1
|
Liu C, Zhang Y, Zhao J, Zhang J, Meng Z, Yang Y, Xie Y, Jiao X, Liang B, Cao J, Wang Y. Vaping/e-cigarette-induced pulmonary extracellular vesicles contribute to exacerbated cardiomyocyte impairment through the translocation of ERK5. Life Sci 2024; 358:123195. [PMID: 39481834 DOI: 10.1016/j.lfs.2024.123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
AIMS The impact of e-cigarettes/vaping on cardiac function remains contradictory owing to insufficient direct evidence of interorgan communication. Extracellular vesicles (EVs) have protective or detrimental effects depending on pathological conditions, making it crucial to understand their role in lung-cardiac cell interactions mediated by vaping inhalation. METHODS AND KEY FINDINGS Pulmonary EVs were characterized from animals that underwent 12 weeks of nicotine inhalation (vaping component) (EVsNicotine) or vehicle control (EVsVehicle). EVsNicotine significantly increased in size and abundance compared with EVsVehicle. The direct effect of EVs Nicotine and EVs Vehicle on cardiomyocytes was then assessed in vitro and in vivo. EVs Nicotine led to a decrease in cardiac function as manifested by reduced cardiac contractility and impaired relaxation. EVs Nicotine induced increased levels of cleaved caspase-1 and cleaved caspase-11 in cardiomyocytes, indicating the promotion of pyroptosis. Meanwhile, EVsNicotine stimulated the secretion of fibrotic factors. Further analysis revealed that nicotine inhalation stimulated EVs Nicotine enriched with high levels of ERK5 (EVs Nicotine-ERK5). It was discovered that these EVs derived from pulmonary epithelial cells. Furthermore, inhibiting cardiac ERK5 blunted the EVs Nicotine-induced pyroptosis and fibrotic factor secretion. We further identified GATA4, a pro-pyroptosis transcription factor, as being activated through ERK5-dependent phosphorylation. SIGNIFICANCE Our research demonstrates that nicotine inhalation exacerbates cardiac injury through the activation of EVs derived from the lungs during e-cigarettes/vaping. Specifically, the EVs containing ERK5 play a crucial role in mediating the detrimental effects on cardiac function. This research provides new insights into the cardiac toxicity of vaping and highlights the role of EVs Nicotine-ERK5 in this process.
Collapse
Affiliation(s)
- Caihong Liu
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yanwei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jianli Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhijun Meng
- Clinical Laboratory, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yuhui Yang
- Department of Anesthesiology, Guangdong Medical University, Guangzhou 510182, Guangdong, China
| | - Yaoli Xie
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiangying Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Bin Liang
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jimin Cao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Wimer LA, Davis-Castillo A, Galkina S, Ciotlos S, Patterson C, Prado L, Munoz MC, Martin N, Epstein S, Schaum N, Melov S. Characterizing phenotypic data of Peromyscus leucopus compared to C57BL/6J Mus musculus and diversity outbred (DO) Mus musculus. GeroScience 2024; 46:4647-4656. [PMID: 38871964 PMCID: PMC11335981 DOI: 10.1007/s11357-024-01175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/24/2024] [Indexed: 06/15/2024] Open
Abstract
Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Collapse
Affiliation(s)
- Lauren A Wimer
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Asia Davis-Castillo
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Sofiya Galkina
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Serban Ciotlos
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Cavan Patterson
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Leandro Prado
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Maria Castro Munoz
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Nicolas Martin
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Sharon Epstein
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | | | - Simon Melov
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA.
| |
Collapse
|
3
|
Silva J, Azevedo T, Ginja M, Oliveira PA, Duarte JA, Faustino-Rocha AI. Realistic Aspects of Cardiac Ultrasound in Rats: Practical Tips for Improved Examination. J Imaging 2024; 10:219. [PMID: 39330439 PMCID: PMC11433567 DOI: 10.3390/jimaging10090219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Echocardiography is a reliable and non-invasive method for assessing cardiac structure and function in both clinical and experimental settings, offering valuable insights into disease progression and treatment efficacy. The successful application of echocardiography in murine models of disease has enabled the evaluation of disease severity, drug testing, and continuous monitoring of cardiac function in these animals. However, there is insufficient standardization of echocardiographic measurements for smaller animals. This article aims to address this gap by providing a guide and practical tips for the appropriate acquisition and analysis of echocardiographic parameters in adult rats, which may also be applicable in other small rodents used for scientific purposes, like mice. With advancements in technology, such as ultrahigh-frequency ultrasonic transducers, echocardiography has become a highly sophisticated imaging modality, offering high temporal and spatial resolution imaging, thereby allowing for real-time monitoring of cardiac function throughout the lifespan of small animals. Moreover, it allows the assessment of cardiac complications associated with aging, cancer, diabetes, and obesity, as well as the monitoring of cardiotoxicity induced by therapeutic interventions in preclinical models, providing important information for translational research. Finally, this paper discusses the future directions of cardiac preclinical ultrasound, highlighting the need for continued standardization to advance research and improve clinical outcomes to facilitate early disease detection and the translation of findings into clinical practice.
Collapse
Affiliation(s)
- Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centro de Investigação de Montanha (CIMO), Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mário Ginja
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Alberto Duarte
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory (1H-TOXRUN), University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, 7004-516 Évora, Portugal
| |
Collapse
|
4
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
5
|
Wu L, Li ZZ, Yang H, Cao LZ, Wang XY, Wang DL, Chatterjee E, Li YF, Huang G. Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3. Basic Res Cardiol 2024:10.1007/s00395-024-01076-8. [PMID: 39158697 DOI: 10.1007/s00395-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.
Collapse
Affiliation(s)
- Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- School of Basic Medical Science, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Zhi-Zheng Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li-Zhi Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiao-Ying Wang
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dong-Liang Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yan-Fei Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
6
|
Dong X, Zhuang HW, Wen RJ, Huang YS, Liang BX, Li H, Xian SX, Li C, Wang LJ, Wang JY. Xinyang tablet alleviated cardiac dysfunction in a cardiac pressure overload model by regulating the receptor-interacting serum/three-protein kinase 3/FUN14 domain containing 1-mediated mitochondrial unfolded protein response and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118152. [PMID: 38614260 DOI: 10.1016/j.jep.2024.118152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.
Collapse
Affiliation(s)
- Xin Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hao-Wen Zhuang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rui-Jia Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing-Xue Liang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 400000, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jun-Yan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Aishwarya R, Abdullah CS, Remex NS, Bhuiyan MAN, Lu XH, Dhanesha N, Stokes KY, Orr AW, Kevil CG, Bhuiyan MS. Diastolic dysfunction in Alzheimer's disease model mice is associated with Aβ-amyloid aggregate formation and mitochondrial dysfunction. Sci Rep 2024; 14:16715. [PMID: 39030247 PMCID: PMC11271646 DOI: 10.1038/s41598-024-67638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease caused by the deposition of Aβ aggregates or neurofibrillary tangles. AD patients are primarily diagnosed with the concurrent development of several cardiovascular dysfunctions. While few studies have indicated the presence of intramyocardial Aβ aggregates, none of the studies have performed detailed analyses for pathomechanism of cardiac dysfunction in AD patients. This manuscript used aged APPSWE/PS1 Tg and littermate age-matched wildtype (Wt) mice to characterize cardiac dysfunction and analyze associated pathophysiology. Detailed assessment of cardiac functional parameters demonstrated the development of diastolic dysfunction in APPSWE/PS1 Tg hearts compared to Wt hearts. Muscle function evaluation showed functional impairment (decreased exercise tolerance and muscle strength) in APPSWE/PS1 Tg mice. Biochemical and histochemical analysis revealed Aβ aggregate accumulation in APPSWE/PS1 Tg mice myocardium. APPSWE/PS1 Tg mice hearts also demonstrated histopathological remodeling (increased collagen deposition and myocyte cross-sectional area). Additionally, APPSWE/PS1 Tg hearts showed altered mitochondrial dynamics, reduced antioxidant protein levels, and impaired mitochondrial proteostasis compared to Wt mice. APPSWE/PS1 Tg hearts also developed mitochondrial dysfunction with decreased OXPHOS and PDH protein complex expressions, altered ETC complex dynamics, decreased complex activities, and reduced mitochondrial respiration. Our results indicated that Aβ aggregates in APPSWE/PS1 Tg hearts are associated with defects in mitochondrial respiration and complex activities, which may collectively lead to cardiac diastolic dysfunction and myocardial pathological remodeling.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Division of Clinical Informatics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
8
|
Desai DA, Baby A, Ananthamohan K, Green LC, Arif M, Duncan BC, Kumar M, Singh RR, Koch SE, Natesan S, Rubinstein J, Jegga AG, Sadayappan S. Roles of cMyBP-C phosphorylation on cardiac contractile dysfunction in db/db mice. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100075. [PMID: 38957358 PMCID: PMC11218625 DOI: 10.1016/j.jmccpl.2024.100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease and comorbidity associated with several conditions, including cardiac dysfunction leading to heart failure with preserved ejection fraction (HFpEF), in turn resulting in T2DM-induced cardiomyopathy (T2DM-CM). However, the molecular mechanisms underlying the development of T2DM-CM are poorly understood. It is hypothesized that molecular alterations in myopathic genes induced by diabetes promote the development of HFpEF, whereas cardiac myosin inhibitors can rescue the resultant T2DM-mediated cardiomyopathy. To test this hypothesis, a Leptin receptor-deficient db/db homozygous (Lepr db/db) mouse model was used to define the pathogenesis of T2DM-CM. Echocardiographic studies at 4 and 6 months revealed that Lepr db/db hearts started developing cardiac dysfunction by four months, and left ventricular hypertrophy with diastolic dysfunction was evident at 6 months. RNA-seq data analysis, followed by functional enrichment, revealed the differential regulation of genes related to cardiac dysfunction in Lepr db/db heart tissues. Strikingly, the level of cardiac myosin binding protein-C phosphorylation was significantly increased in Lepr db/db mouse hearts. Finally, using isolated skinned papillary muscles and freshly isolated cardiomyocytes, CAMZYOS ® (mavacamten, MYK-461), a prescription heart medicine used for symptomatic obstructive hypertrophic cardiomyopathy treatment, was tested for its ability to rescue T2DM-CM. Compared with controls, MYK-461 significantly reduced force generation in papillary muscle fibers and cardiomyocyte contractility in the db/db group. This line of evidence shows that 1) T2DM-CM is associated with hyperphosphorylation of cardiac myosin binding protein-C and 2) MYK-461 significantly lessened disease progression in vitro, suggesting its promise as a treatment for HFpEF.
Collapse
Affiliation(s)
- Darshini A. Desai
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Akhil Baby
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Kalyani Ananthamohan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa C. Green
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mohammed Arif
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Brittany C. Duncan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mohit Kumar
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rohit R. Singh
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sheryl E. Koch
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Jack Rubinstein
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
9
|
Quagliariello V, Canale ML, Bisceglia I, Iovine M, Paccone A, Maurea C, Scherillo M, Merola A, Giordano V, Palma G, Luciano A, Bruzzese F, Zito Marino F, Montella M, Franco R, Berretta M, Gabrielli D, Gallucci G, Maurea N. Sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents ejection fraction reduction, reduces myocardial and renal NF-κB expression and systemic pro-inflammatory biomarkers in models of short-term doxorubicin cardiotoxicity. Front Cardiovasc Med 2024; 11:1289663. [PMID: 38818214 PMCID: PMC11138344 DOI: 10.3389/fcvm.2024.1289663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
Background Anthracycline-mediated adverse cardiovascular events are among the leading causes of morbidity and mortality in patients with cancer. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) exert multiple cardiometabolic benefits in patients with/without type 2 diabetes, chronic kidney disease, and heart failure with reduced and preserved ejection fraction. We hypothesized that the SGLT2i dapagliflozin administered before and during doxorubicin (DOXO) therapy could prevent cardiac dysfunction and reduce pro-inflammatory pathways in preclinical models. Methods Cardiomyocytes were exposed to DOXO alone or combined with dapagliflozin (DAPA) at 10 and 100 nM for 24 h; cell viability, iATP, and Ca++ were quantified; lipid peroxidation products (malondialdehyde and 4-hydroxy 2-hexenal), NLRP3, MyD88, and cytokines were also analyzed through selective colorimetric and enzyme-linked immunosorbent assay (ELISA) methods. Female C57Bl/6 mice were treated for 10 days with a saline solution or DOXO (2.17 mg/kg), DAPA (10 mg/kg), or DOXO combined with DAPA. Systemic levels of ferroptosis-related biomarkers, galectin-3, high-sensitivity C-reactive protein (hs-CRP), and pro-inflammatory chemokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IL-18, IFN-γ, TNF-α, G-CSF, and GM-CSF) were quantified. After treatments, immunohistochemical staining of myocardial and renal p65/NF-kB was performed. Results DAPA exerts cytoprotective, antioxidant, and anti-inflammatory properties in human cardiomyocytes exposed to DOXO by reducing iATP and iCa++ levels, lipid peroxidation, NLRP-3, and MyD88 expression. Pro-inflammatory intracellular cytokines were also reduced. In preclinical models, DAPA prevented the reduction of radial and longitudinal strain and ejection fraction after 10 days of treatment with DOXO. A reduced myocardial expression of NLRP-3 and MyD-88 was seen in the DOXO-DAPA group compared to DOXO mice. Systemic levels of IL-1β, IL-6, TNF-α, G-CSF, and GM-CSF were significantly reduced after treatment with DAPA. Serum levels of galectine-3 and hs-CRP were strongly enhanced in the DOXO group; on the other hand, their expression was reduced in the DAPA-DOXO group. Troponin-T, B-type natriuretic peptide (BNP), and N-Terminal Pro-BNP (NT-pro-BNP) were strongly reduced in the DOXO-DAPA group, revealing cardioprotective properties of SGLT2i. Mice treated with DOXO and DAPA exhibited reduced myocardial and renal NF-kB expression. Conclusion The overall picture of the study encourages the use of DAPA in the primary prevention of cardiomyopathies induced by anthracyclines in patients with cancer.
Collapse
Affiliation(s)
- V. Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - M. L. Canale
- Cardiology Division, Azienda USL Toscana Nord-Ovest, Versilia Hospital, Lido di Camaiore, Italy
| | - I. Bisceglia
- Integrated Cardiology Services, Department of Cardio-Thoracic-Vascular, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - M. Iovine
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - A. Paccone
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - C. Maurea
- ASL NA1, UOC Neurology and Stroke Unit, Ospedale del Mare, Naples, Italy
| | - M. Scherillo
- Cardiology Department, San Pio Hospital, Benevento, Italy
| | - A. Merola
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - V. Giordano
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - G. Palma
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - A. Luciano
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - F. Bruzzese
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - F. Zito Marino
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - M. Montella
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - R. Franco
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - M. Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - D. Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlani-ni, Roma—Fondazione per il Tuo Cuore—Heart Care Foundation, Firenze, Italy
| | - G. Gallucci
- Cardio-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - N. Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| |
Collapse
|
10
|
Schröper T, Mehrkens D, Leiss V, Tellkamp F, Engelhardt S, Herzig S, Birnbaumer L, Nürnberg B, Matthes J. Protective effects of Gα i3 deficiency in a murine heart-failure model of β 1-adrenoceptor overexpression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2401-2420. [PMID: 37843590 PMCID: PMC10933181 DOI: 10.1007/s00210-023-02751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
We have shown that in murine cardiomyopathy caused by overexpression of the β1-adrenoceptor, Gαi2-deficiency is detrimental. Given the growing evidence for isoform-specific Gαi-functions, we now examined the consequences of Gαi3 deficiency in the same heart-failure model. Mice overexpressing cardiac β1-adrenoceptors with (β1-tg) or without Gαi3-expression (β1-tg/Gαi3-/-) were compared to C57BL/6 wildtypes and global Gαi3-knockouts (Gαi3-/-). The life span of β1-tg mice was significantly shortened but improved when Gαi3 was lacking (95% CI: 592-655 vs. 644-747 days). At 300 days of age, left-ventricular function and survival rate were similar in all groups. At 550 days of age, β1-tg but not β1-tg/Gαi3-/- mice displayed impaired ejection fraction (35 ± 18% vs. 52 ± 16%) compared to wildtype (59 ± 4%) and Gαi3-/- mice (60 ± 5%). Diastolic dysfunction of β1-tg mice was prevented by Gαi3 deficiency, too. The increase of ANP mRNA levels and ventricular fibrosis observed in β1-tg hearts was significantly attenuated in β1-tg/Gαi3-/- mice. Transcript levels of phospholamban, ryanodine receptor 2, and cardiac troponin I were similar in all groups. However, Western blots and phospho-proteomic analyses showed that in β1-tg, but not β1-tg/Gαi3-/- ventricles, phospholamban protein was reduced while its phosphorylation increased. Here, we show that in mice overexpressing the cardiac β1-adrenoceptor, Gαi3 deficiency slows or even prevents cardiomyopathy and increases shortened life span. Previously, we found Gαi2 deficiency to aggravate cardiac dysfunction and mortality in the same heart-failure model. Our findings indicate isoform-specific interventions into Gi-dependent signaling to be promising cardio-protective strategies.
Collapse
Affiliation(s)
- Tobias Schröper
- Center of Pharmacology, Department II, University of Cologne and University Hospital Cologne, Cologne, Germany
- Department of Internal Medicine III, University Hospital of Cologne, Cologne, Germany and Centre for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Department of Internal Medicine III, University Hospital of Cologne, Cologne, Germany and Centre for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomics, and Interfaculty Centre for Pharmacogenomics and Drug Research, Eberhard Karls Universität, Tübingen, Germany
| | - Frederik Tellkamp
- CECAD Research Centre Institute for Genetics, University of Cologne, Cologne, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - Stefan Herzig
- Center of Pharmacology, Department II, University of Cologne and University Hospital Cologne, Cologne, Germany
- TH Köln-University of Applied Sciences, Cologne, Germany
| | - Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
- Institute of Biomedical Research, School of Medical Sciences, Catholic University of Buenos Aires, Buenos Aires, Argentina
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomics, and Interfaculty Centre for Pharmacogenomics and Drug Research, Eberhard Karls Universität, Tübingen, Germany
| | - Jan Matthes
- Center of Pharmacology, Department II, University of Cologne and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Flint G, Kooiker K, Moussavi-Harami F. Echocardiography to Assess Cardiac Structure and Function in Genetic Cardiomyopathies. Methods Mol Biol 2024; 2735:1-15. [PMID: 38038840 DOI: 10.1007/978-1-0716-3527-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Rodents are the most common experimental models used in cardiovascular research including studies of genetic cardiomyopathies. Genetic cardiomyopathies are characterized by changes in cardiac structure and function. Echocardiography allows for relatively inexpensive, non-invasive, reliable, and reproducible assessment of these changes. However, the fast heart and small size present unique challenges for investigators. To ensure accuracy and reproducibility of these measurements, investigators need to be familiar with standard practices in the field, normal values, and potential pitfalls. The goal of this chapter is to describe steps needed for reliable acquisition and analysis of echocardiography in rodent models. Additionally, we discuss some common pitfalls and challenges.
Collapse
Affiliation(s)
- Galina Flint
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kristina Kooiker
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Farid Moussavi-Harami
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Division of Cardiology, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martín-Pérez M, Qian WJ, MacCoss MJ, Villén J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ. The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). GeroScience 2023; 45:3529-3548. [PMID: 37462785 PMCID: PMC10643647 DOI: 10.1007/s11357-023-00861-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Aging muscle experiences functional decline in part mediated by impaired mitochondrial ADP sensitivity. Elamipretide (ELAM) rapidly improves physiological and mitochondrial function in aging and binds directly to the mitochondrial ADP transporter ANT. We hypothesized that ELAM improves ADP sensitivity in aging leading to rescued physiological function. We measured the response to ADP stimulation in young and old muscle mitochondria with ELAM treatment, in vivo heart and muscle function, and compared protein abundance, phosphorylation, and S-glutathionylation of ADP/ATP pathway proteins. ELAM treatment increased ADP sensitivity in old muscle mitochondria by increasing uptake of ADP through the ANT and rescued muscle force and heart systolic function. Protein abundance in the ADP/ATP transport and synthesis pathway was unchanged, but ELAM treatment decreased protein s-glutathionylation incuding of ANT. Mitochondrial ADP sensitivity is rapidly modifiable. This research supports the hypothesis that ELAM improves ANT function in aging and links mitochondrial ADP sensitivity to physiological function. ELAM binds directly to ANT and ATP synthase and ELAM treatment improves ADP sensitivity, increases ATP production, and improves physiological function in old muscles. ADP (adenosine diphosphate), ATP (adenosine triphosphate), VDAC (voltage-dependent anion channel), ANT (adenine nucleotide translocator), H+ (proton), ROS (reactive oxygen species), NADH (nicotinamide adenine dinucleotide), FADH2 (flavin adenine dinucleotide), O2 (oxygen), ELAM (elamipretide), -SH (free thiol), -SSG (glutathionylated protein).
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Varun Kamat
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Sricharan Kannan
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Rudolph S Stuppard
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Jeremy Whitson
- Department of Biology, High Point University, High Point, NC, 27268, USA
| | - Miguel Martín-Pérez
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, 08028, Barcelona, Spain
| | - Wei-Jun Qian
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Peter Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Ian R Sweet
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
13
|
Wu S, Zhang J, Peng C, Ma Y, Tian X. SIRT6 mediated histone H3K9ac deacetylation involves myocardial remodelling through regulating myocardial energy metabolism in TAC mice. J Cell Mol Med 2023; 27:3451-3464. [PMID: 37603612 PMCID: PMC10660608 DOI: 10.1111/jcmm.17915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Pathological myocardial remodelling is the initial factor of chronic heart failure (CHF) and is induced by multiple factors. We previously demonstrated that histone acetylation is involved in CHF in transverse aortic constriction (TAC) mice, a model for pressure overload-induced heart failure. In this study, we investigated whether the histone deacetylase Sirtuin 6 (SIRT6), which mediates deacetylation of histone 3 acetylated at lysine 9 (H3K9ac), is involved pathological myocardial remodelling by regulating myocardial energy metabolism and explored the underlying mechanisms. We generated a TAC mouse model by partial thoracic aortic banding. TAC mice were injected with the SIRT6 agonist MDL-800 at a dose of 65 mg/kg for 8 weeks. At 4, 8 and 12 weeks after TAC, the level of H3K9ac increased gradually, while the expression of SIRT6 and vascular endothelial growth factor A (VEGFA) decreased gradually. MDL-800 reversed the effects of SIRT6 on H3K9ac in TAC mice and promoted the expression of VEGFA in the hearts of TAC mice. MDL-800 also attenuated mitochondria damage and improved mitochondrial respiratory function through upregulating SIRT6 in the hearts of TAC mice. These results revealed a novel mechanism in which SIRT6-mediated H3K9ac level is involved pathological myocardial remodelling in TAC mice through regulating myocardial energy metabolism. These findings may assist in the development of novel methods for preventing and treating pathological myocardial remodelling.
Collapse
Affiliation(s)
- Shuqi Wu
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jiaojiao Zhang
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Chang Peng
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yixiang Ma
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiaochun Tian
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
14
|
Kang R, Laborde C, Savchenko L, Swiader A, Pizzinat N, Marsal D, Sainte-Marie Y, Boal F, Tronchere H, Roncalli J, Kunduzova O. Age-Related Shift in Cardiac and Metabolic Phenotyping Linked to Inflammatory Cytokines and Antioxidant Status in Mice. Int J Mol Sci 2023; 24:15841. [PMID: 37958823 PMCID: PMC10650425 DOI: 10.3390/ijms242115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Age-related alterations in cardiac function, metabolic, inflammatory and antioxidant profiles are associated with an increased risk of cardiovascular mortality and morbidity. Here, we examined cardiac and metabolic phenotypes in relation to inflammatory status and antioxidant capacity in young, middle-aged and old mice. Real-time reverse transcription-polymerase chain reactions were performed on myocardium and immunoassays on plasma. Left ventricular (LV) structure and function were assessed by echocardiography using high-frequency ultrasound. Middle-aged mice exhibited an altered metabolic profile and antioxidant capacity compared to young mice, whereas myocardial expression of inflammatory factors (TNFα, IL1β, IL6 and IL10) remained unchanged. In contrast, old mice exhibited increased expression of inflammatory cytokines and plasma levels of resistin compared to young and middle-aged mice (p < 0.05). The pro-inflammatory signature of aged hearts was associated with alterations in glutathione redox homeostasis and elevated contents of 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation and oxidative stress. Furthermore, echocardiographic parameters of LV systolic and diastolic functions were significantly altered in old mice compared to young mice. Taken together, these findings suggest age-related shifts in cardiac phenotype encompass the spectrum of metabo-inflammatory abnormalities and altered redox homeostasis.
Collapse
Affiliation(s)
- Ryeonshi Kang
- National Institute of Health and Medical Research (INSERM) U1297, CEDEX 4, 31432 Toulouse, France; (R.K.); (L.S.); (A.S.); (N.P.); (D.M.); (Y.S.-M.); (F.B.); (H.T.); (J.R.)
- University of Toulouse III, CEDEX 9, 31062 Toulouse, France;
| | | | - Lesia Savchenko
- National Institute of Health and Medical Research (INSERM) U1297, CEDEX 4, 31432 Toulouse, France; (R.K.); (L.S.); (A.S.); (N.P.); (D.M.); (Y.S.-M.); (F.B.); (H.T.); (J.R.)
- University of Toulouse III, CEDEX 9, 31062 Toulouse, France;
- Department of Internal Medicine, Poltava State Medical University, 23 Shevchenko, 36000 Poltava, Ukraine
| | - Audrey Swiader
- National Institute of Health and Medical Research (INSERM) U1297, CEDEX 4, 31432 Toulouse, France; (R.K.); (L.S.); (A.S.); (N.P.); (D.M.); (Y.S.-M.); (F.B.); (H.T.); (J.R.)
- University of Toulouse III, CEDEX 9, 31062 Toulouse, France;
| | - Nathalie Pizzinat
- National Institute of Health and Medical Research (INSERM) U1297, CEDEX 4, 31432 Toulouse, France; (R.K.); (L.S.); (A.S.); (N.P.); (D.M.); (Y.S.-M.); (F.B.); (H.T.); (J.R.)
- University of Toulouse III, CEDEX 9, 31062 Toulouse, France;
| | - Dimitri Marsal
- National Institute of Health and Medical Research (INSERM) U1297, CEDEX 4, 31432 Toulouse, France; (R.K.); (L.S.); (A.S.); (N.P.); (D.M.); (Y.S.-M.); (F.B.); (H.T.); (J.R.)
- University of Toulouse III, CEDEX 9, 31062 Toulouse, France;
| | - Yannis Sainte-Marie
- National Institute of Health and Medical Research (INSERM) U1297, CEDEX 4, 31432 Toulouse, France; (R.K.); (L.S.); (A.S.); (N.P.); (D.M.); (Y.S.-M.); (F.B.); (H.T.); (J.R.)
- University of Toulouse III, CEDEX 9, 31062 Toulouse, France;
| | - Frederic Boal
- National Institute of Health and Medical Research (INSERM) U1297, CEDEX 4, 31432 Toulouse, France; (R.K.); (L.S.); (A.S.); (N.P.); (D.M.); (Y.S.-M.); (F.B.); (H.T.); (J.R.)
- University of Toulouse III, CEDEX 9, 31062 Toulouse, France;
| | - Helene Tronchere
- National Institute of Health and Medical Research (INSERM) U1297, CEDEX 4, 31432 Toulouse, France; (R.K.); (L.S.); (A.S.); (N.P.); (D.M.); (Y.S.-M.); (F.B.); (H.T.); (J.R.)
- University of Toulouse III, CEDEX 9, 31062 Toulouse, France;
| | - Jerome Roncalli
- National Institute of Health and Medical Research (INSERM) U1297, CEDEX 4, 31432 Toulouse, France; (R.K.); (L.S.); (A.S.); (N.P.); (D.M.); (Y.S.-M.); (F.B.); (H.T.); (J.R.)
- Department of Cardiology, University Hospital of Toulouse, CEDEX 9, 31400 Toulouse, France
| | - Oksana Kunduzova
- National Institute of Health and Medical Research (INSERM) U1297, CEDEX 4, 31432 Toulouse, France; (R.K.); (L.S.); (A.S.); (N.P.); (D.M.); (Y.S.-M.); (F.B.); (H.T.); (J.R.)
- University of Toulouse III, CEDEX 9, 31062 Toulouse, France;
| |
Collapse
|
15
|
Arumugam TV, Alli-Shaik A, Liehn EA, Selvaraji S, Poh L, Rajeev V, Cho Y, Cho Y, Kim J, Kim J, Swa HLF, Hao DTZ, Rattanasopa C, Fann DYW, Mayan DC, Ng GYQ, Baik SH, Mallilankaraman K, Gelderblom M, Drummond GR, Sobey CG, Kennedy BK, Singaraja RR, Mattson MP, Jo DG, Gunaratne J. Multiomics analyses reveal dynamic bioenergetic pathways and functional remodeling of the heart during intermittent fasting. eLife 2023; 12:RP89214. [PMID: 37769126 PMCID: PMC10538958 DOI: 10.7554/elife.89214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart's function and its vulnerability to injury and disease.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Asfa Alli-Shaik
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Elisa A Liehn
- National Heart Research Institute, National Heart Centre SingaporeSingaporeSingapore
- Institute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
- National Institute of Pathology "Victor Babes"BucharestRomania
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of SingaporeSingaporeSingapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yongeun Cho
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jongho Kim
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Joonki Kim
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- Natural Products Research Center, Korea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Hannah LF Swa
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - David Tan Zhi Hao
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Chutima Rattanasopa
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and ResearchSingaporeSingapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of SingaporeSingaporeSingapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - David Castano Mayan
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
| | - Brian K Kennedy
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Roshni R Singaraja
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| |
Collapse
|
16
|
Smart CD, Madhur MS. The immunology of heart failure with preserved ejection fraction. Clin Sci (Lond) 2023; 137:1225-1247. [PMID: 37606086 PMCID: PMC10959189 DOI: 10.1042/cs20230226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) now accounts for the majority of new heart failure diagnoses and continues to increase in prevalence in the United States. Importantly, HFpEF is a highly morbid, heterogeneous syndrome lacking effective therapies. Inflammation has emerged as a potential contributor to the pathogenesis of HFpEF. Many of the risk factors for HFpEF are also associated with chronic inflammation, such as obesity, hypertension, aging, and renal dysfunction. A large amount of preclinical evidence suggests that immune cells and their associated cytokines play important roles in mediating fibrosis, oxidative stress, metabolic derangements, and endothelial dysfunction, all potentially important processes in HFpEF. How inflammation contributes to HFpEF pathogenesis, however, remains poorly understood. Recently, a variety of preclinical models have emerged which may yield much needed insights into the causal relationships between risk factors and the development of HFpEF, including the role of specific immune cell subsets or inflammatory pathways. Here, we review evidence in animal models and humans implicating inflammation as a mediator of HFpEF and identify gaps in knowledge requiring further study. As the understanding between inflammation and HFpEF evolves, it is hoped that a better understanding of the mechanisms underlying immune cell activation in HFpEF can open up new therapeutic avenues.
Collapse
Affiliation(s)
- Charles Duncan Smart
- Department of Molecular Physiology and Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, U.S.A
| | - Meena S. Madhur
- Department of Molecular Physiology and Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, U.S.A
- Department of Medicine, Division of Cardiovascular
Medicine, Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Department of Medicine, Division of Clinical Pharmacology,
Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Vanderbilt Institute for Infection, Immunology, and
Inflammation, Nashville, TN, U.S.A
| |
Collapse
|
17
|
O'Riordan CE, Trochet P, Steiner M, Fuchs D. Standardisation and future of preclinical echocardiography. Mamm Genome 2023; 34:123-155. [PMID: 37160810 DOI: 10.1007/s00335-023-09981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/31/2023] [Indexed: 05/11/2023]
Abstract
Echocardiography is a non-invasive imaging technique providing real-time information to assess the structure and function of the heart. Due to advancements in technology, ultra-high-frequency transducers have enabled the translation of ultrasound from humans to small animals due to resolutions down to 30 µm. Most studies are performed using mice and rats, with ages ranging from embryonic, to neonatal, and adult. In addition, alternative models such as zebrafish and chicken embryos are becoming more frequently used. With the achieved high temporal and spatial resolution in real-time, cardiac function can now be monitored throughout the lifespan of these small animals to investigate the origin and treatment of a range of acute and chronic pathological conditions. With the increased relevance of in vivo real-time imaging, there is still an unmet need for the standardisation of small animal echocardiography and the appropriate cardiac measurements that should be reported in preclinical cardiac models. This review focuses on the development of standardisation in preclinical echocardiography and reports appropriate cardiac measurements throughout the lifespan of rodents: embryonic, neonatal, ageing, and acute and chronic pathologies. Lastly, we will discuss the future of cardiac preclinical ultrasound.
Collapse
Affiliation(s)
| | | | | | - Dieter Fuchs
- FUJIFILM VisualSonics, Inc, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Zhang N, Harsch B, Zhang MJ, Gyberg DJ, Stevens JA, Wagner BM, Mendelson J, Patterson MT, Orchard DA, Healy CL, Williams JW, Townsend D, Shearer GC, Murphy KA, O'Connell TD. FFAR4 regulates cardiac oxylipin balance to promote inflammation resolution in HFpEF secondary to metabolic syndrome. J Lipid Res 2023; 64:100374. [PMID: 37075982 PMCID: PMC10209340 DOI: 10.1016/j.jlr.2023.100374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome, but a predominant subset of HFpEF patients has metabolic syndrome (MetS). Mechanistically, systemic, nonresolving inflammation associated with MetS might drive HFpEF remodeling. Free fatty acid receptor 4 (Ffar4) is a GPCR for long-chain fatty acids that attenuates metabolic dysfunction and resolves inflammation. Therefore, we hypothesized that Ffar4 would attenuate remodeling in HFpEF secondary to MetS (HFpEF-MetS). To test this hypothesis, mice with systemic deletion of Ffar4 (Ffar4KO) were fed a high-fat/high-sucrose diet with L-NAME in their water to induce HFpEF-MetS. In male Ffar4KO mice, this HFpEF-MetS diet induced similar metabolic deficits but worsened diastolic function and microvascular rarefaction relative to WT mice. Conversely, in female Ffar4KO mice, the diet produced greater obesity but no worsened ventricular remodeling relative to WT mice. In Ffar4KO males, MetS altered the balance of inflammatory oxylipins systemically in HDL and in the heart, decreasing the eicosapentaenoic acid-derived, proresolving oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE), while increasing the arachidonic acid-derived, proinflammatory oxylipin 12-hydroxyeicosatetraenoic acid (12-HETE). This increased 12-HETE/18-HEPE ratio reflected a more proinflammatory state both systemically and in the heart in male Ffar4KO mice and was associated with increased macrophage numbers in the heart, which in turn correlated with worsened ventricular remodeling. In summary, our data suggest that Ffar4 controls the proinflammatory/proresolving oxylipin balance systemically and in the heart to resolve inflammation and attenuate HFpEF remodeling.
Collapse
Affiliation(s)
- Naixin Zhang
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Brian Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michael J Zhang
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Dylan J Gyberg
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jackie A Stevens
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Brandon M Wagner
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jenna Mendelson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Devin A Orchard
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Chastity L Healy
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jesse W Williams
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Katherine A Murphy
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| | - Timothy D O'Connell
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Yan B, Mei Z, Tang Y, Song H, Wu H, Jing Q, Zhang X, Yan C, Han Y. FGF21-FGFR1 controls mitochondrial homeostasis in cardiomyocytes by modulating the degradation of OPA1. Cell Death Dis 2023; 14:311. [PMID: 37156793 PMCID: PMC10167257 DOI: 10.1038/s41419-023-05842-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone secreted primarily by the liver and is considered a major regulator of energy homeostasis. Recent research has revealed that FGF21 could play an important role in cardiac pathological remodeling effects and prevention of cardiomyopathy; however, the underlying mechanism remains largely unknown. This study aimed to determine the mechanism underlying the cardioprotective effects of FGF21. We engineered FGF21 knock out mice and subsequently elucidated the effects of FGF21 and its downstream mediators using western blotting, qRT-PCR, and mitochondrial morphological and functional analyses. FGF21 knockout mice showed cardiac dysfunction, accompanied by a decline in global longitudinal strain (GLS) and ejection fraction (EF), independent of metabolic disorders. Mitochondrial quality, quantity, and function were abnormal, accompanied by decreased levels of optic atrophy-1 (OPA1) in FGF21 KO mice. In contrast to FGF21 knockout, cardiac-specific overexpression of FGF21 alleviated the cardiac dysfunction caused by FGF21 deficiency. In an in vitro study, FGF21 siRNA deteriorated mitochondrial dynamics and impaired function induced by cobalt chloride (CoCl2). Both recombinant FGF21 and adenovirus-mediated FGF21 overexpression could alleviate CoCl2-induced mitochondrial impairment by restoring mitochondrial dynamics. FGF21 was essential for maintaining mitochondrial dynamics and function of the cardiomyocytes. As a regulator of cardiomyocyte mitochondrial homeostasis under oxidative stress, FGF21 could be an important new target for therapeutic options for patients with heart failure.
Collapse
Affiliation(s)
- Bing Yan
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Zhu Mei
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yaohan Tang
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Haixu Song
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hanlin Wu
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Quanmin Jing
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaolin Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Chenghui Yan
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yaling Han
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
20
|
Meng Z, Zhang Z, Zhao J, Liu C, Yao P, Zhang L, Xie D, Lau WB, Tsukuda J, Christopher TA, Lopez B, Zhu D, Liu D, Zhang JR, Gao E, Ischiropoulos H, Koch W, Ma X, Wang Y. Nitrative Modification of Caveolin-3: A Novel Mechanism of Cardiac Insulin Resistance and a Potential Therapeutic Target Against Ischemic Heart Failure in Prediabetic Animals. Circulation 2023; 147:1162-1179. [PMID: 36883479 PMCID: PMC10085855 DOI: 10.1161/circulationaha.122.063073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Myocardial insulin resistance is a hallmark of diabetic cardiac injury. However, the underlying molecular mechanisms remain unclear. Recent studies demonstrate that the diabetic heart is resistant to other cardioprotective interventions, including adiponectin and preconditioning. The "universal" resistance to multiple therapeutic interventions suggests impairment of the requisite molecule(s) involved in broad prosurvival signaling cascades. Cav (Caveolin) is a scaffolding protein coordinating transmembrane signaling transduction. However, the role of Cav3 in diabetic impairment of cardiac protective signaling and diabetic ischemic heart failure is unknown. METHODS Wild-type and gene-manipulated mice were fed a normal diet or high-fat diet for 2 to 12 weeks and subjected to myocardial ischemia and reperfusion. Insulin cardioprotection was determined. RESULTS Compared with the normal diet group, the cardioprotective effect of insulin was significantly blunted as early as 4 weeks of high-fat diet feeding (prediabetes), a time point where expression levels of insulin-signaling molecules remained unchanged. However, Cav3/insulin receptor-β complex formation was significantly reduced. Among multiple posttranslational modifications altering protein/protein interaction, Cav3 (not insulin receptor-β) tyrosine nitration is prominent in the prediabetic heart. Treatment of cardiomyocytes with 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride reduced the signalsome complex and blocked insulin transmembrane signaling. Mass spectrometry identified Tyr73 as the Cav3 nitration site. Phenylalanine substitution of Tyr73 (Cav3Y73F) abolished 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride-induced Cav3 nitration, restored Cav3/insulin receptor-β complex, and rescued insulin transmembrane signaling. It is most important that adeno-associated virus 9-mediated cardiomyocyte-specific Cav3Y73F reexpression blocked high-fat diet-induced Cav3 nitration, preserved Cav3 signalsome integrity, restored transmembrane signaling, and rescued insulin-protective action against ischemic heart failure. Last, diabetic nitrative modification of Cav3 at Tyr73 also reduced Cav3/AdipoR1 complex formation and blocked adiponectin cardioprotective signaling. CONCLUSIONS Nitration of Cav3 at Tyr73 and resultant signal complex dissociation results in cardiac insulin/adiponectin resistance in the prediabetic heart, contributing to ischemic heart failure progression. Early interventions preserving Cav3-centered signalsome integrity is an effective novel strategy against diabetic exacerbation of ischemic heart failure.
Collapse
Affiliation(s)
- Zhijun Meng
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhen Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jianli Zhao
- Department of Biomedical Engineering, the University of Alabama at Birmingham, AL 35005
| | - Caihong Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ling Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jumpei Tsukuda
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Bernard Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Di Zhu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - John Ry Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Harry Ischiropoulos
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Walter Koch
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Biomedical Engineering, the University of Alabama at Birmingham, AL 35005
| |
Collapse
|
21
|
Brojakowska A, Jackson CJ, Bisserier M, Khlgatian MK, Grano C, Blattnig SR, Zhang S, Fish KM, Chepurko V, Chepurko E, Gillespie V, Dai Y, Lee B, Garikipati VNS, Hadri L, Kishore R, Goukassian DA. Lifetime Evaluation of Left Ventricular Structure and Function in Male C57BL/6J Mice after Gamma and Space-Type Radiation Exposure. Int J Mol Sci 2023; 24:5451. [PMID: 36982525 PMCID: PMC10049327 DOI: 10.3390/ijms24065451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The lifetime effects of space irradiation (IR) on left ventricular (LV) function are unknown. The cardiac effects induced by space-type IR, specifically 5-ion simplified galactic cosmic ray simulation (simGCRsim), are yet to be discovered. Three-month-old, age-matched, male C57BL/6J mice were irradiated with 137Cs gamma (γ; 100, 200 cGy) and simGCRsim (50 and 100 cGy). LV function was assessed via transthoracic echocardiography at 14 and 28 days (early), and at 365, 440, and 660 (late) days post IR. We measured the endothelial function marker brain natriuretic peptide in plasma at three late timepoints. We assessed the mRNA expression of the genes involved in cardiac remodeling, fibrosis, inflammation, and calcium handling in LVs harvested at 660 days post IR. All IR groups had impaired global LV systolic function at 14, 28, and 365 days. At 660 days, 50 cGy simGCRsim-IR mice exhibited preserved LV systolic function with altered LV size and mass. At this timepoint, the simGCRsim-IR mice had elevated levels of cardiac fibrosis, inflammation, and hypertrophy markers Tgfβ1, Mcp1, Mmp9, and βmhc, suggesting that space-type IR may induce the cardiac remodeling processes that are commonly associated with diastolic dysfunction. IR groups showing statistical significance were modeled to calculate the Relative Biological Effectiveness (RBE) and Radiation Effects Ratio (RER). The observed dose-response shape did not indicate a lower threshold at these IR doses. A single full-body IR at doses of 100-200 cGy for γ-IR, and 50-100 cGy for simGCRsim-IR decreases the global LV systolic function in WT mice as early as 14 and 28 days after exposure, and at 660 days post IR. Interestingly, there is an intermediate time point (365 days) where the impairment in LV function is observed. These findings do not exclude the possibility of increased acute or degenerative cardiovascular disease risks at lower doses of space-type IR, and/or when combined with other space travel-associated stressors such as microgravity.
Collapse
Affiliation(s)
- Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - Mary K. Khlgatian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cynthia Grano
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steve R. Blattnig
- National Aeronautics and Space Administration, Hampton, VA 23669, USA
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kenneth M. Fish
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vadim Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Virginia Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ying Dai
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brooke Lee
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center of Excellence for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raj Kishore
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martin-Perez M, Qian WJ, MacCoss MJ, Villen J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ. Elamipretide Improves ADP Sensitivity in Aged Mitochondria by Increasing Uptake through the Adenine Nucleotide Translocator (ANT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.525989. [PMID: 36778398 PMCID: PMC9915686 DOI: 10.1101/2023.02.01.525989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging muscle experiences functional decline in part mediated by impaired mitochondrial ADP sensitivity. Elamipretide (ELAM) rapidly improves physiological and mitochondrial function in aging and binds directly to the mitochondrial ADP transporter ANT. We hypothesized that ELAM improves ADP sensitivity in aging leading to rescued physiological function. We measured the response to ADP stimulation in young and old muscle mitochondria with ELAM treatment, in vivo heart and muscle function, and compared protein abundance, phosphorylation, and S-glutathionylation of ADP/ATP pathway proteins. ELAM treatment increased ADP sensitivity in old muscle mitochondria by increasing uptake of ADP through the ANT and rescued muscle force and heart systolic function. Protein abundance in the ADP/ATP transport and synthesis pathway was unchanged, but ELAM treatment decreased protein s-glutathionylation incuding of ANT. Mitochondrial ADP sensitivity is rapidly modifiable. This research supports the hypothesis that ELAM improves ANT function in aging and links mitochondrial ADP sensitivity to physiological function. Abstract Figure
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Radiology, University of Washington, Seattle, Washington, 98195, USA
| | - Varun Kamat
- Department of Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Sricharan Kannan
- Department of Radiology, University of Washington, Seattle, Washington, 98195, USA
| | - Rudolph S. Stuppard
- Department of Radiology, University of Washington, Seattle, Washington, 98195, USA
| | - Jeremy Whitson
- Department of Biology, High Point University, High Point, NC, 27268, USA
| | - Miguel Martin-Perez
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, 08028, Spain
| | - Wei-Jun Qian
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Judit Villen
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Peter Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Matthew D. Campbell
- Department of Radiology, University of Washington, Seattle, Washington, 98195, USA
| | - Ian R. Sweet
- Department of Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
23
|
Xu R, Ding Z, Li H, Shi J, Cheng L, Xu H, Wu J, Zou Y. Identification of early cardiac dysfunction and heterogeneity after pressure and volume overload in mice by high-frequency echocardiographic strain imaging. Front Cardiovasc Med 2023; 9:1071249. [PMID: 36712248 PMCID: PMC9880208 DOI: 10.3389/fcvm.2022.1071249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Object Aortic stenosis and regurgitation are clinically important conditions characterized with different hypertrophic types induced by pressure or volume overload, respectively, but with comparable cardiac function in compensated stage. Speckle-tracking based strain imaging has been applied to assess subtle alterations in cardiac abnormality, but its application in differentiating these two types of ventricular hypertrophy is still sparse. Here, we performed strain imaging analysis of cardiac remodeling in these two loading conditions. Methods C57BL/6J mice were subjected to transverse aortic constriction (TAC)-induced pressure overload or aortic regurgitation (AR)-induced volume overload. Conventional echocardiography and strain imaging were comprehensively assessed to detect stimulus-specific alterations in TAC and AR hearts. Results Conventional echocardiography did not detect significant changes in left ventricular systolic (ejection fraction and fractional shortening) and diastolic (E/E') function in either TAC or AR mice. On the contrary, global strain analysis revealed global longitudinal strain and strain rate were remarkably impaired in TAC while preserved in AR mice, although global radial, and circumferential strain and strain rate were significantly reduced in both models. Regional strain analysis in the long axis demonstrated that longitudinal strain and strain rate in all or most segments were decreased in TAC but maintained or slightly dented in AR mice, while radial strain and strain rate indicated overt decline in both models. Moreover, decreased radial and circumferential strain and strain rate were observed in most segments of TAC and AR mice in the short axis. Conclusion Strain imaging is superior to conventional echocardiography to detect subtle changes in myocardial deformation, with longitudinal strain and strain rate indicating distinct functional changes in pressure versus volume overload myocardial hypertrophy, making it potentially an advanced approach for early detection and differential diagnosis of cardiac dysfunction.
Collapse
Affiliation(s)
- Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Shi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leilei Cheng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,*Correspondence: Jian Wu,
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Yunzeng Zou,
| |
Collapse
|
24
|
Jin L, Geng L, Ying L, Shu L, Ye K, Yang R, Liu Y, Wang Y, Cai Y, Jiang X, Wang Q, Yan X, Liao B, Liu J, Duan F, Sweeney G, Woo CWH, Wang Y, Xia Z, Lian Q, Xu A. FGF21-Sirtuin 3 Axis Confers the Protective Effects of Exercise Against Diabetic Cardiomyopathy by Governing Mitochondrial Integrity. Circulation 2022; 146:1537-1557. [PMID: 36134579 DOI: 10.1161/circulationaha.122.059631] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Exercise is an effective nonpharmacological strategy to alleviate diabetic cardiomyopathy (DCM) through poorly defined mechanisms. FGF21 (fibroblast growth factor 21), a peptide hormone with pleiotropic benefits on cardiometabolic homeostasis, has been identified as an exercise responsive factor. This study aims to investigate whether FGF21 signaling mediates the benefits of exercise on DCM, and if so, to elucidate the underlying mechanisms. METHODS The global or hepatocyte-specific FGF21 knockout mice, cardiomyocyte-selective β-klotho (the obligatory co-receptor for FGF21) knockout mice, and their wild-type littermates were subjected to high-fat diet feeding and injection of streptozotocin to induce DCM, followed by a 6-week exercise intervention and assessment of cardiac functions. Cardiac mitochondrial structure and function were assessed by electron microscopy, enzymatic assays, and measurements of fatty acid oxidation and ATP production. Human induced pluripotent stem cell-derived cardiomyocytes were used to investigate the receptor and postreceptor signaling pathways conferring the protective effects of FGF21 against toxic lipids-induced mitochondrial dysfunction. RESULTS Treadmill exercise markedly induced cardiac expression of β-klotho and significantly attenuated diabetes-induced cardiac dysfunction in wild-type mice, accompanied by reduced mitochondrial damage and increased activities of mitochondrial enzymes in hearts. However, such cardioprotective benefits of exercise were largely abrogated in mice with global or hepatocyte-selective ablation of FGF21, or cardiomyocyte-specific deletion of β-klotho. Mechanistically, exercise enhanced the cardiac actions of FGF21 to induce the expression of the mitochondrial deacetylase SIRT3 by AMPK-evoked phosphorylation of FOXO3, thereby reversing diabetes-induced hyperacetylation and functional impairments of a cluster of mitochondrial enzymes. FGF21 prevented toxic lipids-induced mitochondrial dysfunction and oxidative stress by induction of the AMPK/FOXO3/SIRT3 signaling axis in human induced pluripotent stem cell-derived cardiomyocytes. Adeno-associated virus-mediated restoration of cardiac SIRT3 expression was sufficient to restore the responsiveness of diabetic FGF21 knockout mice to exercise in amelioration of mitochondrial dysfunction and DCM. CONCLUSIONS The FGF21-SIRT3 axis mediates the protective effects of exercise against DCM by preserving mitochondrial integrity and represents a potential therapeutic target for DCM. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03240978.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Lei Ying
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Kevin Ye
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada (K.Y.)
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yin Cai
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Health Technology and Informatics, Hong Kong Polytechnic University, China (Y.C.)
| | - Xue Jiang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Xingqun Yan
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Boya Liao
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Jie Liu
- Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Fuyu Duan
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada (G.S.)
| | - Connie Wai Hong Woo
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (Z.X.)
| | - Qizhou Lian
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| |
Collapse
|
25
|
Sturgill SL, Shettigar V, Ziolo MT. Antiquated ejection fraction: Basic research applications for speckle tracking echocardiography. Front Physiol 2022; 13:969314. [PMID: 36353373 PMCID: PMC9637923 DOI: 10.3389/fphys.2022.969314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/05/2022] [Indexed: 03/24/2024] Open
Abstract
For years, ejection fraction has been an essentially ubiquitous measurement for assessing the cardiovascular function of animal models in research labs. Despite technological advances, it remains the top choice among research labs for reporting heart function to this day, and is often overstated in applications. This unfortunately may lead to misinterpretation of data. Clinical approaches have now surpassed research methods, allowing for deeper analysis of the tiers of cardiovascular performance (cardiovascular performance, heart performance, systolic and diastolic function, and contractility). Analysis of each tier is crucial for understanding heart performance, mechanism of action, and disease diagnosis, classification, and progression. This review will elucidate the differences between the tiers of cardiovascular function and discuss the benefits of measuring each tier via speckle tracking echocardiography for basic scientists.
Collapse
Affiliation(s)
| | | | - Mark T. Ziolo
- Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Liao Y, Zhang R, Shi S, Lin X, Wang Y, Wang Y, Chen W, Zhao Y, Bao K, Zhang K, Chen L, Fang Y. Red blood cell distribution width predicts gastrointestinal bleeding after coronary artery bypass grafting. BMC Cardiovasc Disord 2022; 22:436. [PMID: 36203150 PMCID: PMC9540710 DOI: 10.1186/s12872-022-02875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background Red blood cell distribution width (RDW) is highly associated with adverse clinical outcomes in many diseases. The present study aimed to evaluate the relationship between RDW and gastrointestinal bleeding (GIB) after isolated coronary artery bypass grafting (CABG). Methods This was a retrospective observational study that included 4473 patients who received CABG, and all the data were extracted from the Medical Information Mart for Intensive Care III database. Data collected included patient demographics, associated comorbid illnesses, laboratory parameters, and medications. The receiver operating characteristic (ROC) curve was used to determine the best cutoff value of RDW for the diagnosis of GIB. Multivariable logistic regression analysis was used to analyze the relationship between RDW and GIB. Results The incidence of GIB in patients receiving CABG was 1.1%. Quartile analyses showed a significant increase in GIB incidence at the fourth RDW quartile (> 14.3%; P < 0.001). The ROC curve analysis revealed that an RDW level > 14.1% measured on admission had 59.6% sensitivity and 69.4% specificity in predicting GIB after CABG. After adjustment for confounders, high RDW was still associated with an increased risk of GIB in patients with CABG (odds ratio = 2.83, 95% confidence interval 1.46–5.51, P = 0.002). Conclusions Our study indicates that the elevated RDW level is associated with an increased risk of GIB after CABG, and it can be an independent predictor of GIB. The introduction of RDW to study GIB enriches the diagnosis method of GIB and ensures the rapid and accurate diagnosis of GIB.
Collapse
Affiliation(s)
- Ying Liao
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Rongting Zhang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.,The Graduate School of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
| | - Shanshan Shi
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.,The Graduate School of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
| | - Xueqin Lin
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.,The Graduate School of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
| | - Yani Wang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.,The Graduate School of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
| | - Yun Wang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Weihua Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.,The Graduate School of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
| | - Yukun Zhao
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.,The Graduate School of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
| | - Kunming Bao
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.,The Graduate School of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China
| | - Kaijun Zhang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.
| | - Liling Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.
| | - Yong Fang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.
| |
Collapse
|
27
|
Hart CC, Lee YI, Hammers DW, Sweeney HL. Evaluation of the DBA/2J mouse as a potential background strain for genetic models of cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 1:100012. [PMID: 37206988 PMCID: PMC10195103 DOI: 10.1016/j.jmccpl.2022.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The potential use of the D2.mdx mouse (the mdx mutation on the DBA/2J genetic background) as a preclinical model of the cardiac aspects of Duchenne muscular dystrophy (DMD) has been criticized based on speculation that the DBA/2J genetic background displays an inherent hypertrophic cardiomyopathy (HCM) phenotype. Accordingly, the goal of the current study was to further examine the cardiac status of this mouse strain over a 12-month period to determine if observable signs of HCM develop, including histopathology and pathological enlargement of the myocardium. Previous reports have documented heightened TGFβ signaling in the DBA2/J striated muscles, as compared to the C57 background, which, as expected, is manifested as increased cardiomyocyte size, wall thickness, and heart mass as compared to the C57 background. While normalized heart mass is larger in the DBA/2J mice, compared to age-matched C57/BL10 mice, both strains similarly increase in size from 4 to 12 months of age. We also report that DBA/2J mice contain equivalent amounts of left ventricular collagen as healthy canine and human samples. In a longitudinal echocardiography study, neither sedentary nor exercised DBA/2J mice demonstrated left ventricular wall thickening or cardiac functional deficits. In summary, we find no evidence of HCM, nor any other cardiac pathology, and thus propose that it is an appropriate background strain for genetic modeling of cardiac diseases, including the cardiomyopathy associated with DMD.
Collapse
Affiliation(s)
| | | | | | - H. Lee Sweeney
- Corresponding author at: 1200 Newell, Dr. ARB R5-216, Gainesville, FL 32610-0267, United States of America. (H.L. Sweeney)
| |
Collapse
|
28
|
Song E, Vu V, Varin TV, Botta A, Marette A, Sweeney G. Copper fabric improves the metabolic profile of obese mice: potential role of the gut microbiota. Basic Clin Pharmacol Toxicol 2022; 131:355-363. [PMID: 35971882 DOI: 10.1111/bcpt.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
Copper and copper alloys have antimicrobial activity through the rapid contact killing of viruses, bacteria, and yeasts on their surface. Dysregulation of host microbiota can contribute to the pathogenesis of inflammatory diseases such as obesity, diabetes, and cardiovascular disease. Anecdotal evidence noted improved overall wellbeing in individuals sleeping on copper-containing fabric bedding. We hypothesized that the beneficial effect of copper-infused fabric bedding on cardiometabolic health is linked to changes in gut microbiota composition. This study utilized a mouse model of diet-induced obesity to assess the beneficial effects of copper-infused fabric bedding on metabolic health. Body composition, inflammatory markers, metabolic and cardiovascular status, and changes in the faecal microbiota composition were evaluated for up to two months in mice fed a normal chow diet or high fat, high cholesterol diet in the presence of bedding made with and without copper-infused fabric. Results showed that mice subjected to diet-induced obesity and housed in cages with copper-infused fabric liner displayed less body weight gain than mice in cages with control fabric. Mice housed with copper-infused fabric also displayed improved glucose tolerance and reduced inflammation biomarker lipocalin-2. We also observed a beneficial shift in gut bacterial composition of obese mice housed with copper fabric bedding. Taken in conjunction, our study provides direct animal-based evidence supporting the beneficial effects of copper fabric on metabolic health.
Collapse
Affiliation(s)
- Erfei Song
- Department of Biology, York University, Toronto, Canada.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Vivian Vu
- Department of Biology, York University, Toronto, Canada.,Department of Family and Community Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Amy Botta
- Department of Biology, York University, Toronto, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Quebec, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
29
|
A medium-chain triglyceride containing ketogenic diet exacerbates cardiomyopathy in a CRISPR/Cas9 gene-edited rat model with Duchenne muscular dystrophy. Sci Rep 2022; 12:11580. [PMID: 35803994 PMCID: PMC9270409 DOI: 10.1038/s41598-022-15934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy caused by dystrophin mutations. Although respiratory management has improved the prognosis of patients with DMD, inevitable progressive cardiomyopathy is a current leading cause of premature death. Recently, we showed that a medium-chain triglyceride containing ketogenic diet (MCTKD) improves skeletal muscle function and pathology in a CRISPR/Cas9 gene-edited rat model with DMD. In this study, we sought to clarify whether MCTKD also improves the cardiomyopathy in these rats. DMD rats were fed either the MCTKD or normal diet (ND) from ages of 3 weeks to 9 months old. Compared with the ND-fed rats, MCTKD-fed rats showed significantly prolonged QRS duration, decreased left ventricular fractional shortening, an increased heart weight/body weight ratio, and progression of cardiac fibrosis. In contrast to our previous study which found that MCTKD improved skeletal myopathy, the current study showed unexpected exacerbation of the cardiomyopathy. Further studies are needed to explore the underlying mechanisms for these differences and to explore modified dietary options that improve skeletal and cardiac muscles simultaneously.
Collapse
|
30
|
Ultrastructural and proteomic profiling of mitochondria-associated endoplasmic reticulum membranes reveal aging signatures in striated muscle. Cell Death Dis 2022; 13:296. [PMID: 35368021 PMCID: PMC8976840 DOI: 10.1038/s41419-022-04746-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Aging is a major risk for developing cardiac and skeletal muscle dysfunction, yet the underlying mechanism remains elusive. Here we demonstrated that the mitochondria-associated endoplasmic reticulum membranes (MAMs) in the rat heart and skeletal muscle were disrupted during aging. Using quantitative morphological analysis, we showed that the mitochondria-endoplasmic reticulum contacts (MERCs) were reduced by half over the lifespan with an early onset of accelerated thickening in the clefts. The ultrastructural changes were further validated by proteomic profiling of the MAM fractions. A combination of subcellular fractionation and quantitative mass spectrometry identified 1306 MAM-enriched proteins in both heart and skeletal muscle, with a catalog of proteins dysregulated with aging. Functional mapping of the MAM proteome suggested several aging signatures to be closely associated with the ER-mitochondria crosstalk, including local metabolic rewiring, calcium homeostasis imbalance, and impaired organelle dynamics and autophagy. Moreover, we identified a subset of highly interconnected proteins in an ER-mitochondria organization network, which were consistently down-regulated with aging. These decreased proteins, including VDAC1, SAMM50, MTX1 and MIC60, were considered as potential contributors to the age-related MAM dysfunction. This study highlights the perturbation in MAM integrity during the striated muscle aging process, and provides a framework for understanding aging biology from the perspective of organelle interactions.
Collapse
|
31
|
de Lucia C, Grisanti LA, Borghetti G, Piedepalumbo M, Ibetti J, Lucchese AM, Barr EW, Roy R, Okyere AD, Murphy HC, Gao E, Rengo G, Houser SR, Tilley DG, Koch WJ. G protein-coupled receptor kinase 5 (GRK5) contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure. Cardiovasc Res 2022; 118:169-183. [PMID: 33560342 PMCID: PMC8752360 DOI: 10.1093/cvr/cvab044] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. G protein-coupled receptor kinase 5 (GRK5) is upregulated in failing human myocardium and promotes maladaptive cardiac hypertrophy in animal models. However, the role of GRK5 in ischemic heart disease is still unknown. In this study, we evaluated whether myocardial GRK5 plays a critical role post-MI in mice and included the examination of specific cardiac immune and inflammatory responses. METHODS AND RESULTS Cardiomyocyte-specific GRK5 overexpressing transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice as well as cardiomyocyte-specific GRK5 knockout mice (GRK5cKO) and wild type (WT) were subjected to MI and, functional as well as structural changes together with outcomes were studied. TgGRK5 post-MI mice showed decreased cardiac function, augmented left ventricular dimension and decreased survival rate compared to NLC post-MI mice. Cardiac hypertrophy and fibrosis as well as fetal gene expression were increased post-MI in TgGRK5 compared to NLC mice. In TgGRK5 mice, GRK5 elevation produced immuno-regulators that contributed to the elevated and long-lasting leukocyte recruitment into the injured heart and ultimately to chronic cardiac inflammation. We found an increased presence of pro-inflammatory neutrophils and macrophages as well as neutrophils, macrophages and T-lymphocytes at 4-days and 8-weeks respectively post-MI in TgGRK5 hearts. Conversely, GRK5cKO mice were protected from ischemic injury and showed reduced early immune cell recruitment (predominantly monocytes) to the heart, improved contractility and reduced mortality compared to WT post-MI mice. Interestingly, cardiomyocyte-specific GRK2 transgenic mice did not share the same phenotype of TgGRK5 mice and did not have increased cardiac leukocyte migration and cytokine or chemokine production post-MI. CONCLUSIONS Our study shows that myocyte GRK5 has a crucial and GRK-selective role on the regulation of leucocyte infiltration into the heart, cardiac function and survival in a murine model of post-ischemic HF, supporting GRK5 inhibition as a therapeutic target for HF.
Collapse
Affiliation(s)
- Claudio de Lucia
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Michela Piedepalumbo
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Eric W Barr
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rajika Roy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Haley Christine Murphy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via S. Pansini, 5, Naples, Italy
- Laboratory of neurovegetative system pathophysiology, Istituti Clinici Scientifici ICS Maugeri, IRCCS Istituto Scientifico di Telese Terme, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
32
|
Zhang TY, Zhao BJ, Wang T, Wang J. Effect of aging and sex on cardiovascular structure and function in wildtype mice assessed with echocardiography. Sci Rep 2021; 11:22800. [PMID: 34815485 PMCID: PMC8611093 DOI: 10.1038/s41598-021-02196-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
This study employed traditional and advanced echocardiographic techniques to assess comprehensively age- and sex-related changes in cardiovascular structure and function in wildtype (WT) mice. Forty-five normal adult wildtype mice were apportioned to groups based on age and sex: 2-month (young) male or female, and 24-month (old) male or female (n = 13, 13, 13, and 6, respectively). Each underwent 2-dimensional (2D) imaging echocardiography, Doppler, tissue Doppler imaging echocardiography, and speckle-tracking echocardiography (STE) for comparison of cardiovascular structure and function parameters. Compared to the young mice, the old had significantly higher body weight (BW), and lower diastolic and mean arterial pressure. The left ventricular (LV) end-diastolic and end-systolic volumes, and left ventricular mass, were significantly higher in the old mice. Within each sex, the cardiac diastolic and systolic function parameters were comparable between the young and old. Isovolumetric relaxation time (IVRT)/diastolic time interval (DT) and the maximum drop rate of pressure in LV (- dP/dtmax) were significantly lower in the old mice, while the LV relaxation time constant (Tau) was significantly higher. Spearman's rank correlation showed a positive association between IVRT/DT and - dp/dtmax (male r = 0.663; female r = 0.639). Among the males, the maximum rise rate of pressure in LV (+ dp/dtmax), and systolic global longitudinal strains and rates (S-GLS, S-GLSR) were significantly different between the young and old. Spearman's rank correlation showed positive association between S-GLS, S-GLSR and + dp/dtmax (r = 0.709 and r = 0.499). Regarding vascular structure, the ascending aorta systolic and diastolic diameters were significantly higher in the old mice compared with the young. The male mice had progressive, age-related aortic stiffness. Ageing in mice leads to changes in cardiovascular structure and cardiac diastolic function, but systolic function is relatively well preserved in females. Changes in cardiac function and arterial stiffness were more significant in males than females. Traditional ECG is better than STE for evaluating LV diastolic function; STE is better for LV systolic function.
Collapse
Affiliation(s)
- Tian Yu Zhang
- The School of Basic Medicine of Air Force Medical University, Xi' an, 710032, China
| | - Bi Jun Zhao
- Department of Cardiovascular Surgery, Rizhao Hospital Affiliated to Qingdao University, RizhaoInternational Heart Hospital, Qingdao, 276800, China
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tao Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Ultrasound Diagnostics, Second Affiliated Hospital of Air Force Medical University, Xi' an, 710038, China.
| |
Collapse
|
33
|
Earl CC, Damen FW, Yin M, Aasa KL, Burris SK, Goergen CJ. Strain Estimation of the Murine Right Ventricle Using High-Frequency Speckle-Tracking Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3291-3300. [PMID: 34373135 PMCID: PMC8488001 DOI: 10.1016/j.ultrasmedbio.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 05/25/2023]
Abstract
Right ventricular (RV) strain measurements from ultrasound via speckle-tracking techniques are being used more frequently as a non-invasive diagnostic tool for a variety of cardiopulmonary pathologies. However, despite the clinical utility of ultrasound RV strain measurements, quantification of RV strain in rodents remains difficult owing to unique image artifacts and non-standardized methodologies. We demonstrate here a simple approach for measuring RV strain in both mice and rats using high-frequency ultrasound and automated speckle tracking. Our results show estimated peak RV free-wall longitudinal strain values (mean ± standard error of the mean) in mice (n = 15) and rats (n = 5) of, respectively, -10.38% ± 0.4% and -4.85% ± 0.42%. We further estimated the 2-D Green-Lagrange strain within the RV free wall, with longitudinal components estimated at -5.7% ± 0.48% in mice and -2.1% ± 0.28% in rats. These methods and data may provide a foundation for future work aimed at evaluating murine RV strain levels in different disease models.
Collapse
Affiliation(s)
- Conner C Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Melissa Yin
- Fujifilm VisualSonics Inc., Toronto, Ontario, Canada
| | | | | | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
34
|
Hsp22 Deficiency Induces Age-Dependent Cardiac Dilation and Dysfunction by Impairing Autophagy, Metabolism, and Oxidative Response. Antioxidants (Basel) 2021; 10:antiox10101550. [PMID: 34679684 PMCID: PMC8533440 DOI: 10.3390/antiox10101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
Heat shock protein 22 (Hsp22) is a small heat shock protein predominantly expressed in skeletal and cardiac muscle. Previous studies indicate that Hsp22 plays a vital role in protecting the heart against cardiac stress. However, the essential role of Hsp22 in the heart under physiological conditions remains largely unknown. In this study, we used an Hsp22 knockout (KO) mouse model to determine whether loss of Hsp22 impairs cardiac growth and function with increasing age under physiological conditions. Cardiac structural and functional alterations at baseline were measured using echocardiography and invasive catheterization in Hsp22 KO mice during aging transition compared to their age-matched wild-type (WT) littermates. Our results showed that Hsp22 deletion induced progressive cardiac dilation along with declined function during the aging transition. Mechanistically, the loss of Hsp22 impaired BCL-2-associated athanogene 3 (BAG3) expression and its associated cardiac autophagy, undermined cardiac energy metabolism homeostasis and increased oxidative damage. This study showed that Hsp22 played an essential role in the non-stressed heart during the early stage of aging, which may bring new insight into understanding the pathogenesis of age-related dilated cardiomyopathy.
Collapse
|
35
|
Braumann S, Schumacher W, Im NG, Nettersheim FS, Mehrkens D, Bokredenghel S, Hof A, Nies RJ, Adler C, Winkels H, Knöll R, Freeman BA, Rudolph V, Klinke A, Adam M, Baldus S, Mollenhauer M, Geißen S. Nitro-Oleic Acid (NO 2-OA) Improves Systolic Function in Dilated Cardiomyopathy by Attenuating Myocardial Fibrosis. Int J Mol Sci 2021; 22:9052. [PMID: 34445757 PMCID: PMC8396484 DOI: 10.3390/ijms22169052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nitro-oleic acid (NO2-OA), a nitric oxide (NO)- and nitrite (NO2-)-derived electrophilic fatty acid metabolite, displays anti-inflammatory and anti-fibrotic signaling actions and therapeutic benefit in murine models of ischemia-reperfusion, atrial fibrillation, and pulmonary hypertension. Muscle LIM protein-deficient mice (Mlp-/-) develop dilated cardiomyopathy (DCM), characterized by impaired left ventricular function and increased ventricular fibrosis at the age of 8 weeks. This study investigated the effects of NO2-OA on cardiac function in Mlp-/- mice both in vivo and in vitro. Mlp-/- mice were treated with NO2-OA or vehicle for 4 weeks via subcutaneous osmotic minipumps. Wildtype (WT) littermates treated with vehicle served as controls. Mlp-/- mice exhibited enhanced TGFβ signalling, fibrosis and severely reduced left ventricular systolic function. NO2-OA treatment attenuated interstitial myocardial fibrosis and substantially improved left ventricular systolic function in Mlp-/- mice. In vitro studies of TGFβ-stimulated primary cardiac fibroblasts further revealed that the anti-fibrotic effects of NO2-OA rely on its capability to attenuate fibroblast to myofibroblast transdifferentiation by inhibiting phosphorylation of TGFβ downstream targets. In conclusion, we demonstrate a substantial therapeutic benefit of NO2-OA in a murine model of DCM, mediated by interfering with endogenously activated TGFβ signaling.
Collapse
Affiliation(s)
- Simon Braumann
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Wibke Schumacher
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Nam Gyu Im
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Felix Sebastian Nettersheim
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Dennis Mehrkens
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Senai Bokredenghel
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Alexander Hof
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Richard Julius Nies
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Christoph Adler
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, 17177 Stockholm, Sweden;
- Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, 43150 Mölndal, Sweden
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Volker Rudolph
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany;
| | - Anna Klinke
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany;
| | - Matti Adam
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Stephan Baldus
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| |
Collapse
|
36
|
An D, Zeng Q, Zhang P, Ma Z, Zhang H, Liu Z, Li J, Ren H, Xu D. Alpha-ketoglutarate ameliorates pressure overload-induced chronic cardiac dysfunction in mice. Redox Biol 2021; 46:102088. [PMID: 34364218 PMCID: PMC8353361 DOI: 10.1016/j.redox.2021.102088] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates the involvement of myocardial oxidative injury and mitochondrial dysfunction in the pathophysiology of heart failure (HF). Alpha-ketoglutarate (AKG) is an intermediate metabolite of the tricarboxylic acid (TCA) cycle that participates in different cellular metabolic and regulatory pathways. The circulating concentration of AKG was found to decrease with ageing and is elevated after acute exercise and resistance exercise and in HF. Recent studies in experimental models have shown that dietary AKG reduces reactive oxygen species (ROS) production and systemic inflammatory cytokine levels, regulates metabolism, extends lifespan and delays the occurrence of age-related decline. However, the effects of AKG on HF remain unclear. In the present study, we explored the effects of AKG on left ventricular (LV) systolic function, the myocardial ROS content and mitophagy in mice with transverse aortic constriction (TAC). AKG supplementation inhibited pressure overload-induced myocardial hypertrophy and fibrosis and improved cardiac systolic dysfunction; in vitro, AKG decreased the Ang II-induced upregulation of β-MHC and ANP, reduced ROS production and cardiomyocyte apoptosis, and repaired Ang II-mediated injury to the mitochondrial membrane potential (MMP). These benefits of AKG in the TAC mice may have been obtained by enhanced mitophagy, which cleared damaged mitochondria. In summary, our study suggests that AKG improves myocardial hypertrophy remodelling, fibrosis and LV systolic dysfunction in the pressure-overloaded heart by promoting mitophagy to clear damaged mitochondria and reduce ROS production; thus, AKG may have therapeutic potential for HF.
Collapse
Affiliation(s)
- Dongqi An
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Peijian Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Zhuang Ma
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Zuheng Liu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China; Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiaying Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Hao Ren
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China.
| |
Collapse
|
37
|
Quagliariello V, De Laurentiis M, Rea D, Barbieri A, Monti MG, Carbone A, Paccone A, Altucci L, Conte M, Canale ML, Botti G, Maurea N. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol 2021; 20:150. [PMID: 34301253 PMCID: PMC8305868 DOI: 10.1186/s12933-021-01346-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Empagliflozin (EMPA), a selective inhibitor of the sodium glucose co-transporter 2, reduced the risk of hospitalization for heart failure and cardiovascular death in type 2 diabetic patients in the EMPA-REG OUTCOME trial. Recent trials evidenced several cardio-renal benefits of EMPA in non-diabetic patients through the involvement of biochemical pathways that are still to be deeply analysed. We aimed to evaluate the effects of EMPA on myocardial strain of non-diabetic mice treated with doxorubicin (DOXO) through the analysis of NLRP3 inflammasome and MyD88-related pathways resulting in anti-apoptotic and anti-fibrotic effects. METHODS Preliminary cellular studies were performed on mouse cardiomyocytes (HL-1 cell line) exposed to doxorubicin alone or combined to EMPA. The following analysis were performed: determination of cell viability (through a modified MTT assay), study of intracellular ROS production, lipid peroxidation (quantifying intracellular malondialdehyde and 4-hydroxynonenal), intracellular Ca2+ homeostasis. Moreover, pro-inflammatory studies were also performed: expression of NLRP3 inflammasome, MyD88 myddosome and p65/NF-κB associated to secretion of cytokines involved in cardiotoxicity (Interleukins 1β, 8, 6). C57Bl/6 mice were untreated (Sham, n = 6) or treated for 10 days with doxorubicin (DOXO, n = 6), EMPA (EMPA, n = 6) or doxorubicin combined to EMPA (DOXO-EMPA, n = 6). DOXO was injected intraperitoneally. Ferroptosis and xanthine oxidase were studied before and after treatments. Cardiac function studies, including EF, FS and radial/longitudinal strain were analysed through transthoracic echocardiography (Vevo 2100). Cardiac fibrosis and apoptosis were histologically studied through Picrosirius red and TUNEL assay, respectively and quantified through pro-collagen-1α1, MMP-9 and Caspase-3 expression. Tissue NLRP3, MyD88 and cytokines were also quantified before and after treatments through ELISA methods. RESULTS Cardiomyocytes exposed to doxorubicin increased the intracellular Ca2+ content and expression of several pro-inflammatory markers associated to cell death; co-incubation with EMPA reduced significantly the magnitude of the effects. In preclinical study, EMPA increased EF and FS compared to DOXO groups (p < 0.05), prevented the reduction of radial and longitudinal strain after 10 days of treatment with doxorubicin (RS) 30.3% in EMPA-DOXO vs 15.7% in DOXO mice; LS - 17% in EMPA-DOXO vs - 11.7% in DOXO mice (p < 0.001 for both). Significant reductions in ferroptosis, xanthine oxidase expression, cardiac fibrosis and apoptosis in EMPA associated to DOXO were also seen. A reduced expression of pro-inflammatory cytokines, NLRP3, MyD88 and NF-kB in heart, liver and kidneys was also seen in DOXO-EMPA group compared to DOXO (p < 0.001). CONCLUSION EMPA reduced ferroptosis, fibrosis, apoptosis and inflammation in doxorubicin-treated mice through the involvement of NLRP3 and MyD88-related pathways, resulting in significant improvements in cardiac functions. These findings provides the proof of concept for translational studies designed to reduce adverse cardiovascular outcomes in non-diabetic cancer patients treated with doxorubicin.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy.
| | | | - Domenica Rea
- SSD Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Antonio Barbieri
- SSD Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Maria Gaia Monti
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Andreina Carbone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Via L. De Crecchio 7, 80138, Naples, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Via L. De Crecchio 7, 80138, Naples, Italy
| | - Maria Laura Canale
- Cardiology Division, Azienda USL Toscana Nord-Ovest, Versilia Hospital, Lido Di Camaiore, Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|
38
|
Kinoshita M, Tanabe Y, Yoshida K, Kurata A, Kobayashi Y, Uetani T, Inoue K, Nishimura K, Ikeda S, Mochizuki T, Kido T, Yamaguchi O. Left ventricular longitudinal strain is a major determinant of CT-derived three-dimensional maximum principal strain: comparison with two-dimensional speckle tracking echocardiography. Heart Vessels 2021; 37:31-39. [PMID: 34232385 DOI: 10.1007/s00380-021-01901-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022]
Abstract
Computed tomography (CT)-derived three-dimensional maximum principal strain (MP-strain) can provide incremental value to coronary CT angiography for cardiac dysfunction assessment with high diagnostic performance in patients with myocardial infarction. Global longitudinal strain (GLS) measured using two-dimensional speckle tracking echocardiography (2D-STE) is more sensitive than left ventricular ejection fraction (LVEF) for detecting early myocardial dysfunction. We aimed to compare CT-derived MP-strain with each of 2D-STE-derived strains (i.e., longitudinal, circumferential, and radial strains), and identify the major determinants of CT-derived MP-strain among 2D-STE-derived strains. We studied 51 patients who underwent cardiac CT and echocardiography. CT images were reconstructed at every 5% (0-95%) of the RR interval. A dedicated workstation was used to analyze CT-derived MP-strain on the 16-segment model. We calculated CT-derived global MP-strain with all the 16 segments on a per patient basis. Pearson's test was used to assess correlations between CT-derived MP-strain and STE-strain at global and segmental levels. The intra-class correlation coefficient for interobserver agreement for CT-derived global MP-strain was 0.98 (95% confidence interval 0.96-0.99). The low-CT-derived global MP-strain group (≤ 0.43) had more patients with LV dysfunction than the high-CT-derived global MP-strain group (> 0.43). CT-derived global MP-strain was associated with STE-GLS (r = 0.738, P < 0.001), global circumferential strain (r = 0.646, P < 0.001), and global radial strain (r = 0.432, P = 0.001). In multivariate analysis, STE-GLS had the strongest association to CT-derived global MP-strain among three directional STE-strains and LVEF by echocardiography (standardized coefficient = - 0.527, P < 0.001). STE-GLS is a major determinant of CT-derived global MP-strain. CT-derived MP-strain may enhance the value of coronary CT angiography by adding functional information to CT-derived LVEF.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yusuke Kobayashi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruyoshi Uetani
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Katsuji Inoue
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kazuhisa Nishimura
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shuntaro Ikeda
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
- Department of Radiology, I.M. Sechenov First Moscow State Medical University, 19c1, Bol'shaya Pirogovskaya Ulitsa, Moscow, 119146, Russia
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
39
|
Ogilvie LM, Coyle-Asbil B, Brunt KR, Simpson JA. Regional cardiac strain mapping by four-dimensional ultrasound provides earlier detection of systolic and diastolic dysfunction. Am J Physiol Heart Circ Physiol 2021; 321:H306-H308. [PMID: 34213391 DOI: 10.1152/ajpheart.00335.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,IMPART Investigator Team, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team, Canada
| |
Collapse
|
40
|
Mouton AJ, Flynn ER, Moak SP, Li X, da Silva AA, Wang Z, do Carmo JM, Hall ME, Hall JE. Interaction of Obesity and Hypertension on Cardiac Metabolic Remodeling and Survival Following Myocardial Infarction. J Am Heart Assoc 2021; 10:e018212. [PMID: 33666098 PMCID: PMC8174210 DOI: 10.1161/jaha.120.018212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Obesity and hypertension are risk factors for myocardial infarction (MI); however, their potential interactions on post‐MI outcomes are unclear. We examined interactions of obesity and hypertensionon post‐MI function, remodeling, metabolic changes, and recovery. Methods and Results Male and female C57BL/6J mice were provided standard chow or high‐fat/fructose diet for 8 weeks and then infused with angiotensin II for 2 weeks to induce hypertension. MI was then induced by surgical ligation of the left coronary artery for 7 days. Obesity alone did not cause cardiac injury or exacerbate hypertension‐induced cardiac dysfunction. After MI, however, obese‐normotensive mice had lower survival rates compared with chow‐fed mice (56% versus 89% males; 54% versus 75% females), which were further decreased by hypertension (29% males; and 35% females). Surviving obese‐normotensive males displayed less left ventricular dilation and pulmonary congestion compared with chow‐fed males after MI; hypertension reversed left ventricular dilation because of high‐fat/fructose diet and promoted significant pulmonary congestion compared with chow‐fed controls. Obese‐normotensive males displayed higher left ventricular α‐MHC (alpha‐myosin heavy chain) protein, phosphorylated Akt (protein kinase B) and AMPK (adenosine‐monophosphate activated kinase), PPAR‐γ (peroxisome proliferator activated receptor gamma), and plasma adiponectin levels after MI, indicating favorable contractile and metabolic changes. However, these favorable contractile and metabolic changes were attenuated by hypertension. Obese‐hypertensive males also had lower levels of collagen in the infarcted region, indicating decreased ability to promote an adaptive wound healing response to MI. Conclusions Obesity reduces post‐MI survival but is associated with improved post‐MI cardiac function and metabolism in surviving normotensive mice. When hypertension accompanies obesity, favorable metabolic pathways associated with obesity are attenuated and post‐MI cardiac function and remodeling are adversely impacted.
Collapse
Affiliation(s)
- Alan J Mouton
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS
| | - Sydney P Moak
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS
| | - Xuan Li
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Alexandre A da Silva
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Zhen Wang
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Jussara M do Carmo
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Michael E Hall
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Department of Medicine University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - John E Hall
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| |
Collapse
|
41
|
Kyriazis ID, Hoffman M, Gaignebet L, Lucchese AM, Markopoulou E, Palioura D, Wang C, Bannister TD, Christofidou-Solomidou M, Oka SI, Sadoshima J, Koch WJ, Goldberg IJ, Yang VW, Bialkowska AB, Kararigas G, Drosatos K. KLF5 Is Induced by FOXO1 and Causes Oxidative Stress and Diabetic Cardiomyopathy. Circ Res 2021; 128:335-357. [PMID: 33539225 PMCID: PMC7870005 DOI: 10.1161/circresaha.120.316738] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Diabetic cardiomyopathy (DbCM) is a major complication in type-1 diabetes, accompanied by altered cardiac energetics, impaired mitochondrial function, and oxidative stress. Previous studies indicate that type-1 diabetes is associated with increased cardiac expression of KLF5 (Krüppel-like factor-5) and PPARα (peroxisome proliferator-activated receptor) that regulate cardiac lipid metabolism. OBJECTIVE In this study, we investigated the involvement of KLF5 in DbCM and its transcriptional regulation. METHODS AND RESULTS KLF5 mRNA levels were assessed in isolated cardiomyocytes from cardiovascular patients with diabetes and were higher compared with nondiabetic individuals. Analyses in human cells and diabetic mice with cardiomyocyte-specific FOXO1 (Forkhead box protein O1) deletion showed that FOXO1 bound directly on the KLF5 promoter and increased KLF5 expression. Diabetic mice with cardiomyocyte-specific FOXO1 deletion had lower cardiac KLF5 expression and were protected from DbCM. Genetic, pharmacological gain and loss of KLF5 function approaches and AAV (adeno-associated virus)-mediated Klf5 delivery in mice showed that KLF5 induces DbCM. Accordingly, the protective effect of cardiomyocyte FOXO1 ablation in DbCM was abolished when KLF5 expression was rescued. Similarly, constitutive cardiomyocyte-specific KLF5 overexpression caused cardiac dysfunction. KLF5 caused oxidative stress via direct binding on NADPH oxidase (NOX)4 promoter and induction of NOX4 (NADPH oxidase 4) expression. This was accompanied by accumulation of cardiac ceramides. Pharmacological or genetic KLF5 inhibition alleviated superoxide formation, prevented ceramide accumulation, and improved cardiac function in diabetic mice. CONCLUSIONS Diabetes-mediated activation of cardiomyocyte FOXO1 increases KLF5 expression, which stimulates NOX4 expression, ceramide accumulation, and causes DbCM.
Collapse
Affiliation(s)
- Ioannis D. Kyriazis
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Matthew Hoffman
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Lea Gaignebet
- Charité – Universitätsmedizin Berlin, Berlin 10115, Germany
| | - Anna Maria Lucchese
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Eftychia Markopoulou
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Dimitra Palioura
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Chao Wang
- The Scripps Research Institute, Jupiter, FL, 33458m USA
| | | | - Melpo Christofidou-Solomidou
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Shin-ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Walter J. Koch
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, 10016, USA
| | - Vincent W. Yang
- School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Georgios Kararigas
- Charité – Universitätsmedizin Berlin, Berlin 10115, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10785, Germany
- Department of Physiology, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | - Konstantinos Drosatos
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| |
Collapse
|
42
|
da Costa TSR, Urias U, Negrao MV, Jordão CP, Passos CS, Gomes‐Santos IL, Salemi VMC, Camargo AA, Brum PC, Oliveira EM, Hajjar LA, Chammas R, Filho RK, Negrao CE. Breast Cancer Promotes Cardiac Dysfunction Through Deregulation of Cardiomyocyte Ca 2+-Handling Protein Expression That is Not Reversed by Exercise Training. J Am Heart Assoc 2021; 10:e018076. [PMID: 33619982 PMCID: PMC8174298 DOI: 10.1161/jaha.120.018076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
Background Patients treated for breast cancer have a high incidence of cardiovascular complications. In this study, we evaluated the impact of breast cancer on cardiac function and cardiomyocyte Ca2+-handling protein expression. We also investigated whether exercise training (ET) would prevent these potential alterations. Methods and Results Transgenic mice with spontaneous breast cancer (mouse mammary tumor virus-polyomavirus middle T antigen [MMTV-PyMT+], n=15) and littermate mice with no cancer (MMTV-PyMT-, n=14) were studied. For the ET analysis, MMTV-PyMT+ were divided into sedentary (n=10) and exercise-trained (n=12) groups. Cardiac function was evaluated by echocardiography with speckle-tracking imaging. Exercise tolerance test was conducted on a treadmill. Both studies were performed when the tumor became palpable and when it reached 1 cm3. After euthanasia, Ca2+-handling protein expression (Western blot) was evaluated. Exercise capacity was reduced in MMTV-PyMT+ compared with MMTV-PyMT- (Pinteraction=0.031). Longitudinal strain (Pgroup <0.001) and strain rate (Pgroup=0.030) were impaired. Cardiomyocyte phospholamban was increased (P=0.011), whereas phospho-phospholamban and sodium/calcium exchanger were decreased (P=0.038 and P=0.017, respectively) in MMTV-PyMT+. No significant difference in sarcoplasmic or endoplasmic reticulum calcium 2 ATPase (SERCA2a) was found. SERCA2a/phospholamban ratio was reduced (P=0.007). ET was not associated with increased exercise capacity. ET decreased left ventricular end-systolic diameter (Pgroup=0.038) and end-diastolic volume (Pgroup=0.026). Other morphological and functional cardiac parameters were not improved by ET in MMTV-PyMT+. ET did not improve cardiomyocyte Ca2+-handling protein expression. Conclusions Breast cancer is associated with decreased exercise capacity and subclinical left ventricular dysfunction in MMTV-PyMT+, which is at least partly associated with dysregulation of cardiomyocyte Ca2+ handling. ET did not prevent or reverse these changes.
Collapse
Affiliation(s)
- Tassia S. R. da Costa
- Heart Institute (InCor) do Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
- Cancer Institute of the State of São PauloHospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
| | - Ursula Urias
- Heart Institute (InCor) do Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
- School of Physical Education and SportUniversidade de São PauloBrasil
| | - Marcelo V. Negrao
- Department of Thoracic/Head and Neck Medical OncologyThe University of TexasMD Anderson Cancer CenterHoustonTX
| | - Camila P. Jordão
- Heart Institute (InCor) do Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
| | - Clévia S. Passos
- Heart Institute (InCor) do Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
| | - Igor L. Gomes‐Santos
- Heart Institute (InCor) do Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
- Edwin L. Steele Laboratories for Tumor BiologyDepartment of Radiation Oncology, Massachusetts General Hospital & Harvard Medical SchoolBostonMA
| | - Vera Maria C. Salemi
- Heart Institute (InCor) do Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
| | | | - Patricia C. Brum
- School of Physical Education and SportUniversidade de São PauloBrasil
| | | | - Ludhmila A. Hajjar
- Heart Institute (InCor) do Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
- Cancer Institute of the State of São PauloHospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
| | - Roger Chammas
- Cancer Institute of the State of São PauloHospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
| | - Roberto K. Filho
- Heart Institute (InCor) do Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
| | - Carlos E. Negrao
- Heart Institute (InCor) do Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloBrasil
- School of Physical Education and SportUniversidade de São PauloBrasil
| |
Collapse
|
43
|
de Lucia C, Piedepalumbo M, Wang L, Carnevale Neto F, Raftery D, Gao E, Praticò D, Promislow DEL, Koch WJ. Effects of myocardial ischemia/reperfusion injury on plasma metabolomic profile during aging. Aging Cell 2021; 20:e13284. [PMID: 33377274 PMCID: PMC7811846 DOI: 10.1111/acel.13284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/01/2020] [Accepted: 10/18/2020] [Indexed: 01/09/2023] Open
Abstract
Background Heart disease is a frequent cause of hospitalization and mortality for elderly patients. A common feature of both heart disease and aging itself is the involvement of metabolic organ alterations ultimately leading to changes in circulating metabolite levels. However, the specific contribution of aging and ischemic injury to the metabolic dysregulation occurring in older adults with ischemic heart disease is still unknown. Aim To evaluate the effects of aging and ischemia/reperfusion (I/R) injury on plasma metabolomic profiling in mice. Methods Young and aged mice were subjected to a minimally invasive model of I/R injury or sham operation. Complete evaluation of cardiac function and untargeted plasma metabolomics analysis were performed. Results We confirmed that aged mice from the sham group had impaired cardiac function and augmented left ventricular (LV) dimensions compared to young sham‐operated mice. Further, we found that ischemic injury did not drastically reduce LV systolic/diastolic function and dyssynchrony in aged compared to young mice. Using an untargeted metabolomics approach focused on aqueous metabolites, we found that ischemic injury does not affect the plasma metabolomic profile either in young or old mice. Our data also demonstrate that age significantly affects circulating metabolite levels (predominantly amino acids, phospholipids and organic acids) and perturbs several pathways involved in amino acid, glucid and nucleic acid metabolism as well as pyridoxal‐5′‐phosphate salvage pathway in both sham and ischemic mice. Conclusions Our approach increases our understanding of age‐associated plasma metabolomic signatures in mice with and without heart disease excluding confounding factors related to metabolic comorbidities.
Collapse
Affiliation(s)
- Claudio de Lucia
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia Pennsylvania USA
| | - Michela Piedepalumbo
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia Pennsylvania USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences University of Washington Seattle Washington USA
| | - Fausto Carnevale Neto
- Department of Anesthesiology and Pain Medicine Northwest Metabolomics Research Center University of Washington Seattle Washington USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine Northwest Metabolomics Research Center University of Washington Seattle Washington USA
| | - Erhe Gao
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia Pennsylvania USA
| | - Domenico Praticò
- Alzheimer's Center at Temple Lewis Katz School of Medicine Temple University Philadelphia Pennsylvania USA
| | - Daniel E. L. Promislow
- Department of Biology University of Washington Seattle Washington USA
- Department of Lab Medicine and Pathology University of Washington School of Medicine Seattle Washington USA
| | - Walter J. Koch
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia Pennsylvania USA
| |
Collapse
|
44
|
Herrera JJ, Louzon S, Pifer K, Leander D, Merrihew GE, Park JH, Szczesniak K, Whitson J, Wilkinson JE, Fiehn O, MacCoss MJ, Day SM, Miller RA, Garratt M. Acarbose has sex-dependent and -independent effects on age-related physical function, cardiac health, and lipid biology. JCI Insight 2020; 5:137474. [PMID: 32990683 PMCID: PMC7710286 DOI: 10.1172/jci.insight.137474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
With an expanding aging population burdened with comorbidities, there is considerable interest in treatments that optimize health in later life. Acarbose (ACA), a drug used clinically to treat type 2 diabetes mellitus (T2DM), can extend mouse life span with greater effect in males than in females. Using a genetically heterogeneous mouse model, we tested the ability of ACA to ameliorate functional, pathological, and biochemical changes that occur during aging, and we determined which of the effects of age and drug were sex dependent. In both sexes, ACA prevented age-dependent loss of body mass, in addition to improving balance/coordination on an accelerating rotarod, rotarod endurance, and grip strength test. Age-related cardiac hypertrophy was seen only in male mice, and this male-specific aging effect was attenuated by ACA. ACA-sensitive cardiac changes were associated with reduced activation of cardiac growth-promoting pathways and increased abundance of peroxisomal proteins involved in lipid metabolism. ACA further ameliorated age-associated changes in cardiac lipid species, particularly lysophospholipids - changes that have previously been associated with aging, cardiac dysfunction, and cardiovascular disease in humans. In the liver, ACA had pronounced effects on lipid handling in both sexes, reducing hepatic lipidosis during aging and shifting the liver lipidome in adulthood, particularly favoring reduced triglyceride (TAG) accumulation. Our results demonstrate that ACA, already in clinical use for T2DM, has broad-ranging antiaging effects in multiple tissues, and it may have the potential to increase physical function and alter lipid biology to preserve or improve health at older ages.
Collapse
Affiliation(s)
- Jonathan J Herrera
- Department of Molecular & Integrative Physiology, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Sean Louzon
- Department of Molecular & Integrative Physiology, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Kaitlyn Pifer
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA
| | - Danielle Leander
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA
| | | | | | - Kate Szczesniak
- Department of Molecular & Integrative Physiology, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Jeremy Whitson
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - John E Wilkinson
- Unit for Laboratory Animal Medicine and Department of Pathology, UM, Ann Arbor, Michigan, USA
| | | | | | - Sharlene M Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard A Miller
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA.,UM Geriatrics Center, Ann Arbor, Michigan, USA
| | - Michael Garratt
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA.,Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
45
|
Bose C, Alves I, Singh P, Palade PT, Carvalho E, Børsheim E, Jun S, Cheema A, Boerma M, Awasthi S, Singh SP. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell 2020; 19:e13261. [PMID: 33067900 PMCID: PMC7681049 DOI: 10.1111/acel.13261] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 01/06/2023] Open
Abstract
Age-associated mitochondrial dysfunction and oxidative damage are primary causes for multiple health problems including sarcopenia and cardiovascular disease (CVD). Though the role of Nrf2, a transcription factor that regulates cytoprotective gene expression, in myopathy remains poorly defined, it has shown beneficial properties in both sarcopenia and CVD. Sulforaphane (SFN), a natural compound Nrf2-related activator of cytoprotective genes, provides protection in several disease states including CVD and is in various stages of clinical trials, from cancer prevention to reducing insulin resistance. This study aimed to determine whether SFN may prevent age-related loss of function in the heart and skeletal muscle. Cohorts of 2-month-old and 21- to 22-month-old mice were administered regular rodent diet or diet supplemented with SFN for 12 weeks. At the completion of the study, skeletal muscle and heart function, mitochondrial function, and Nrf2 activity were measured. Our studies revealed a significant drop in Nrf2 activity and mitochondrial functions, together with a loss of skeletal muscle and cardiac function in the old control mice compared to the younger age group. In the old mice, SFN restored Nrf2 activity, mitochondrial function, cardiac function, exercise capacity, glucose tolerance, and activation/differentiation of skeletal muscle satellite cells. Our results suggest that the age-associated decline in Nrf2 signaling activity and the associated mitochondrial dysfunction might be implicated in the development of age-related disease processes. Therefore, the restoration of Nrf2 activity and endogenous cytoprotective mechanisms by SFN may be a safe and effective strategy to protect against muscle and heart dysfunction due to aging.
Collapse
Affiliation(s)
- Chhanda Bose
- Division of Hematology & Oncology Department of Internal Medicine Texas Tech University Medical Sciences Center Lubbock TX USA
| | - Ines Alves
- Arkansas Children's Research Institute Little Rock AR USA
- Center for Neuroscience and Cell Biology University of Coimbra Coimbra Portugal
| | - Preeti Singh
- Department of Pharmacology and Toxicology University of Arkansas for Medical Sciences Little Rock AR USA
| | - Philip T. Palade
- Department of Pharmacology and Toxicology University of Arkansas for Medical Sciences Little Rock AR USA
| | - Eugenia Carvalho
- Arkansas Children's Research Institute Little Rock AR USA
- Center for Neuroscience and Cell Biology University of Coimbra Coimbra Portugal
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Elisabet Børsheim
- Arkansas Children's Research Institute Little Rock AR USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
- Arkansas Children’s Nutrition Center Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Se‐Ran Jun
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Amrita Cheema
- Departments of Oncology and Biochemistry, Molecular and Cellular Biology Georgetown University Medical Center Washington DC USA
| | - Marjan Boerma
- Division of Radiation Health Department of Pharmaceutical Sciences University of Arkansas for Medical Sciences Little Rock AR USA
| | - Sanjay Awasthi
- Division of Hematology & Oncology Department of Internal Medicine Texas Tech University Medical Sciences Center Lubbock TX USA
| | - Sharda P. Singh
- Division of Hematology & Oncology Department of Internal Medicine Texas Tech University Medical Sciences Center Lubbock TX USA
| |
Collapse
|
46
|
DiNello E, Bovo E, Thuo P, Martin TG, Kirk JA, Zima AV, Cao Q, Kuo IY. Deletion of cardiac polycystin 2/PC2 results in increased SR calcium release and blunted adrenergic reserve. Am J Physiol Heart Circ Physiol 2020; 319:H1021-H1035. [PMID: 32946258 DOI: 10.1152/ajpheart.00302.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transient receptor potential proteins (TRPs) act as nonselective cation channels. Of the TRP channels, PC2 (also known as polycystin 2) is localized to the sarcoplasmic reticulum (SR); however, its contribution to calcium-induced calcium release and overall cardiac function in the heart is poorly understood. The goal of this study was to characterize the effect of cardiac-specific PC2 deletion in adult cardiomyocytes and in response to chronic β-adrenergic challenge. We used a temporally inducible model to specifically delete PC2 from cardiomyocytes (Pkd2 KO) and characterized calcium and contractile dynamics in single cells. We found enhanced intracellular calcium release after Pkd2 KO, and near super-resolution microscopy analysis suggested this was due to close localization of PC2 to the ryanodine receptor. At the organ level, speckle-tracking echocardiographical analysis showed increased dyssynchrony in the Pkd2 KO mice. In response to chronic adrenergic stimulus, cardiomyocytes from the Pkd2 KO had no reserve β-adrenergic calcium responses and significantly attenuated wall motion in the whole heart. Biochemically, without adrenergic stimulus, there was an overall increase in PKA phosphorylated targets in the Pkd2 KO mouse, which decreased following chronic adrenergic stimulus. Taken together, our results suggest that cardiac-specific PC2 limits SR calcium release by affecting the PKA phosphorylation status of the ryanodine receptor, and the effects of PC2 loss are exacerbated upon adrenergic challenge.NEW & NOTEWORTHY Our goal was to characterize the role of the transient receptor potential channel polycystin 2 (PC2) in cardiomyocytes following adult-onset deletion. Loss of PC2 resulted in decreased cardiac shortening and cardiac dyssynchrony and diminished adrenergic reserve. These results suggest that cardiac-specific PC2 modulates intracellular calcium signaling and contributes to the maintenance of adrenergic pathways.
Collapse
Affiliation(s)
- Elisabeth DiNello
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois.,Cardiovascular Research Institute, Loyola University Chicago, Chicago, Illinois
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois.,Cardiovascular Research Institute, Loyola University Chicago, Chicago, Illinois
| | - Paula Thuo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois.,Cardiovascular Research Institute, Loyola University Chicago, Chicago, Illinois
| | - Thomas G Martin
- Graduate School, Loyola University Chicago, Chicago, Illinois
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois.,Cardiovascular Research Institute, Loyola University Chicago, Chicago, Illinois
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois.,Cardiovascular Research Institute, Loyola University Chicago, Chicago, Illinois
| | - Quan Cao
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois.,Cardiovascular Research Institute, Loyola University Chicago, Chicago, Illinois
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois.,Cardiovascular Research Institute, Loyola University Chicago, Chicago, Illinois.,Department of Pharmacology, Yale University, New Haven, Connecticut
| |
Collapse
|
47
|
Hoffman M, Kyriazis ID, Lucchese AM, de Lucia C, Piedepalumbo M, Bauer M, Schulze PC, Bonios MJ, Koch WJ, Drosatos K. Myocardial Strain and Cardiac Output are Preferable Measurements for Cardiac Dysfunction and Can Predict Mortality in Septic Mice. J Am Heart Assoc 2020; 8:e012260. [PMID: 31112430 PMCID: PMC6585345 DOI: 10.1161/jaha.119.012260] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Sepsis is the overwhelming host response to infection leading to shock and multiple organ dysfunction. Cardiovascular complications greatly increase sepsis‐associated mortality. Although murine models are routinely used for preclinical studies, the benefit of using genetically engineered mice in sepsis is countered by discrepancies between human and mouse sepsis pathophysiology. Therefore, recent guidelines have called for standardization of preclinical methods to document organ dysfunction. We investigated the course of cardiac dysfunction and myocardial load in different mouse models of sepsis to identify the optimal measurements for early systolic and diastolic dysfunction. Methods and Results We performed speckle‐tracking echocardiography and assessed blood pressure, plasma inflammatory cytokines, lactate, B‐type natriuretic peptide, and survival in mouse models of endotoxemia or polymicrobial infection (cecal ligation and puncture, [CLP]) of moderate and high severity. We observed that myocardial strain and cardiac output were consistently impaired early in both sepsis models. Suppression of cardiac output was associated with systolic dysfunction in endotoxemia or combined systolic dysfunction and reduced preload in the CLP model. We found that cardiac output at 2 hours post‐CLP is a negative prognostic indicator with high sensitivity and specificity that predicts mortality at 48 hours. Using a known antibiotic (ertapenem) treatment, we confirmed that this approach can document recovery. Conclusions We propose a non‐invasive approach for assessment of cardiac function in sepsis and myocardial strain and strain rate as preferable measures for monitoring cardiovascular function in sepsis mouse models. We further show that the magnitude of cardiac output suppression 2 hours post‐CLP can be used to predict mortality.
Collapse
Affiliation(s)
- Matthew Hoffman
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Ioannis D Kyriazis
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Anna M Lucchese
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Claudio de Lucia
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Michela Piedepalumbo
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA.,2 Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences University of Campania "Luigi Vanvitelli" Naples Italy
| | - Michael Bauer
- 3 Department for Anesthesiology and Intensive Care Medicine Friedrich-Schiller-University Jena Germany
| | - P Christian Schulze
- 4 Division of Cardiology, Angiology, Intensive Medical Care and Pneumology Department of Internal Medicine I University Hospital Jena Germany
| | - Michael J Bonios
- 5 Heart Failure and Transplant Unit Onassis Cardiac Surgery Center Athens Greece
| | - Walter J Koch
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Konstantinos Drosatos
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| |
Collapse
|
48
|
Monsanto MM, Wang BJ, Ehrenberg ZR, Echeagaray O, White KS, Alvarez R, Fisher K, Sengphanith S, Muliono A, Gude NA, Sussman MA. Enhancing myocardial repair with CardioClusters. Nat Commun 2020; 11:3955. [PMID: 32769998 PMCID: PMC7414230 DOI: 10.1038/s41467-020-17742-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular therapy to treat heart failure is an ongoing focus of intense research, but progress toward structural and functional recovery remains modest. Engineered augmentation of established cellular effectors overcomes impediments to enhance reparative activity. Such 'next generation' implementation includes delivery of combinatorial cell populations exerting synergistic effects. Concurrent isolation and expansion of three distinct cardiac-derived interstitial cell types from human heart tissue, previously reported by our group, prompted design of a 3D structure that maximizes cellular interaction, allows for defined cell ratios, controls size, enables injectability, and minimizes cell loss. Herein, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and c-Kit+ cardiac interstitial cells (cCICs) when cultured together spontaneously form scaffold-free 3D microenvironments termed CardioClusters. scRNA-Seq profiling reveals CardioCluster expression of stem cell-relevant factors, adhesion/extracellular-matrix molecules, and cytokines, while maintaining a more native transcriptome similar to endogenous cardiac cells. CardioCluster intramyocardial delivery improves cell retention and capillary density with preservation of cardiomyocyte size and long-term cardiac function in a murine infarction model followed 20 weeks. CardioCluster utilization in this preclinical setting establish fundamental insights, laying the framework for optimization in cell-based therapeutics intended to mitigate cardiomyopathic damage.
Collapse
Affiliation(s)
- Megan M Monsanto
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Bingyan J Wang
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Zach R Ehrenberg
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Oscar Echeagaray
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Kevin S White
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Roberto Alvarez
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Kristina Fisher
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sharon Sengphanith
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Alvin Muliono
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Natalie A Gude
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mark A Sussman
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
49
|
Hynynen H, Mutikainen M, Naumenko N, Shakirzyanova A, Tuomainen T, Tavi P. Short high-fat diet interferes with the physiological maturation of the late adolescent mouse heart. Physiol Rep 2020; 8:e14474. [PMID: 32643294 PMCID: PMC7343666 DOI: 10.14814/phy2.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 11/24/2022] Open
Abstract
Dietary fats are essential for cardiac function. The metabolites of fats known as fatty acids provide most of the energy for cardiac tissue, serve as building blocks for membranes and regulate important signaling cascades. Despite their importance, excess fat intake can cause cardiac dysfunction. The detrimental effects of high-fat diet (HFD) on cardiac health are widely investigated in long-term studies but the short-term effects of fats have not been thoroughly studied. To elucidate the near-term effects of a HFD on the growth and maturation of late adolescent heart we subjected 11-week-old mice to an 8-week long HFD (42% of calories from fat, 42% from carbohydrate, n = 8) or chow diet (12% of calories from fat, 66% from carbohydrate, n = 7) and assessed their effects on the heart in vivo and in vitro. Our results showed that excessive fat feeding interferes with normal maturation of the heart indicated by the lack of increase in dimensions, volume, and stroke volume of the left ventricles of mice on high fat diet that were evident in mice on chow diet. In addition, differences in regional strain during the contraction cycle between mice on HFD and chow diet were seen. These changes were associated with reduced activity of the growth promoting PI3K-Akt1 signaling cascade and moderate changes in glucose metabolism without changes in calcium signaling. This study suggests that even a short period of HFD during late adolescence hinders cardiac maturation and causes physiological changes that may have an impact on the cardiac health in adulthood.
Collapse
Affiliation(s)
- Heidi Hynynen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Maija Mutikainen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Nikolay Naumenko
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | | | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
50
|
Lieu M, Traynham CJ, de Lucia C, Pfleger J, Piedepalumbo M, Roy R, Petovic J, Landesberg G, Forrester SJ, Hoffman M, Grisanti LA, Yuan A, Gao E, Drosatos K, Eguchi S, Scalia R, Tilley DG, Koch WJ. Loss of dynamic regulation of G protein-coupled receptor kinase 2 by nitric oxide leads to cardiovascular dysfunction with aging. Am J Physiol Heart Circ Physiol 2020; 318:H1162-H1175. [PMID: 32216616 PMCID: PMC7346533 DOI: 10.1152/ajpheart.00094.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) and S-nitrosothiol (SNO) are considered cardio- and vasoprotective substances. We now understand that one mechanism in which NO/SNOs provide cardiovascular protection is through their direct inhibition of cardiac G protein-coupled receptor (GPCR) kinase 2 (GRK2) activity via S-nitrosylation of GRK2 at cysteine 340 (C340). This maintains GPCR homeostasis, including β-adrenergic receptors, through curbing receptor GRK2-mediated desensitization. Previously, we have developed a knockin mouse (GRK2-C340S) where endogenous GRK2 is resistant to dynamic S-nitrosylation, which led to increased GRK2 desensitizing activity. This unchecked regulation of cardiac GRK2 activity resulted in significantly more myocardial damage after ischemic injury that was resistant to NO-mediated cardioprotection. Although young adult GRK2-C340S mice show no overt phenotype, we now report that as these mice age, they develop significant cardiovascular dysfunction due to the loss of SNO-mediated GRK2 regulation. This pathological phenotype is apparent as early as 12 mo of age and includes reduced cardiac function, increased cardiac perivascular fibrosis, and maladaptive cardiac hypertrophy, which are common maladies found in patients with cardiovascular disease (CVD). There are also vascular reactivity and aortic abnormalities present in these mice. Therefore, our data demonstrate that a chronic and global increase in GRK2 activity is sufficient to cause cardiovascular remodeling and dysfunction, likely due to GRK2’s desensitizing effects in several tissues. Because GRK2 levels have been reported to be elevated in elderly CVD patients, GRK2-C340 mice can give insight into the aged-molecular landscape leading to CVD. NEW & NOTEWORTHY Research on G protein-coupled receptor kinase 2 (GRK2) in the setting of cardiovascular aging is largely unknown despite its strong established functions in cardiovascular physiology and pathophysiology. This study uses a mouse model of chronic GRK2 overactivity to further investigate the consequences of long-term GRK2 on cardiac function and structure. We report for the first time that chronic GRK2 overactivity was able to cause cardiac dysfunction and remodeling independent of surgical intervention, highlighting the importance of GRK activity in aged-related heart disease.
Collapse
Affiliation(s)
- Melissa Lieu
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Christopher J Traynham
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Claudio de Lucia
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Michela Piedepalumbo
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Rajika Roy
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jennifer Petovic
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Gavin Landesberg
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Matthew Hoffman
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Laurel A Grisanti
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Ancai Yuan
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Konstantinos Drosatos
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Douglas G Tilley
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|