1
|
Do senescence markers correlate in vitro and in situ within individual human donors? Aging (Albany NY) 2019; 10:278-289. [PMID: 29500330 PMCID: PMC5842854 DOI: 10.18632/aging.101389] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 02/23/2018] [Indexed: 12/18/2022]
Abstract
Little is known on how well senescence markers in vitro and in situ correlate within individual donors. We studied correlations between the same and different in vitro markers. Furthermore, we tested correlations between in vitro markers with in situ p16INK4a positivity. From 100 donors (20-91 years), cultured dermal fibroblasts were assessed for reactive oxygen species (ROS), telomere-associated foci (TAF), p16INK4a and senescence-associated β-gal (SAβ-gal), with/ without 0.6 µM rotenone for 3 days (short-term). In fibroblasts from 40 donors, telomere shortening, ROS and SAβ-gal were additionally assessed, with/ without 20 nM rotenone for 7 weeks (long-term). In skin from 52 donors, the number of p16INK4a positive dermal cells was assessed in situ. More than half of the correlations of the same senescence markers in vitro between duplicate experiments and between short-term versus long-term experiments were significant. Half of the different senescence marker correlations were significant within the short-term and within the long-term experiments. The different senescence markers in vitro were not significantly correlated intra-individually with in situ p16INK4a positivity.
In conclusion, the same and different senescence markers are frequently correlated significantly within and between in vitro experiments, but in vitro senescence markers are not correlated with p16INK4a positivity in situ.
Collapse
|
2
|
Waaijer MEC, Croco E, Westendorp RGJ, Slagboom PE, Sedivy JM, Lorenzini A, Maier AB. DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age. Aging (Albany NY) 2016; 8:147-57. [PMID: 26830451 PMCID: PMC4761719 DOI: 10.18632/aging.100890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aging process is accompanied by an accumulation of cellular damage, which compromises the viability and function of cells and tissues. We aim to further explore the association between in vitro DNA damage markers and the chronological age of the donor, as well as long-lived family membership and presence of cardiovascular diseases. Therefore, numbers of 53BP1 foci, telomere-associated foci (TAF) and micronuclei were measured in cultured dermal fibroblasts obtained from three age groups of donors (mean age 22, 63 and 90 years). Fibroblasts were cultured without a stressor and with 0.6 μM rotenone for 3 days. We found that 53BP1 foci and TAF were more frequently present in fibroblasts of old donors compared to middle-aged and young donors. No association between micronuclei and donor age was found. Within the fibroblasts of the middle-aged donors we did not find associations between DNA damage markers and long-lived family membership or cardiovascular disease. Results were comparable when fibroblasts were stressed in vitro with rotenone. In conclusion, we found that DNA damage foci of cultured fibroblasts are significantly associated with the chronological age, but not biological age, of the donor.
Collapse
Affiliation(s)
- Mariëtte E C Waaijer
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Eleonora Croco
- Department for Life Quality Studies, University of Bologna, 40126 Bologna, Italy
| | - Rudi G J Westendorp
- Department of Public Health and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, 1123 Copenhagen, Denmark
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Netherlands Consortium for Healthy Aging, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Andrea B Maier
- Department of Internal Medicine, Section of Gerontology and Geriatrics, VU University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville VIC 3050, Australia
| |
Collapse
|
3
|
Marthandan S, Priebe S, Groth M, Guthke R, Platzer M, Hemmerich P, Diekmann S. Hormetic effect of rotenone in primary human fibroblasts. Immun Ageing 2015; 12:11. [PMID: 26380578 PMCID: PMC4572608 DOI: 10.1186/s12979-015-0038-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/01/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Rotenone inhibits the electron transfer from complex I to ubiquinone, in this way interfering with the electron transport chain in mitochondria. This chain of events induces increased levels of intracellular reactive oxygen species, which in turn can contribute to acceleration of telomere shortening and induction of DNA damage, ultimately resulting in aging. In this study, we investigated the effect of rotenone treatment in human fibroblast strains. RESULTS For the first time we here describe that rotenone treatment induced a hormetic effect in human fibroblast strains. We identified a number of genes which were commonly differentially regulated due to low dose rotenone treatment in fibroblasts independent of their cell origin. However, these genes were not among the most strongly differentially regulated genes in the fibroblast strains on treatment with rotenone. Thus, if there is a common hormesis regulation, it is superimposed by cell strain specific individual responses. We found the rotenone induced differential regulation of pathways common between the two fibroblast strains, being weaker than the pathways individually regulated in the single fibroblast cell strains. Furthermore, within the common pathways different genes were responsible for this different regulation. Thus, rotenone induced hormesis was related to a weak pathway signal, superimposed by a stronger individual cellular response, a situation as found for the differentially expressed genes. CONCLUSION We found that the concept of hormesis also applies to in vitro aging of primary human fibroblasts. However, in depth analysis of the genes as well as the pathways differentially regulated due to rotenone treatment revealed cellular hormesis being related to weak signals which are superimposed by stronger individual cell-internal responses. This would explain that in general hormesis is a small effect. Our data indicate that the observed hormetic phenotype does not result from a specific strong well-defined gene or pathway regulation but from weak common cellular processes induced by low levels of reactive oxygen species. This conclusion also holds when comparing our results with those obtained for C. elegans in which the same low dose rotenone level induced a life span extending, thus hormetic effect.
Collapse
Affiliation(s)
- Shiva Marthandan
- />Leibniz-Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Steffen Priebe
- />Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Marco Groth
- />Leibniz-Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Reinhard Guthke
- />Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Matthias Platzer
- />Leibniz-Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Peter Hemmerich
- />Leibniz-Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Stephan Diekmann
- />Leibniz-Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, D-07745 Jena, Germany
| |
Collapse
|
4
|
Medina RJ, O'Neill CL, O'Doherty TM, Chambers SEJ, Guduric-Fuchs J, Neisen J, Waugh DJ, Simpson DA, Stitt AW. Ex vivo expansion of human outgrowth endothelial cells leads to IL-8-mediated replicative senescence and impaired vasoreparative function. Stem Cells 2014; 31:1657-68. [PMID: 23629812 DOI: 10.1002/stem.1414] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 12/21/2022]
Abstract
Harnessing outgrowth endothelial cells (OECs) for vasoreparative therapy and tissue engineering requires efficient ex vivo expansion. How such expansion impacts on OEC function is largely unknown. In this study, we show that OECs become permanently cell-cycle arrested after ex vivo expansion, which is associated with enlarged cell size, β-galactosidase activity, DNA damage, tumor suppressor pathway activation, and significant transcriptome changes. These senescence hallmarks were coupled with low telomerase activity and telomere shortening, indicating replicative senescence. OEC senescence limited their regenerative potential by impairing vasoreparative properties in vitro and in vivo. Integrated transcriptome-proteome analysis identified inflammatory signaling pathways as major mechanistic components of the OEC senescence program. In particular, IL8 was an important facilitator of this senescence; depletion of IL8 in OECs significantly extended ex vivo lifespan, delayed replicative senescence, and enhanced function. While the ability to expand OEC numbers prior to autologous or allogeneic therapy remains a useful property, their replicative senescence and associated impairment of vasorepair needs to be considered. This study also suggests that modulation of the senescence-associated secretory phenotype could be used to optimize OEC therapy.
Collapse
|
5
|
Waaijer MEC, Wieser M, Grillari-Voglauer R, van Heemst D, Grillari J, Maier AB. MicroRNA-663 induction upon oxidative stress in cultured human fibroblasts depends on the chronological age of the donor. Biogerontology 2014; 15:269-78. [PMID: 24664125 DOI: 10.1007/s10522-014-9496-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 03/06/2014] [Indexed: 12/22/2022]
Abstract
MicroRNAs, regulators of messenger RNA translation, have been observed to influence many physiological processes, amongst them the process of aging. Higher levels of microRNA-663 (miR-663) have previously been observed in human dermal fibroblasts subject to both replicative and stress-induced senescence compared to early passage cells. Also, higher levels of miR-663 have been found in memory T-cells and in human fibroblasts derived from older donors compared to younger donors. In previous studies we observed that dermal fibroblasts from donors of different chronological and biological age respond differentially to oxidative stress measured by markers of cellular senescence and apoptosis. In the present study we set out to study the association between miR-663 levels and chronological and biological age. Therefore we tested in a total of 92 human dermal fibroblast strains whether the levels of miR-663 in non-stressed and stressed conditions (fibroblasts were treated with 0.6 μM rotenone in stressed conditions) were different in young, middle aged and old donors and whether they were different in middle aged donors dependent on their biological age, as indicated by the propensity for familial longevity. In non-stressed conditions the level of miR-663 did not differ between donors of different age categories and was not dependent on biological age. Levels of miR-663 did not differ dependent on biological age in stressed conditions either. However, for different age categories the level of miR-663 in stressed conditions did differ: the level of miR-663 was higher at higher age categories. Also, the ratio of miR-663 induction upon stress was significantly higher in donors from older age categories. In conclusion, we present evidence for an association of miR-663 upon stress and chronological age.
Collapse
Affiliation(s)
- Mariëtte E C Waaijer
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Senescence-related changes in gene expression of peripheral blood mononuclear cells from octo/nonagenarians compared to their offspring. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:189129. [PMID: 24381713 PMCID: PMC3863454 DOI: 10.1155/2013/189129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022]
Abstract
Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs) from two groups: octo/nonagenarians (80-99 years old) and their offspring (50.2 ± 4.0 years old) revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1), cell cycle regulation (CDKN1B), metabolic process (LRPAP1), insulin action (IGF2R), and increased immune and inflammatory response (IL27RA), whereas response to stress (HSPA8), damage stimulus (XRCC6), and chromatin remodelling (TINF2) pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span.
Collapse
|
7
|
Ling CHY, de Craen AJM, Slagboom PE, Westendorp RGJ, Maier AB. Handgrip strength at midlife and familial longevity : The Leiden Longevity Study. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1261-8. [PMID: 21833741 PMCID: PMC3448992 DOI: 10.1007/s11357-011-9295-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 07/25/2011] [Indexed: 05/21/2023]
Abstract
Low handgrip strength has been linked with premature mortality in diverse samples of middle-aged and elderly subjects. The value of handgrip strength as marker of "exceptional" human longevity has not been previously explored. We postulated that the genetic influence on extreme survival might also be involved in the muscular strength determination pathway. Therefore, the objective of this study was to assess the muscle strength in a sample of middle-aged adults who are genetically enriched for exceptional survival and comparing them to a control group. We included 336 offspring of the nonagenarian from the Leiden Longevity Study who were enriched for heritable exceptional longevity, and 336 of their partners were used as controls. The Leiden Longevity study was a prospective follow up study of long-living siblings pairs together with their offspring and their partners. Handgrip strength was used as a proxy for overall muscle strength. No significant difference in handgrip strength was seen between the offspring of the nonagenarian and their partners after adjustment for potential confounders including body compositions, sum score of comorbidities, medication use, smoking and alcohol history. The main determinants of midlife handgrip strength were age, gender, total body percentage fat and relative appendicular lean mass. Although midlife handgrip strength has previously been shown to be an important prognostic indicator of survival, it is not a marker of exceptional familial longevity in middle-aged adults. This finding suggests that genetic component of susceptibility to extreme survival is likely to be separate from that of muscular strength.
Collapse
Affiliation(s)
- Carolina H. Y. Ling
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
| | - P. Eline Slagboom
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rudi G. J. Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrea B. Maier
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Csiszar A, Podlutsky A, Podlutskaya N, Sonntag WE, Merlin SZ, Philipp EER, Doyle K, Davila A, Recchia FA, Ballabh P, Pinto JT, Ungvari Z. Testing the oxidative stress hypothesis of aging in primate fibroblasts: is there a correlation between species longevity and cellular ROS production? J Gerontol A Biol Sci Med Sci 2012; 67:841-52. [PMID: 22219516 PMCID: PMC3403864 DOI: 10.1093/gerona/glr216] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/02/2011] [Indexed: 01/31/2023] Open
Abstract
The present study was conducted to test predictions of the oxidative stress theory of aging assessing reactive oxygen species production and oxidative stress resistance in cultured fibroblasts from 13 primate species ranging in body size from 0.25 to 120 kg and in longevity from 20 to 90 years. We assessed both basal and stress-induced reactive oxygen species production in fibroblasts from five great apes (human, chimpanzee, bonobo, gorilla, and orangutan), four Old World monkeys (baboon, rhesus and crested black macaques, and patas monkey), three New World monkeys (common marmoset, red-bellied tamarin, and woolly monkey), and one lemur (ring-tailed lemur). Measurements of cellular MitoSox fluorescence, an indicator of mitochondrial superoxide (O2(·-)) generation, showed an inverse correlation between longevity and steady state or metabolic stress-induced mitochondrial O2(·-) production, but this correlation was lost when the effects of body mass were removed, and the data were analyzed using phylogenetically independent contrasts. Fibroblasts from longer-lived primate species also exhibited superior resistance to H(2)O(2)-induced apoptotic cell death than cells from shorter-living primates. After correction for body mass and lack of phylogenetic independence, this correlation, although still discernible, fell short of significance by regression analysis. Thus, increased longevity in this sample of primates is not causally associated with low cellular reactive oxygen species generation, but further studies are warranted to test the association between increased cellular resistance to oxidative stressor and primate longevity.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, 975 NE 10th Street, BRC-1315A, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Valcarcel-Ares MN, Gautam T, Warrington JP, Bailey-Downs L, Sosnowska D, de Cabo R, Losonczy G, Sonntag WE, Ungvari Z, Csiszar A. Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: implications for microvascular aging. J Gerontol A Biol Sci Med Sci 2012; 67:821-9. [PMID: 22219515 DOI: 10.1093/gerona/glr229] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The redox-sensitive transcription factor NF-E2-related factor 2 (Nrf2) plays a key role in preserving a healthy endothelial phenotype and maintaining the functional integrity of the vasculature. Previous studies demonstrated that aging is associated with Nrf2 dysfunction in endothelial cells, which alters redox signaling and likely promotes the development of large vessel disease. Much less is known about the consequences of Nrf2 dysfunction at the level of the microcirculation. To test the hypothesis that Nrf2 regulates angiogenic capacity of endothelial cells, we determined whether disruption of Nrf2 signaling (by siRNA knockdown of Nrf2 and overexpression of Keap1, the cytosolic repressor of Nrf2) impairs angiogenic processes in cultured human coronary arterial endothelial cells stimulated with vascular endothelial growth factor and insulin-like growth factor-1. In the absence of functional Nrf2, coronary arterial endothelial cells exhibited impaired proliferation and adhesion to vitronectin and collagen. Disruption of Nrf2 signaling also reduced cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology) and impaired the ability of coronary arterial endothelial cells to form capillary-like structures. Collectively, we find that Nrf2 is essential for normal endothelial angiogenic processes, suggesting that Nrf2 dysfunction may be a potential mechanism underlying impaired angiogenesis and microvascular rarefaction in aging.
Collapse
Affiliation(s)
- M Noa Valcarcel-Ares
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Csiszar A, Sosnowska D, Wang M, Lakatta EG, Sonntag WE, Ungvari Z. Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment. J Gerontol A Biol Sci Med Sci 2012; 67:811-20. [PMID: 22219513 DOI: 10.1093/gerona/glr228] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is increasing evidence that age-associated chronic low-grade inflammation promotes the development of both large-vessel disease (myocardial infarction, stroke, peripheral arterial disease) and small-vessel pathologies (including vascular cognitive impairment) in older persons. However, the source of age-related chronic vascular inflammation remains unclear. To test the hypothesis that cell-autonomous mechanisms contribute to the proinflammatory changes in vascular phenotype that accompanies advancing age, we analyzed the cytokine secretion profile of primary vascular smooth muscle cells (VSMCs) derived from young (∼13 years old) and aged (∼21 years old) Macaca mulatta. Aged VSMCs cultured in the absence of systemic factors exhibited significantly increased secretion of interleukin-1β, MCP-1, and tumor necrosis factorα compared with young control cells. Secretion of interleukin-6 also tended to increase in aged VSMCs. This age-associated proinflammatory shift in the cellular secretory phenotype was associated with an increased mitochondrial O(2)(-) production and nuclear factor κ-light-chain-enhancer of activated B cells activation. Treatment of aged VSMCs with a physiologically relevant concentration of resveratrol (1 μM) exerted significant anti-inflammatory effects, reversing aging-induced alterations in the cellular cytokine secretion profile and inhibiting nuclear factor κ-light-chain-enhancer of activated B cells. Resveratrol also attenuated mitochondrial O(2)(-) production and upregulated the transcriptional activity of Nrf2 in aged VSMCs. Thus, in non-human primates, cell-autonomous activation of nuclear factor κ-light-chain-enhancer of activated B cells and expression of an inflammatory secretome likely contribute to vascular inflammation in aging. Resveratrol treatment prevents the proinflammatory properties of the aged VSMC secretome, an effect that likely contributes to the demonstrated vasoprotective action of resveratrol in animal models of aging.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 North East 10th Street, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Bailey-Downs LC, Sosnowska D, Toth P, Mitschelen M, Gautam T, Henthorn JC, Ballabh P, Koller A, Farley JA, Sonntag WE, Csiszar A, Ungvari Z. Growth hormone and IGF-1 deficiency exacerbate high-fat diet-induced endothelial impairment in obese Lewis dwarf rats: implications for vascular aging. J Gerontol A Biol Sci Med Sci 2011; 67:553-64. [PMID: 22080499 DOI: 10.1093/gerona/glr197] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1-deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-induced inflammation. GH/IGF-1 deficiency also exacerbated HFD-induced endothelial dysfunction, oxidative stress, and expression of inflammatory markers (tumor necrosis factor-α, ICAM-1) in aortas of Lewis dwarf rats. Overall, our results are consistent with the available clinical and experimental evidence suggesting that GH/IGF-1 deficiency renders the cardiovascular system more vulnerable to the deleterious effects of obesity.
Collapse
Affiliation(s)
- Lora C Bailey-Downs
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|