1
|
Sim HH, Shiwakoti S, Lee JH, Lee IY, Ok Y, Lim HK, Ko JY, Oak MH. 2,7-Phloroglucinol-6,6'-bieckol from Ecklonia cava ameliorates nanoplastics-induced premature endothelial senescence and dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175007. [PMID: 39053557 DOI: 10.1016/j.scitotenv.2024.175007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs), plastic particles ranging from 1 to 100 nm are ubiquitous environmental pollutants infiltrating ecosystems. Their small size and widespread use in various products raise concerns for human health, particularly their association with cardiovascular diseases (CVD). NPs can enter the human body through multiple routes, causing oxidative stress, and leading to the senescence and dysfunction of endothelial cells (ECs). Although there are potential natural compounds for treating CVD, there is limited research on preventing CVD induced by NPs. This study investigates the efficacy of Ecklonia cava extract (ECE) in preventing NPs-induced premature vascular senescence and dysfunction. Exposure of porcine coronary arteries (PCAs) and porcine coronary ECs to NPs, either alone or in combination with ECE, demonstrated that ECE mitigates senescence-associated β-galactosidase (SA-β-gal) activity induced by NPs, thus preventing premature endothelial senescence. ECE also improved NPs-induced vascular dysfunction. The identified active ingredient in Ecklonia cava, 2,7'-Phloroglucinol-6,6'-bieckol (PHB), a phlorotannin, proved to be pivotal in these protective effects. PHB treatment ameliorated SA-β-gal activity, reduced oxidative stress, restored cell proliferation, and decreased the expression of cell cycle regulatory proteins such as p53, p21, p16, and angiotensin type 1 receptor (AT1), well known triggers for EC senescence. Moreover, PHB also improved NPs-induced vascular dysfunction by upregulating endothelial nitric oxide synthase (eNOS) expression and restoring endothelium-dependent vasorelaxation. In conclusion, Ecklonia cava and its active ingredient, PHB, exhibit potential as therapeutic agents against NPs-induced premature EC senescence and dysfunction, indicating a protective effect against environmental pollutants-induced CVDs associated with vascular dysfunction.
Collapse
Affiliation(s)
- Hwan-Hee Sim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Ji-Hyeok Lee
- Division of Commercialization Support, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - In-Young Lee
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Yejoo Ok
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Han-Kyu Lim
- Department of Marine and Fisheries Resources, Mokpo National University, Muan 58554, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
2
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2024. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Shiwakoti S, Gong D, Sharma K, Kang KW, Schini-Kerth VB, Kim HJ, Ko JY, Oak MH. γ-Oryzanol ameliorates fine dust-induced premature endothelial senescence and dysfunction via attenuating oxidative stress. Food Chem Toxicol 2023; 179:113981. [PMID: 37549806 DOI: 10.1016/j.fct.2023.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Various cardiovascular diseases are associated with endothelial senescence, and a recent study showed that fine dust (FD)-induced premature endothelial senescence and dysfunction is associated with increased oxidative stress. The aim of the present study was to investigate protective effect of rice bran extract (RBE) and its major component of γ-Oryzanol (γ-Ory) against FD-induced premature endothelial senescence. Porcine coronary artery endothelial cells (PCAECs) were treated with FD alone or with RBE or γ-Ory. Senescence-associated β-galactosidase (SA-β-gal) activity, expression of cell cycle regulatory proteins, and oxidative stress levels were evaluated. The results indicated that SA-β-gal activity in the FD-treated PCAECs was attenuated by RBE and γ-Ory. Additionally, γ-Ory inhibited FD-induced cell cycle arrest, restored cell proliferation, and reduced the expression of cell cycle regulatory proteins. γ-Ory also inhibited oxidative stress and prevented senescence-associated NADPH oxidase and LAS activity in FD-exposed ECs suggesting that γ-Ory could protect against FD-induced ECs senescence and dysfunction.
Collapse
Affiliation(s)
- Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Dalseong Gong
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea; Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Ki-Woon Kang
- Division of Cardiology, College of Medicine, Heart Reasearch Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Valérie B Schini-Kerth
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Hyun Jung Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
4
|
Lu M, Zhang L, Pan J, Shi H, Zhang M, Li C. Advances in the study of the vascular protective effects and molecular mechanisms of hawthorn ( Crataegus anamesa Sarg.) extracts in cardiovascular diseases. Food Funct 2023. [PMID: 37337667 DOI: 10.1039/d3fo01688a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Hawthorn belongs to the rose family and is a type of functional food. It contains various chemicals, including flavonoids, terpenoids, and organic acid compounds. This study aimed to review the vascular protective effects and molecular mechanisms of hawthorn and its extracts on cardiovascular diseases (CVDs). Hawthorn has a wide range of biological functions. Evidence suggests that the active components of HE reduce oxidative stress and inflammation, regulate lipid levels to prevent lipid accumulation, and inhibit free cholesterol accumulation in macrophages and foam cell formation. Additionally, hawthorn extract (HE) can protect vascular endothelial function, regulate endothelial dysfunction, and promote vascular endothelial relaxation. It has also been reported that the effective components of hawthorn can prevent age-related endothelial dysfunction, increase cellular calcium levels, cause antiplatelet aggregation, and promote antithrombosis. In clinical trials, HE has been proved to reduce the adverse effects of CVDs on blood lipids, blood pressure, left ventricular ejection fraction, heart rate, and exercise tolerance. Previous studies have pointed to the benefits of hawthorn and its extracts in treating atherosclerosis and other vascular diseases. Therefore, as both medicine and food, hawthorn can be used as a new drug source for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huishan Shi
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Li Q, Niu X, Yi Y, Chen Y, Yuan J, Zhang J, Li H, Xia Y, Wang Y, Deng Z. Inducible Pluripotent Stem Cell-Derived Small Extracellular Vesicles Rejuvenate Senescent Blood-Brain Barrier to Protect against Ischemic Stroke in Aged Mice. ACS NANO 2023; 17:775-789. [PMID: 36562422 DOI: 10.1021/acsnano.2c10824] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood-brain barrier (BBB) breakdown after ischemic stroke exacerbates brain injury and BBB senescence can cause severe neurological deficits in aged ischemic stroke population. Recent evidence reveals that inducible pluripotent stem cell-derived small extracellular vesicles (iPSC-sEVs) possess phenomenal antisenescence capability. However, whether iPSC-sEVs can rejuvenate BBB senescence to improve stroke outcomes in aged mice remains unknown. Here, we showed that long-term treatment with iPSC-sEVs alleviated aging-induced BBB senescence in aged mice. In aged stroke mice, iPSC-sEVs significantly mitigated BBB integrity damage, reduced the following infiltration of peripheral leukocytes, and decreased the release of pro-inflammatory factors from the leukocytes, which ultimately inhibited neuronal death and improved neurofunctional recovery. Mechanism studies showed that iPSC-sEVs could activate the endothelial nitric oxide synthase (eNOS) and up-regulate sirtuin 1 (Sirt1) in senescent endothelial cells. Blocking the activation of eNOS abolished iPSC-sEV-mediated rejuvenation of BBB senescence and the protection of BBB integrity. Proteomics results demonstrated that iPSC-sEVs were enriched with bioactive factors including AKT serine/threonine kinase 1 (AKT1) and calmodulin (CALM) to activate the eNOS-Sirt1 axis. Further investigation showed that AKT1 and CALM inhibitors blocked iPSC-sEV-afforded activation of the eNOS-Sirt1 axis in senescent endothelial cells. Taken together, iPSC-sEVs can protect against ischemic stroke in aged mice by rejuvenating BBB senescence, partially, through delivering AKT1 and CALM to activate eNOS-Sirt1 axis, which indicates that iPSC-sEVs treatment is an effective alternative to treat ischemic stroke in the aged population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | | | | | | |
Collapse
|
6
|
Wen J, Liu C, Deng C. Research progress on the mechanism of aging of vascular endothelial cells and the intervention of traditional Chinese medicine: A review. Medicine (Baltimore) 2022; 101:e32248. [PMID: 36626478 PMCID: PMC9750530 DOI: 10.1097/md.0000000000032248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vascular senescence is the basic factor of many cardiovascular diseases. Vascular endothelium, as a protective barrier between blood and vascular wall, plays an important role in maintaining the integrity and homeostasis of vascular system. Endothelial cell senescence is an important pathological change of vascular senescence. In recent years, more and more studies have been conducted on vascular endothelial cell senescence, especially on its mechanism. Many research results showed that the mechanism is various, but the systematic elucidation still lacks. Western medicine has little choice in the prevention and treatment of endothelial cell senescence, and the control effect is also limited, while Chinese medicine makes up for the deficiency in this regard. The main mechanisms of vascular endothelial cell aging and the related research progress of traditional Chinese medicine in the prevention and treatment of vascular endothelial aging in recent years were summarized in this paper to provide reference for the research of traditional Chinese medicine in anti-vascular aging and the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jiang Wen
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Caixia Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Changqing Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- * Correspondence: Changqing Deng, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China (e-mail: )
| |
Collapse
|
7
|
Fossel M, Bean J, Khera N, Kolonin MG. A Unified Model of Age-Related Cardiovascular Disease. BIOLOGY 2022; 11:1768. [PMID: 36552277 PMCID: PMC9775230 DOI: 10.3390/biology11121768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis. We propose a model unifying the fundamental processes underlying most age-associated cardiovascular pathologies. According to this model, cell aging, leading to cell senescence, is responsible for tissue changes leading to age-related cardiovascular disease. This process, occurring due to telomerase inactivation and telomere attrition, affects all components of the cardiovascular system, including cardiomyocytes, vascular endothelial cells, smooth muscle cells, cardiac fibroblasts, and immune cells. The unified model offers insights into the relationship between upstream risk factors and downstream clinical outcomes and explains why interventions aimed at either of these components have limited success. Potential therapeutic approaches are considered based on this model. Because telomerase activity can prevent and reverse cell senescence, telomerase gene therapy is discussed as a promising intervention. Telomerase gene therapy and similar systems interventions based on the unified model are expected to be transformational in cardiovascular medicine.
Collapse
Affiliation(s)
| | - Joe Bean
- University of Missouri School of Medicine, Kansas City, MO 65211, USA
| | - Nina Khera
- Buckingham Browne and Nichols School, Wellesley, MA 02138, USA
| | - Mikhail G. Kolonin
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
8
|
78495111110.1152/physrev.00046.2020" />
Abstract
This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti‐viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.
Collapse
Affiliation(s)
- Alberto L. Horenstein
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Angelo C. Faini
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| |
Collapse
|
9
|
Merdji H, Kassem M, Chomel L, Clere-Jehl R, Helms J, Kurihara K, Chaker AB, Auger C, Schini-Kerth V, Toti F, Meziani F. Septic shock as a trigger of arterial stress-induced premature senescence: A new pathway involved in the post sepsis long-term cardiovascular complications. Vascul Pharmacol 2021; 141:106922. [PMID: 34592427 DOI: 10.1016/j.vph.2021.106922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major adverse cardiovascular events among sepsis survivors is an emerging health issue. Because endothelial senescence leads to vascular dysfunction and atherothrombosis, sepsis could be associated to vascular stress-induced premature senescence and thus with long-term cardiovascular events. MATERIALS & METHODS Adult Wistar male rats were submitted to cecal ligation and puncture, or a SHAM operation. Markers of inflammation, oxidative stress and endothelial senescence were assessed at 3, 7 and 90 days (D), and vascular reactivity was assessed in conductance and resistance vessels at D90. Expression of proteins involved in senescence and inflammation was assessed by Western blot analysis and confocal microscopy, oxidative stress by dihydroethidium probing. RESULTS Pro-inflammatory endothelial ICAM-1 and VCAM-1 were up-regulated by three-fold in CLP vs. SHAM at D7 and remained elevated at D90. Oxidative stress followed a similar pattern but was detected in the whole vascular wall. Sepsis accelerated premature senescence in aorta vascular tissue as shown by the significant up-regulation of p53 and down-stream p21 and p16 senescent markers at D7, values peaking at D90 whereas the absence of significant variation in activated caspase-3 confirmed p53 as a prime inducer of senescence. In addition, p53 was mainly expressed in the endothelium. Sepsis-induced long-term vascular dysfunction was confirmed in aorta and main mesenteric artery, with a major alteration of the endothelial-dependent nitric oxide pathway. CONCLUSIONS Septic shock-induced long-term vascular dysfunction is associated with endothelial and vascular senescence. Our model could prove useful for investigating senotherapies aiming at reducing long-term cardiovascular consequences of septic shock.
Collapse
Affiliation(s)
- Hamid Merdji
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Louise Chomel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Raphaël Clere-Jehl
- Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Julie Helms
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Kei Kurihara
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Aichi Medical University, Department of Transplantation and Regenerative Medicine, Fujita Health University, School of Medicine, Aichi, Japan
| | - Ahmed Bey Chaker
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Valérie Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France.
| |
Collapse
|
10
|
Kassem M, El Habhab A, Kreutter G, Amoura L, Baltzinger P, Abbas M, Sbat N, Zobairi F, Schini-Kerth VB, Kessler L, Toti F. In Vitro Impact of Pro-Senescent Endothelial Microvesicles on Isolated Pancreatic Rat Islets Function. Transplant Proc 2021; 53:1736-1743. [PMID: 33934912 DOI: 10.1016/j.transproceed.2021.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Ischemia-driven islet isolation procedure is one of the limiting causes of pancreatic islet transplantation. Ischemia-reperfusion process is associated with endothelium dysfunction and the release of pro-senescent microvesicles. We investigated whether pro-senescent endothelial microvesicles prompt islet senescence and dysfunction in vitro. MATERIAL AND METHODS Pancreatic islets were isolated from male young rats. Replicative endothelial senescence was induced by serial passaging of primary porcine coronary artery endothelial cells, and microvesicles were isolated either from young passage 1 (P1) or senescent passage 3 (P3) endothelial cells. Islet viability was assessed by fluorescence microscopy, apoptosis by flow cytometry, and Western blot. Function was assessed by insulin secretion and islet senescence markers p53, p21, and p16 by Western blot. Microvesicles were stained by the PKH26 lipid fluorescent probe and their islet integration assessed by microscopy and flow cytometry. RESULTS Regardless of the passage, half microvesicles were integrated in target islets after 24 hours incubation. Insulin secretion significantly decreased after treatment by senescent microvesicles (P3: 1.7 ± 0.2 vs untreated islet: 2.7 ± 0.2, P < .05) without altering the islet viability (89.47% ± 1.69 vs 93.15% ± 0.97) and with no significant apoptosis. Senescent microvesicles significantly doubled the expression of p53, p21, and p16 (P < .05), whereas young microvesicles had no significant effect. CONCLUSION Pro-senescent endothelial microvesicles specifically accelerate the senescence of islets and alter their function. These data suggest that islet isolation contributes to endothelial driven islet senescence.
Collapse
Affiliation(s)
- Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Ali El Habhab
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Lamia Amoura
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Philippe Baltzinger
- Department of Diabetes and Nutrition Endocrinology, University Hospital of Strasbourg, Strasbourg, France
| | - Malak Abbas
- UMR CNRS 7213, Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Noura Sbat
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Fatiha Zobairi
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France; Department of Diabetes and Nutrition Endocrinology, University Hospital of Strasbourg, Strasbourg, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
11
|
Abstract
This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti‐viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Angelo C Faini
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| |
Collapse
|
12
|
Belcastro E, Rehman AU, Remila L, Park SH, Gong DS, Anton N, Auger C, Lefebvre O, Goetz JG, Collot M, Klymchenko AS, Vandamme TF, Schini-Kerth VB. Fluorescent nanocarriers targeting VCAM-1 for early detection of senescent endothelial cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102379. [PMID: 33713860 DOI: 10.1016/j.nano.2021.102379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Endothelial senescence has been identified as an early event in the development of endothelial dysfunction, a hallmark of cardiovascular disease. This study developed theranostic nanocarriers (NC) decorated with VCAM-1 antibodies (NC-VCAM-1) in order to target cell surface VCAM-1, which is overexpressed in senescent endothelial cells (ECs) for diagnostic and therapeutic purposes. Incubation of Ang II-induced premature senescent ECs or replicative senescent ECs with NC-VCAM-1 loaded with lipophilic fluorescent dyes showed higher fluorescence signals than healthy EC, which was dependent on the NC size and VCAM-1 antibodies concentration, and not observed following masking of VCAM-1. NC loaded with omega 3 polyunsaturated fatty acid (NC-EPA:DHA6:1) were more effective than native EPA:DHA 6:1 to prevent Ang II-induced VCAM-1 and p53 upregulation, and SA-β-galactosidase activity in coronary artery segments. These theranostic NC might be of interest to evaluate the extent and localization of endothelial senescence and to prevent pro-senescent endothelial responses.
Collapse
Affiliation(s)
- Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Asad Ur Rehman
- University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Lamia Remila
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Dal Seong Gong
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Nicolas Anton
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy; University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | | | | | - Mayeul Collot
- CNRS UMR 7213, Laboratory of Biophotonics and Pharmacology, University of Strasbourg, Strasbourg, France
| | - Andrey S Klymchenko
- CNRS UMR 7213, Laboratory of Biophotonics and Pharmacology, University of Strasbourg, Strasbourg, France
| | - Thierry F Vandamme
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy; University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy.
| |
Collapse
|
13
|
Yang Y, Zhao Y, Zhang F, Zhang L, Li L. COVID-19 in Elderly Adults: Clinical Features, Molecular Mechanisms, and Proposed Strategies. Aging Dis 2020; 11:1481-1495. [PMID: 33269102 PMCID: PMC7673861 DOI: 10.14336/ad.2020.0903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is causing problems worldwide. Most people are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but elderly populations are more susceptible. Elevated susceptibility and death rates in elderly COVID-19 patients, especially those with age-related complications, are challenges for pandemic prevention and control. In this paper, we review the clinical features of elderly patients with COVID-19 and explore the related molecular mechanisms that are essential for the exploration of preventive and therapeutic strategies in the current pandemic. Furthermore, we analyze the feasibility of currently recommended potential novel methods against COVID-19 among elderly populations.
Collapse
Affiliation(s)
| | | | | | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Humphreys D, ElGhazaly M, Frisan T. Senescence and Host-Pathogen Interactions. Cells 2020; 9:cells9071747. [PMID: 32708331 PMCID: PMC7409240 DOI: 10.3390/cells9071747] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Damage to our genomes triggers cellular senescence characterised by stable cell cycle arrest and a pro-inflammatory secretome that prevents the unrestricted growth of cells with pathological potential. In this way, senescence can be considered a powerful innate defence against cancer and viral infection. However, damage accumulated during ageing increases the number of senescent cells and this contributes to the chronic inflammation and deregulation of the immune function, which increases susceptibility to infectious disease in ageing organisms. Bacterial and viral pathogens are masters of exploiting weak points to establish infection and cause devastating diseases. This review considers the emerging importance of senescence in the host-pathogen interaction: we discuss the pathogen exploitation of ageing cells and senescence as a novel hijack target of bacterial pathogens that deploys senescence-inducing toxins to promote infection. The persistent induction of senescence by pathogens, mediated directly through virulence determinants or indirectly through inflammation and chronic infection, also contributes to age-related pathologies such as cancer. This review highlights the dichotomous role of senescence in infection: an innate defence that is exploited by pathogens to cause disease.
Collapse
Affiliation(s)
- Daniel Humphreys
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
- Correspondence: (D.H.); (T.F.)
| | - Mohamed ElGhazaly
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Teresa Frisan
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (D.H.); (T.F.)
| |
Collapse
|
15
|
El Habhab A, Altamimy R, Abbas M, Kassem M, Amoura L, Qureshi AW, El Itawi H, Kreutter G, Khemais‐Benkhiat S, Zobairi F, Schini‐Kerth VB, Kessler L, Toti F. Significance of neutrophil microparticles in ischaemia-reperfusion: Pro-inflammatory effectors of endothelial senescence and vascular dysfunction. J Cell Mol Med 2020; 24:7266-7281. [PMID: 32520423 PMCID: PMC7339165 DOI: 10.1111/jcmm.15289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/14/2020] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Endothelial senescence is an emerging cause of vascular dysfunction. Because microparticles are effectors of endothelial inflammation and vascular injury after ischaemia-reperfusion, we examined leucocyte-derived microparticles of spleen origin as possible contributors. Microparticles were generated from primary rat splenocytes by either lipopolysaccharide or phorbol-myristate-acetate/calcium ionophore, under conditions mimicking innate and adaptive immune responses. Incubation of primary porcine coronary endothelial cells with either type of microparticles, but not with those from unstimulated splenocytes, leads to a similar threefold raise in senescence-associated β-galactosidase activity within 48 hours, indicating accelerated senescence, to endothelial oxidative stress, and a fivefold and threefold increase in p21 and p16 senescence markers after 24 hours. After 12-hour incubation, the endothelial-dependent relaxation of coronary artery rings was reduced by 50%, at distinct optimal microparticle concentration. In vitro, microparticles were pro-thrombotic by up-regulating the local angiotensin system, by prompting tissue factor activity and a secondary generation of pro-coagulant endothelial microparticles. They initiated an early pro-inflammatory response by inducing phosphorylation of NF-κB, MAP kinases and Akt after 1 hour, and up-regulated VCAM-1 and ICAM-1 at 24 hours. Accordingly, VCAM-1 and COX-2 were also up-regulated in the coronary artery endothelium and eNOS down-regulated. Lipopolysaccharide specifically favoured the shedding of neutrophil- and monocyte-derived microparticles. A 80% immuno-depletion of neutrophil microparticles reduced endothelial senescence by 55%, indicating a key role. Altogether, data suggest that microparticles from activated splenocytes prompt early pro-inflammatory, pro-coagulant and pro-senescent responses in endothelial cells through redox-sensitive pathways. The control of neutrophil shedding could preserve the endothelium at site of ischaemia-reperfusion-driven inflammation and delay its dysfunction.
Collapse
Affiliation(s)
- Ali El Habhab
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Raed Altamimy
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Malak Abbas
- UMR CNRS 7213Laboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Lamia Amoura
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Abdul Wahid Qureshi
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Hanine El Itawi
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Sonia Khemais‐Benkhiat
- UMR CNRS 7213Laboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| | - Fatiha Zobairi
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Faculty of MedicineFederation of Translational Medicine (FMTS)StrasbourgFrance
| | - Valérie B. Schini‐Kerth
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Faculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Department of Diabetes and Nutrition EndocrinologyUniversity Hospital of StrasbourgStrasbourgFrance
- Faculty of MedicineFederation of Translational Medicine (FMTS)StrasbourgFrance
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Faculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| |
Collapse
|
16
|
Sargiacomo C, Sotgia F, Lisanti MP. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging (Albany NY) 2020; 12:6511-6517. [PMID: 32229706 PMCID: PMC7202514 DOI: 10.18632/aging.103001] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 04/08/2023]
Abstract
COVID-19, also known as SARS-CoV-2, is a new emerging zoonotic corona virus of the SARS (Severe Acute Respiratory Syndrome) and the MERS (Middle East Respiratory Syndrome) family. COVID-19 originated in China and spread world-wide, resulting in the pandemic of 2020. For some reason, COVID-19 shows a considerably higher mortality rate in patients with advanced chronological age. This begs the question as to whether there is a functional association between COVID-19 infection and the process of chronological aging. Two host receptors have been proposed for COVID-19. One is CD26 and the other is ACE-2 (angiotensin-converting enzyme 2). Interestingly, both CD26 and the angiotensin system show associations with senescence. Similarly, two proposed therapeutics for the treatment of COVID-19 infection are Azithromycin and Quercetin, both drugs with significant senolytic activity. Also, Chloroquine-related compounds inhibit the induction of the well-known senescence marker, Beta-galactosidase. Other anti-aging drugs should also be considered, such as Rapamycin and Doxycycline, as they behave as inhibitors of protein synthesis, blocking both SASP and viral replication. Therefore, we wish to speculate that the fight against COVID-19 disease should involve testing the hypothesis that senolytics and other anti-aging drugs may have a prominent role in preventing the transmission of the virus, as well as aid in its treatment. Thus, we propose that new clinical trials may be warranted, as several senolytic and anti-aging therapeutics are existing FDA-approved drugs, with excellent safety profiles, and would be readily available for drug repurposing efforts. As Azithromycin and Doxycycline are both commonly used antibiotics that inhibit viral replication and IL-6 production, we may want to consider this general class of antibiotics that functionally inhibits cellular protein synthesis as a side-effect, for the treatment and prevention of COVID-19 disease.
Collapse
Affiliation(s)
- Camillo Sargiacomo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
17
|
Porphyromonas gingivalis triggers the shedding of inflammatory endothelial microvesicles that act as autocrine effectors of endothelial dysfunction. Sci Rep 2020; 10:1778. [PMID: 32019950 PMCID: PMC7000667 DOI: 10.1038/s41598-020-58374-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
A link between periodontitis and atherothrombosis has been highlighted. The aim of this study was to determine the influence of Porphyromonas gingivalis on endothelial microvesicles (EMVPg) shedding and their contribution to endothelial inflammation. Endothelial cells (EC) were infected with P. gingivalis (MOI = 100) for 24 h. EMVPg were isolated and their concentration was evaluated by prothrombinase assay. EMVPg were significantly increased in comparison with EMVCtrl shedded by unstimulated cells. While EMVCtrl from untreated EC had no effect, whereas, the proportion of apoptotic EC was increased by 30 nM EMVPg and viability was decreased down to 25%, a value elicited by P. gingivalis alone. Moreover, high concentration of EMVPg (30 nM) induced a pro-inflammatory and pro-oxidative cell response including up-regulation of TNF-α, IL-6 and IL-8 as well as an altered expression of iNOS and eNOS at both mRNA and protein level. An increase of VCAM-1 and ICAM-1 mRNA expression (4.5 folds and 3 folds respectively (p < 0.05 vs untreated) was also observed after EMVPg (30 nM) stimulation whereas P. gingivalis infection was less effective, suggesting a specific triggering by EMVPg. Kinasome analysis demonstrated the specific effect induced by EMVPg on main pro-inflammatory pathways including JNK/AKT and STAT. EMVPg are effective pro-inflammatory effectors that may have detrimental effect on vascular homeostasis and should be considered as potential autocrine and paracrine effectors involved in the link between periodontitis and atherothrombosis.
Collapse
|
18
|
Farooq MA, Gaertner S, Amoura L, Niazi ZR, Park SH, Qureshi AW, Oak MH, Toti F, Schini-Kerth VB, Auger C. Intake of omega-3 formulation EPA:DHA 6:1 by old rats for 2 weeks improved endothelium-dependent relaxations and normalized the expression level of ACE/AT1R/NADPH oxidase and the formation of ROS in the mesenteric artery. Biochem Pharmacol 2019; 173:113749. [PMID: 31830469 DOI: 10.1016/j.bcp.2019.113749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/06/2019] [Indexed: 01/21/2023]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to protect the cardiovascular system, in part, by stimulating the endothelial formation of nitric oxide (NO). EPA:DHA 6:1 has been identified as a potent omega 3 PUFA formulation to induce endothelium-dependent vasorelaxation and activation of endothelial NO synthase (eNOS). This study examined whether intake of EPA:DHA 6:1 (500 mg/kg/day) for 2 weeks improves an established endothelial dysfunction in old rats (20 months old), and, if so, the underlying mechanism was subsequently determined. In the main mesenteric artery rings, an endothelial dysfunction characterized by a blunted NO component, an abolished endothelium-dependent hyperpolarization component, and increased endothelium-dependent contractile responses (EDCFs) are observed in old rats compared to young rats. Age-related endothelial dysfunction was associated with increased vascular formation of reactive oxygen species (ROS) and expression of eNOS, components of the local angiotensin system, senescence markers, and cyclooxygenase-2 (COX-2), and the downregulation of COX-1. The EPA:DHA 6:1 treatment improved the NO-mediated relaxation, reduced the EDCF-dependent contractile response and the vascular formation of ROS, and normalized the expression level of all target proteins in the old arterial wall. Thus, the present findings indicate that a 2-week intake of EPA:DHA 6:1 by old rats restored endothelium-dependent NO-mediated relaxations, most likely, by preventing the upregulation of the local angiotensin system and the subsequent formation of ROS.
Collapse
Affiliation(s)
- Muhammad A Farooq
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Sébastien Gaertner
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Hôpitaux Universitaire de Strasbourg (HUS), Service des Maladies Vasculaires - Hypertension Artérielle, 67000 Strasbourg, France
| | - Lamia Amoura
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Zahid R Niazi
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Abdul W Qureshi
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Min-Ho Oak
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France; Hôpitaux Universitaire de Strasbourg (HUS), Service des Maladies Vasculaires - Hypertension Artérielle, 67000 Strasbourg, France
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
| |
Collapse
|
19
|
Ageing enhances the shedding of splenocyte microvesicles with endothelial pro-senescent effect that is prevented by a short-term intake of omega-3 PUFA EPA:DHA 6:1. Biochem Pharmacol 2019; 173:113734. [PMID: 31811867 DOI: 10.1016/j.bcp.2019.113734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/25/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Ageing is associated with progressive endothelial senescence and dysfunction, and cardiovascular risk. Circulating endothelial microvesicles (MVs) are pro-senescent and pro-inflammatory endothelial effectors in acute coronary syndrome. Omega-3 PUFA intake was claimed beneficial in cardiovascular prevention. PURPOSE To investigate whether the intake of the omega-3 formulation EPA:DHA 6:1 by middle-aged and old rats reduces the shedding of pro-senescent microvesicles from cultured spleen leukocytes (SMVs) and clarify the underlying mechanisms in target coronary primary endothelial cells (ECs). METHODS Middle-aged male Wistar rats (M, 48-week old) received 500 mg/kg/d of either EPA:DHA 6:1, EPA:DHA 1:1, or vehicle (CTL) for 7 days, old rats (72-week old) for 14 days. Spleen-derived leukocytes were prepared and cultured for 24 h and MVs collected from supernatants (SMVs). Cultured ECs were prepared from freshly isolated porcine coronary arteries. Senescence-associated β-galactosidase activity (SA-β-gal) was assessed by C12FDG, protein expression by Western blot analysis, oxidative stress by dihydroethidium using confocal microscopy, and procoagulant MVs by prothrombinase assay. The pro-senescent potential of SMVs from middle-aged rats (M-SMVs) was analyzed by comparison with young (Y, 12-week) and old (O) rats. RESULTS The shedding of SMVs significantly increased with age and was inhibited by EPA:DHA 6:1 intake that also prevented ROS accumulation in spleen. Incubation of ECs with 10 nM SMVs from middle-aged and old but not those from young rats induced premature senescence after 48 h. The pro-senescent effect of M-SMVs was prevented by Losartan and associated with endothelial oxidative stress. M-SMVs induced an up-regulation of senescence markers (p16, p21, p53), pro-atherothrombotic (VCAM-1, ICAM-1, tissue factor) and pro-inflammatory markers (pNF-κB, COX-2) and proteins of the angiotensin system (ACE, AT1-R). Conversely, endothelial NO synthase was down-regulated. Intake of EPA:DHA 1:1 and 6:1 by middle-aged rats decreased SMV shedding by 14% and 24%, respectively. Only EPA:DHA 6:1 intake abolished the M-SMVs-induced endothelial senescence and reduced the pro-senescent action of O-SMVs by 45%. Protection of ECs was not observed in response to SMVs from EPA:DHA 1:1 treated rats. CONCLUSION Ingestion of EPA:DHA 6:1 by middle-aged or old rats, respectively abolished or limited both the shedding of SMVs and their pro-senescent, pro-thrombotic and pro-inflammatory effects in ECs, most likely by triggering the local angiotensin system. EPA:DHA 6:1 may help to delay ageing-related endothelial dysfunction.
Collapse
|
20
|
Hasan H, Park SH, Auger C, Belcastro E, Matsushita K, Marchandot B, Lee HH, Qureshi AW, Kauffenstein G, Ohlmann P, Schini-Kerth VB, Jesel L, Morel O. Thrombin Induces Angiotensin II-Mediated Senescence in Atrial Endothelial Cells: Impact on Pro-Remodeling Patterns. J Clin Med 2019; 8:jcm8101570. [PMID: 31581517 PMCID: PMC6833093 DOI: 10.3390/jcm8101570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Besides its well-known functions in hemostasis, thrombin plays a role in various non-hemostatic biological and pathophysiologic processes. We examined the potential of thrombin to promote premature atrial endothelial cells (ECs) senescence. METHODS AND RESULTS Primary ECs were isolated from porcine atrial tissue. Endothelial senescence was assessed by measuring beta-galactosidase (SA-β-gal) activity using flow cytometry, oxidative stress using the redox-sensitive probe dihydroethidium, protein level by Western blot, and matrix metalloproteinases (MMPs) activity using zymography. Atrial endothelial senescence was induced by thrombin at clinically relevant concentrations. Thrombin induced the up-regulation of p53, a key regulator in cellular senescence and of p21 and p16, two cyclin-dependent kinase inhibitors. Nicotinamide adenine dinucleotide phosphate NADPH oxidase, cyclooxygenases and the mitochondrial respiration complex contributed to oxidative stress and senescence. Enhanced expression levels of vascular cell adhesion molecule (VCAM)-1, tissue factor, transforming growth factor (TGF)-β and MMP-2 and 9 characterized the senescence-associated secretory phenotype of atrial ECs. In addition, the pro-senescence endothelial response to thrombin was associated with an overexpression of both angiotensin converting enzyme and AT1 receptors and was inhibited by perindoprilat and losartan. CONCLUSIONS Thrombin promotes premature ageing and senescence of atrial ECs and may pave the way to deleterious remodeling of atrial tissue by a local up-regulation of the angiotensin system and by promoting pro-inflammatory, pro-thrombotic, pro-fibrotic and pro-remodeling responses. Hence, targeting thrombin and/or angiotensin systems may efficiently prevent atrial endothelial senescence.
Collapse
Affiliation(s)
- Hira Hasan
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Sin-Hee Park
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Cyril Auger
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Eugenia Belcastro
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Kensuke Matsushita
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Benjamin Marchandot
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, BP 426-67091 France
| | - Hyun-Ho Lee
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Abdul Wahid Qureshi
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Gilles Kauffenstein
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France.
| | - Patrick Ohlmann
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, BP 426-67091 France
| | - Valérie B Schini-Kerth
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
| | - Laurence Jesel
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, BP 426-67091 France
| | - Olivier Morel
- INSERM UMR1260 Regenerative NanoMedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Faculté de Pharmacie, BP 60024 FR-67401 Strasbourg, France.
- Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, BP 426-67091 France.
| |
Collapse
|
21
|
Sharma K, Lee HH, Gong DS, Park SH, Yi E, Schini-Kerth V, Oak MH. Fine air pollution particles induce endothelial senescence via redox-sensitive activation of local angiotensin system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:317-329. [PMID: 31158660 DOI: 10.1016/j.envpol.2019.05.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Fine dust (FD) is a form of air pollution and is responsible for a wide range of diseases. Specially, FD is associated with several cardiovascular diseases (CVDs); long-term exposure to FD was shown to decrease endothelial function, but the underlying mechanism remains unclear. We investigated whether exposure to FD causes premature senescence-associated endothelial dysfunction in endothelial cells (ECs) isolated from porcine coronary arteries. The cells were treated with different concentrations of FD and senescence associated-beta galactosidase (SA-β-gal) activity, cell cycle progression, expression of endothelial nitric oxide synthase (eNOS), oxidative stress level, and vascular function were evaluated. We found that FD increased SA-β-gal activity, caused cell cycle arrest, and increased oxidative stress, suggesting the premature induction of senescence; on the other hand, eNOS expression was downregulated and platelet aggregation was enhanced. FD exposure impaired vasorelaxation in response to bradykinin and activated the local angiotensin system (LAS), which was inhibited by treatment with the antioxidant N-acetyl cysteine (NAC) and angiotensin II receptor type 1 (AT1) antagonist losartan (LOS). NAC and LOS also suppressed FD-induced SA-β-gal activity, increased EC proliferation and eNOS expression, and improved endothelial function. These results demonstrate that FD induces premature senescence of ECs and is associated with increased oxidative stress and activation of LAS. This study can serve as a pharmacological target for prevention and/or treatment of air pollution-associated CVD.
Collapse
Affiliation(s)
- Kushal Sharma
- College of Pharmacy, Mokpo National University 1666 Yeongsan-Ro, Cheonggye-Myeon, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Hyun-Ho Lee
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Dal-Seong Gong
- College of Pharmacy, Mokpo National University 1666 Yeongsan-Ro, Cheonggye-Myeon, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Sin-Hee Park
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Eunyoung Yi
- College of Pharmacy, Mokpo National University 1666 Yeongsan-Ro, Cheonggye-Myeon, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Valérie Schini-Kerth
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University 1666 Yeongsan-Ro, Cheonggye-Myeon, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
22
|
Khemais-Benkhiat S, Belcastro E, Idris-Khodja N, Park SH, Amoura L, Abbas M, Auger C, Kessler L, Mayoux E, Toti F, Schini-Kerth VB. Angiotensin II-induced redox-sensitive SGLT1 and 2 expression promotes high glucose-induced endothelial cell senescence. J Cell Mol Med 2019; 24:2109-2122. [PMID: 30929316 PMCID: PMC7011151 DOI: 10.1111/jcmm.14233] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
High glucose (HG)-induced endothelial senescence and dysfunction contribute to the increased cardiovascular risk in diabetes. Empagliflozin, a selective sodium glucose co-transporter2 (SGLT2) inhibitor, reduced the risk of cardiovascular mortality in type 2 diabetic patients but the protective mechanism remains unclear. This study examines the role of SGLT2 in HG-induced endothelial senescence and dysfunction. Porcine coronary artery cultured endothelial cells (ECs) or segments were exposed to HG (25 mmol/L) before determination of senescence-associated beta-galactosidase activity, protein level by Western blot and immunofluorescence staining, mRNA by RT-PCR, nitric oxide (NO) by electron paramagnetic resonance, oxidative stress using dihydroethidium and glucose uptake using 2-NBD-glucose. HG increased ECs senescence markers and oxidative stress, down-regulated eNOS expression and NO formation, and induced the expression of VCAM-1, tissue factor, and the local angiotensin system, all these effects were prevented by empagliflozin. Empagliflozin and LX-4211 (dual SGLT1/2 inhibitor) reduced glucose uptake stimulated by HG and H2 O2 in ECs. HG increased SGLT1 and 2 protein levels in cultured ECs and native endothelium. Inhibition of the angiotensin system prevented HG-induced ECs senescence and SGLT1 and 2 expression. Thus, HG-induced ECs ageing is driven by the local angiotensin system via the redox-sensitive up-regulation of SGLT1 and 2, and, in turn, enhanced glucotoxicity.
Collapse
Affiliation(s)
- Sonia Khemais-Benkhiat
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Eugenia Belcastro
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Noureddine Idris-Khodja
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.,UMR INSERM 1109, Nanomédecine Régénérative Ostéo-articulaire et Dentaire, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Sin-Hee Park
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Lamia Amoura
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Malak Abbas
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Cyril Auger
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Laurence Kessler
- EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, FMTS, Université de Strasbourg, Illkirch, France
| | - Eric Mayoux
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Florence Toti
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Valérie B Schini-Kerth
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| |
Collapse
|
23
|
Zhou Q, Han X, Li R, Zhao W, Bai B, Yan C, Dong X. Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:171-180. [PMID: 30466614 DOI: 10.1016/j.phymed.2018.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Rhodiola rosea has been used as a traditional medicine for a long history. Previous studies on oligomeric proanthocyanidins from Rhodiola rosea (OPCRR) have showed that it exhibited significant free radical-scavenging activities, antioxidant activities in aging mice and lipid lowering effects. HYPOTHESIS/PURPOSE We hypothesized that OPCRR can improve the atherosclerosis pathological in rats. In the present study, we investigated the effects of OPCRR on the serum lipid profiles, oxidant stress status, inflammatory cytokines and atherosclerotic mediators, and endothelial dysfunction as well as changes in abdominal aorta of atherosclerosis rats. METHODS The major components of OPCRR were analyzed by using infrared spectrum and HPLC-ESI-MS. The atherosclerosis rat model was induced by high fat and vitamin D3 feeding for 9 weeks and two OPCRR doses (60 and 120 mg/kg b.w.) were orally administered daily for 9 weeks. The rats were then sacrificed and the blood was collected via abdominal aorta and serum was separated by centrifugated for biochemical analysis. Part of the aorta tissues were excised immediately for histopathological examination and western blotting. RESULTS Compared to model group, OPCRR treatments significantly decreased the serum lipid profiles including total cholesterol, total triglycerides, low-density lipoprotein cholesterol (LDL-C) and ox-LDL and increased the high-density lipoprotein cholesterol (HDL-C); significant increased serum antioxidant enzymes (SOD and GSH-Px) and decrease of MDA content as a product of lipid peroxidation; lowered serum levels of TNF-α, IL-1β, IL-6, ICAM-1 and VCAM-1 and enhanced IL-10 level; increased the serum release of nitric oxide and expression of iNOS in aortic, whereas decreased the expression of eNOS. CONCLUSION OPCRR can improve the progress of atherosclerosis by regulation of lipid metabolism, restoring of the antioxidant capacities, and attenuation of pro-inflammatory cytokines and chemcytokines release, and improving the endothelial dysfunction indicated by nitric oxide system.
Collapse
Affiliation(s)
- Qian Zhou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China; Engineering Technology Research Center for Agricultural Product Processing of Hebei, Baoding 071001, PR China
| | - Xue Han
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Rongbin Li
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Wen Zhao
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China; Engineering Technology Research Center for Agricultural Product Processing of Hebei, Baoding 071001, PR China.
| | - Bingyao Bai
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Chenjing Yan
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Xiaohan Dong
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| |
Collapse
|
24
|
Oak MH, Auger C, Belcastro E, Park SH, Lee HH, Schini-Kerth VB. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic Biol Med 2018; 122:161-170. [PMID: 29548794 DOI: 10.1016/j.freeradbiomed.2018.03.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Epidemiological studies have indicated that regular intake of polyphenol-rich diets such as red wine and tea, are associated with a reduced risk of cardiovascular diseases. The beneficial effect of polyphenol-rich products has been attributable, at least in part, to their direct action on the endothelial function. Indeed, polyphenols from tea, grapes, cacao, berries, and plants have been shown to activate endothelial cells to increase the formation of potent vasoprotective factors including nitric oxide (NO) and to delay endothelial ageing. Moreover, intake of such polyphenol-rich products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in Humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that polyphenols are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Min-Ho Oak
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Hyun-Ho Lee
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
25
|
Wegener T, Gündling PW, Holubarsch CJF, Mayer JG, Schini-Kerth VB, Schmidt-Trucksäss A, Stange R. [Significance of hawthorn extract in general practice - a current positioning]. MMW Fortschr Med 2018; 160:1-7. [PMID: 29974436 DOI: 10.1007/s15006-018-0725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Traditionally, hawthorn extract has been used for preventive and curative support in mild forms of age-related cardiovascular problems. There are now solid data demonstrating pre-clinical effects and mechanisms of action on a molecular-biological and cellular level that appear to be of particular interest in influencing vascular ageing and in arterial vascular disorders. METHOD The review presents the results of a meeting of experts that took place to work out a current assessment of the therapeutic suitability of hawthorn extract in the treatment of cardiovascular disease. RESULTS AND CONCLUSIONS Although currently no general recommendation can be given on the use of hawthorn extract in cardiac insufficiency, its use is indicated for typical challenges arising in general practice, where particularly patients with functional cardiorespiratory complaints present, possibly those with cardiac insufficiency with preserved heart function for whom there has thus far been no effective therapy apart from exercise. This recommendation is supported by the findings of studies on the safety and very good tolerability of hawthorn extract, particularly for therapy adjuvant to standard practice.
Collapse
Affiliation(s)
| | - Peter W Gündling
- Hochschule Fresenius Idstein, Johann-Wolfgang-Goethe-Universität Frankfurt am Main, Frankfurt am Main, Deutschland
| | | | - Johannes Gottfried Mayer
- Forschergruppe Klostermedizin GmbH, Universität Würzburg und Universität Erlangen-Nürnberg, Erlangen, Deutschland
| | - Valerie B Schini-Kerth
- UMR 1260 INSERM Nanomédecine Régénérative, Universität Straßburg, Fakultät für Pharmazie, Illkirch, Frankreich
| | - Arno Schmidt-Trucksäss
- Bereich Sport- und Bewegungsmedizin, Department für Sport, Bewegung und Gesundheit (DSBG), Universität Basel, Basel, Schweiz
| | - Rainer Stange
- Abteilung Naturheilkunde, Charité - Universitätsmedizin Berlin und Immanuel Krankenhaus Berlin, Standort Berlin-Wannsee, Deutschland
| |
Collapse
|
26
|
Holubarsch CJF, Colucci WS, Eha J. Benefit-Risk Assessment of Crataegus Extract WS 1442: An Evidence-Based Review. Am J Cardiovasc Drugs 2018; 18:25-36. [PMID: 29080984 PMCID: PMC5772138 DOI: 10.1007/s40256-017-0249-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preparations from Crataegus (hawthorn) have a long history in the treatment of heart failure. WS 1442 is a dry extract from hawthorn leaves with flowers (4–6.6:1), extraction solvent of ethanol 45% (w/w), adjusted to 17.3–20.1% of oligomeric procyanidins. Nonclinical studies show that WS 1442 has positive inotropic and antiarrhythmic properties and protects the myocardium from ischemic damage, reperfusion injury, and hypertension-related hypertrophy, improves endothelial functions such as NO synthesis, and delays endothelial senescence. Randomized, controlled trials in patients with heart failure have demonstrated that the herbal medicinal product increases functional capacity, alleviates disabling symptoms, and improves health-related quality of life, all of which have become important targets of heart failure therapy according to current disease management guidelines. Clinical trials (including a 2-year mortality study with polypharmacy and > 1300 patients exposed) and post-marketing surveillance studies have shown that WS 1442 has a very favorable safety profile both as monotherapy and as add-on therapy, where no drug interactions have been observed. No specific adverse reactions to WS 1442 are known to date. WS 1442 may thus help to close the therapeutic gap between systolic and diastolic heart failure for which evidence of efficacy for other cardioactive drugs is sparse. Scientific evidence shows that WS 1442 is safe and has a beneficial effect in patients with heart failure corresponding to New York Heart Association classes II or III. The benefit-risk assessment for WS 1442 is therefore positive.
Collapse
|
27
|
Kreutter G, Kassem M, El Habhab A, Baltzinger P, Abbas M, Boisrame‐Helms J, Amoura L, Peluso J, Yver B, Fatiha Z, Ubeaud‐Sequier G, Kessler L, Toti F. Endothelial microparticles released by activated protein C protect beta cells through EPCR/PAR1 and annexin A1/FPR2 pathways in islets. J Cell Mol Med 2017; 21:2759-2772. [PMID: 28524456 PMCID: PMC5661261 DOI: 10.1111/jcmm.13191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/12/2017] [Indexed: 01/08/2023] Open
Abstract
Islet transplantation is associated with early ischaemia/reperfusion, localized coagulation and redox-sensitive endothelial dysfunction. In animal models, islet cytoprotection by activated protein C (aPC) restores islet vascularization and protects graft function, suggesting that aPC triggers various lineages. aPC also prompts the release of endothelial MP that bear EPCR, its specific receptor. Microparticles (MP) are plasma membrane procoagulant vesicles, surrogate markers of stress and cellular effectors. We measured the cytoprotective effects of aPC on endothelial and insulin-secreting Rin-m5f β-cells and its role in autocrine and paracrine MP-mediated cell crosstalk under conditions of oxidative stress. MP from aPC-treated primary endothelial (EC) or β-cells were applied to H2 O2 -treated Rin-m5f. aPC activity was measured by enzymatic assay and ROS species by dihydroethidium. The capture of PKH26-stained MP and the expression of EPCR were probed by fluorescence microscopy and apoptosis by flow cytometry. aPC treatment enhanced both annexin A1 (ANXA1) and PAR-1 expression in EC and to a lesser extent in β-cells. MP from aPC-treated EC (eMaPC ) exhibited high EPCR and annexin A1 content, protected β-cells, restored insulin secretion and were captured by 80% of β cells in a phosphatidylserine and ANXA1-dependent mechanism. eMP activated EPCR/PAR-1 and ANXA1/FPR2-dependent pathways and up-regulated the expression of EPCR, and of FPR2/ALX, the ANXA1 receptor. Cytoprotection was confirmed in H2 O2 -treated rat islets with increased viability (62% versus 48% H2 O2 ), reduced apoptosis and preserved insulin secretion in response to glucose elevation (16 versus 5 ng/ml insulin per 10 islets). MP may prove a promising therapeutic tool in the protection of transplanted islets.
Collapse
Affiliation(s)
- Guillaume Kreutter
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
| | - Mohamad Kassem
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Ali El Habhab
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Philippe Baltzinger
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of DiabetologyUniversity HospitalCHU de Strasbourg1 place de l'HôpitalStrasbourg CedexFrance
| | - Malak Abbas
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Julie Boisrame‐Helms
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of Anesthesia‐ReanimationUniversity Hospital, CHU de Strasbourg, 1 place de l'HôpitalStrasbourg CedexFrance
| | - Lamia Amoura
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Jean Peluso
- UPS1401‐ Plateforme eBiocyteFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Blandine Yver
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
| | - Zobairi Fatiha
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
| | - Geneviève Ubeaud‐Sequier
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of Pharmacy‐sterilizationUniversity HospitalCHU de StrasbourgStrasbourgFrance
- UPS1401‐ Plateforme eBiocyteFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Laurence Kessler
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of DiabetologyUniversity HospitalCHU de Strasbourg1 place de l'HôpitalStrasbourg CedexFrance
| | - Florence Toti
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| |
Collapse
|
28
|
de Almeida AJPO, Ribeiro TP, de Medeiros IA. Aging: Molecular Pathways and Implications on the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7941563. [PMID: 28874954 PMCID: PMC5569936 DOI: 10.1155/2017/7941563] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The world's population over 60 years is growing rapidly, reaching 22% of the global population in the next decades. Despite the increase in global longevity, individual healthspan needs to follow this growth. Several diseases have their prevalence increased by age, such as cardiovascular diseases, the leading cause of morbidity and mortality worldwide. Understanding the aging biology mechanisms is fundamental to the pursuit of cardiovascular health. In this way, aging is characterized by a gradual decline in physiological functions, involving the increased number in senescent cells into the body. Several pathways lead to senescence, including oxidative stress and persistent inflammation, as well as energy failure such as mitochondrial dysfunction and deregulated autophagy, being ROS, AMPK, SIRTs, mTOR, IGF-1, and p53 key regulators of the metabolic control, connecting aging to the pathways which drive towards diseases. In addition, senescence can be induced by cellular replication, which resulted from telomere shortening. Taken together, it is possible to draw a common pathway unifying aging to cardiovascular diseases, and the central point of this process, senescence, can be the target for new therapies, which may result in the healthspan matching the lifespan.
Collapse
Affiliation(s)
- Arthur José Pontes Oliveira de Almeida
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária-Campus I, Caixa Postal 5009, 58.051-970 João Pessoa, PB, Brazil
| | - Thaís Porto Ribeiro
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária-Campus I, Caixa Postal 5009, 58.051-970 João Pessoa, PB, Brazil
| | - Isac Almeida de Medeiros
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária-Campus I, Caixa Postal 5009, 58.051-970 João Pessoa, PB, Brazil
| |
Collapse
|
29
|
Abbas M, Jesel L, Auger C, Amoura L, Messas N, Manin G, Rumig C, León-González AJ, Ribeiro TP, Silva GC, Abou-Merhi R, Hamade E, Hecker M, Georg Y, Chakfe N, Ohlmann P, Schini-Kerth VB, Toti F, Morel O. Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity: Role of the Ang II/AT1 Receptor/NADPH Oxidase-Mediated Activation of MAPKs and PI3-Kinase Pathways. Circulation 2016; 135:280-296. [PMID: 27821539 DOI: 10.1161/circulationaha.116.017513] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Microparticles (MPs) have emerged as a surrogate marker of endothelial dysfunction and cardiovascular risk. This study examined the potential of MPs from senescent endothelial cells (ECs) or from patients with acute coronary syndrome (ACS) to promote premature EC aging and thrombogenicity. METHODS Primary porcine coronary ECs were isolated from the left circumflex coronary artery. MPs were prepared from ECs and venous blood from patients with ACS (n=30) and from healthy volunteers (n=4) by sequential centrifugation. The level of endothelial senescence was assessed as senescence-associated β-galactosidase activity using flow cytometry, oxidative stress using the redox-sensitive probe dihydroethidium, tissue factor activity using an enzymatic Tenase assay, the level of target protein expression by Western blot analysis, platelet aggregation using an aggregometer, and shear stress using a cone-and-plate viscometer. RESULTS Senescence, as assessed by senescence-associated β-galactosidase activity, was induced by the passaging of porcine coronary artery ECs from passage P1 to P4, and was associated with a progressive shedding of procoagulant MPs. Exposure of P1 ECs to MPs shed from senescent P3 cells or circulating MPs from ACS patients induced increased senescence-associated β-galactosidase activity, oxidative stress, early phosphorylation of mitogen-activated protein kinases and Akt, and upregulation of p53, p21, and p16. Ex vivo, the prosenescent effect of circulating MPs from ACS patients was evidenced only under conditions of low shear stress. Depletion of endothelial-derived MPs from ACS patients reduced the induction of senescence. Prosenescent MPs promoted EC thrombogenicity through tissue factor upregulation, shedding of procoagulant MPs, endothelial nitric oxide synthase downregulation, and reduced nitric oxide-mediated inhibition of platelet aggregation. These MPs exhibited angiotensin-converting enzyme activity and upregulated AT1 receptors and angiotensin-converting enzyme in P1 ECs. Losartan, an AT1 receptor antagonist, and inhibitors of either mitogen-activated protein kinases or phosphoinositide 3-kinase prevented the MP-induced endothelial senescence. CONCLUSIONS These findings indicate that endothelial-derived MPs from ACS patients induce premature endothelial senescence under atheroprone low shear stress and thrombogenicity through angiotensin II-induced redox-sensitive activation of mitogen-activated protein kinases and phosphoinositide 3-kinase/Akt. They further suggest that targeting endothelial-derived MP shedding and their bioactivity may be a promising therapeutic strategy to limit the development of an endothelial dysfunction post-ACS.
Collapse
Affiliation(s)
- Malak Abbas
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Laurence Jesel
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Cyril Auger
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Lamia Amoura
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Nathan Messas
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Guillaume Manin
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Cordula Rumig
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Antonio J León-González
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Thais P Ribeiro
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Grazielle C Silva
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Raghida Abou-Merhi
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Eva Hamade
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Markus Hecker
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Yannick Georg
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Nabil Chakfe
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Patrick Ohlmann
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Valérie B Schini-Kerth
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Florence Toti
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.)
| | - Olivier Morel
- From UMR CNRS 7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France (M.A., L.J., C.A., L.A., A.J.L.-G., T.P.R., G.C.S., V.B.S.-K., F.T., O.M.); EA7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France (M.A., L.J., L.A.); Faculté des Sciences I. Laboratoire Génomique et Santé, Plateforme de Recherche en Sciences et Technologies, Université Libanaise, Hadath, Lebanon )M.A., R.A.-M., E.H.); Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Fédération de Médecine Translationnelle de Strasbourg, France (N.M., G.M., Y.G., N.C., P.O., O.M.); and Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany (C.R., M.H.).
| |
Collapse
|