1
|
Li S, Wang K, Wu J, Zhu Y. The immunosenescence clock: A new method for evaluating biological age and predicting mortality risk. Ageing Res Rev 2024; 104:102653. [PMID: 39746402 DOI: 10.1016/j.arr.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Precisely assessing an individual's immune age is critical for developing targeted aging interventions. Although traditional methods for evaluating biological age, such as the use of cellular senescence markers and physiological indicators, have been widely applied, these methods inherently struggle to capture the full complexity of biological aging. We propose the concept of an 'immunosenescence clock' that evaluates immune system changes on the basis of changes in immune cell abundance and omics data (including transcriptome and proteome data), providing a complementary indicator for understanding age-related physiological transformations. Rather than claiming to definitively measure biological age, this approach can be divided into a biological age prediction clock and a mortality prediction clock. The main function of the biological age prediction clock is to reflect the physiological state through the transcriptome data of peripheral blood mononuclear cells (PBMCs), whereas the mortality prediction clock emphasizes the ability to identify people at high risk of mortality and disease. We hereby present nearly all of the immunosenescence clocks developed to date, as well as their functional differences. Critically, we explicitly acknowledge that no single diagnostic test can exhaustively capture the intricate changes associated with biological aging. Furthermore, as these biological functions are based on the acceleration or delay of immunosenescence, we also summarize the factors that accelerate immunosenescence and the methods for delaying it. A deep understanding of the regulatory mechanisms of immunosenescence can help establish more accurate immune-age models, providing support for personalized longevity interventions and improving quality of life in old age.
Collapse
Affiliation(s)
- Shuyu Li
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Wang
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Corder KM, Hoffman JM, Sogorovic A, Yang Y, Banerjee A, Sun Y, Stout MB, Austad SN. Negative effects of lifespan extending intervention on resilience in mice. PLoS One 2024; 19:e0312440. [PMID: 39570905 PMCID: PMC11581327 DOI: 10.1371/journal.pone.0312440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024] Open
Abstract
One key goal of basic aging research is the development of reliable assays of both current and future health. These assays could dramatically accelerate progress toward developing health-extending interventions by obviating the need for full lifespan studies, especially if they were informative relatively early in life. One potential approach is the assessment of physiological resilience, defined as the ability to recover from an adverse event. Here, using CB6F1 mice, we evaluated four potential resilience assays, each quantifying recovery from a physiological challenge with clear relevance to humans. The challenges were: (1) anesthesia recovery, (2) restoration of hemoglobin levels after a blood draw, (3) speed of wound healing, and (4) survival after pathogen exposure. We evaluated how each changed with age and with interventions known to extend health in males only (17α-estradiol) or both sexes (calorie restriction). We found that three of the four (recovery from anesthesia, blood draw, and pathogen exposure) showed significant and expected age effects, but wound healing did not. None of the three age-sensitive assays responded to the health-extending interventions in the way we expected, and for some assays, including anesthesia response, interventions actually worsened outcomes. Possible explanations are: (1) our interventions were too brief, (2) the ages we evaluated were too young, (3) our assays did not capture important features of organismal resilience, or (4) organismal resilience is not as clearly related to current or future health as hypothesized. Future studies are needed to determine which of these interpretations is valid and to determine whether other resilience metrics may be more informative about current and future health.
Collapse
Affiliation(s)
- Katelynn M. Corder
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Biological and Environmental Sciences, Samford University, Homewood, AL, United States of America
| | - Jessica M. Hoffman
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Biological Sciences, Augusta University, Augusta, GA, United States of America
| | - Anamarija Sogorovic
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Youfeng Yang
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Anisha Banerjee
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Yi Sun
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Life, Health, and Physical Sciences, Gordon College, Wenham, MA, United States of America
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, United States of America
| | - Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
3
|
Del Toro J, Bernard D, Lee RM, Adam EK. Framing resilience linked to parental ethnic-racial socialization as hidden: A hidden resilience conceptual framework. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2024; 18:e12984. [PMID: 39713049 PMCID: PMC11661798 DOI: 10.1111/spc3.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 12/24/2024]
Abstract
Parental ethnic-racial socialization is a source of adolescents' resilience against ethnic-racial discrimination. Recent meta-analyses have documented the promotive aspects of ethnic-racial socialization (i.e., how ethnic-racial socialization is directly related with adolescents' adjustment regardless of their discrimination experiences). However, extant empirical studies have produced conflicting results about the protection or moderating role of ethnic-racial socialization, with studies suggesting that ethnic-racial socialization buffers, exacerbates, or does not moderate the impacts of ethnic-racial discrimination. We offer a reconceptualization of existing studies' findings and draw from existing theories to propose Hidden Resilience as a new conceptual framework that highlights how resilience and the positive benefits linked to ethnic-racial socialization may not be noticeable when studies use psychosocial measures but is rather hidden "underneath the skin." Conversations about racism may momentarily feel uncomfortable, upsetting, or stressful for youth, but such conversations can help youth learn how to cope with ethnic-racial discrimination in the long term. Following a review of studies supporting our conceptual framework, we provide suggestions for future research to expand the field's understanding of resilience linked to ethnic-racial socialization.
Collapse
Affiliation(s)
- Juan Del Toro
- University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Donte Bernard
- University of Missouri-Columbia, Columbia, Missouri, USA
| | - Richard M. Lee
- University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Emma K. Adam
- Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
4
|
Mancin E, Maltecca C, Huang YJ, Mantovani R, Tiezzi F. A first characterization of the microbiota-resilience link in swine. MICROBIOME 2024; 12:53. [PMID: 38486255 PMCID: PMC10941389 DOI: 10.1186/s40168-024-01771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The gut microbiome plays a crucial role in understanding complex biological mechanisms, including host resilience to stressors. Investigating the microbiota-resilience link in animals and plants holds relevance in addressing challenges like adaptation of agricultural species to a warming environment. This study aims to characterize the microbiota-resilience connection in swine. As resilience is not directly observable, we estimated it using four distinct indicators based on daily feed consumption variability, assuming animals with greater intake variation may face challenges in maintaining stable physiological status. These indicators were analyzed both as linear and categorical variables. In our first set of analyses, we explored the microbiota-resilience link using PERMANOVA, α-diversity analysis, and discriminant analysis. Additionally, we quantified the ratio of estimated microbiota variance to total phenotypic variance (microbiability). Finally, we conducted a Partial Least Squares-Discriminant Analysis (PLS-DA) to assess the classification performance of the microbiota with indicators expressed in classes. RESULTS This study offers four key insights. Firstly, among all indicators, two effectively captured resilience. Secondly, our analyses revealed robust relationship between microbial composition and resilience in terms of both composition and richness. We found decreased α-diversity in less-resilient animals, while specific amplicon sequence variants (ASVs) and KEGG pathways associated with inflammatory responses were negatively linked to resilience. Thirdly, considering resilience indicators in classes, we observed significant differences in microbial composition primarily in animals with lower resilience. Lastly, our study indicates that gut microbial composition can serve as a reliable biomarker for distinguishing individuals with lower resilience. CONCLUSION Our comprehensive analyses have highlighted the host-microbiota and resilience connection, contributing valuable insights to the existing scientific knowledge. The practical implications of PLS-DA and microbiability results are noteworthy. PLS-DA suggests that host-microbiota interactions could be utilized as biomarkers for monitoring resilience. Furthermore, the microbiability findings show that leveraging host-microbiota insights may improve the identification of resilient animals, supporting their adaptive capacity in response to changing environmental conditions. These practical implications offer promising avenues for enhancing animal well-being and adaptation strategies in the context of environmental challenges faced by livestock populations. Video Abstract.
Collapse
Affiliation(s)
- Enrico Mancin
- Department of Agronomy, Animals and Environment, (DAFNAE), Food, Natural Resources, University of Padova, Viale del Università 14, 35020, Legnaro (Padova), Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Yi Jian Huang
- Smithfield Premium Genetics, Rose Hill, NC, 28458, USA
| | - Roberto Mantovani
- Department of Agronomy, Animals and Environment, (DAFNAE), Food, Natural Resources, University of Padova, Viale del Università 14, 35020, Legnaro (Padova), Italy
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy.
| |
Collapse
|
5
|
Mușat MI, Mitran SI, Udriștoiu I, Albu CV, Cătălin B. The impact of stress on the behavior of C57BL/6 mice with liver injury: a comparative study. Front Behav Neurosci 2024; 18:1358964. [PMID: 38510829 PMCID: PMC10950904 DOI: 10.3389/fnbeh.2024.1358964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Depressive-like behavior has been shown to be associated with liver damage. This study aimed to evaluate the impact of three different models of depression on the behavior of mice with liver injury. Methods During the 4 weeks of methionine/choline deficiency diet (MCD), adult C57BL/6 mice were randomly divided into four groups: MCD (no stress protocol, n = 6), chronic unpredictable mild stress (CUMS, n = 9), acute and repeated forced swim stress [aFSS (n = 9) and rFSS (n = 9)]. Results All depression protocols induced increased anhedonia and anxiety-like behavior compared to baseline and had no impact on the severity of liver damage, according to ultrasonography. However, different protocols evoked different overall behavior patterns. After the depressive-like behavior induction protocols, animals subjected to aFSS did not exhibit anxiety-like behavior differences compared to MCD animals, while mice subjected to CUMS showed additional weight loss compared to FSS animals. All tested protocols for inducing depressive-like behavior decreased the short-term memory of mice with liver damage, as assessed by the novel object recognition test (NORT). Discussion Our results show that the use of all protocols seems to generate different levels of anxiety-like behavior, but only the depressive-like behavior induction procedures associate additional anhedonia and memory impairment in mice with liver injury.
Collapse
Affiliation(s)
- Mădălina Iuliana Mușat
- U.M.F. Doctoral School Craiova, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Smaranda Ioana Mitran
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ion Udriștoiu
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy, Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
6
|
Mazzola J, Park JY, Ladiges W. Modeling resilience to sleep disruption to study resistance to Alzheimer's disease. AGING PATHOBIOLOGY AND THERAPEUTICS 2023; 5:154-156. [PMID: 38933082 PMCID: PMC11208037 DOI: 10.31491/apt.2023.12.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition with unknown etiology and no cure. Therefore, it is imperative to learn more about the underlying risk factors. Since AD is an age-related disease, one approach is to look at factors associated with aging. One example is sleep disruption, which increases with age and accelerates the progression of cognitive decline. However, some people with sleep loss experience little or no cognitive impairment and are considered resilient. The concept that resilience to sleep disruption increases resistance to AD can be modeled in aging mice with or without cognitive impairment to determine resistance or susceptibility to AD. Given that sleep disruption is a relevant and rising health concern, it is essential to gain a better understanding of resilience, and factors associated with resistance to AD, in order to develop successful intervention strategies.
Collapse
Affiliation(s)
- Jordan Mazzola
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Joo Young Park
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Schaaf GW, Justice JN, Quillen EE, Cline JM. Resilience, aging, and response to radiation exposure (RARRE) in nonhuman primates: a resource review. GeroScience 2023; 45:3371-3379. [PMID: 37188889 PMCID: PMC10643677 DOI: 10.1007/s11357-023-00812-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The Wake Forest nonhuman primate (NHP) Radiation Late Effects Cohort (RLEC) is a unique and irreplaceable population of aging NHP radiation survivors which serves the nation's need to understand the late effects of radiation exposure. Over the past 16 years, Wake Forest has evaluated > 250 previously irradiated rhesus macaques (Macaca mulatta) that were exposed to single total body irradiation (IR) doses of 1.14-8.5 Gy or to partial body exposures of up to 10 Gy (5% bone marrow sparing) or 10.75 Gy (whole thorax). Though primarily used to examine IR effects on disease-specific processes or to develop radiation countermeasures, this resource provides insights on resilience across physiologic systems and its relationship with biological aging. Exposure to IR has well documented deleterious effects on health, but the late effects of IR are highly variable. Some animals exhibit multimorbidity and accumulated health deficits, whereas others remain relatively resilient years after exposure to total body IR. This provides an opportunity to evaluate biological aging at the nexus of resilient/vulnerable responses to a stressor. Consideration of inter-individual differences in response to this stressor can inform individualized strategies to manage late effects of radiation exposure, and provide insight into mechanisms underlying systemic resilience and aging. The utility of this cohort for age-related research questions was summarized at the 2022 Trans-NIH Geroscience Interest Group's Workshop on Animal Models for Geroscience. We present a brief review of radiation injury and its relationship to aging and resilience in NHPs with a focus on the RLEC.
Collapse
Affiliation(s)
- George W Schaaf
- Department of Pathology, Section On Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Jamie N Justice
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, and Stich Center for Health Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ellen E Quillen
- Department of Internal Medicine, Section On Molecular Medicine, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - J Mark Cline
- Department of Pathology, Section On Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Tucker M, Keely A, Park JY, Rosenfeld M, Wezeman J, Mangalindan R, Ratner D, Ladiges W. Intranasal GHK peptide enhances resilience to cognitive decline in aging mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567423. [PMID: 38014118 PMCID: PMC10680828 DOI: 10.1101/2023.11.16.567423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Brain aging and cognitive decline are aspects of growing old. Age-related cognitive impairment entails the early stages of cognitive decline, and is extremely common, affecting millions of older people. Investigation into early cognitive decline as a treatable condition is relevant to a wide range of cognitive impairment conditions, since mild age-related neuropathology increases risk for more severe neuropathology and dementia associated with Alzheimer's Disease. Recent studies suggest that the naturally occurring peptide GHK (glycyl-L-histidyl-L-lysine) in its Cu-bound form, has the potential to treat cognitive decline associated with aging. In order to test this concept, male and female C57BL/6 mice, 20 months of age, were given intranasal GHK-Cu, 15 mg/kg daily, for two months. Results showed that mice treated with intranasal GHK-Cu had an enhanced level of cognitive performance in spatial memory and learning navigation tasks, and expressed decreased neuroinflammatory and axonal damage markers compared to mice treated with intranasal saline. These observations suggest that GHK-Cu can enhance resilience to brain aging, and has translational implications for further testing in both preclinical and clinical studies using an atomizer device for intranasal delivery.
Collapse
Affiliation(s)
- Matthew Tucker
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle WA
| | - Addison Keely
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Joo Young Park
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Manuela Rosenfeld
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Jackson Wezeman
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Ruby Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Dan Ratner
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle WA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| |
Collapse
|
9
|
Johnson C, Zhu L, Mangalindan R, Whitson J, Sweetwyne M, Valencia AP, Marcinek DJ, Rabinovitch P, Ladiges W. Older-aged C57BL/6 mice fed a diet high in saturated fat and sucrose for ten months show decreased resilience to aging. AGING PATHOBIOLOGY AND THERAPEUTICS 2023; 5:101-106. [PMID: 38706773 PMCID: PMC11067904 DOI: 10.31491/apt.2023.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The ability to respond to physical stress that disrupts normal physiological homeostasis at an older age embraces the concept of resilience to aging. A physical stressor could be used to induce physiological responses that are age-related, since resilience declines with increasing age. Increased fat and sugar intake is a nutritional stress with a high prevalence of obesity in older people. In order to determine the effect of this type of diet on resilience to aging, 18-month-old C57BL/6J male mice were fed a diet high in saturated fat (lard) and sucrose (HFS) for ten months. At the end of the 10-month study, mice fed the HFS diet showed increased cognitive impairment, decreased cardiac function, decreased strength and agility, and increased severity of renal pathology compared to mice fed a rodent chow diet low in saturated fat and sucrose (LFS). The degree of response aligned with decreased resilience to the long-term adverse effects of the diet with characteristics of accelerated aging. This observation suggests additional studies could be conducted to investigate the relationship between an accelerated decline in resilience to aging and enhanced resilience to aging under different dietary conditions.
Collapse
Affiliation(s)
- Chloe Johnson
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Lida Zhu
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ruby Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeremy Whitson
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Maryia Sweetwyne
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ana P. Valencia
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - David J. Marcinek
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Peter Rabinovitch
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Akagi K, Koizumi K, Kadowaki M, Kitajima I, Saito S. New Possibilities for Evaluating the Development of Age-Related Pathologies Using the Dynamical Network Biomarkers Theory. Cells 2023; 12:2297. [PMID: 37759519 PMCID: PMC10528308 DOI: 10.3390/cells12182297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is the slowest process in a living organism. During this process, mortality rate increases exponentially due to the accumulation of damage at the cellular level. Cellular senescence is a well-established hallmark of aging, as well as a promising target for preventing aging and age-related diseases. However, mapping the senescent cells in tissues is extremely challenging, as their low abundance, lack of specific markers, and variability arise from heterogeneity. Hence, methodologies for identifying or predicting the development of senescent cells are necessary for achieving healthy aging. A new wave of bioinformatic methodologies based on mathematics/physics theories have been proposed to be applied to aging biology, which is altering the way we approach our understand of aging. Here, we discuss the dynamical network biomarkers (DNB) theory, which allows for the prediction of state transition in complex systems such as living organisms, as well as usage of Raman spectroscopy that offers a non-invasive and label-free imaging, and provide a perspective on potential applications for the study of aging.
Collapse
Affiliation(s)
- Kazutaka Akagi
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Keiichi Koizumi
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Makoto Kadowaki
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Isao Kitajima
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Shigeru Saito
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
11
|
Duregon E, Fernandez ME, Martinez Romero J, Di Germanio C, Cabassa M, Voloshchuk R, Ehrlich-Mora MR, Moats JM, Wong S, Bosompra O, Rudderow A, Morrell CH, Camandola S, Price NL, Aon MA, Bernier M, de Cabo R. Prolonged fasting times reap greater geroprotective effects when combined with caloric restriction in adult female mice. Cell Metab 2023; 35:1179-1194.e5. [PMID: 37437544 PMCID: PMC10369303 DOI: 10.1016/j.cmet.2023.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/27/2023] [Accepted: 05/08/2023] [Indexed: 07/14/2023]
Abstract
Emerging new evidence highlights the importance of prolonged daily fasting periods for the health and survival benefits of calorie restriction (CR) and time-restricted feeding (TRF) in male mice; however, little is known about the impact of these feeding regimens in females. We placed 14-month-old female mice on five different dietary regimens, either CR or TRF with different feeding windows, and determined the effects of these regimens on physiological responses, progression of neoplasms and inflammatory diseases, serum metabolite levels, and lifespan. Compared with TRF feeding, CR elicited a robust systemic response, as it relates to energetics and healthspan metrics, a unique serum metabolomics signature in overnight fasted animals, and was associated with an increase in lifespan. These results indicate that daytime (rest-phase) feeding with prolonged fasting periods initiated late in life confer greater benefits when combined with imposed lower energy intake.
Collapse
Affiliation(s)
- Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Maria Emilia Fernandez
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jorge Martinez Romero
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Meaghan Cabassa
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Romaniya Voloshchuk
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Margaux R Ehrlich-Mora
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jacqueline M Moats
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sarah Wong
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Oye Bosompra
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Annamaria Rudderow
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Simonetta Camandola
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
12
|
Ramasamy R, Baker DS, Lemtiri-Chlieh F, Rosenberg DA, Woon E, Al-Naggar IM, Hardy CC, Levine ES, Kuchel GA, Bartley JM, Smith PP. Loss of resilience contributes to detrusor underactivity in advanced age. Biogerontology 2023; 24:163-181. [PMID: 36626035 PMCID: PMC10006334 DOI: 10.1007/s10522-022-10005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
Volume hyposensitivity resulting from impaired sympathetic detrusor relaxation during bladder filling contributes to detrusor underactivity (DU) associated with aging. Detrusor tension regulation provides an adaptive sensory input of bladder volume to the brainstem and is challenged by physiological stressors superimposed upon biological aging. We recently showed that HCN channels have a stabilizing role in detrusor sympathetic relaxation. While mature mice maintain homeostasis in the face of stressors, old mice are not always capable. In old mice, there is a dichotomous phenotype, in which resilient mice adapt and maintain homeostasis, while non-resilient mice fail to maintain physiologic homeostasis. In this DU model, we used cystometry as a stressor to categorize mice as old-responders (old-R, develop a filling/voiding cycle) or old-non-responders (old-NR, fail to develop a filling/voiding cycle; fluctuating high pressures and continuous leaking), while also assessing functional and molecular differences. Lamotrigine (HCN activator)-induced bladder relaxation is diminished in old-NR mice following HCN-blockade. Relaxation responses to NS 1619 were reduced in old-NR mice, with the effect lost following HCN-blockade. However, RNA-sequencing revealed no differences in HCN gene expression and electrophysiology studies showed similar percentage of detrusor myocytes expressing HCN (Ih) current between old-R and old-NR mice. Our murine model of DU further defines a role for HCN, with failure of adaptive recalibration of HCN participation and intensity of HCN-mediated stabilization, while genomic studies show upregulated myofibroblast and fibrosis pathways and downregulated neurotransmitter-degradation pathways in old-NR mice. Thus, the DU phenotype is multifactorial and represents the accumulation of age-associated loss in homeostatic mechanisms.
Collapse
Affiliation(s)
- Ramalakshmi Ramasamy
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Dylan S Baker
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Fouad Lemtiri-Chlieh
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Dawn A Rosenberg
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric Woon
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Cara C Hardy
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - George A Kuchel
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
| | - Jenna M Bartley
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Phillip P Smith
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
13
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
14
|
Li S, Liu Z, Zhang J, Li L. Links between telomere dysfunction and hallmarks of aging. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503617. [PMID: 37188431 DOI: 10.1016/j.mrgentox.2023.503617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Aging is characterized by the gradual loss of physiological integrity, leading to impaired function and increased risk of death. This deterioration is the main risk factor for the great majority of chronic diseases, which account for most of the morbidity, death and medical expenses. The hallmarks of aging comprise diverse molecular mechanisms and cell systems, which are interrelated and coordinated to drive the aging process. This review focuses on telomere to analyze the interrelationships between telomere dysfunction and other aging hallmarks and their relative contributions to the initiation and progression of age-related diseases (such as neurodegeneration, cardiovascular disease, and cancer), which will contribute to determine drug targets, improve human health in the aging process with minimal side effects and provide information for the prevention and treatment of age-related diseases.
Collapse
|
15
|
Wolff CA, Gutierrez-Monreal MA, Meng L, Zhang X, Douma LG, Costello HM, Douglas CM, Ebrahimi E, Pham A, Oliveira AC, Fu C, Nguyen A, Alava BR, Hesketh SJ, Morris AR, Endale MM, Crislip GR, Cheng KY, Schroder EA, Delisle BP, Bryant AJ, Gumz ML, Huo Z, Liu AC, Esser KA. Defining the age-dependent and tissue-specific circadian transcriptome in male mice. Cell Rep 2023; 42:111982. [PMID: 36640301 PMCID: PMC9929559 DOI: 10.1016/j.celrep.2022.111982] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/01/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular circadian clocks direct a daily transcriptional program that supports homeostasis and resilience. Emerging evidence has demonstrated age-associated changes in circadian functions. To define age-dependent changes at the systems level, we profile the circadian transcriptome in the hypothalamus, lung, heart, kidney, skeletal muscle, and adrenal gland in three age groups. We find age-dependent and tissue-specific clock output changes. Aging reduces the number of rhythmically expressed genes (REGs), indicative of weakened circadian control. REGs are enriched for the hallmarks of aging, adding another dimension to our understanding of aging. Analyzing differential gene expression within a tissue at four different times of day identifies distinct clusters of differentially expressed genes (DEGs). Increased variability of gene expression across the day is a common feature of aged tissues. This analysis extends the landscape for understanding aging and highlights the impact of aging on circadian clock function and temporal changes in gene expression.
Collapse
Affiliation(s)
- Christopher A Wolff
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Miguel A Gutierrez-Monreal
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA; Claude D. Pepper Older Americans Independence Center, University of Florida, Gainesville, FL 32610, USA
| | - Lingsong Meng
- Department of Biostatistics, University of Florida, Gainesville, FL 32610, USA
| | - Xiping Zhang
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lauren G Douma
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Hannah M Costello
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Collin M Douglas
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Elnaz Ebrahimi
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ann Pham
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aline C Oliveira
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chunhua Fu
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Amy Nguyen
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bryan R Alava
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stuart J Hesketh
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Andrew R Morris
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mehari M Endale
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - G Ryan Crislip
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kit-Yan Cheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Elizabeth A Schroder
- Internal Medicine, Pulmonary, University of Kentucky, Lexington, KY 40506, USA; Department of Physiology, University of Kentucky, Lexington, KY 40506, USA
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA
| | - Andrew J Bryant
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Michelle L Gumz
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; Center for Integrative Cardiovascular and Metabolic Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL 32610, USA.
| | - Andrew C Liu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Myology Institute, University of Florida, Gainesville, FL 32610, USA; Claude D. Pepper Older Americans Independence Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
16
|
Farrell S, Kane AE, Bisset E, Howlett SE, Rutenberg AD. Measurements of damage and repair of binary health attributes in aging mice and humans reveal that robustness and resilience decrease with age, operate over broad timescales, and are affected differently by interventions. eLife 2022; 11:e77632. [PMID: 36409200 PMCID: PMC9725749 DOI: 10.7554/elife.77632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
As an organism ages, its health-state is determined by a balance between the processes of damage and repair. Measuring these processes requires longitudinal data. We extract damage and repair transition rates from repeated observations of binary health attributes in mice and humans to explore robustness and resilience, which respectively represent resisting or recovering from damage. We assess differences in robustness and resilience using changes in damage rates and repair rates of binary health attributes. We find a conserved decline with age in robustness and resilience in mice and humans, implying that both contribute to worsening aging health - as assessed by the frailty index (FI). A decline in robustness, however, has a greater effect than a decline in resilience on the accelerated increase of the FI with age, and a greater association with reduced survival. We also find that deficits are damaged and repaired over a wide range of timescales ranging from the shortest measurement scales toward organismal lifetime timescales. We explore the effect of systemic interventions that have been shown to improve health, including the angiotensin-converting enzyme inhibitor enalapril and voluntary exercise for mice. We have also explored the correlations with household wealth for humans. We find that these interventions and factors affect both damage and repair rates, and hence robustness and resilience, in age and sex-dependent manners.
Collapse
Affiliation(s)
| | - Alice E Kane
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical SchoolBostonUnited States
| | - Elise Bisset
- Department of Pharmacology, Dalhousie UniversityHalifaxCanada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie UniversityHalifaxCanada
- Department of Medicine (GeriatricMedicine), Dalhousie UniversityHalifaxCanada
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie UniversityHalifaxCanada
| |
Collapse
|
17
|
Li J, Chhetri JK, Ma L. Physical resilience in older adults: Potential use in promoting healthy aging. Ageing Res Rev 2022; 81:101701. [PMID: 35905815 DOI: 10.1016/j.arr.2022.101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Physical resilience is a dynamic concept referring to the physiological response when the body is exposed to stressors. The level of physical resilience is the sum of underlying physiological reserves. Moreover, it may not only be determined by age, genetics, or exposure to a variety of diseases, but is also closely related to the psychological, social, and environmental factors of an individual. This paper summarizes our present understanding of the relationship between physical resilience and other concepts closely related to it. Furthermore, we illustrate the current research progress on physical resilience models and clinical resilience assessment. Besides, this paper intends to present a better understanding of physical resilience and its use in treatment decision-making, personalized diagnosis and disease management, and prevention and rehabilitation strategies.
Collapse
Affiliation(s)
- Jiatong Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Jagadish K Chhetri
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China.
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China.
| |
Collapse
|
18
|
Laskow T, Zhu J, Buta B, Oni J, Sieber F, Bandeen-Roche K, Walston J, Franklin PD, Varadhan R. Risk Factors for Nonresilient Outcomes in Older Adults After Total Knee Replacement. J Gerontol A Biol Sci Med Sci 2022; 77:1915-1922. [PMID: 34480562 PMCID: PMC9434465 DOI: 10.1093/gerona/glab257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Total knee replacement (TKR) is a common procedure in older adults. Physical resilience may be a useful construct to explain variable outcomes. We sought to define a simple measure of physical resilience and identify risk factors for nonresilient patient outcomes. METHODS Secondary analysis of Function and Outcomes Research for Comparative Effectiveness in Total Joint Replacement (FORCE-TJR) cohort study, a prospective registry of total joint replacement. The analysis included 7 239 adults aged 60 or older who underwent TKR between 2011 and 2015. Measures included sociodemographic and health factors. Outcomes were categorized as physically resilient versus nonresilient based on the change from baseline to 1-year follow-up for 3 patient-reported outcomes: the physical component summary (PCS), bodily pain (BP), and vitality (VT) from the Short Form-36 subcomponent scores, at preop and 1-year postprocedure. Associations were expressed as relative risk (RR) of physically nonresilient outcomes using generalized linear regression models, with Poisson distribution and log link. RESULTS Age, body mass index, and Charlson Comorbidity Index (CCI) were associated with increased risk of physically nonresilient outcomes across PCS, BP, and VT: age, per 5 years for PCS (RR = 1.18 [1.12-1.23]), BP (RR = 1.06 [1.01-1.11), and VT (RR = 1.09 [1.06-1.12]); body mass index, per 5 kg/m2, for PCS (RR = 1.13 [1.07-1.19]), BP (RR = 1.06 [1.00-1.11]), and VT (RR = 1.08 [1.04-1.11]); and CCI for PCS CCI = 1 (RR = 1.38 [1.20-1.59]), CCI = 2-5 (RR = 1.59 [1.35-1.88]), CCI ≥6 (RR = 1.55 [1.31-1.83]. Household income >$45 000 associated with lower risk for PCS (RR = 0.81 [0.70-0.93]), BP (RR = 0.80 [0.69-0.91]), and VT (RR = 0.86 [0.78-0.93]). CONCLUSIONS We operationalized physical resilience and identified factors predicting resilience after TKR. This approach may aid clinical risk stratification, guide further investigation of causes, and ultimately aid patients through the design of interventions to enhance physical resilience.
Collapse
Affiliation(s)
- Thomas Laskow
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiafeng Zhu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian Buta
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julius Oni
- Department of Orthopaedic Surgery, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Frederick Sieber
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Karen Bandeen-Roche
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jeremy Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Patricia D Franklin
- Institute for Public Health and Medicine at Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
19
|
|
20
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Barbacini P, Torretta E, Arosio B, Ferri E, Capitanio D, Moriggi M, Gelfi C. Novel Insight into the Serum Sphingolipid Fingerprint Characterizing Longevity. Int J Mol Sci 2022; 23:ijms23052428. [PMID: 35269570 PMCID: PMC8910653 DOI: 10.3390/ijms23052428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/25/2023] Open
Abstract
Sphingolipids (SLs) are structural components of the lipid bilayer regulating cell functions. In biological fluids, their distribution is sex-specific and is at variance in aging and many disorders. The aim of this study is to identify SL species associated with the decelerated aging of centenarians. SLs, extracted from serum of adults (Ad, 35–37 years old), aged (Ag, 75–77 years old) and centenarian (C, 105–107 years old) women were analyzed by LC-MS/MS in combination with mRNA levels in peripheral blood mononuclear cells (PBMCs) of SL biosynthetic enzymes. Results indicated in Ag and C vs. Ad a comparable ceramides (Cers) increase, whereas dihydroceramide (dhCer) decreased in C vs. Ad. Hexosylceramides (HexCer) species, specifically HexCer 16:0, 22:0 and 24:1 acyl chains, increased in C vs. Ag representing a specific trait of C. Sphingosine (Sph), dihydrosphingosine (dhSph), sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), increased both in Ag and C vs. Ad, with higher levels in Ag, indicating a SL fine-tuning associated with a reduced physiological decline in C. mRNA levels of enzymes involved in ceramide de novo biosynthesis increased in Ag whereas enzymes involved in sphingomyelin (SM) degradation increased in C. Collectively, results suggest that Ag produce Cers by de novo synthesis whereas C activate a protective mechanism degrading SMs to Cers converting it into glycosphingolipids.
Collapse
Affiliation(s)
- Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (P.B.); (D.C.)
| | | | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy;
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy;
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (P.B.); (D.C.)
| | - Manuela Moriggi
- Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (P.B.); (D.C.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Correspondence: ; Tel.: +39-02-50330475
| |
Collapse
|
22
|
Hernandez AR, Hoffman JM, Hernandez CM, Cortes CJ, Jumbo-Lucioni P, Baxter MG, Esser KA, Liu AC, McMahon LL, Bizon JL, Burke SN, Buford TW, Carter CS. Reuniting the Body "Neck Up and Neck Down" to Understand Cognitive Aging: The Nexus of Geroscience and Neuroscience. J Gerontol A Biol Sci Med Sci 2022; 77:e1-e9. [PMID: 34309630 PMCID: PMC8751793 DOI: 10.1093/gerona/glab215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 02/01/2023] Open
Affiliation(s)
- Abbi R Hernandez
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham (UAB), USA
| | | | - Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA
| | - Constanza J Cortes
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, USA
| | - Patricia Jumbo-Lucioni
- Department of Biology, University of Alabama at Birmingham, USA.,Pharmaceutical, Social, and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama,USA
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, USA
| | - Andrew C Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, USA
| | - Lori L McMahon
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA
| | - Jennifer L Bizon
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, USA
| | - Sara N Burke
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, USA
| | - Thomas W Buford
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA.,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, AL, USA
| | - Christy S Carter
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA
| |
Collapse
|
23
|
Cesari M, Azzolino D, LeBrasseur NK, Whitson H, Rooks D, Sourdet S, Angioni D, Fielding RA, Vellas B, Rolland Y, Andrieu S, Leheudre MA, Barcons N, Beliën A, de Souto Barreto P, Delannoy C, John G, Robledo LMG, Hwee D, Mariani J, Reshma M, Morley J, Pereira S, Erin Q, Michelle R, Rueda R, Tarasenko L, Tourette C, Van Maanen R, Waters DL. Resilience: Biological Basis and Clinical Significance - A Perspective Report from the International Conference on Frailty and Sarcopenia Research (ICFSR) Task Force. J Frailty Aging 2022; 11:342-347. [PMID: 36346720 PMCID: PMC9589704 DOI: 10.14283/jfa.2022.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Resilience is a construct receiving growing attention from the scientific community in geriatrics and gerontology. Older adults show extremely heterogeneous (and often unpredictable) responses to stressors. Such heterogeneity can (at least partly) be explained by differences in resilience (i.e., the capacity of the organism to cope with stressors). The International Conference on Frailty and Sarcopenia Research (ICFSR) Task Force met in Boston (MA,USA) on April 20, 2022 to discuss the biological and clinical significance of resilience in older adults. The identification of persons with low resilience and the prompt intervention in this at-risk population may be critical to develop and implement preventive strategies against adverse events. Unfortunately, to date, it is still challenging to capture resilience, especially due to its dynamic nature encompassing biological, clinical, subjective, and socioeconomic factors. Opportunities to dynamically measure resilience were discussed during the ICFSR Task Force meeting, emphasizing potential biomarkers and areas of intervention. This article reports the results of the meeting and may serve to support future actions in the field.
Collapse
Affiliation(s)
- Matteo Cesari
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, University of Milan, Via Camaldoli 64, 20138 Milano, Italy
| | - D. Azzolino
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, University of Milan, Via Camaldoli 64, 20138 Milano, Italy
| | - N. K. LeBrasseur
- Robert and Arlene Kodod Center on Aging, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, USA
| | - H. Whitson
- Duke University School of Medicine & Durham VA Medical Center, Durham, USA
| | - D. Rooks
- Translational Medicine, Novartis Institutes for Biomedical Research Inc., Cambridge, USA
| | - S. Sourdet
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | - D. Angioni
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | - R. A. Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA, Human Nutrition Research Center on Aging at Tufts University, Boston, MA USA
| | - B. Vellas
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | - Y. Rolland
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lei H, Huffman DM, Salmon AB, LeBrasseur NK, Carter C, Richardson A, Austad S, Ladiges W. Resilience to aging is a heterogeneous characteristic defined by physical stressors. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:19-22. [PMID: 35475259 PMCID: PMC9038086 DOI: 10.31491/apt.2022.03.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Physical resilience, the capacity to respond to and recover from a stressful event, declines with advancing age. Individuals respond differently to physical stressors across their lifespans. While the biological underpinnings of resilience remain unclear, a plausible determinant is the capacity of an individual's cellular and molecular levels to return to homeostasis after a physical challenge. Impaired resilience may not only be a consequence of aging but could also be a contributing factor to the aging process. Therefore, resilience at relatively younger ages could be predictive of future health and lifespan. By utilizing standardized physical challenges and measuring stress response patterns, the relative resilience of individuals can be quantified and classified. Current preclinical research suggests that several physical stressors could be used to measure resilience in clinical aging studies. A mechanistic understanding of why some individuals are more resilient to physical stressors than others could help identify protective factors and therapeutic ways to promote healthy aging.
Collapse
Affiliation(s)
- Haoyi Lei
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Derek M. Huffman
- Departments of Molecular Pharmacology, Medicine and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam B. Salmon
- San Antonio Sam and Ann Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, Department of Molecular Medicine, South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center, San Antonio, TX, USA
| | - Nathan K. LeBrasseur
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Christy Carter
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama Birmingham, Birmingham, AL, USA
| | - Arlan Richardson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Science Center. Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Steve Austad
- Department of Biology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Kemoun P, Ader I, Planat-Benard V, Dray C, Fazilleau N, Monsarrat P, Cousin B, Paupert J, Ousset M, Lorsignol A, Raymond-Letron I, Vellas B, Valet P, Kirkwood T, Beard J, Pénicaud L, Casteilla L. A gerophysiology perspective on healthy ageing. Ageing Res Rev 2022; 73:101537. [PMID: 34883201 DOI: 10.1016/j.arr.2021.101537] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Improvements in public health and health care have resulted in significant increases in lifespan globally, but also in a significant increase in chronic disease prevalence. This has led to a focus on healthy ageing bringing a shift from a pathology-centered to an intrinsic capacity and function-centered view. In parallel, the emerging field of geroscience has promoted the exploration of the biomolecular drivers of ageing towards a transverse vision by proposing an integrated set of molecular hallmarks. In this review, we propose to take a step further in this direction, highlighting a gerophysiological perspective that considers the notion of homeostasis/allostasis relating to robustness/fragility respectively. While robustness is associated with homeostasis achieved by an optimal structure/function relationship in all organs, successive repair processes occurring after daily injuries and infections result in accumulation of scar healing leading to progressive tissue degeneration, allostasis and frailty. Considering biological ageing as the accumulation of scarring at the level of the whole organism emphasizes three transverse and shared elements in the body - mesenchymal stroma cells/immunity/metabolism (SIM). This SIM tryptich drives tissue and organ fate to regulate the age-related evolution of body functions. It provides the basis of a gerophysiology perspective, possibly representing a better way to decipher healthy ageing, not only by defining a composite biomarker(s) but also by developing new preventive/curative strategies.
Collapse
|
26
|
Guion V, Rolland Y. Editorial: Resilience in Nursing Home Residents. J Nutr Health Aging 2022; 26:747-748. [PMID: 35934818 PMCID: PMC9362698 DOI: 10.1007/s12603-022-1832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
Affiliation(s)
- V Guion
- Vincent Guion, Gerontopole, 20 rue du Pont Saint-Pierre, Cité de la Santé, CHU de Toulouse, 31059 Toulouse, France, ORCID ID : 0000-0001-5144-4419, Phone: (+33) 561 145 664, Fax: (+33) 561 145 640, e-mail:
| | | |
Collapse
|
27
|
Verdoorn BP, Evans TK, Hanson GJ, Zhu Y, Langhi Prata LGP, Pignolo RJ, Atkinson EJ, Wissler‐Gerdes EO, Kuchel GA, Mannick JB, Kritchevsky SB, Khosla S, Rizza SA, Walston JD, Musi N, Lipsitz LA, Kiel DP, Yung R, LeBrasseur NK, Singh RJ, McCarthy T, Puskarich MA, Niedernhofer LJ, Robbins PD, Sorenson M, Tchkonia T, Kirkland JL. Fisetin for COVID-19 in skilled nursing facilities: Senolytic trials in the COVID era. J Am Geriatr Soc 2021; 69:3023-3033. [PMID: 34375437 PMCID: PMC8447437 DOI: 10.1111/jgs.17416] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 01/19/2023]
Abstract
The burden of senescent cells (SnCs), which do not divide but are metabolically active and resistant to death by apoptosis, is increased in older adults and those with chronic diseases. These individuals are also at the greatest risk for morbidity and mortality from SARS-CoV-2 infection. SARS-CoV-2 complications include cytokine storm and multiorgan failure mediated by the same factors as often produced by SnCs through their senescence-associated secretory phenotype (SASP). The SASP can be amplified by infection-related pathogen-associated molecular profile factors. Senolytic agents, such as Fisetin, selectively eliminate SnCs and delay, prevent, or alleviate multiple disorders in aged experimental animals and animal models of human chronic diseases, including obesity, diabetes, and respiratory diseases. Senolytics are now in clinical trials for multiple conditions linked to SnCs, including frailty; obesity/diabetes; osteoporosis; and cardiovascular, kidney, and lung diseases, which are also risk factors for SARS-CoV-2 morbidity and mortality. A clinical trial is underway to test if senolytics decrease SARS-CoV-2 progression and morbidity in hospitalized older adults. We describe here a National Institutes of Health-funded, multicenter, placebo-controlled clinical trial of Fisetin for older adult skilled nursing facility (SNF) residents who have been, or become, SARS-CoV-2 rtPCR-positive, including the rationale for targeting fundamental aging mechanisms in such patients. We consider logistic challenges of conducting trials in long-term care settings in the SARS-CoV-2 era, including restricted access, consent procedures, methods for obtaining biospecimens and clinical data, staffing, investigational product administration issues, and potential solutions for these challenges. We propose developing a national network of SNFs engaged in interventional clinical trials.
Collapse
Affiliation(s)
- Brandon P. Verdoorn
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of Geriatrics and GerontologyMayo ClinicRochesterMinnesotaUSA
| | - Tamara K. Evans
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - Gregory J. Hanson
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of Geriatrics and GerontologyMayo ClinicRochesterMinnesotaUSA
| | - Yi Zhu
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | | | - Robert J. Pignolo
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of Geriatrics and GerontologyMayo ClinicRochesterMinnesotaUSA
| | - Elizabeth J. Atkinson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | | | - George A. Kuchel
- University of Connecticut Center on Aging, UConn HealthFarmingtonConnecticutUSA
| | | | - Stephen B. Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's PreventionWinston‐SalemNorth CarolinaUSA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of Endocrinology, Department of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Stacey A. Rizza
- Division of Infectious Diseases, Department of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Jeremy D. Walston
- Department of Medicine, Division of Geriatric Medicine and GerontologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Lewis A. Lipsitz
- Hinda and Arthur Marcus Institute for Aging ResearchHebrew SeniorLifeBostonMassachusettsUSA
- Division of GerontologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Douglas P. Kiel
- Hinda and Arthur Marcus Institute for Aging ResearchHebrew SeniorLifeBostonMassachusettsUSA
- Division of GerontologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Raymond Yung
- Geriatrics Center and Institute of GerontologyUniversity of MichiganAnn ArborMichiganUSA
- VA Ann Arbor Geriatrics ResearchEducation and Clinical CenterAnn ArborMichiganUSA
- Department of Internal Medicine Division of Geriatric and Palliative MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Department of Physical Medicine and RehabilitationMayo ClinicRochesterMinnesotaUSA
| | - Ravinder J. Singh
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Teresa McCarthy
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michael A. Puskarich
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Tamara Tchkonia
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of Geriatrics and GerontologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
28
|
Ahn E, Lee J, Han J, Lee SM, Kwon KS, Hwang GS. Glutathione is an aging-related metabolic signature in the mouse kidney. Aging (Albany NY) 2021; 13:21009-21028. [PMID: 34492635 PMCID: PMC8457589 DOI: 10.18632/aging.203509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
The ability to maintain systemic metabolic homeostasis through various mechanisms represents a crucial strength of kidneys in the study of metabolic syndrome or aging. Moreover, age-associated kidney failure has been widely accepted. However, efforts to demonstrate aging-dependent renal metabolic rewiring have been limited. In the present study, we investigated aging-related renal metabolic determinants by integrating metabolomic and transcriptomic data sets from kidneys of young (3 months, n = 7 and 3 for respectively) and old (24 months, n = 8 and 3 for respectively) naive C57BL/6 male mice. Metabolite profiling analysis was conducted, followed by data processing via network and pathway analyses, to identify differential metabolites. In the aged group, the levels of glutathione and oxidized glutathione were significantly increased, but the levels of gamma-glutamyl amino acids, amino acids combined with the gamma-glutamyl moiety from glutathione by membrane transpeptidases, and circulating glutathione levels were decreased. In transcriptomic analysis, differential expression of metabolic enzymes is consistent with the hypothesis of aging-dependent rewiring in renal glutathione metabolism; pathway and network analyses further revealed the increased expression of immune-related genes in the aged group. Collectively, our integrative analysis results revealed that defective renal glutathione metabolism is a signature of renal aging. Therefore, we hypothesize that restraining renal glutathione metabolism might alleviate or delay age-associated renal metabolic deterioration, and aberrant activation of the renal immune system.
Collapse
Affiliation(s)
- Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Jisu Han
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
- Aventi Inc., Yuseong-Gu, Daejeon 34141, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seodaemun-Gu, Seoul 03760, Korea
| |
Collapse
|
29
|
Kane AE, Howlett SE. Sex differences in frailty: Comparisons between humans and preclinical models. Mech Ageing Dev 2021; 198:111546. [PMID: 34324923 DOI: 10.1016/j.mad.2021.111546] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Frailty can be viewed as a state of physiological decline that increases susceptibility to adverse health outcomes. This loss of physiological reserve means that even small stressors can lead to disability and death in frail individuals. Frailty can be measured with various clinical tools; the two most popular are the frailty index and the frailty phenotype. Clinical studies have used these tools to show that women are frailer than men even though they have longer lifespans. Still, factors responsible for this frailty-mortality paradox are not well understood. This review highlights evidence for male-female differences in frailty from both the clinical literature and in animal models of frailty. We review evidence for higher frailty levels in female animals as seen in many preclinical models. Mechanisms that may contribute to sex differences in frailty are highlighted. In addition, we review work that suggests frailty may play a role in susceptibility to chronic diseases of aging in a sex-specific fashion. Additional mechanistic studies in preclinical models are needed to understand factors involved in male-female differences in frailty in late life.
Collapse
Affiliation(s)
- Alice E Kane
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, United States.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
30
|
Baran SW, Lim MA, Do JP, Stolyar P, Rabe MD, Schaevitz LR, Cadena SM. Digital Biomarkers Enable Automated, Longitudinal Monitoring in a Mouse Model of Aging. J Gerontol A Biol Sci Med Sci 2021; 76:1206-1213. [PMID: 33491048 DOI: 10.1093/gerona/glab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/14/2022] Open
Abstract
To understand the growing needs of an aging human population, there is demand for scalable and reproducible approaches to study animal models of aging and to test novel therapeutic interventions. We investigated the sensitivity and utility of a continuous monitoring platform and its digital biomarkers (motion, breathing rate, and wheel running) to evaluate behavioral and physiological differences between "young" (12 weeks) and "old" (23 months) male C57BL/6J mice with or without running wheels in the home cage. Compared to young mice, old mice showed marked reductions in motion and breathing rate, as well as altered circadian rhythms. Mice without running wheels possessed lower breathing rates compared to their counterparts with running wheels. Digital biomarkers showed age-dependent changes in response to routine procedures (cage changes and blood sampling) and alterations in subjects that unexpectedly reached endpoint. Continuous collection of digital biomarkers in the home cage can enhance current approaches by providing unbiased longitudinal monitoring for large-scale aging studies.
Collapse
Affiliation(s)
- Szczepan W Baran
- Emerging Technologies, Laboratory Animal Services, Scientific Operations, Novartis Institutes for BioMedical Research (NIBR), Inc., Cambridge, Massachusetts, USA
| | | | | | - Polina Stolyar
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research (NIBR), Inc., Cambridge, Massachusetts, USA
| | | | | | - Samuel M Cadena
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research (NIBR), Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Frailty: Past, present, and future? SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:1-10. [PMID: 35782680 PMCID: PMC9219322 DOI: 10.1016/j.smhs.2020.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 01/14/2023] Open
|
32
|
Kwak D, Baumann CW, Thompson LV. Identifying Characteristics of Frailty in Female Mice Using a Phenotype Assessment Tool. J Gerontol A Biol Sci Med Sci 2021; 75:640-646. [PMID: 30958526 PMCID: PMC7328207 DOI: 10.1093/gerona/glz092] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 01/16/2023] Open
Abstract
Preclinical studies are important in identifying the underlying mechanisms contributing to frailty. Frailty studies have mainly focused on male rodents with little directed at female rodents. Therefore, the purposes of this study were to identify the onset and prevalence of frailty across the life span in female mice, and to determine if frailty predicts mortality. Female C57BL/6 (n = 27) mice starting at 17 months of age were assessed across the life span using a frailty phenotype, which included body weight, walking speed, strength, endurance, and physical activity. The onset of frailty occurred at approximately 17 months (1/27 mice), with the prevalence of frailty increasing thereafter. At 17 months, 11.1% of the mice were pre-frail and by 26 months peaked at 36.9%. The percentage of frail mice progressively increased up to 66.7% at 32 months. Non-frail mice lived to 29 months whereas frail/pre-frail mice lived only to 26 months (p = .04). In closing, using a mouse frailty phenotype, we are able to identify that the prevalence of frailty in female mice increases across the life span and accurately predicts mortality. Together, this frailty phenotype has the potential to yield information about the underlying mechanisms contributing to frailty.
Collapse
Affiliation(s)
- Dongmin Kwak
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts
| | - Cory W Baumann
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - LaDora V Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts
| |
Collapse
|
33
|
Decline in biological resilience as key manifestation of aging: Potential mechanisms and role in health and longevity. Mech Ageing Dev 2020; 194:111418. [PMID: 33340523 DOI: 10.1016/j.mad.2020.111418] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Decline in biological resilience (ability to recover) is a key manifestation of aging that contributes to increase in vulnerability to death with age eventually limiting longevity even in people without major chronic diseases. Understanding the mechanisms of this decline is essential for developing efficient anti-aging and pro-longevity interventions. In this paper we discuss: a) mechanisms of the decline in resilience with age, and aging components that contribute to this decline, including depletion of body reserves, imperfect repair mechanisms, and slowdown of physiological processes and responses with age; b) anti-aging interventions that may improve resilience or attenuate its decline; c) biomarkers of resilience available in human and experimental studies; and d) genetic factors that could influence resilience. There are open questions about optimal anti-aging interventions that would oppose the decline in resilience along with extending longevity limits. However, the area develops quickly, and prospects are exciting.
Collapse
|
34
|
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020; 288:518-536. [PMID: 32686219 PMCID: PMC7405395 DOI: 10.1111/joim.13141] [Citation(s) in RCA: 577] [Impact Index Per Article: 115.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Senolytics are a class of drugs that selectively clear senescent cells (SC). The first senolytic drugs Dasatinib, Quercetin, Fisetin and Navitoclax were discovered using a hypothesis-driven approach. SC accumulate with ageing and at causal sites of multiple chronic disorders, including diseases accounting for the bulk of morbidity, mortality and health expenditures. The most deleterious SC are resistant to apoptosis and have up-regulation of anti-apoptotic pathways which defend SC against their own inflammatory senescence-associated secretory phenotype (SASP), allowing them to survive, despite killing neighbouring cells. Senolytics transiently disable these SCAPs, causing apoptosis of those SC with a tissue-destructive SASP. Because SC take weeks to reaccumulate, senolytics can be administered intermittently - a 'hit-and-run' approach. In preclinical models, senolytics delay, prevent or alleviate frailty, cancers and cardiovascular, neuropsychiatric, liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders as well as complications of organ transplantation, radiation and cancer treatment. As anticipated for agents targeting the fundamental ageing mechanisms that are 'root cause' contributors to multiple disorders, potential uses of senolytics are protean, potentially alleviating over 40 conditions in preclinical studies, opening a new route for treating age-related dysfunction and diseases. Early pilot trials of senolytics suggest they decrease senescent cells, reduce inflammation and alleviate frailty in humans. Clinical trials for diabetes, idiopathic pulmonary fibrosis, Alzheimer's disease, COVID-19, osteoarthritis, osteoporosis, eye diseases and bone marrow transplant and childhood cancer survivors are underway or beginning. Until such studies are done, it is too early for senolytics to be used outside of clinical trials.
Collapse
Affiliation(s)
- J L Kirkland
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - T Tchkonia
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
35
|
Oveson R, Jiang Z, Izhaky M, Sharma K, Ladiges WC. An immune stress test for resilience to aging: Pneumococcal vaccine response. AGING PATHOBIOLOGY AND THERAPEUTICS 2020; 2:171-172. [PMID: 35083447 PMCID: PMC8789031 DOI: 10.31491/apt.2020.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The idea that the degree of response to physical stress in early life can be used to measure health in later life is a novel approach to better define resilience to aging. To investigate this, middle-age (15 months) mice were stressed by vaccination with a commercial pneumococcal vaccine (Prevnar 13), and 30 days later separated into a high antibody response group and a low antibody response group using Elisa to detect IgG serum antibody levels. After 4 months, mice were evaluated for physiological performance and learning ability. The high antibody response group was able to stay on a rotating rod longer than the low antibody response group and were more quickly able to find the escape hole in a spatial navigation learning task. This observation suggests Prevnar 13 antibody response in midlife could be a useful stress test to predict healthy aging.
Collapse
Affiliation(s)
- Ryan Oveson
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Zhou Jiang
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michali Izhaky
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kavita Sharma
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Warren C. Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
Newman AB, Kritchevsky SB, Guralnik JM, Cummings SR, Salive M, Kuchel GA, Schrack J, Morris MC, Weir D, Baccarelli A, Murabito JM, Ben-Shlomo Y, Espeland MA, Kirkland J, Melzer D, Ferrucci L. Accelerating the Search for Interventions Aimed at Expanding the Health Span in Humans: The Role of Epidemiology. J Gerontol A Biol Sci Med Sci 2020; 75:77-86. [PMID: 31722007 DOI: 10.1093/gerona/glz230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Extensive work in basic and clinical science suggests that biological mechanisms of aging are causally related to the development of disease and disability in late life. Modulation of the biological mechanisms of aging can extend both life span and health span in animal models, but translation to humans has been slow. METHODS Summary of workshop proceedings from the 2018-2019 Epidemiology of Aging Workshop hosted by the Intramural Research Program at the National Institute on Aging. RESULTS Epidemiologic studies play a vital role to progress in this field, particularly in evaluating new risk factors and measures of biologic aging that may influence health span, as well as developing relevant outcome measures that are robust and relevant for older individuals. CONCLUSIONS Appropriately designed epidemiological studies are needed to identify targets for intervention and to inform study design and sample size estimates for future clinical trials designed to promote health span.
Collapse
Affiliation(s)
- Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania.,Department of Geriatric Medicine, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Stephen B Kritchevsky
- Sticht Center for Health Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jack M Guralnik
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute San Fransisco, California, Bethesda, Maryland
| | - Marcel Salive
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - George A Kuchel
- University of Connecticut Center on Aging, University of Connecticut Health, Farmington, CT, Baltimore, Maryland
| | - Jennifer Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Martha Clare Morris
- Department of Internal Medicine, Rush Medical College, Rush University, Chicago, Illinois
| | - David Weir
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, Michigan, New York, New York
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Laboratory of Precision Environmental Biosciences, Columbia University Mailman School of Public Health, New York, New York
| | - Joanne M Murabito
- Department of Medicine, Section of General Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Yoav Ben-Shlomo
- Population Health Sciences, University of Bristol, Bristol, UK.,National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care West (NIHR CLAHRC West), University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Mark A Espeland
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - James Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - David Melzer
- College of Medicine and Health, University of Exeter, Exeter, UK.,Center on Aging, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
37
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
38
|
Zhu L, Dou Y, Bjorner M, Ladiges W. Development of a cyclophosphamide stress test to predict resilience to aging in mice. GeroScience 2020; 42:1675-1683. [PMID: 32613492 DOI: 10.1007/s11357-020-00222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022] Open
Abstract
The concept of resilience, defined as the ability to recover from stress, is a potential platform to predict healthy aging. However, specific stress tests for resilience have not yet been fully established in humans so investigations in animal models are of interest. The chemotherapeutic drug cyclophosphamide (Cyp) was selected as a chemical stressor to investigate resilience response in C57Bl/6 male mice at 4, 15, and 28 months of age. Following a single intraperitoneal injection of Cyp (100 mg/kg), tail blood was collected for counting white blood cells (WBC) every other day for 25 days, and physiological performance tests performed. Cyp induced a consistent pattern in neutrophil count in all three age groups, with a nadir at day 5 and a rebound at day 7 with different rates in each group. The neutrophil to lymphocyte ratio (NLR) showed an age-dependent rebound response 7 days after Cyp injection, with a similar pattern of decline back toward baseline. Mice in the 15-month age group with high pre-injection Cyp NLR had significantly higher total WBC counts after Cyp injection compared with mice with low pre-injection Cyp NLR, indicating a correlation between NLR and Cyp-altered WBC counts. In addition, mice with high pre-injection Cyp NLR showed significant learning impairment compared with mice with low pre-injection Cyp NLR, suggesting low NRL intensity can predict resilience to age-related cognitive decline. These observations provide the rationale to translate findings from the mouse to humans in developing in vitro Cyp stress tests.
Collapse
Affiliation(s)
- Lida Zhu
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Yan Dou
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Marianne Bjorner
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
39
|
Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 2020; 16:263-275. [PMID: 32161396 PMCID: PMC7227781 DOI: 10.1038/s41574-020-0335-y] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
With the ageing of the global population, interest is growing in the 'geroscience hypothesis', which posits that manipulation of fundamental ageing mechanisms will delay (in parallel) the appearance or severity of multiple chronic, non-communicable diseases, as these diseases share the same underlying risk factor - namely, ageing. In this context, cellular senescence has received considerable attention as a potential target in preventing or treating multiple age-related diseases and increasing healthspan. Here we review mechanisms of cellular senescence and approaches to target this pathway therapeutically using 'senolytic' drugs that kill senescent cells or inhibitors of the senescence-associated secretory phenotype (SASP). Furthermore, we highlight the evidence that cellular senescence has a causative role in multiple diseases associated with ageing. Finally, we focus on the role of cellular senescence in a number of endocrine diseases, including osteoporosis, metabolic syndrome and type 2 diabetes mellitus, as well as other endocrine conditions. Although much remains to be done, considerable preclinical evidence is now leading to the initiation of proof-of-concept clinical trials using senolytics for several endocrine and non-endocrine diseases.
Collapse
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
40
|
Chen Z, Jiang K, Zou Z, Luo X, Lim CT, Wen C. High-throughput and label-free isolation of senescent murine mesenchymal stem cells. BIOMICROFLUIDICS 2020; 14:034106. [PMID: 32477445 PMCID: PMC7244328 DOI: 10.1063/5.0011925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Under internal or external insults such as aging and oxidative stresses, cells are induced into a senescent state and stop cellular division permanently. As senescent cells (SnCs) accumulate, the regeneration capacity of biological tissue would be compromised, which has been found to be associated with a plethora of age-related disorders. Therefore, isolating SnCs becomes necessary. To address the lack of effective surface markers for SnCs isolation, a label-free microfluidic device was proposed in this paper, in which a spiral microchannel was deployed to isolate SnCs based on their size differences. We adopted a well-received cellular senescence model by exerting excessive oxidative stress to murine mesenchymal stem cells. This model was then validated through a series of SnCs characterizations including size measurement, p16INK4a expression level, senescence-associated beta-galactosidase, and doubling time. The senescence chip demonstrated an efficiency of 75% and viability over 85% at a flow rate of 5 ml/min. The average cell size from the inner outlet was 5 μm larger than that from the outer outlet. The isolated cells had a sixfold higher p16INK4a expression level. Overall, the chip had an area under curve of 0.719 in the receiver operating characteristic analysis, showing decent performance in sorting SnCs. By having the ability to perform size-based sorting at a high flow rate, such a microfluidic device can provide high-throughput and label-free isolation of SnCs. To further improve the isolation performance, the device can be modified to introduce additional physical biomarkers of SnCs such as stiffness. This device poses a good potential in purification for cytotherapy or estimation of biological age.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kuan Jiang
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Zhou Zou
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaohe Luo
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
41
|
Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Discovery, development, and future application of senolytics: theories and predictions. FEBS J 2020; 287:2418-2427. [PMID: 32112672 PMCID: PMC7302972 DOI: 10.1111/febs.15264] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
Abstract
Senescent cells accumulate with aging and at etiological sites of multiple diseases, including those accounting for most morbidity, mortality, and health costs. Senescent cells do not replicate, can release factors that cause tissue dysfunction, and yet remain viable. The discovery of senolytic drugs, agents that selectively eliminate senescent cells, created a new route for alleviating age‐related dysfunction and diseases. As anticipated for agents targeting fundamental aging mechanisms that are ‘root cause’ contributors to multiple disorders, potential applications of senolytics are protean. We review the discovery of senolytics, strategies for translation into clinical application, and promising early signals from clinical trials.
Collapse
Affiliation(s)
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Borras C, Ingles M, Mas-Bargues C, Dromant M, Sanz-Ros J, Román-Domínguez A, Gimeno-Mallench L, Gambini J, Viña J. Centenarians: An excellent example of resilience for successful ageing. Mech Ageing Dev 2019; 186:111199. [PMID: 31899226 DOI: 10.1016/j.mad.2019.111199] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
Abstract
Centenarians are remarkable not only because of their prolonged life, but also because they compress morbidity until the very last moments of their lives, thus being proposed as a model of successful, extraordinary ageing. From the medical viewpoint, centenarians do not escape the physiological decline or the age-related diseases or syndromes (i.e. frailty), but the rate of such processes is slow enough to be counterbalanced by their increased intrinsic capacity to respond to minor stresses of daily life (i.e. resilience). These new concepts are reviewed in this paper. Allostatic stresses lead to a chronic low-grade inflammation that has led to the proposal of the "inflammaging" theory of ageing and frailty. The biology of centenarians, described in this review, provides us with clues for intervention to promote healthy ageing in the general population. One of the major reasons for this healthy ageing has to do with the genetic signature that is specific for centenarians and certainly different from octogenarians who do not enjoy the extraordinary qualities of centenarians.
Collapse
Affiliation(s)
- C Borras
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain.
| | - M Ingles
- Freshage Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - C Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - M Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - J Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - A Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - L Gimeno-Mallench
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - J Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - J Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| |
Collapse
|
43
|
Al-Naggar IM, Hardy CC, Taweh OG, Grabauskas T, Mulkey DK, Kuchel GA, Smith PP. HCN as a Mediator of Urinary Homeostasis: Age-Associated Changes in Expression and Function in Adrenergic Detrusor Relaxation. J Gerontol A Biol Sci Med Sci 2019; 74:325-329. [PMID: 30124776 DOI: 10.1093/gerona/gly137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 12/19/2022] Open
Abstract
The Hyperpolarization activated, cyclic nucleotide gated (HCN) channel is a candidate mediator of neuroendocrine influence over detrusor tonus during filling. In other tissues, HCN loss with aging is linked to declines in rhythmicity and function. We hypothesized that HCN has an age-sensitive expression profile and functional role in adrenergic bladder relaxation. HCN was examined in bladders from young (2-6 months) and old (18-24 months) C57BL/6 female mice, using qRT-PCR, RNAScope, and Western blots. Isometric tension studies were conducted using bladder strips from young wild-type (YWT), old wild-type (OWT), and young HCN1 knock-out (YKO) female mice to test the role HCN in effects of β-adrenergic stimulation. Hcn1 is the dominant HCN isoform RNA in the mouse bladder wall, and is diminished with age. Location of Hcn RNA within the mouse bladder wall is isoform-specific, with HCN1 limited to the detrusor layer. Passively-tensioned YWT bladder strips are relaxed by isoproterenol in the presence of HCN function, where OWT strips are relaxed only in the presence of HCN blockade. HCN has an age-specific expression and function in adrenergic detrusor relaxation in mouse bladder strips.
Collapse
Affiliation(s)
- Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Cara C Hardy
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut.,Department of Neuroscience, UConn Health, Farmington, Connecticut
| | - Omar G Taweh
- Department of Physiology and Neurobiology, University of Connecticut, Farmington, Connecticut
| | - Titas Grabauskas
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Farmington, Connecticut.,University of Connecticut Institute for Brain and Cognitive Science, Storrs, Connecticut
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Phillip P Smith
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut.,Department of Neuroscience, UConn Health, Farmington, Connecticut.,Department of Physiology and Neurobiology, University of Connecticut, Farmington, Connecticut.,Department of Surgery, UConn School of Medicine, Farmington, Connecticut
| |
Collapse
|
44
|
Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR, Rosenthal AZ. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Res 2019; 29:2088-2103. [PMID: 31754020 PMCID: PMC6886498 DOI: 10.1101/gr.253880.119] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023]
Abstract
Aging is a pleiotropic process affecting many aspects of mammalian physiology. Mammals are composed of distinct cell type identities and tissue environments, but the influence of these cell identities and environments on the trajectory of aging in individual cells remains unclear. Here, we performed single-cell RNA-seq on >50,000 individual cells across three tissues in young and old mice to allow for direct comparison of aging phenotypes across cell types. We found transcriptional features of aging common across many cell types, as well as features of aging unique to each type. Leveraging matrix factorization and optimal transport methods, we found that both cell identities and tissue environments exert influence on the trajectory and magnitude of aging, with cell identity influence predominating. These results suggest that aging manifests with unique directionality and magnitude across the diverse cell identities in mammals.
Collapse
Affiliation(s)
- Jacob C Kimmel
- Calico Life Sciences, South San Francisco, California 94080, USA
| | - Lolita Penland
- Calico Life Sciences, South San Francisco, California 94080, USA
| | | | | | - David R Kelley
- Calico Life Sciences, South San Francisco, California 94080, USA
| | - Adam Z Rosenthal
- Calico Life Sciences, South San Francisco, California 94080, USA
| |
Collapse
|
45
|
The Neglectable Impact of Delayed Graft Function on Long-term Graft Survival in Kidneys Donated After Circulatory Death Associates With Superior Organ Resilience. Ann Surg 2019; 270:877-883. [DOI: 10.1097/sla.0000000000003515] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Aversa Z, Zhang X, Fielding RA, Lanza I, LeBrasseur NK. The clinical impact and biological mechanisms of skeletal muscle aging. Bone 2019; 127:26-36. [PMID: 31128290 PMCID: PMC6708726 DOI: 10.1016/j.bone.2019.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Skeletal muscle is a highly plastic tissue that remarkably adapts to diverse stimuli including exercise, injury, disuse, and, as discussed here, aging. Humans achieve peak skeletal muscle mass and strength in mid-life and then experience a progressive decline of up to 50% by the ninth decade. The loss of muscle mass and function with aging is a phenomenon termed sarcopenia. It is evidenced by the loss and atrophy of muscle fibers and the concomitant accretion of fat and fibrous tissue. Sarcopenia has been recognized as a key driver of limitations in physical function and mobility, but is perhaps less appreciated for its role in age-related metabolic dysfunction and loss of organismal resilience. Similar to other tissues, muscle is prone to multiple forms of age-related molecular and cellular damage, including disrupted protein turnover, impaired regenerative capacity, cellular senescence, and mitochondrial dysfunction. The objective of this review is to highlight the clinical consequences of skeletal muscle aging, and provide insights into potential biological mechanisms. In light of population aging, strategies to improve muscle health in older adults promise to have a profound public health impact.
Collapse
Affiliation(s)
- Zaira Aversa
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America
| | - Xu Zhang
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States of America
| | - Ian Lanza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, United States of America
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
47
|
Hardy CC, Keilich SR, Harrison AG, Knight BE, Baker DS, Smith PP. The aging bladder phenotype is not the direct consequence of bladder aging. Neurourol Urodyn 2019; 38:2121-2129. [PMID: 31452236 DOI: 10.1002/nau.24149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
AIMS The prevalence of urinary dysfunction increases with age, yet therapies are often suboptimal. Incomplete understanding of the linkages between system, organ, and tissue domains across lifespan remains a knowledge gap. If tissue-level changes drive the aging bladder phenotype, parallel changes should be observed across these domains. In contrast, a lack of inter-domain correlation across age groups would support the hypothesis that urinary performance is a measure of the physiologic reserve, dependent on centrally-mediated adaptive mechanisms in the aging system. METHODS Male and female mice across four age groups underwent sequential voiding spot assays, pressure/flow cystometry, bladder strip tension studies, histology, and quantitative PCR analyses. The primary objective of this study was to test the impact of age on the cortical, autonomic, tissue functional and structural, and molecular domains, and identify inter-domain correlations among variables showing significant changes with age within these domains. RESULTS Behavior revealed diminished peripheral voiding and spot size in aged females. Cystometry demonstrated increased postvoid residual and loss of volume sensitivity, but the preservation of voiding contraction power, with almost half of oldest-old mice failing under cystometric stress. Strip studies revealed no significant differences in adrenergic, cholinergic, or EFS sensitivity. Histology showed increased detrusor and lamina propria thickness, without a change in collagen/muscle ratio. Adrb2 gene expression decreased with age. No consistent inter-domain correlations were found across age groups. CONCLUSIONS Our findings are consistent with a model in which centrally-mediated adaptive failures to aging stressors are more influential over the aging bladder phenotype than local tissue changes.
Collapse
Affiliation(s)
- Cara C Hardy
- Center on Aging, UConn Health, University of Connecticut SOM, Farmington, Connecticut.,Department of Neuroscience, UConn Health, University of Connecticut SOM, Farmington, Connecticut.,Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut
| | - Spencer R Keilich
- Center on Aging, UConn Health, University of Connecticut SOM, Farmington, Connecticut.,Department of Immunology, UConn Health, University of Connecticut SOM, Farmington, Connecticut
| | - Andrew G Harrison
- Center on Aging, UConn Health, University of Connecticut SOM, Farmington, Connecticut.,Department of Immunology, UConn Health, University of Connecticut SOM, Farmington, Connecticut
| | - Brittany E Knight
- Department of Neuroscience, UConn Health, University of Connecticut SOM, Farmington, Connecticut
| | - Dylan S Baker
- Center on Aging, UConn Health, University of Connecticut SOM, Farmington, Connecticut
| | - Phillip P Smith
- Center on Aging, UConn Health, University of Connecticut SOM, Farmington, Connecticut.,Department of Neuroscience, UConn Health, University of Connecticut SOM, Farmington, Connecticut.,Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut.,Department of Surgery, UConn Health, University of Connecticut SOM, Farmington, Connecticut
| |
Collapse
|
48
|
Lee BP, Pilling LC, Bandinelli S, Ferrucci L, Melzer D, Harries LW. The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. Biogerontology 2019; 20:649-663. [PMID: 31292793 PMCID: PMC6733819 DOI: 10.1007/s10522-019-09819-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022]
Abstract
Dysregulation of splicing factor expression is emerging as a driver of human ageing; levels of transcripts encoding splicing regulators have previously been implicated in ageing and cellular senescence both in vitro and in vivo. We measured the expression levels of an a priori panel of 20 age- or senescence-associated splicing factors by qRT-PCR in peripheral blood samples from the InCHIANTI Study of Aging, and assessed longitudinal relationships with human ageing phenotypes (cognitive decline and physical ability) using multivariate linear regression. AKAP17A, HNRNPA0 and HNRNPM transcript levels were all predictively associated with severe decline in MMSE score (p = 0.007, 0.001 and 0.008 respectively). Further analyses also found expression of these genes was associated with a performance decline in two other cognitive measures; the Trail Making Test and the Purdue Pegboard Test. AKAP17A was nominally associated with a decline in mean hand-grip strength (p = 0.023), and further analyses found nominal associations with two other physical ability measures; the Epidemiologic Studies of the Elderly-Short Physical Performance Battery and calculated speed (m/s) during a timed 400 m fast walking test. These data add weight to the hypothesis that splicing dyregulation may contribute to the development of some ageing phenotypes in the human population.
Collapse
Affiliation(s)
- Benjamin P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter College of Medicine and Health, RILD Building, RD&E NHSFT Campus, Barrack Rd, Exeter, EX2 5DW, UK
| | - Luke C Pilling
- Epidemiology and Public Health, University of Exeter College of Medicine and Health, RILD Building, RD&E NHSFT Campus, Barrack Rd, Exeter, EX2 5DW, UK
| | | | - Luigi Ferrucci
- National Institute on Aging, Clinical Research Branch, Harbor Hospital, Baltimore, MD, 21225, USA
| | - David Melzer
- Epidemiology and Public Health, University of Exeter College of Medicine and Health, RILD Building, RD&E NHSFT Campus, Barrack Rd, Exeter, EX2 5DW, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter College of Medicine and Health, RILD Building, RD&E NHSFT Campus, Barrack Rd, Exeter, EX2 5DW, UK.
| |
Collapse
|
49
|
Nutrient Sensing and Redox Balance: GCN2 as a New Integrator in Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5730532. [PMID: 31249645 PMCID: PMC6556294 DOI: 10.1155/2019/5730532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/21/2019] [Indexed: 02/05/2023]
Abstract
Aging is a complex process in which the accumulation of molecular, cellular, and organism dysfunction increases the probability of death. Several pieces of evidence have revealed a contribution of stress responses in aging and in aging-related diseases, in particular, the key role of signaling pathways associated to nutritional stress. Here, we review the possible interplay between amino acid sensing and redox balance maintenance mediated by the nutritional sensor general control nonderepressive 2 (GCN2). We discuss this new dimension of nutritional stress sensing consequences, standing out GCN2 as a central coordinator of key cellular processes that assure healthy homeostasis in the cell, raising GCN2 as a novel interesting target, that when activated, could imply pleiotropic benefits, particularly GCN2 intervention and its new unexplored therapeutic role as a player in the aging process.
Collapse
|
50
|
LeBrasseur NK. Physical Resilience: Opportunities and Challenges in Translation. J Gerontol A Biol Sci Med Sci 2019; 72:978-979. [PMID: 28475693 DOI: 10.1093/gerona/glx028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nathan K LeBrasseur
- Robert & Arlene Kogod Center on Aging, Department of Physical Medicine & Rehabilitation and Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|