contribute to negative feedback regulation of smooth muscle cell (SMC) tone. However, the effects of aging on BKCa function are unclear. We tested the hypothesis that aging alters SMC BKCa function in superior epigastric arteries (SEAs) by using perforated patch recording of enzymatically isolated SMCs from 3- to 4-mo-old male C57BL/6 mice (Young) and 24- to 26-mo-old male C57BL/6 mice (Old). SMC capacitance from Young (15.7 ± 0.4 pF; n = 110) was less than Old (17.9 ± 0.5 pF; n = 104) (P < 0.05). SMCs displayed spontaneous transient outward currents (STOCs) at membrane potentials more positive than -30 mV; depolarization increased STOC amplitude and frequency (P < 0.05; n = 19-24). STOC frequency in Young (2.2 ± 0.6 Hz) was less than Old (4.2 ± 0.7 Hz) at -10 mV (P < 0.05, n = 27-30), with no difference in amplitude (1.0 ± 0.1 vs. 0.9 ± 0.1 pA/pF, respectively). At +30 mV, STOC amplitude in Young (3.2 ± 0.3 pA/pF) was less than Old (5.0 ± 0.5 pA/pF; P < 0.05, n = 61-67) with no difference in frequency (3.9 ± 0.4 vs. 3.2 ± 0.3 Hz, respectively). BKCa blockers (1 μM paxilline, 100 nM iberiotoxin, 1 mM tetraethylammonium) or a ryanodine receptor antagonist (100 μM tetracaine) inhibited STOCs (n ≥ 6; P < 0.05 each). Western blots revealed increased expression of BKCa α-subunit protein in Old. Pressure myography revealed no effect of age on SEA maximal diameter, myogenic tone, or paxilline-induced constriction (n = 10-12; P > 0.05). Enhanced functional expression of SMC BKCa-dependent STOCs in Old may represent an adaptation of resistance arteries to maintain functional integrity.
Collapse
Affiliation(s)
- Sebastien Hayoz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Vanessa Bradley
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
| | - Zahra Nourian
- Dalton Cardiovascular Research Center, Columbia, Missouri
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and Dalton Cardiovascular Research Center, Columbia, Missouri
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan;
| |
Collapse
|
27
|
Shi L, Liu B, Zhang Y, Xue Z, Liu Y, Chen Y. Exercise Training Reverses Unparallel Downregulation of MaxiK Channel - and 1-Subunit to Enhance Vascular Function in Aging Mesenteric Arteries. J Gerontol A Biol Sci Med Sci 2013; 69:1462-73. [DOI: 10.1093/gerona/glt205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Shi L, Liu X, Li N, Liu B, Liu Y. Aging decreases the contribution of MaxiK channel in regulating vascular tone in mesenteric artery by unparallel downregulation of α- and β1-subunit expression. Mech Ageing Dev 2013; 134:416-25. [DOI: 10.1016/j.mad.2013.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/22/2013] [Accepted: 09/03/2013] [Indexed: 02/02/2023]
|
29
|
Hausman N, Martin J, Taggart MJ, Austin C. Age-related changes in the contractile and passive arterial properties of murine mesenteric small arteries are altered by caveolin-1 knockout. J Cell Mol Med 2012; 16:1720-30. [PMID: 21973085 PMCID: PMC3822685 DOI: 10.1111/j.1582-4934.2011.01457.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 09/05/2011] [Indexed: 01/19/2023] Open
Abstract
Caveolin-1, an integral protein of caveolae, is associated with multiple cardiovascular signalling pathways. Caveolin-1 knockout (KO) mice have a reduced lifespan. As changes in artery structure and function are associated with ageing we have investigated the role of caveolin-1 ablation on age-related changes of small artery contractility and passive mechanical properties. Mesenteric small arteries isolated from 3 and 12-month wild-type (WT) and caveolin-1 KO mice were mounted on a pressure myograph and changes in passive and functional arterial properties were continuously monitored. In WT mice ageing was associated with a reduction in arterial contractility to noradrenaline which was reversed by inhibition of nitric oxide synthase with L-NNA. Similarly, in 3-month-old mice, caveolin-1 KO reduced contractility to noradrenaline by an L-NNA-sensitive mechanism. However, ageing in caveolin-1 KO mice was not associated with any further change in contractility. In WT mice ageing was associated with an increased passive arterial diameter and cross-sectional area (CSA), consistent with outward remodelling of the arterial wall, and a reduced arterial distensibility. Caveolin-1 ablation at 3 months of age resulted in similar changes in passive arterial properties to those observed with ageing in WT animals. However, ageing in caveolin-1 KO mice resulted in a reduced arterial CSA indicating different effects on passive structural characteristics from that observed in WT mice. Thus, caveolin-1 mice show abnormalities of small mesenteric artery function and passive mechanical characteristics indicative of premature vascular ageing. Moreover, caveolin-1 ablation modulates the age-related changes usually observed in mesenteric arteries of WT mice.
Collapse
Affiliation(s)
- Natasha Hausman
- Cardiovascular Research Group, University of ManchesterManchester, UK
| | - Julie Martin
- Institute of Cellular Medicine, Newcastle UniversityNewcastle-upon-Tyne, UK
| | - Michael J Taggart
- Institute of Cellular Medicine, Newcastle UniversityNewcastle-upon-Tyne, UK
| | - Clare Austin
- Cardiovascular Research Group, University of ManchesterManchester, UK
| |
Collapse
|
30
|
Acetylcholine chloride as a potential source of variability in the study of cutaneous vascular function in man. Microvasc Res 2011; 82:190-7. [DOI: 10.1016/j.mvr.2011.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/19/2011] [Accepted: 05/05/2011] [Indexed: 11/22/2022]
|
31
|
Souza-Smith FM, Katz PS, Trask AJ, Stewart JA, Lord KC, Varner KJ, Vassallo DV, Lucchesi PA. Mesenteric resistance arteries in type 2 diabetic db/db mice undergo outward remodeling. PLoS One 2011; 6:e23337. [PMID: 21829729 PMCID: PMC3150429 DOI: 10.1371/journal.pone.0023337] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Resistance vessel remodeling is controlled by myriad of hemodynamic and neurohormonal factors. This study characterized structural and molecular remodeling in mesenteric resistance arteries (MRAs) in diabetic (db/db) and control (Db/db) mice. METHODS Structural properties were assessed in isolated MRAs from 12 and 16 wk-old db/db and Db/db mice by pressure myography. Matrix regulatory proteins were measured by Western blot analysis. Mean arterial pressure and superior mesenteric blood flow were measured in 12 wk-old mice by telemetry and a Doppler flow nanoprobe, respectively. RESULTS Blood pressure was similar between groups. Lumen diameter and medial cross-sectional area were significantly increased in 16 wk-old db/db MRA compared to control, indicating outward hypertrophic remodeling. Moreover, wall stress and cross-sectional compliance were significantly larger in diabetic arteries. These remodeling indices were associated with increased expression of matrix regulatory proteins matrix metalloproteinase (MMP)-9, MMP-12, tissue inhibitors of matrix metalloproteinase (TIMP)-1, TIMP-2, and plasminogen activator inhibitor-1 (PAI-1) in db/db arteries. Finally, superior mesenteric artery blood flow was increased by 46% in 12 wk-old db/db mice, a finding that preceded mesenteric resistance artery remodeling. CONCLUSIONS These data suggest that flow-induced hemodynamic changes may supersede the local neurohormonal and metabolic milieu to culminate in hypertrophic outward remodeling of type 2 DM mesenteric resistance arteries.
Collapse
Affiliation(s)
- Flavia M. Souza-Smith
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Paige S. Katz
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Center for Cardiovascular and Pulmonary Research and The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Aaron J. Trask
- Center for Cardiovascular and Pulmonary Research and The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - James A. Stewart
- Center for Cardiovascular and Pulmonary Research and The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Kevin C. Lord
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas, United States of America
| | - Kurt J. Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Dalton V. Vassallo
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Pamela A. Lucchesi
- Center for Cardiovascular and Pulmonary Research and The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
Akhtar R, Sherratt MJ, Cruickshank JK, Derby B. Characterizing the elastic properties of tissues. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2011; 14:96-105. [PMID: 22723736 PMCID: PMC3378034 DOI: 10.1016/s1369-7021(11)70059-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The quality of life of ageing populations is increasingly determined by age-related changes to the mechanical properties of numerous biological tissues. Degradation and mechanical failure of these tissues has a profound effect on human morbidity and mortality. Soft tissues have complex and intricate structures and, similar to engineering materials, their mechanical properties are controlled by their microstructure. Thus age-relate changes in mechanical behavior are determined by changes in the properties and relative quantities of microstructural tissue components. This review focuses on the cardiovascular system; it discusses the techniques used both in vivo and ex vivo to determine the age-related changes in the mechanical properties of arteries.
Collapse
Affiliation(s)
- Riaz Akhtar
- School of Materials, The University of Manchester, Grosvenor Street, Manchester, M1 7HS, UK
- Cardiovascular Sciences Research Group, Manchester Academic Health Science Centre, The University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Michael J. Sherratt
- Regenerative Biomedicine, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - J. Kennedy Cruickshank
- Cardiovascular Sciences Research Group, Manchester Academic Health Science Centre, The University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Brian Derby
- School of Materials, The University of Manchester, Grosvenor Street, Manchester, M1 7HS, UK
| |
Collapse
|
33
|
Hannan JL, Blaser MC, Oldfield L, Pang JJ, Adams SM, Pang SC, Adams MA. Morphological and Functional Evidence for the Contribution of the Pudendal Artery in Aging-Induced Erectile Dysfunction. J Sex Med 2010; 7:3373-84. [DOI: 10.1111/j.1743-6109.2010.01920.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Martinez-Lemus LA, Hill MA, Meininger GA. The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda) 2009; 24:45-57. [PMID: 19196651 DOI: 10.1152/physiol.00029.2008] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The diameter of resistance arteries has a profound effect on the distribution of microvascular blood flow and the control of systemic blood pressure. Here, we review mechanisms that contribute to the regulation of resistance artery diameter, both acutely and chronically, their temporal characteristics, and their interdependence. Furthermore, we hypothesize the existence of a remodeling continuum that allows for the vascular wall to rapidly modify its structural characteristics, specifically through the re-positioning of vascular smooth muscle cells. Importantly, the concepts presented more closely link acute vasoregulatory responses with adaptive changes in vessel wall structure. These rapid structural adaptations provide resistance vessels the ability to maintain a desired diameter under presumed optimal energetic and mechanical conditions.
Collapse
Affiliation(s)
- Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
| | | | | |
Collapse
|