1
|
Gong F, Cao D, Sun X, Li Z, Qu C, Fan Y, Cao Z, Zhao K, Zhao K, Qiu D, Li Z, Ren R, Ma X, Zhang X, Yin D. Homologous mapping yielded a comprehensive predicted protein-protein interaction network for peanut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2024; 24:873. [PMID: 39304811 DOI: 10.1186/s12870-024-05580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Protein-protein interactions are the primary means through which proteins carry out their functions. These interactions thus have crucial roles in life activities. The wide availability of fully sequenced animal and plant genomes has facilitated establishment of relatively complete global protein interaction networks for some model species. The genomes of cultivated and wild peanut (Arachis hypogaea L.) have also been sequenced, but the functions of most of the encoded proteins remain unclear. RESULTS We here used homologous mapping of validated protein interaction data from model species to generate complete peanut protein interaction networks for A. hypogaea cv. 'Tifrunner' (282,619 pairs), A. hypogaea cv. 'Shitouqi' (256,441 pairs), A. monticola (440,470 pairs), A. duranensis (136,363 pairs), and A. ipaensis (172,813 pairs). A detailed analysis was conducted for a putative disease-resistance subnetwork in the Tifrunner network to identify candidate genes and validate functional interactions. The network suggested that DX2UEH and its interacting partners may participate in peanut resistance to bacterial wilt; this was preliminarily validated with overexpression experiments in peanut. CONCLUSION Our results provide valuable new information for future analyses of gene and protein functions and regulatory networks in peanut.
Collapse
Affiliation(s)
- Fangping Gong
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Di Cao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Xiaojian Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Zhuo Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Chengxin Qu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Yi Fan
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Zenghui Cao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Kai Zhao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Kunkun Zhao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Ding Qiu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Zhongfeng Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Rui Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Xingli Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Xingguo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Dongmei Yin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
2
|
Zheng Z, Sun Z, Qi F, Fang Y, Lin K, Pavan S, Huang B, Dong W, Du P, Tian M, Shi L, Xu J, Han S, Liu H, Qin L, Zhang Z, Dai X, Miao L, Zhao R, Wang J, Liao Y, Li A, Ruan J, Delvento C, Aiese Cigliano R, Maliepaard C, Bai Y, Visser RGF, Zhang X. Chloroplast and whole-genome sequencing shed light on the evolutionary history and phenotypic diversification of peanuts. Nat Genet 2024; 56:1975-1984. [PMID: 39138385 PMCID: PMC11387195 DOI: 10.1038/s41588-024-01876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Cultivated peanut (Arachis hypogaea L.) is a widely grown oilseed crop worldwide; however, the events leading to its origin and diversification are not fully understood. Here by combining chloroplast and whole-genome sequence data from a large germplasm collection, we show that the two subspecies of A. hypogaea (hypogaea and fastigiata) likely arose from distinct allopolyploidization and domestication events. Peanut genetic clusters were then differentiated in relation to dissemination routes and breeding efforts. A combination of linkage mapping and genome-wide association studies allowed us to characterize genes and genomic regions related to main peanut morpho-agronomic traits, namely flowering pattern, inner tegument color, growth habit, pod/seed weight and oil content. Together, our findings shed light on the evolutionary history and phenotypic diversification of peanuts and might be of broad interest to plant breeders.
Collapse
Affiliation(s)
- Zheng Zheng
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China.
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China.
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China.
- The Shennong Laboratory, Zhengzhou, China.
| | - Ziqi Sun
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Feiyan Qi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Yuanjin Fang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Ke Lin
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Stefano Pavan
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Bingyan Huang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Wenzhao Dong
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Pei Du
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Mengdi Tian
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Lei Shi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Jing Xu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Suoyi Han
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Hua Liu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Li Qin
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Zhongxin Zhang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Xiaodong Dai
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Lijuan Miao
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Ruifang Zhao
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Juan Wang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Yanlin Liao
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- The Shennong Laboratory, Zhengzhou, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Alun Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jue Ruan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chiara Delvento
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Chris Maliepaard
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Xinyou Zhang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China.
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China.
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China.
- The Shennong Laboratory, Zhengzhou, China.
| |
Collapse
|
3
|
Xue H, Zhao K, Zhao K, Han S, Chitikineni A, Zhang L, Qiu D, Ren R, Gong F, Li Z, Ma X, Zhang X, Varshney RK, Zhang X, Wei C, Yin D. A near complete genome of Arachis monticola, an allotetraploid wild peanut. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2110-2112. [PMID: 38436521 PMCID: PMC11258969 DOI: 10.1111/pbi.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Hongzhang Xue
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Kai Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Kunkun Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Suoyi Han
- The Shennong LaboratoryZhengzhouHenanChina
| | | | - Lin Zhang
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Ding Qiu
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Rui Ren
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Fangping Gong
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhongfeng Li
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xingli Ma
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xingguo Zhang
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | | | | | - Chaochun Wei
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dongmei Yin
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
4
|
Yu B, Liu N, Huang L, Luo H, Zhou X, Lei Y, Yan L, Wang X, Chen W, Kang Y, Ding Y, Jin G, Pandey MK, Janila P, Kishan Sudini H, Varshney RK, Jiang H, Liu S, Liao B. Identification and application of a candidate gene AhAftr1 for aflatoxin production resistance in peanut seed (Arachis hypogaea L.). J Adv Res 2024; 62:15-26. [PMID: 37739123 PMCID: PMC11331177 DOI: 10.1016/j.jare.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
INTRODUCTION Peanut is susceptible to infection of Aspergillus fungi and conducive to aflatoxin contamination, hence developing aflatoxin-resistant variety is highly meaningful. Identifying functional genes or loci conferring aflatoxin resistance and molecular diagnostic marker are crucial for peanut breeding. OBJECTIVES This work aims to (1) identify candidate gene for aflatoxin production resistance, (2) reveal the related resistance mechanism, and (3) develop diagnostic marker for resistance breeding program. METHODS Resistance to aflatoxin production in a recombined inbred line (RIL) population derived from a high-yielding variety Xuhua13 crossed with an aflatoxin-resistant genotype Zhonghua 6 was evaluated under artificial inoculation for three consecutive years. Both genetic linkage analysis and QTL-seq were conducted for QTL mapping. The candidate gene was further fine-mapped using a secondary segregation mapping population and validated by transgenic experiments. RNA-Seq analysis among resistant and susceptible RILs was used to reveal the resistance pathway for the candidate genes. RESULTS The major effect QTL qAFTRA07.1 for aflatoxin production resistance was mapped to a 1.98 Mbp interval. A gene, AhAftr1 (Arachis hypogaea Aflatoxin resistance 1), was detected structure variation (SV) in leucine rich repeat (LRR) domain of its production, and involved in disease resistance response through the effector-triggered immunity (ETI) pathway. Transgenic plants with overexpression of AhAftr1(ZH6) exhibited 57.3% aflatoxin reduction compared to that of AhAftr1(XH13). A molecular diagnostic marker AFTR.Del.A07 was developed based on the SV. Thirty-six lines, with aflatoxin content decrease by over 77.67% compared to the susceptible control Zhonghua12 (ZH12), were identified from a panel of peanut germplasm accessions and breeding lines through using AFTR.Del.A07. CONCLUSION Our findings would provide insights of aflatoxin production resistance mechanisms and laid meaningful foundation for further breeding programs.
Collapse
Affiliation(s)
- Bolun Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yingbin Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Gaorui Jin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Aird Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Pasupuleti Janila
- International Crops Research Institute for the Semi-Aird Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Aird Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Australia
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China.
| |
Collapse
|
5
|
Zhang H, Tang Y, Yue Y, Chen Y. Advances in the evolution research and genetic breeding of peanut. Gene 2024; 916:148425. [PMID: 38575102 DOI: 10.1016/j.gene.2024.148425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Peanut is an important cash crop used in oil, food and feed in our country. The rapid development of sequencing technology has promoted the research on the related aspects of peanut genetic breeding. This paper reviews the research progress of peanut origin and evolution, genetic breeding, molecular markers and their applications, genomics, QTL mapping and genome selection techniques. The main problems of molecular genetic breeding in peanut research worldwide include: the narrow genetic resources of cultivated species, unstable genetic transformation and unclear molecular mechanism of important agronomic traits. Considering the severe challenges regarding the supply of edible oil, and the main problems in peanut production, the urgent research directions of peanut are put forward: The de novo domestication and the exploitation of excellent genes from wild resources to improve modern cultivars; Integration of multi-omics data to enhance the importance of big data in peanut genetics and breeding; Cloning the important genes related to peanut agronomic traits and analyzing their fine regulation mechanisms; Precision molecular design breeding and using gene editing technology to accurately improve the key traits of peanut.
Collapse
Affiliation(s)
- Hui Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yueyi Tang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Yunlai Yue
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yong Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Lu Z, Yuan C, An X, Chen Z, Guo T, Liu J. Chromosome-level genome assembly of Guide Black-Fur sheep (Ovis aries). Sci Data 2024; 11:711. [PMID: 38951548 PMCID: PMC11217409 DOI: 10.1038/s41597-024-03564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Guide Black-Fur sheep (GD) is a breed of Tibetan sheep (Ovis aries) that lives in the Qinghai-Tibetan plateau region at an altitude of over 4,000 m. However, a lack of genomic information has made it difficult to understand the high-altitude adaptation of these sheep. We sequenced and assembled the GD reference genome using PacBio, Hi-C, and Illumina sequencing technologies. The final assembled genome size was 2.73 Gb, with a contig N50 of 20.30 Mb and a scaffold N50 of 107.63 Mb. The genome is predicted to contain 20,759 protein-coding genes, of which 98.42 have functional annotations. Repeat elements account for approximately 52.2% of the genomic landscape. The completeness of the GD genome assembly is highlighted by a BUSCO score of 93.1%. This high-quality genome assembly provides a critical resource for future molecular breeding and genetic improvement of Tibetan sheep.
Collapse
Affiliation(s)
- Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | | | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
7
|
Fang X, Liu L, Li M, Song H, Zhou Y. WRKY transcription factors modulate flowering time in four Arachis species: a bioinformatics analysis. BMC PLANT BIOLOGY 2024; 24:620. [PMID: 38943100 PMCID: PMC11212391 DOI: 10.1186/s12870-024-05343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND WRKY proteins are important transcription factors (TFs) in plants, involved in growth and development and responses to environmental changes. Although WRKY TFs have been studied at the genome level in Arachis genus, including oil crop and turfgrass, their regulatory networks in controlling flowering time remain unclear. The aim of this study was to predict the molecular mechanisms of WRKY TFs regulation flowering time in Arachis genus at the genome level using bioinformatics approaches. RESULTS The flowering-time genes of Arachis genus were retrieved from the flowering-time gene database. The regulatory networks between WRKY TFs and downstream genes in Arachis genus were predicted using bioinformatics tools. The results showed that WRKY TFs were involved in aging, autonomous, circadian clock, hormone, photoperiod, sugar, temperature, and vernalization pathways to modulate flowering time in Arachis duranensis, Arachis ipaensis, Arachis monticola, and Arachis hypogaea cv. Tifrunner. The WRKY TF binding sites in homologous flowering-time genes exhibited asymmetric evolutionary pattern, indicating that the WRKY TFs interact with other transcription factors to modulate flowering time in the four Arachis species. Protein interaction network analysis showed that WRKY TFs interacted with FRUITFULL and APETALA2 to modulate flowering time in the four Arachis species. WRKY TFs implicated in regulating flowering time had low expression levels, whereas their interaction proteins had varying expression patterns in 22 tissues of A. hypogaea cv. Tifrunner. These results indicate that WRKY TFs exhibit antagonistic or synergistic interactions with the associated proteins. CONCLUSIONS This study reveals complex regulatory networks through which WRKY TFs modulate flowering time in the four Arachis species using bioinformatics approaches.
Collapse
Affiliation(s)
- Xiao Fang
- School of Animation and Media, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, Shandong, 266019, China
| | - Lubin Liu
- College of Grassland Science, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, Shandong, 266019, China
| | - Meiran Li
- College of Grassland Science, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, Shandong, 266019, China
| | - Hui Song
- College of Grassland Science, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, Shandong, 266019, China.
| | - Yihui Zhou
- School of Animation and Media, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, Shandong, 266019, China.
| |
Collapse
|
8
|
Cui H, Xu H, Zhang Y, Xu C, Wang H, Li Q. The complete chloroplast genome of Arachis lutescens Krapov. & Rigoni (Fabaceae). Mitochondrial DNA B Resour 2024; 9:687-691. [PMID: 38835639 PMCID: PMC11146263 DOI: 10.1080/23802359.2024.2353230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Arachis lutescens Krapov. & Rigoni 1958 is an important species due to their potentially extensive applications for cultivated peanut breeding. The whole chloroplast genome of A. lutescens was successfully assembled and annotated for the first time. The complete chloroplast genome of A. lutescens is a typically circular structure of 156,398 bp with a GC content of 36.3%. It comprises a large single-copy (LSC) region of 85,950 bp, a small single-copy (SSC) region of 18,800 bp, and two inverted repeat regions (IRs) of 25,824 bp, each. The plastome of A. lutescens contains a total of 125 genes, including 81 protein-coding genes, 36 tRNAs, and eight rRNAs. The phylogenetic analysis strongly supports the close relationship between A. lutescens and cultivated peanut clades. This study contributes to our understanding of the molecular characteristics and evolutionary relationships of this plant species.
Collapse
Affiliation(s)
- Hexin Cui
- School of Nursing and Health, Zhengzhou University, Zhengzhou, China
| | - He Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunrui Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Han Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qinghua Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Raza A, Chen H, Zhang C, Zhuang Y, Sharif Y, Cai T, Yang Q, Soni P, Pandey MK, Varshney RK, Zhuang W. Designing future peanut: the power of genomics-assisted breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:66. [PMID: 38438591 DOI: 10.1007/s00122-024-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
KEY MESSAGE Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yasir Sharif
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Pooja Soni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
| |
Collapse
|
10
|
Lu Q, Huang L, Liu H, Garg V, Gangurde SS, Li H, Chitikineni A, Guo D, Pandey MK, Li S, Liu H, Wang R, Deng Q, Du P, Varshney RK, Liang X, Hong Y, Chen X. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet 2024; 56:530-540. [PMID: 38378864 DOI: 10.1038/s41588-024-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Peanut (Arachis hypogaea L.) is an important allotetraploid oil and food legume crop. China is one of the world's largest peanut producers and consumers. However, genomic variations underlying the migration and divergence of peanuts in China remain unclear. Here we reported a genome-wide variation map based on the resequencing of 390 peanut accessions, suggesting that peanuts might have been introduced into southern and northern China separately, forming two cultivation centers. Selective sweep analysis highlights asymmetric selection between the two subgenomes during peanut improvement. A classical pedigree from South China offers a context for the examination of the impact of artificial selection on peanut genome. Genome-wide association studies identified 22,309 significant associations with 28 agronomic traits, including candidate genes for plant architecture and oil biosynthesis. Our findings shed light on peanut migration and diversity in China and provide valuable genomic resources for peanut improvement.
Collapse
Affiliation(s)
- Qing Lu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Lu Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Haifen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Annapurna Chitikineni
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Dandan Guo
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shaoxiong Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Haiyan Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Runfeng Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Quanqing Deng
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Puxuan Du
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| |
Collapse
|
11
|
Cao D, Ma Y, Cao Z, Hu S, Li Z, Li Y, Wang K, Wang X, Wang J, Zhao K, Zhao K, Qiu D, Li Z, Ren R, Ma X, Zhang X, Gong F, Jung MY, Yin D. Coordinated Lipid Mobilization during Seed Development and Germination in Peanut ( Arachis hypogaea L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3218-3230. [PMID: 38157443 PMCID: PMC10870768 DOI: 10.1021/acs.jafc.3c06697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Peanut (Arachis hypogaea L.) is one of the most important oil crops in the world due to its lipid-rich seeds. Lipid accumulation and degradation play crucial roles in peanut seed maturation and seedling establishment, respectively. Here, we utilized lipidomics and transcriptomics to comprehensively identify lipids and the associated functional genes that are important in the development and germination processes of a large-seed peanut variety. A total of 332 lipids were identified; triacylglycerols (TAGs) and diacylglycerols were the most abundant during seed maturation, constituting 70.43 and 16.11%, respectively, of the total lipids. Significant alterations in lipid profiles were observed throughout seed maturation and germination. Notably, TAG (18:1/18:1/18:2) and (18:1/18:2/18:2) peaked at 23386.63 and 23392.43 nmol/g, respectively, at the final stage of seed development. Levels of hydroxylated TAGs (HO-TAGs) increased significantly during the initial stage of germination. Accumulation patterns revealed an inverse relationship between free fatty acids and TAGs. Lipid degradation was determined to be regulated by diacylglycerol acyltransferase, triacylglycerol lipase, and associated transcription factors, predominantly yielding oleic acid, linoleic acid, and linolenic acid. Collectively, the results of this study provide valuable insights into lipid dynamics during the development and germination of large-seed peanuts, gene resources, and guiding future research into lipid accumulation in an economically important crop.
Collapse
Affiliation(s)
- Di Cao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Yongzhe Ma
- College
of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 55338, Republic of Korea
| | - Zenghui Cao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Sasa Hu
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Zhan Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Yanzhe Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kuopeng Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xiaoxuan Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Jinzhi Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kunkun Zhao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kai Zhao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Ding Qiu
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Zhongfeng Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Rui Ren
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xingli Ma
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xingguo Zhang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Fangping Gong
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Mun Yhung Jung
- College
of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 55338, Republic of Korea
| | - Dongmei Yin
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| |
Collapse
|
12
|
Song H, Guo Z, Duan Z, Li M, Zhang J. WRKY transcription factors in Arachis hypogaea and its donors: From identification to function prediction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108131. [PMID: 37897893 DOI: 10.1016/j.plaphy.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
WRKY transcription factors (TFs) play important roles in plant growth and development and responses to abiotic and biotic stresses. Since the initial isolation of a WRKY TF in Ipomoea batatas in 1994, WRKY TFs have been identified in plants, protozoa, and fungi. Peanut (Arachis hypogaea) is a key oil and protein crop for humans and a forage source for animal consumption. Several Arachis genomes have been sequenced and genome-wide WRKY TFs have been identified. In this review, we summarized WRKY TFs and their functions in A. hypogaea and its donors. We also standardized the nomenclature for Arachis WRKY TFs to ensure uniformity. We determined the evolutionary relationships between Arachis and Arabidopsis thaliana WRKY (AtWRKY) TFs using a phylogenetic analysis. Biological functions and regulatory networks of Arachis WRKY TFs were predicted using AtWRKY TFs. Thus, this review paves the way for studies of Arachis WRKY TFs.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenquan Duan
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Meiran Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | | |
Collapse
|
13
|
Zhao K, Wang L, Qiu D, Cao Z, Wang K, Li Z, Wang X, Wang J, Ma Q, Cao D, Qi Y, Zhao K, Gong F, Li Z, Ren R, Ma X, Zhang X, Yu F, Yin D. PSW1, an LRR receptor kinase, regulates pod size in peanut. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2113-2124. [PMID: 37431286 PMCID: PMC10502750 DOI: 10.1111/pbi.14117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pod size is a key agronomic trait that greatly determines peanut yield, the regulatory genes and molecular mechanisms that controlling peanut pod size are still unclear. Here, we used quantitative trait locus analysis to identify a peanut pod size regulator, POD SIZE/WEIGHT1 (PSW1), and characterized the associated gene and protein. PSW1 encoded leucine-rich repeat receptor-like kinase (LRR-RLK) and positively regulated pod stemness. Mechanistically, this allele harbouring a 12-bp insertion in the promoter and a point mutation in the coding region of PSW1 causing a serine-to-isoleucine (S618I) substitution substantially increased mRNA abundance and the binding affinity of PSW1 for BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). Notably, PSW1HapII (super-large pod allele of PSW1) expression led to up-regulation of a positive regulator of pod stemness PLETHORA 1 (PLT1), thereby resulting in larger pod size. Moreover, overexpression of PSW1HapII increased seed/fruit size in multiple plant species. Our work thus discovers a conserved function of PSW1 that controls pod size and provides a valuable genetic resource for breeding high-yield crops.
Collapse
Affiliation(s)
- Kunkun Zhao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental RegulationHunan UniversityChangshaChina
| | - Ding Qiu
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Zenghui Cao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Kuopeng Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Zhan Li
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Xiaoxuan Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Jinzhi Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Qian Ma
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Di Cao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Yinyao Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental RegulationHunan UniversityChangshaChina
| | - Kai Zhao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Fangping Gong
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Zhongfeng Li
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Rui Ren
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Xingli Ma
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Xingguo Zhang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental RegulationHunan UniversityChangshaChina
| | - Dongmei Yin
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| |
Collapse
|
14
|
Miao P, Meng X, Li Z, Sun S, Chen CY, Yang X. Mapping Quantitative Trait Loci (QTLs) for Hundred-Pod and Hundred-Seed Weight under Seven Environments in a Recombinant Inbred Line Population of Cultivated Peanut ( Arachis hypogaea L.). Genes (Basel) 2023; 14:1792. [PMID: 37761932 PMCID: PMC10531390 DOI: 10.3390/genes14091792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The cultivated peanut (Arachis hypogaea L.) is a significant oil and cash crop globally. Hundred-pod and -seed weight are important components for peanut yield. To unravel the genetic basis of hundred-pod weight (HPW) and hundred-seed weight (HSW), in the current study, a recombinant inbred line (RIL) population with 188 individuals was developed from a cross between JH5 (JH5, large pod and seed weight) and M130 (small pod and seed weight), and was utilized to identify QTLs for HPW and HSW. An integrated genetic linkage map was constructed by using SSR, AhTE, SRAP, TRAP and SNP markers. This map consisted of 3130 genetic markers, which were assigned to 20 chromosomes, and covered 1998.95 cM with an average distance 0.64 cM. On this basis, 31 QTLs for HPW and HSW were located on seven chromosomes, with each QTL accounting for 3.7-10.8% of phenotypic variance explained (PVE). Among these, seven QTLs were detected under multiple environments, and two major QTLs were found on B04 and B08. Notably, a QTL hotspot on chromosome A08 contained seven QTLs over a 2.74 cM genetic interval with an 0.36 Mb physical map, including 18 candidate genes. Of these, Arahy.D52S1Z, Arahy.IBM9RL, Arahy.W18Y25, Arahy.CPLC2W and Arahy.14EF4H might play a role in modulating peanut pod and seed weight. These findings could facilitate further research into the genetic mechanisms influencing pod and seed weight in cultivated peanut.
Collapse
Affiliation(s)
- Penghui Miao
- State Key Laboratory of North China for Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Xinhao Meng
- State Key Laboratory of North China for Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Zeren Li
- State Key Laboratory of North China for Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Sainan Sun
- State Key Laboratory of North China for Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Charles Y. Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xinlei Yang
- State Key Laboratory of North China for Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
15
|
Yang H, Luo L, Li Y, Li H, Zhang X, Zhang K, Zhu S, Li X, Li Y, Wan Y, Liu F. Fine mapping of qAHPS07 and functional studies of AhRUVBL2 controlling pod size in peanut (Arachis hypogaea L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1785-1798. [PMID: 37256840 PMCID: PMC10440995 DOI: 10.1111/pbi.14076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.) is an important oil and cash crop. Pod size is one of the major traits determining yield and commodity characteristic of peanut. Fine mapping of quantitative trait locus (QTL) and identification of candidate genes associated with pod size are essential for genetic improvement and molecular breeding of peanut varieties. In this study, a major QTL related to pod size, qAHPS07, was fine mapped to a 36.46 kb interval on chromosome A07 using F2 , recombinant inbred line (RIL) and secondary F2 populations. qAHPS07 explained 38.6%, 23.35%, 37.48%, 25.94% of the phenotypic variation for single pod weight (SPW), pod length (PL), pod width (PW) and pod shell thickness (PST), respectively. Whole genome resequencing and gene expression analysis revealed that a RuvB-like 2 protein coding gene AhRUVBL2 was the most likely candidate for qAHPS07. Overexpression of AhRUVBL2 in Arabidopsis led to larger seeds and plants than the wild type. AhRUVBL2-silenced peanut seedlings represented small leaves and shorter main stems. Three haplotypes were identified according to three SNPs in the promoter of AhRUVBL2 among 119 peanut accessions. Among them, SPW, PW and PST of accessions carrying Hap_ATT represent 17.6%, 11.2% and 26.3% higher than those carrying Hap_GAC,respectively. In addition, a functional marker of AhRUVBL2 was developed. Taken together, our study identified a key functional gene of peanut pod size, which provides new insights into peanut pod size regulation mechanism and offers practicable markers for the genetic improvement of pod size-related traits in peanut breeding.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Lu Luo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Yuying Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Huadong Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Xiurong Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Kun Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Suqing Zhu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Xuanlin Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Yingjie Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| |
Collapse
|
16
|
Mittal M, Dhingra A, Dawar P, Payton P, Rock CD. The role of microRNAs in responses to drought and heat stress in peanut (Arachis hypogaea). THE PLANT GENOME 2023; 16:e20350. [PMID: 37351954 DOI: 10.1002/tpg2.20350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/24/2023]
Abstract
MicroRNAs (miRNAs) are 21-24 nt small RNAs (sRNAs) that negatively regulate protein-coding genes and/or trigger phased small-interfering RNA (phasiRNA) production. Two thousand nine hundred miRNA families, of which ∼40 are deeply conserved, have been identified in ∼80 different plant species genomes. miRNA functions in response to abiotic stresses is less understood than their roles in development. Only seven peanut MIRNA families are documented in miRBase, yet a reference genome assembly is now published and over 480 plant-like MIRNA loci were predicted in the diploid peanut progenitor Arachis duranensis genome. We explored by computational analysis of a leaf sRNA library and publicly available sRNA, degradome, and transcriptome datasets the miRNA and phasiRNA space associated with drought and heat stresses in peanut. We characterized 33 novel candidate and 33 ancient conserved families of MIRNAs and present degradome evidence for their cleavage activities on mRNA targets, including several noncanonical targets and novel phasiRNA-producing noncoding and mRNA loci with validated novel targets such as miR1509 targeting serine/threonine-protein phosphatase7 and miRc20 and ahy-miR3514 targeting penta-tricopeptide repeats (PPRs), in contradistinction to other claims of miR1509/173/7122 superfamily miRNAs indirectly targeting PPRs via TAS-like noncoding RNA loci. We characterized the inverse correlations of significantly differentially expressed drought- and heat-regulated miRNAs, assayed by sRNA blots or transcriptome datasets, with target mRNA expressions in the same datasets. Meta-analysis of an expression atlas and over representation of miRNA target genes in co-expression networks suggest that miRNAs have functions in unique aspects of peanut gynophore development. Genome-wide MIRNA annotation of the published allopolyploid peanut genome can facilitate molecular breeding of value-added traits.
Collapse
Affiliation(s)
- Meenakshi Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Anuradha Dhingra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Paxton Payton
- USDA-ARS Plant Stress and Germplasm Lab, Lubbock, Texas, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
17
|
Rizwan M, Haider SZ, Bakar A, Rani S, Danial M, Sharma V, Mubin M, Serfraz A, Shahnawaz-Ur-Rehman M, Shakoor S, Alkahtani S, Saleem F, Mamoon-Ur-Rehman H, Serfraz S. Evolution of NLR genes in genus Arachis reveals asymmetric expansion of NLRome in wild and domesticated tetraploid species. Sci Rep 2023; 13:9305. [PMID: 37291184 PMCID: PMC10250334 DOI: 10.1038/s41598-023-36302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Arachis hypogaea is an allotetraploid crop widely grown in the world. Wild relatives of genus Arachis are the rich source of genetic diversity and high levels of resistance to combat pathogens and climate change. The accurate identification and characterization of plant resistance gene, nucleotide binding site leucine rich repeat receptor (NLRs) substantially contribute to the repertoire of resistances and improve production. In the current study, we have studied the evolution of NLR genes in genus Arachis and performed their comparative genomics among four diploids (A. duranensis, A. ipaensis, A. cardenasii, A. stenosperma) and two tetraploid (wild: A. monticola and domesticated: A. hypogaea) species. In total 521, 354, 284, 794, 654, 290 NLR genes were identified from A. cardenasii, A. stenosperma and A. duranensis, A. hypogaea, A. monticola and A. ipaensis respectively. Phylogenetic analysis and classification of NLRs revealed that they belong to 7 subgroups and specific subgroups have expanded in each genome leading towards divergent evolution. Gene gain and loss, duplication assay reveals that wild and domesticated tetraploids species have shown asymmetric expansion of NLRome in both sub-genome (AA and BB). A-subgenome of A. monticola exhibited significant contraction of NLRome while B-subgenome shows expansion and vice versa in case of A. hypogaea probably due to distinct natural and artificial selection pressure. In addition, diploid species A. cardenasii revealed the largest repertoire of NLR genes due to higher frequency of gene duplication and selection pressure. A. cardenasii and A. monticola can be regarded as putative resistance resources for peanut breeding program for introgression of novel resistance genes. Findings of this study also emphasize the application neo-diploids and polyploids due to higher quantitative expression of NLR genes. To the best of our knowledge, this is the first study that studied the effect of domestication and polyploidy on the evolution of NLR genes in genus Arachis to identify genomic resources for improving resistance of polyploid crop with global importance on economy and food security.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Syed Zeeshan Haider
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Abu Bakar
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Shamiza Rani
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425, Jülich, Germany
| | - Muhammad Mubin
- Virology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ali Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
- Department of Plant Pathology, University of Arid Agriculture, Rawalpindi , Pakistan
| | | | - Sidra Shakoor
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fozia Saleem
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Saad Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
18
|
Zhang X, Zhang X, Wang L, Liu Q, Liang Y, Zhang J, Xue Y, Tian Y, Zhang H, Li N, Sheng C, Nie P, Feng S, Liao B, Bai D. Fine mapping of a QTL and identification of candidate genes associated with cold tolerance during germination in peanut ( Arachis hypogaea L.) on chromosome B09 using whole genome re-sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1153293. [PMID: 37223785 PMCID: PMC10200878 DOI: 10.3389/fpls.2023.1153293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/25/2023]
Abstract
Low temperatures significantly affect the growth and yield of peanuts. Temperatures lower than 12 °C are generally detrimental for the germination of peanuts. To date, there has been no report on precise information on the quantitative trait loci (QTL) for cold tolerance during the germination in peanuts. In this study, we developed a recombinant inbred line (RIL) population comprising 807 RILs by tolerant and sensitive parents. Phenotypic frequencies of germination rate low-temperature conditions among RIL population showed normally distributed in five environments. Then, we constructed a high density SNP-based genetic linkage map through whole genome re-sequencing (WGRS) technique and identified a major quantitative trait locus (QTL), qRGRB09, on chromosome B09. The cold tolerance-related QTLs were repeatedly detected in all five environments, and the genetic distance was 6.01 cM (46.74 cM - 61.75 cM) after taking a union set. To further confirm that qRGRB09 was located on chromosome B09, we developed Kompetitive Allele Specific PCR (KASP) markers for the corresponding QTL regions. A regional QTL mapping analysis, which was conducted after taking the intersection of QTL intervals of all environments into account, confirmed that qRGRB09 was between the KASP markers, G22096 and G220967 (chrB09:155637831-155854093), and this region was 216.26 kb in size, wherein a total of 15 annotated genes were detected. This study illustrates the relevance of WGRS-based genetic maps for QTL mapping and KASP genotyping that facilitated QTL fine mapping of peanuts. The results of our study also provided useful information on the genetic architecture underlying cold tolerance during germination in peanuts, which in turn may be useful for those engaged in molecular studies as well as crop improvement in the cold-stressed environment.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Xiaoji Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Luhuan Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Qimei Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Yuying Liang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jiayu Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Yunyun Xue
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Yuexia Tian
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Huiqi Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Na Li
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Cong Sheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pingping Nie
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Suping Feng
- College of Food Science and Engineering, Hainan Tropical Ocean College, Hainan, China
| | - Boshou Liao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongmei Bai
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
19
|
Areej A, Nawaz H, Aslam I, Danial M, Qayyum Z, Rasool UA, Asif J, Khalid A, Serfraz S, Saleem F, Mubin M, Shoaib M, Shahnawaz-ul-Rehman M, Nahid N, Alkahtani S. Investigation of NLR Genes Reveals Divergent Evolution on NLRome in Diploid and Polyploid Species in Genus Trifolium. Genes (Basel) 2023; 14:genes14040867. [PMID: 37107625 PMCID: PMC10138078 DOI: 10.3390/genes14040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Crop wild relatives contain a greater variety of phenotypic and genotypic diversity compared to their domesticated counterparts. Trifolium crop species have limited genetic diversity to cope with biotic and abiotic stresses due to artificial selection for consumer preferences. Here, we investigated the distribution and evolution of nucleotide-binding site leucine-rich repeat receptor (NLR) genes in the genus of Trifolium with the objective to identify reference NLR genes. We identified 412, 350, 306, 389 and 241 NLR genes were identified from Trifolium. subterraneum, T. pratense, T. occidentale, subgenome-A of T. repens and subgenome-B of T. repens, respectively. Phylogenetic and clustering analysis reveals seven sub-groups in genus Trifolium. Specific subgroups such as G4-CNL, CCG10-CNL and TIR-CNL show distinct duplication patterns in specific species, which suggests subgroup duplications that are the hallmarks of their divergent evolution. Furthermore, our results strongly suggest the overall expansion of NLR repertoire in T. subterraneum is due to gene duplication events and birth of gene families after speciation. Moreover, the NLRome of the allopolyploid species T. repens has evolved asymmetrically, with the subgenome -A showing expansion, while the subgenome-B underwent contraction. These findings provide crucial background data for comprehending NLR evolution in the Fabaceae family and offer a more comprehensive analysis of NLR genes as disease resistance genes.
Collapse
Affiliation(s)
- Amna Areej
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Hummera Nawaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore 55210, Pakistan
| | - Iqra Aslam
- Department of Botany, Division of Science and Technology, University of Education, Lahore 55210, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zohaib Qayyum
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Usama Akhtar Rasool
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jehanzaib Asif
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Afia Khalid
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saad Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fozia Saleem
- Metabolomics Innovative Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Muhammad Mubin
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shoaib
- Institute of Health Sciences Islamabad, Khyber Medical University, Peshawar 25000, Pakistan
| | | | - Nazia Nahid
- Department of Biotechnology and Bioinformatics, Government College University, Faisalabad 54000, Pakistan
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Chen H, Yang X, Xu R, Chen X, Zhong H, Liu N, Huang L, Luo H, Huai D, Liu W, Chen Y, Chen J, Jiang H. Genetic mapping of AhVt1, a novel genetic locus that confers the variegated testa color in cultivated peanut ( Arachis hypogaea L.) and its utilization for marker-assisted selection. FRONTIERS IN PLANT SCIENCE 2023; 14:1145098. [PMID: 37021305 PMCID: PMC10067746 DOI: 10.3389/fpls.2023.1145098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Peanut (Arachis hypogaea L.) is an important cash crop worldwide. Compared with the ordinary peanut with pure pink testa, peanut with variegated testa color has attractive appearance and a higher market value. In addition, the variegated testa represents a distinct regulation pattern of anthocyanin accumulation in integument cells. METHODS In order to identify the genetic locus underlying variegated testa color in peanut, two populations were constructed from the crosses between Fuhua 8 (pure-pink testa) and Wucai (red on white variegated testa), Quanhonghua 1 (pure-red testa) and Wucai, respectively. Genetic analysis and bulked sergeant analysis sequencing were applied to detect and identify the genetic locus for variegated testa color. Marker-assisted selection was used to develop new variegated testa peanut lines. RESULTS As a result, all the seeds harvested from the F1 individuals of both populations showed the variegated testa type with white trace. Genetic analysis revealed that the pigmentation of colored region in red on white variegated testa was controlled by a previous reported gene AhRt1, while the formation of white region (un-pigmented region) in variegated testa was controlled by another single genetic locus. This locus, named as AhVt1 (Arachis hypogaea Variegated Testa 1), was preliminary mapped on chromosome 08 through bulked sergeant analysis sequencing. Using a secondary mapping population derived from the cross between Fuhua 8 and Wucai, AhVt1 was further mapped to a 1.89-Mb genomic interval by linkage analysis, and several potential genes associated with the uneven distribution of anthocyanin, such as MADS-box, MYB, and Chalcone synthase-like protein, were harbored in the region. Moreover, the molecular markers closely linked to the AhVt1 were developed, and the new variegated testa peanut lines were obtained with the help of marker-assisted selection. CONCLUSION Our findings will accelerate the breeding program for developing new peanut varieties with "colorful" testa colors and laid a foundation for map-based cloning of gene responsible for variegated testa.
Collapse
Affiliation(s)
- Hao Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Xinlei Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Rirong Xu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Xiangyu Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Haifeng Zhong
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Nian Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Li Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Huaiyong Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Dongxin Huai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Wenjing Liu
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, China
| | - Yuhua Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Jianhong Chen
- R&D Center for Oil Crops, Quanzhou Institute of Agricultural Sciences, Jinjiang, China
| | - Huifang Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| |
Collapse
|
21
|
Rani S, Zahra R, Bakar A, Rizwan M, Sultan AB, Zain M, Mehmood A, Danial M, Shakoor S, Saleem F, Serfraz A, Rehman HM, Khan RSA, Serfraz S, AlKahtani S. Dynamic Evolution of NLR Genes in Dalbergioids. Genes (Basel) 2023; 14:377. [PMID: 36833304 PMCID: PMC9956324 DOI: 10.3390/genes14020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Dalbergioid is a large group within the family Fabaceae that consists of diverse plant species distributed in distinct biogeographic realms. Here, we have performed a comprehensive study to understand the evolution of the nucleotide-binding leucine-rich repeats (NLRs) gene family in Dalbergioids. The evolution of gene families in this group is affected by a common whole genome duplication that occurred approximately 58 million years ago, followed by diploidization that often leads to contraction. Our study suggests that since diploidization, the NLRome of all groups of Dalbergioids is expanding in a clade-specific manner with fewer exceptions. Phylogenetic analysis and classification of NLRs revealed that they belong to seven subgroups. Specific subgroups have expanded in a species-specific manner, leading to divergent evolution. Among the Dalbergia clade, the expansion of NLRome in six species of the genus Dalbergia was observed, with the exception of Dalbergia odorifera, where a recent contraction of NLRome occurred. Similarly, members of the Pterocarpus clade genus Arachis revealed a large-scale expansion in the diploid species. In addition, the asymmetric expansion of NLRome was observed in wild and domesticated tetraploids after recent duplications in the genus Arachis. Our analysis strongly suggests that whole genome duplication followed by tandem duplication after divergence from a common ancestor of Dalbergioids is the major cause of NLRome expansion. To the best of our knowledge, this is the first ever study to provide insight toward the evolution of NLR genes in this important tribe. In addition, accurate identification and characterization of NLR genes is a substantial contribution to the repertoire of resistances among members of the Dalbergioids species.
Collapse
Affiliation(s)
- Shamiza Rani
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Ramlah Zahra
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Abu Bakar
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Rizwan
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Abu-Bakar Sultan
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Zain
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amna Mehmood
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sidra Shakoor
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Fozia Saleem
- Metabolomics Innovative Insitute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ali Serfraz
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
- Department of Plant Pathology, University of Arid Agriculture, Rawalpindi 46000, Pakistan
| | - Hafiz Mamoon Rehman
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Rao Sohail Ahmad Khan
- Cotton Genomics Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Saad Serfraz
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Saad AlKahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Chen M, Li M, Zhao L, Song H. Deciphering evolutionary dynamics of WRKY genes in Arachis species. BMC Genomics 2023; 24:48. [PMID: 36707767 PMCID: PMC9881300 DOI: 10.1186/s12864-023-09149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cultivated peanut (Arachis hypogaea), a progeny of the cross between A. duranensis and A. ipaensis, is an important oil and protein crop from South America. To date, at least six Arachis genomes have been sequenced. WRKY transcription factors (TFs) play crucial roles in plant growth, development, and response to abiotic and biotic stresses. WRKY TFs have been identified in A. duranensis, A. ipaensis, and A. hypogaea cv. Tifrunner; however, variations in their number and evolutionary patterns across various Arachis spp. remain unclear. RESULTS WRKY TFs were identified and compared across different Arachis species, including A. duranensis, A. ipaensis, A. monticola, A. hypogaea cultivars (cv.) Fuhuasheng, A. hypogaea cv. Shitouqi, and A. hypogaea cv. Tifrunner. The results showed that the WRKY TFs underwent dynamic equilibrium between diploid and tetraploid peanut species, characterized by the loss of old WRKY TFs and retention of the new ones. Notably, cultivated peanuts inherited more conserved WRKY orthologs from wild tetraploid peanuts than their wild diploid donors. Analysis of the W-box elements and protein-protein interactions revealed that different domestication processes affected WRKY evolution across cultivated peanut varieties. WRKY TFs of A. hypogaea cv. Fuhuasheng and Shitouqi exhibited a similar domestication process, while those of cv. Tifrunner of the same species underwent a different domestication process based on protein-protein interaction analysis. CONCLUSIONS This study provides new insights into the evolution of WRKY TFs in Arachis spp.
Collapse
Affiliation(s)
- Mingwei Chen
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Meiran Li
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Longgang Zhao
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
23
|
Wang Y, Yu J, Jiang M, Lei W, Zhang X, Tang H. Sequencing and Assembly of Polyploid Genomes. Methods Mol Biol 2023; 2545:429-458. [PMID: 36720827 DOI: 10.1007/978-1-0716-2561-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyploidy has been observed throughout major eukaryotic clades and has played a vital role in the evolution of angiosperms. Recent polyploidizations often result in highly complex genome structures, posing challenges to genome assembly and phasing. Recent advances in sequencing technologies and genome assembly algorithms have enabled high-quality, near-complete chromosome-level assemblies of polyploid genomes. Advances in novel sequencing technologies include highly accurate single-molecule sequencing with HiFi reads, chromosome conformation capture with Hi-C technique, and linked reads sequencing. Additionally, new computational approaches have also significantly improved the precision and reliability of polyploid genome assembly and phasing, such as HiCanu, hifiasm, ALLHiC, and PolyGembler. Herein, we review recently published polyploid genomes and compare the various sequencing, assembly, and phasing approaches that are utilized in these genome studies. Finally, we anticipate that accurate and telomere-to-telomere chromosome-level assembly of polyploid genomes could ultimately become a routine procedure in the near future.
Collapse
Affiliation(s)
- Yibin Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxin Yu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengwei Jiang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenlong Lei
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
24
|
Liu Y, Yi C, Liu Q, Wang C, Wang W, Han F, Hu X. Multi-Omics Profiling Identifies Candidate Genes Controlling Seed Size in Peanut. PLANTS (BASEL, SWITZERLAND) 2022; 11:3276. [PMID: 36501316 PMCID: PMC9740956 DOI: 10.3390/plants11233276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Seed size is the major yield component and a key target trait that is selected during peanut breeding. However, the mechanisms that regulate peanut seed size are unknown. Two peanut mutants with bigger seed size were isolated in this study by 60Co treatment of a common peanut landrace, Huayu 22, and were designated as the "big seed" mutant lines (hybs). The length and weight of the seed in hybs were about 118% and 170% of those in wild-type (WT), respectively. We adopted a multi-omics approach to identify the genomic locus underlying the hybs mutants. We performed whole genome sequencing (WGS) of WT and hybs mutants and identified thousands of large-effect variants (SNPs and indels) that occurred in about four hundred genes in hybs mutants. Seeds from both WT and hybs lines were sampled 20 days after flowering (DAF) and were used for RNA-Seq analysis; the results revealed about one thousand highly differentially expressed genes (DEGs) in hybs compared to WT. Using a method that combined large-effect variants with DEGs, we identified 45 potential candidate genes that shared gene product mutations and expression level changes in hybs compared to WT. Among the genes, two candidate genes encoding cytochrome P450 superfamily protein and NAC transcription factors may be associated with the increased seed size in hybs. The present findings provide new information on the identification and functional research into candidate genes responsible for the seed size phenotype in peanut.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi 276000, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Congyang Yi
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi 276000, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunhui Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenpeng Wang
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Fangpu Han
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi 276000, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojun Hu
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
25
|
Zhang H, Mascher M, Abbo S, Jayakodi M. Advancing Grain Legumes Domestication and Evolution Studies with Genomics. PLANT & CELL PHYSIOLOGY 2022; 63:1540-1553. [PMID: 35534441 PMCID: PMC9680859 DOI: 10.1093/pcp/pcac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Grain legumes were domesticated in parallel with cereals in several regions of the world and formed the economic basis of early farming cultures. Since then, legumes have played a vital role in human and animal diets and in fostering agrobiodiversity. Increasing grain legume cultivation will be crucial to safeguard nutritional security and the resilience of agricultural ecosystems across the globe. A better understanding of the molecular underpinnings of domestication and crop evolution of grain legumes may be translated into practical approaches in modern breeding programs to stabilize yield, which is threatened by evolving pathogens and changing climates. During recent decades, domestication research in all crops has greatly benefited from the fast progress in genomic technologies. Yet still, many questions surrounding the domestication and diversification of legumes remain unanswered. In this review, we assess the potential of genomic approaches in grain legume research. We describe the centers of origin and the crucial domestication traits of grain legumes. In addition, we survey the effect of domestication on both above-ground and below-ground traits that have economic importance. Finally, we discuss open questions in grain legume domestication and diversification and outline how to bridge the gap between the preservation of historic crop diversity and their utilization in modern plant breeding.
Collapse
Affiliation(s)
- Hailin Zhang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
| | - Shahal Abbo
- The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| |
Collapse
|
26
|
Zeng P, Tian Z, Han Y, Zhang W, Zhou T, Peng Y, Hu H, Cai J. Comparison of ONT and CCS sequencing technologies on the polyploid genome of a medicinal plant showed that high error rate of ONT reads are not suitable for self-correction. Chin Med 2022; 17:94. [PMID: 35945546 PMCID: PMC9364492 DOI: 10.1186/s13020-022-00644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many medicinal plants are known for their complex genomes with high ploidy, heterozygosity, and repetitive content which pose severe challenges for genome sequencing of those species. Long reads from Oxford nanopore sequencing technology (ONT) or Pacific Biosciences Single Molecule, Real-Time (SMRT) sequencing offer great advantages in de novo genome assembly, especially for complex genomes with high heterozygosity and repetitive content. Currently, multiple allotetraploid species have sequenced their genomes by long-read sequencing. However, we found that a considerable proportion of these genomes (7.9% on average, maximum 23.7%) could not be covered by NGS (Next Generation Sequencing) reads (uncovered region by NGS reads, UCR) suggesting the questionable and low-quality of those area or genomic areas that can't be sequenced by NGS due to sequencing bias. The underlying causes of those UCR in the genome assembly and solutions to this problem have never been studied. METHODS In the study, we sequenced the tetraploid genome of Veratrum dahuricum (Turcz.) O. Loes (VDL), a Chinese medicinal plant, with ONT platform and assembled the genome with three strategies in parallel. We compared the qualities, coverage, and heterozygosity of the three ONT assemblies with another released assembly of the same individual using reads from PacBio circular consensus sequencing (CCS) technology, to explore the cause of the UCR. RESULTS By mapping the NGS reads against the three ONT assemblies and the CCS assembly, we found that the coverage of those ONT assemblies by NGS reads ranged from 49.15 to 76.31%, much smaller than that of the CCS assembly (99.53%). And alignment between ONT assemblies and CCS assembly showed that most UCR can be aligned with CCS assembly. So, we conclude that the UCRs in ONT assembly are low-quality sequences with a high error rate that can't be aligned with short reads, rather than genomic regions that can't be sequenced by NGS. Further comparison among the intermediate versions of ONT assemblies showed that the most probable origin of those errors is a combination of artificial errors introduced by "self-correction" and initial sequencing error in long reads. We also found that polishing the ONT assembly with CCS reads can correct those errors efficiently. CONCLUSIONS Through analyzing genome features and reads alignment, we have found the causes for the high proportion of UCR in ONT assembly of VDL are sequencing errors and additional errors introduced by self-correction. The high error rates of ONT-raw reads make them not suitable for self-correction prior to allotetraploid genome assembly, as the self-correction will introduce artificial errors to > 5% of the UCR sequences. We suggest high-precision CCS reads be used to polish the assembly to correct those errors effectively for polyploid genomes.
Collapse
Affiliation(s)
- Peng Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yuwei Han
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Weixiong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tinggan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yingmei Peng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
27
|
Song H, Guo Z, Zhang X, Sui J. De novo genes in Arachis hypogaea cv. Tifrunner: systematic identification, molecular evolution, and potential contributions to cultivated peanut. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1081-1095. [PMID: 35748398 DOI: 10.1111/tpj.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
De novo genes are derived from non-coding sequences, and they can play essential roles in organisms. Cultivated peanut (Arachis hypogaea) is a major oil and protein crop derived from a cross between Arachis duranensis and Arachis ipaensis. However, few de novo genes have been documented in Arachis. Here, we identified 381 de novo genes in A. hypogaea cv. Tifrunner based on comparison with five closely related Arachis species. There are distinct differences in gene expression patterns and gene structures between conserved and de novo genes. The identified de novo genes originated from ancestral sequence regions associated with metabolic and biosynthetic processes, and they were subsequently integrated into existing regulatory networks. De novo paralogs and homoeologs were identified in A. hypogaea cv. Tifrunner. De novo paralogs and homoeologs with conserved expression have mismatching cis-acting elements under normal growth conditions. De novo genes potentially have pluripotent functions in responses to biotic stresses as well as in growth and development based on quantitative trait locus data. This work provides a foundation for future research examining gene birth processes and gene function in Arachis and related taxa.
Collapse
Affiliation(s)
- Hui Song
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xiaojun Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
28
|
Lu Q, Liu H, Hong Y, Liang X, Li S, Liu H, Li H, Wang R, Deng Q, Jiang H, Varshney RK, Pandey MK, Chen X. Genome-Wide Identification and Expression of FAR1 Gene Family Provide Insight Into Pod Development in Peanut ( Arachis hypogaea). FRONTIERS IN PLANT SCIENCE 2022; 13:893278. [PMID: 35592563 PMCID: PMC9111957 DOI: 10.3389/fpls.2022.893278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 06/04/2023]
Abstract
The far-red-impaired response 1 (FAR1) transcription family were initially identified as important factors for phytochrome A (phyA)-mediated far-red light signaling in Arabidopsis; they play crucial roles in controlling the growth and development of plants. The reported reference genome sequences of Arachis, including A. duranensis, A. ipaensis, A. monticola, and A. hypogaea, and its related species Glycine max provide an opportunity to systematically perform a genome-wide identification of FAR1 homologous genes and investigate expression patterns of these members in peanut species. Here, a total of 650 FAR1 genes were identified from four Aarchis and its closely related species G. max. Of the studied species, A. hypogaea contained the most (246) AhFAR1 genes, which can be classified into three subgroups based on phylogenic relationships. The synonymous (Ks) and non-synonymous (Ka) substitution rates, phylogenetic relationship and synteny analysis of the FAR1 family provided deep insight into polyploidization, evolution and domestication of peanut AhFAR1 genes. The transcriptome data showed that the AhFAR1 genes exhibited distinct tissue- and stage-specific expression patterns in peanut. Three candidate genes including Ahy_A10g049543, Ahy_A06g026579, and Ahy_A10g048401, specifically expressed in peg and pod, might participate in pod development in the peanut. The quantitative real-time PCR (qRT-PCR) analyses confirmed that the three selected genes were highly and specifically expressed in the peg and pod. This study systematically analyzed gene structure, evolutionary characteristics and expression patterns of FAR1 gene family, which will provide a foundation for the study of genetic and biological function in the future.
Collapse
Affiliation(s)
- Qing Lu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, China
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, China
| | - Yanbin Hong
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, China
| | - Xuanqiang Liang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, China
| | - Shaoxiong Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, China
| | - Haiyan Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, China
| | - Haifen Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, China
| | - Runfeng Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, China
| | - Quanqing Deng
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Xiaoping Chen
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, China
| |
Collapse
|
29
|
Han S, Zhou X, Shi L, Zhang H, Geng Y, Fang Y, Xia H, Liu H, Li P, Zhao S, Miao L, Hou L, Zhang Z, Xu J, Ma C, Wang Z, Li H, Zheng Z, Huang B, Dong W, Zhang J, Tang F, Li S, Gao M, Zhang X, Zhao C, Wang X. AhNPR3 regulates the expression of WRKY and PR genes, and mediates the immune response of the peanut (Arachis hypogaea L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:735-747. [PMID: 35124871 DOI: 10.1111/tpj.15700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Systemic acquired resistance is an essential immune response that triggers a broad-spectrum disease resistance throughout the plant. In the present study, we identified a peanut lesion mimic mutant m14 derived from an ethyl methane sulfonate-mutagenized mutant pool of peanut cultivar "Yuanza9102." Brown lesions were observed in the leaves of an m14 mutant from seedling stage to maturity. Using MutMap together with bulked segregation RNA analysis approaches, a G-to-A point mutation was identified in the exon region of candidate gene Arahy.R60CUW, which is the homolog of AtNPR3 (Nonexpresser of PR genes) in Arabidopsis. This point mutation caused a transition from Gly to Arg within the C-terminal transactivation domain of AhNPR3A. The mutation of AhNPR3A showed no effect in the induction of PR genes when treated with salicylic acid. Instead, the mutation resulted in upregulation of WRKY genes and several PR genes, including pathogenesis-related thaumatin- and chitinase-encoding genes, which is consistent with the resistant phenotype of m14 to leaf spot disease. Further study on the AhNPR3A gene will provide valuable insights into understanding the molecular mechanism of systemic acquired resistance in peanut. Moreover, our results indicated that a combination of MutMap and bulked segregation RNA analysis is an effective method for identifying genes from peanut mutants.
Collapse
Affiliation(s)
- Suoyi Han
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Ximeng Zhou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lei Shi
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Huayang Zhang
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Yun Geng
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Yuanjin Fang
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, 475000, China
| | - Han Xia
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hua Liu
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Pengcheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lijuan Miao
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Lei Hou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zhongxin Zhang
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jing Xu
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zhenyu Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Hongyan Li
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Zheng Zheng
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Bingyan Huang
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Wenzhao Dong
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jun Zhang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Fengshou Tang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Meng Gao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Xinyou Zhang
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
30
|
Zhang K, Yuan M, Xia H, He L, Ma J, Wang M, Zhao H, Hou L, Zhao S, Li P, Tian R, Pan J, Li G, Thudi M, Ma C, Wang X, Zhao C. BSA‑seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1529-1540. [PMID: 35166897 DOI: 10.1007/s00122-022-04051-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The candidate recessive gene AhRt2 responsible for red testa of peanut was identified through combined BSA-seq and linkage mapping approaches. The testa color of peanuts (Arachis hypogaea L.) is an important trait, and those with red testa are particularly popular owing to the high-anthocyanin content. However, the identification of genes underlying the regulation of the red testa trait in peanut are rarely reported. In order to fine map red testa gene, two F2:4 populations were constructed through the cross of YZ9102 (pink testa) with ZH12 (red testa) and ZH2 (red testa). Genetic analysis indicated that red testa was controlled by a single recessive gene named as AhRt2 (Red testa gene 2). Using BSA-seq approach, AhRt2 was preliminary identified on chromosome 12, which was further mapped to a 530-kb interval using 220 recombinant lines through linkage mapping. Furthermore, functional annotation, expression profiling, and the analyses of sequence variation confirmed that the anthocyanin reductase namely (Arahy.IK60LM) was the most likely candidate gene for AhRt2. It was found that a SNP in the third exon of AhRt2 altered the encoding amino acids, and was associated with red testa in peanut. In addition, a closely linked molecular marker linked with red testa trait in peanut was also developed for future studies. Our results provide valuable insight into the molecular mechanism underlying peanut testa color and present significant diagnostic marker resources for marker-assisted selected breeding in peanut.
Collapse
Affiliation(s)
- Kun Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, People's Republic of China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Mei Yuan
- Shandong Peanut Research Institute, Qingdao, 266199, Shandong, People's Republic of China
| | - Han Xia
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jing Ma
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Mingxiao Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Huiling Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Lei Hou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Pengcheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Guanghui Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Mahendar Thudi
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samsthipur, Bihar, 848125, India
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
31
|
Zhang T, Wang Z, Zhang Y, Yang G, Song H. Dissection of valine-glutamine genes and their responses to drought stress in Arachis hypogaea cv. Tifrunner. Funct Integr Genomics 2022; 22:491-501. [PMID: 35366145 DOI: 10.1007/s10142-022-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022]
Abstract
Valine-glutamine sequences (VQs) interact with WRKY transcription factors (TFs), forming VQ-WRKY protein complexes crucial for plant development and response to environmental changes. Cultivated peanut (Arachis hypogaea) is a tetraploid from A. duranensis and A. ipaensis cross. The Arachis spp. WRKY TFs have been identified, but Arachis VQs are largely unknown. This study identified VQs in A. duranensis, A. ipaensis, A. monticola, A. hypogaea cv. Fuhuasheng, A. hypogaea cv. Shitouqi, and A. hypogaea cv. Tifrunner. The study analyzed the homologous relationships between VQs in these Arachis spp. The VQ drought-tolerant genes were detected and VQ-WRKY interactions were determined in A. hypogaea cv. Tifrunner. The results showed that tetraploid Arachis spp. retained duplicated VQs, but lost ancestral VQs after allopolyploidization. The number of VQs in A. monticola, A. hypogaea cv. Fuhuasheng, and A. hypogaea cv. Shitouqi increased relative to their diploid ancestors. RNA-seq and quantitative real-time PCR experiments confirmed that three AhTVQs tolerate drought stress in A. hypogaea cv. Tifrunner. However, evidence of VQ-WRKY interaction for drought stress response is lacking in A. hypogaea cv. Tifrunner. Nevertheless, this study identified VQ-WRKY interactions, which possibly have multiple functions in A. hypogaea cv. Tifrunner. Altogether, this study dissected Arachis VQs, providing insights into Arachis VQ evolution and drought function.
Collapse
Affiliation(s)
- Tian Zhang
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zicheng Wang
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yongli Zhang
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
32
|
Insights into the Genomic Architecture of Seed and Pod Quality Traits in the U.S. Peanut Mini-Core Diversity Panel. PLANTS 2022; 11:plants11070837. [PMID: 35406817 PMCID: PMC9003526 DOI: 10.3390/plants11070837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Abstract
Traits such as seed weight, shelling percent, percent sound mature kernels, and seed dormancy determines the quality of peanut seed. Few QTL (quantitative trait loci) studies using biparental mapping populations have identified QTL for seed dormancy and seed grade traits. Here, we report a genome-wide association study (GWAS) to detect marker–trait associations for seed germination, dormancy, and seed grading traits in peanut. A total of 120 accessions from the U.S. peanut mini-core collection were evaluated for seed quality traits and genotyped using Axiom SNP (single nucleotide polymorphism) array for peanut. We observed significant variation in seed quality traits in different accessions and different botanical varieties. Through GWAS, we were able to identify multiple regions associated with sound mature kernels, seed weight, shelling percent, seed germination, and dormancy. Some of the genomic regions that were SNP associated with these traits aligned with previously known QTLs. For instance, QTL for seed dormancy has been reported on chromosome A05, and we also found SNP on the same chromosome associated with seed dormancy, explaining around 20% of phenotypic variation. In addition, we found novel genomic regions associated with seed grading, seed germination, and dormancy traits. SNP markers associated with seed quality and dormancy identified here can accelerate the selection process. Further, exploring the function of candidate genes identified in the vicinity of the associated marker will assist in understanding the complex genetic network that governs seed quality.
Collapse
|
33
|
Chen H, Chu JSC, Chen J, Luo Q, Wang H, Lu R, Zhu Z, Yuan G, Yi X, Mao Y, Lu C, Wang Z, Gu D, Jin Z, Zhang C, Weng Z, Li S, Yan X, Yang R. Insights into the Ancient Adaptation to Intertidal Environments by Red Algae Based on a Genomic and Multiomics Investigation of Neoporphyra haitanensis. Mol Biol Evol 2022; 39:msab315. [PMID: 34730826 PMCID: PMC8752119 DOI: 10.1093/molbev/msab315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colonization of land from marine environments was a major transition for biological life on Earth, and intertidal adaptation was a key evolutionary event in the transition from marine- to land-based lifestyles. Multicellular intertidal red algae exhibit the earliest, systematic, and successful adaptation to intertidal environments, with Porphyra sensu lato (Bangiales, Rhodophyta) being a typical example. Here, a chromosome-level 49.67 Mb genome for Neoporphyra haitanensis comprising 9,496 gene loci is described based on metagenome-Hi-C-assisted whole-genome assembly, which allowed the isolation of epiphytic bacterial genome sequences from a seaweed genome for the first time. The compact, function-rich N. haitanensis genome revealed that ancestral lineages of red algae share common horizontal gene transfer events and close relationships with epiphytic bacterial populations. Specifically, the ancestor of N. haitanensis obtained unique lipoxygenase family genes from bacteria for complex chemical defense, carbonic anhydrases for survival in shell-borne conchocelis lifestyle stages, and numerous genes involved in stress tolerance. Combined proteomic, transcriptomic, and metabolomic analyses revealed complex regulation of rapid responses to intertidal dehydration/rehydration cycling within N. haitanensis. These adaptations include rapid regulation of its photosynthetic system, a readily available capacity to utilize ribosomal stores, increased methylation activity to rapidly synthesize proteins, and a strong anti-oxidation system to dissipate excess redox energy upon exposure to air. These novel insights into the unique adaptations of red algae to intertidal lifestyles inform our understanding of adaptations to intertidal ecosystems and the unique evolutionary steps required for intertidal colonization by biological life.
Collapse
Affiliation(s)
- Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Marine Drugs and Biological Products Department, Ningbo Institute of Oceanography, Ningbo, China
| | | | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Qijun Luo
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Rui Lu
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Zhujun Zhu
- Marine Drugs and Biological Products Department, Ningbo Institute of Oceanography, Ningbo, China
| | - Gaigai Yuan
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Xinxin Yi
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Youzhi Mao
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Caiping Lu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Zekai Wang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Denghui Gu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Zhen Jin
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Caixia Zhang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Ziyu Weng
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Shuang Li
- Ningbo Customs Technology Center, Ningbo, China
| | - Xiaojun Yan
- Marine Drugs and Biological Products Department, Ningbo Institute of Oceanography, Ningbo, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| |
Collapse
|
34
|
Bhat RS, Shirasawa K, Chavadi SD. Genome-wide structural and functional features of single nucleotide polymorphisms revealed from the whole genome resequencing of 179 accessions of Arachis. PHYSIOLOGIA PLANTARUM 2022; 174:e13623. [PMID: 35018642 DOI: 10.1111/ppl.13623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Peanut being an important food, oilseed and fodder crop worldwide, its genetic improvement currently relies on genomics-assisted breeding (GAB). Since the level of marker polymorphism is limited in peanut, the availability of a large number of DNA markers is the prerequisite for GAB. Therefore, we detected 4,309,724 single nucleotide polymorphisms (SNPs) from the whole genome re-sequencing (WGRS) data of 178 peanut accessions along with the reference genome sequence of Tifrunner. SNPs were analyzed for their structural and functional features to conclude on their utility and employability in genetic and genomic studies. ISATGR278-18, a synthetic amphidiploid, showed the highest number of SNPs (2,505,266), while PI_628538 recorded the lowest number (19,058) of SNPs. A03 showed the highest number of SNPs, while B08 recorded the lowest number of SNPs. The number of accessions required to record 50% of the total SNPs varied from 11 to 13 across the chromosomes. The rate of transitions was more than that of transversions. Among the various chromosomal contexts, intergenic and intronic regions carried more SNPs than the exonic regions. SNP impact analysis indicated 2488 SNPs with high impact due to gain of stop codons, variations in splice acceptors and splice donors, and loss of start codons. Of the 4,309,723 SNPs, 46,087 had the highest polymorphic information content (PIC) of 0.375. As an illustration of application, the drought-tolerant accession C76-16 was compared with A72 (an accession with high-stress rating) to identify 637,833 SNPs, of which 418 had high impact substitutions. Overall, these structural and functional features of the SNPs will be of immense importance for their utility in genetic and genomic studies in peanut.
Collapse
Affiliation(s)
- Ramesh S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Shwetha D Chavadi
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| |
Collapse
|
35
|
Shen S, Li Y, Wang J, Wei C, Wang Z, Ge W, Yuan M, Zhang L, Wang L, Sun S, Teng J, Xiao Q, Bao S, Feng Y, Zhang Y, Wang J, Hao Y, Lei T, Wang J. Illegitimate Recombination between Duplicated Genes Generated from Recursive Polyploidizations Accelerated the Divergence of the Genus Arachis. Genes (Basel) 2021; 12:genes12121944. [PMID: 34946893 PMCID: PMC8701993 DOI: 10.3390/genes12121944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/11/2023] Open
Abstract
The peanut (Arachis hypogaea L.) is the leading oil and food crop among the legume family. Extensive duplicate gene pairs generated from recursive polyploidizations with high sequence similarity could result from gene conversion, caused by illegitimate DNA recombination. Here, through synteny-based comparisons of two diploid and three tetraploid peanut genomes, we identified the duplicated genes generated from legume common tetraploidy (LCT) and peanut recent allo-tetraploidy (PRT) within genomes. In each peanut genome (or subgenomes), we inferred that 6.8–13.1% of LCT-related and 11.3–16.5% of PRT-related duplicates were affected by gene conversion, in which the LCT-related duplicates were the most affected by partial gene conversion, whereas the PRT-related duplicates were the most affected by whole gene conversion. Notably, we observed the conversion between duplicates as the long-lasting contribution of polyploidizations accelerated the divergence of different Arachis genomes. Moreover, we found that the converted duplicates are unevenly distributed across the chromosomes and are more often near the ends of the chromosomes in each genome. We also confirmed that well-preserved homoeologous chromosome regions may facilitate duplicates’ conversion. In addition, we found that these biological functions contain a higher number of preferentially converted genes, such as catalytic activity-related genes. We identified specific domains that are involved in converted genes, implying that conversions are associated with important traits of peanut growth and development.
Collapse
Affiliation(s)
- Shaoqi Shen
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yuxian Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jianyu Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Chendan Wei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Zhenyi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Weina Ge
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Min Yuan
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Lan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Li Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Sangrong Sun
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jia Teng
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Qimeng Xiao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Shoutong Bao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yishan Feng
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jiaqi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yanan Hao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Tianyu Lei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
- Correspondence: (T.L.); (J.W.)
| | - Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Correspondence: (T.L.); (J.W.)
| |
Collapse
|
36
|
Li P, Ma Q, Qu C, Zhu S, Zhao K, Ma X, Li Z, Zhang X, Gong F, Yin D. Genome-wide identification and expression analysis of auxin response factors in peanut ( Arachis hypogaea L.). PeerJ 2021; 9:e12319. [PMID: 34721990 PMCID: PMC8542371 DOI: 10.7717/peerj.12319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022] Open
Abstract
Auxin response factors (ARFs) are transcription factors that regulate the expression of auxin response genes, and have important functions in plant growth and development. In this study, available genome data for peanut (Arachis hypogaea L.) were used to identify AhARF genes. In total, 61 AhARFs and 23 AtARFs were divided into six groups (I-VI). Molecular structural analysis revealed that the protein members of AhARF contain at least two domains, the B3 domain and the Auxin-resp domain, and that some have a C-terminal dimerisation domain. Screening of the transcriptome data of 22 tissues of A. hypogaea cv. Tifrunner in a public database showed high expression levels of AhARF2 and AhARF6. AhARF6 was expressed more highly in the stem and branch than in the root and leaf of the wild species Arachis monticola (A. mon) and cultivated species H103. After treatment with exogenous auxin (NAA), the expression of AhARF6 was inhibited, and this inhibition was greater in A. mon than in H103. The transcriptome map revealed that the expression of AhARF6 was higher in the larger pods of H8107 and ZP06 than in the medium pods of H103 and small pods of A. mon. Moreover, AhARF6-5 was proven to be localised in the nucleus, consistent with the location of AtARF6. These results suggest that AhARF6 may play an important role in pod development in peanut.
Collapse
Affiliation(s)
- Peipei Li
- Henan Agricultural University, College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Henan, China, Zhengzhou, Henan Province, China
| | - Qian Ma
- Henan Agricultural University, College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Henan, China, Zhengzhou, Henan Province, China
| | - Chengxin Qu
- Henan Agricultural University, College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Henan, China, Zhengzhou, Henan Province, China
| | - Shuliang Zhu
- Henan Agricultural University, College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Henan, China, Zhengzhou, Henan Province, China
| | - Kunkun Zhao
- Henan Agricultural University, College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Henan, China, Zhengzhou, Henan Province, China
| | - Xingli Ma
- Henan Agricultural University, College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Henan, China, Zhengzhou, Henan Province, China
| | - Zhongfeng Li
- Henan Agricultural University, College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Henan, China, Zhengzhou, Henan Province, China
| | - Xingguo Zhang
- Henan Agricultural University, College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Henan, China, Zhengzhou, Henan Province, China
| | - Fangping Gong
- Henan Agricultural University, College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Henan, China, Zhengzhou, Henan Province, China
| | - Dongmei Yin
- Henan Agricultural University, College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Henan, China, Zhengzhou, Henan Province, China
| |
Collapse
|
37
|
Chen H, Chen X, Xu R, Liu W, Liu N, Huang L, Luo H, Huai D, Lan X, Zhang Y, Hu R, Chen J, Tang Z, Lin G, Jiang H. Fine-mapping and gene candidate analysis for AhRt1, a major dominant locus responsible for testa color in cultivated peanut. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3721-3730. [PMID: 34379146 DOI: 10.1007/s00122-021-03924-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
AhRt1 controlling red testa color in peanut was fine-mapped to an interval of 580 kb on chromosome A03, and one gene encoding bHLH transcriptional factor was identified as the putative candidate gene. Peanut with red testa has higher nutritional and economic value than the traditional pink testa varieties. Identification of genes controlling red testa color will accelerate the breeding program and facilitate uncovering the genetic mechanism. In this study, in order to identify gene underlying the red testa color in peanut, a F2 population derived from a cross between a pink testa peanut variety "Fuhua 8" and a red testa variety "Quanhonghua 1" was constructed. The genetic analysis for the F2 population revealed that the red testa color was controlled by one single dominant locus. This locus, named as AhRt1 (Arachis hypogaea Red Testa 1), was preliminary identified in chromosome A03 by BSA-sequencing analysis. Using a segregation mapping population, AhRt1 was fine-mapped to a 580-kb genomic region by substitution mapping strategy. Gene candidate analysis suggested that one predicted gene encoding bHLH transcriptional factor may be the possible candidate gene for AhRt1. A diagnostic marker closely linked to candidate gene has been developed for validating the fine-mapping result in different populations and peanut germplasm. Our findings will benefit the breeding program for developing new varieties with red testa color and laid foundation for map-based cloning gene responsible for red testa in peanut.
Collapse
Affiliation(s)
- Hao Chen
- Institute of Crop Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People's Republic of China, Wuhan, 430062, People's Republic of China
| | - Xiangyu Chen
- Institute of Crop Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Rirong Xu
- Institute of Crop Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Wenjing Liu
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality & Safety, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, People's Republic of China
| | - Nian Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People's Republic of China, Wuhan, 430062, People's Republic of China
| | - Li Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People's Republic of China, Wuhan, 430062, People's Republic of China
| | - Huaiyong Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People's Republic of China, Wuhan, 430062, People's Republic of China
| | - Dongxin Huai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People's Republic of China, Wuhan, 430062, People's Republic of China
| | - Xinlong Lan
- Institute of Crop Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Yumei Zhang
- Institute of Crop Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Runfang Hu
- Institute of Crop Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Jianhong Chen
- Quanzhou Institute of Agricultural Sciences, Jinjiang, 362212, People's Republic of China
| | - Zhaoxiu Tang
- Institute of Crop Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Guoqiang Lin
- Institute of Crop Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China.
| | - Huifang Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People's Republic of China, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
38
|
Jadhav MP, Gangurde SS, Hake AA, Yadawad A, Mahadevaiah SS, Pattanashetti SK, Gowda MVC, Shirasawa K, Varshney RK, Pandey MK, Bhat RS. Genotyping-by-Sequencing Based Genetic Mapping Identified Major and Consistent Genomic Regions for Productivity and Quality Traits in Peanut. FRONTIERS IN PLANT SCIENCE 2021; 12:668020. [PMID: 34630444 PMCID: PMC8495222 DOI: 10.3389/fpls.2021.668020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
With an objective of identifying the genomic regions for productivity and quality traits in peanut, a recombinant inbred line (RIL) population developed from an elite variety, TMV 2 and its ethyl methane sulfonate (EMS)-derived mutant was phenotyped over six seasons and genotyped with genotyping-by-sequencing (GBS), Arachis hypogaea transposable element (AhTE) and simple sequence repeats (SSR) markers. The genetic map with 700 markers spanning 2,438.1 cM was employed for quantitative trait loci (QTL) analysis which identified a total of 47 main-effect QTLs for the productivity and oil quality traits with the phenotypic variance explained (PVE) of 10-52% over the seasons. A common QTL region (46.7-50.1 cM) on Ah02 was identified for the multiple traits, such as a number of pods per plant (NPPP), pod weight per plant (PWPP), shelling percentage (SP), and test weight (TW). Similarly, a QTL (7.1-18.0 cM) on Ah16 was identified for both SP and protein content (PC). Epistatic QTL (epiQTL) analysis revealed intra- and inter-chromosomal interactions for the main-effect QTLs and other genomic regions governing these productivity traits. The markers identified by a single marker analysis (SMA) mapped to the QTL regions for most of the traits. Among the five potential candidate genes identified for PC, SP and oil quality, two genes (Arahy.7A57YA and Arahy.CH9B83) were affected by AhMITE1 transposition, and three genes (Arahy.J5SZ1I, Arahy.MZJT69, and Arahy.X7PJ8H) involved functional single nucleotide polymorphisms (SNPs). With major and consistent effects, the genomic regions, candidate genes, and the associated markers identified in this study would provide an opportunity for gene cloning and genomics-assisted breeding for increasing the productivity and enhancing the quality of peanut.
Collapse
Affiliation(s)
- Mangesh P. Jadhav
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Anil A. Hake
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Arati Yadawad
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | | | | | - M. V. Channabyre Gowda
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad, India
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Ramesh S. Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| |
Collapse
|
39
|
Li W, Huang L, Liu N, Pandey MK, Chen Y, Cheng L, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W, Yan L, Wang X, Lei Y, Varshney RK, Liao B, Jiang H. Key Regulators of Sucrose Metabolism Identified through Comprehensive Comparative Transcriptome Analysis in Peanuts. Int J Mol Sci 2021; 22:7266. [PMID: 34298903 PMCID: PMC8306169 DOI: 10.3390/ijms22147266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/02/2022] Open
Abstract
Sucrose content is a crucial indicator of quality and flavor in peanut seed, and there is a lack of clarity on the molecular basis of sucrose metabolism in peanut seed. In this context, we performed a comprehensive comparative transcriptome study on the samples collected at seven seed development stages between a high-sucrose content variety (ICG 12625) and a low-sucrose content variety (Zhonghua 10). The transcriptome analysis identified a total of 8334 genes exhibiting significantly different abundances between the high- and low-sucrose varieties. We identified 28 differentially expressed genes (DEGs) involved in sucrose metabolism in peanut and 12 of these encoded sugars will eventually be exported transporters (SWEETs). The remaining 16 genes encoded enzymes, such as cell wall invertase (CWIN), vacuolar invertase (VIN), cytoplasmic invertase (CIN), cytosolic fructose-bisphosphate aldolase (FBA), cytosolic fructose-1,6-bisphosphate phosphatase (FBP), sucrose synthase (SUS), cytosolic phosphoglucose isomerase (PGI), hexokinase (HK), and sucrose-phosphate phosphatase (SPP). The weighted gene co-expression network analysis (WGCNA) identified seven genes encoding key enzymes (CIN, FBA, FBP, HK, and SPP), three SWEET genes, and 90 transcription factors (TFs) showing a high correlation with sucrose content. Furthermore, upon validation, six of these genes were successfully verified as exhibiting higher expression in high-sucrose recombinant inbred lines (RILs). Our study suggested the key roles of the high expression of SWEETs and enzymes in sucrose synthesis making the genotype ICG 12625 sucrose-rich. This study also provided insights into the molecular basis of sucrose metabolism during seed development and facilitated exploring key candidate genes and molecular breeding for sucrose content in peanuts.
Collapse
Affiliation(s)
- Weitao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (M.K.P.); (R.K.V.)
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Liangqiang Cheng
- Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Science, Guiyang 550006, China;
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Bolun Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (M.K.P.); (R.K.V.)
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| |
Collapse
|
40
|
Li Y, Wang W, Ma C, Ming R. Editorial: Genomics-Enabled Crop Genetics. Front Genet 2021; 12:687160. [PMID: 34025725 PMCID: PMC8138204 DOI: 10.3389/fgene.2021.687160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 01/27/2023] Open
Affiliation(s)
- Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Xianyang, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
41
|
Schiavinato M, Bodrug‐Schepers A, Dohm JC, Himmelbauer H. Subgenome evolution in allotetraploid plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:672-688. [PMID: 33547826 PMCID: PMC8251528 DOI: 10.1111/tpj.15190] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 05/02/2023]
Abstract
Polyploidization is a well-known speciation and adaptation mechanism. Traces of former polyploidization events were discovered within many genomes, and especially in plants. Allopolyploidization by interspecific hybridization between two species is common. Among hybrid plants, many are domesticated species of agricultural interest and many of their genomes and of their presumptive parents have been sequenced. Hybrid genomes remain challenging to analyse because of the presence of multiple subgenomes. The genomes of hybrids often undergo rearrangement and degradation over time. Based on 10 hybrid plant genomes from six different genera, with hybridization dating from 10,000 to 5 million years ago, we assessed subgenome degradation, subgenomic intermixing and biased subgenome fractionation. The restructuring of hybrid genomes does not proceed proportionally with the age of the hybrid. The oldest hybrids in our data set display completely different fates: whereas the subgenomes of the tobacco plant Nicotiana benthamiana are in an advanced stage of degradation, the subgenomes of quinoa (Chenopodium quinoa) are exceptionally well conserved by structure and sequence. We observed statistically significant biased subgenome fractionation in seven out of 10 hybrids, which had different ages and subgenomic intermixing levels. Hence, we conclude that no correlation exists between biased fractionation and subgenome intermixing. Lastly, domestication may encourage or hinder subgenome intermixing, depending on the evolutionary context. In summary, comparative analysis of hybrid genomes and their presumptive parents allowed us to determine commonalities and differences between their evolutionary fates. In order to facilitate the future analysis of further hybrid genomes, we automated the analysis steps within manticore, which is publicly available at https://github.com/MatteoSchiavinato/manticore.git.
Collapse
Affiliation(s)
- Matteo Schiavinato
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| | - Alexandrina Bodrug‐Schepers
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| | - Juliane C. Dohm
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| | - Heinz Himmelbauer
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| |
Collapse
|
42
|
Qing Z, Liu J, Yi X, Liu X, Hu G, Lao J, He W, Yang Z, Zou X, Sun M, Huang P, Zeng J. The chromosome-level Hemerocallis citrina Borani genome provides new insights into the rutin biosynthesis and the lack of colchicine. HORTICULTURE RESEARCH 2021; 8:89. [PMID: 33828071 PMCID: PMC8027641 DOI: 10.1038/s41438-021-00539-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 05/10/2023]
Abstract
Hemerocallis citrina Borani (huang hua cai in Chinese) is an important horticultural crop whose flower buds are widely consumed as a delicious vegetable in Asia. Here we assembled a high-quality reference genome of H. citrina using single-molecule sequencing and Hi-C technologies. The genome assembly was 3.77 Gb and consisted of 3183 contigs with a contig N50 of 2.09 Mb, which were further clustered into 11 pseudochromosomes. A larger portion (3.25 Gb or 86.20%) was annotated as a repetitive content and 54,295 protein-coding genes were annotated in the genome. Genome evolution analysis showed that H. citrina experienced a recent whole-genome duplication (WGD) event at ~15.73 million years ago (Mya), which was the main factor leading to many multiple copies of orthologous genes. We used this reference genome to predict 20 genes involved in the rutin biosynthesis pathway. Moreover, our metabolomics data revealed neither colchicine nor its precursors in H. citrina, challenging the long-standing belief that this alkaloid causes poisoning by the plant. The results of our disruptive research are further substantiated by our genomic finding that H. citrina does not contain any genes involved in colchicine biosynthesis. The high-quality genome lays a solid foundation for genetic research and molecular breeding of H. citrina.
Collapse
Affiliation(s)
- Zhixing Qing
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jinghong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xinxin Yi
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, Hubei, 430075, China
| | - Xiubin Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410125, China
| | - Guoan Hu
- Green Melody Bio-engineering Group Company Limited, Changsha, Hunan, 410329, China
| | - Jia Lao
- Green Melody Bio-engineering Group Company Limited, Changsha, Hunan, 410329, China
| | - Wei He
- Green Melody Bio-engineering Group Company Limited, Changsha, Hunan, 410329, China
| | - Zihui Yang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xiaoyan Zou
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Mengshan Sun
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Peng Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410125, China.
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resource and Initiative, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
43
|
Zhao C, He L, Xia H, Zhou X, Geng Y, Hou L, Li P, Li G, Zhao S, Ma C, Tang R, Pandey MK, Varshney RK, Wang X. De novo full length transcriptome analysis of Arachis glabrata provides insights into gene expression dynamics in response to biotic and abiotic stresses. Genomics 2021; 113:1579-1588. [PMID: 33819563 DOI: 10.1016/j.ygeno.2021.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
The perennial ornamental peanut Arachis glabrata represents one of the most adaptable wild Arachis species. This study used PacBio combined with BGISEQ-500 RNA-seq technology to study the transcriptome and gene expression dynamics of A. glabrata. Of the total 109,747 unique transcripts obtained, >90,566 transcripts showed significant homology to known proteins and contained the complete coding sequence (CDS). RNA-seq revealed that 1229, 1039, 1671, 3923, 1521 and 1799 transcripts expressed specifically in the root, stem, leaf, flower, peg and pod, respectively. We also identified thousands of differentially expressed transcripts in response to drought, salt, cold and leaf spot disease. Furthermore, we identified 30 polyphenol oxidase encoding genes associated with the quality of forage, making A. glabrata suitable as a forage crop. Our findings presented the first transcriptome study of A. glabrata which will facilitate genetic and genomics studies and lays the groundwork for a deeper understanding of the A. glabrata genome.
Collapse
Affiliation(s)
- Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China; College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, People's Republic of China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China; College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ximeng Zhou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China; College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yun Geng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China
| | - Pengcheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China; College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Guanghui Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ronghua Tang
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, People's Republic of China
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China; College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| |
Collapse
|
44
|
Gao G, Zhang X, Zhao K, Zhao K, Cao D, Ma Q, Zhu S, Qu C, Ma Y, Gong F, Li Z, Ren R, Ma X, Yin D. Genome wide identification and expression analysis of patatin-like protein family members in peanut (Arachis hypogaea L.). REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
45
|
Thudi M, Palakurthi R, Schnable JC, Chitikineni A, Dreisigacker S, Mace E, Srivastava RK, Satyavathi CT, Odeny D, Tiwari VK, Lam HM, Hong YB, Singh VK, Li G, Xu Y, Chen X, Kaila S, Nguyen H, Sivasankar S, Jackson SA, Close TJ, Shubo W, Varshney RK. Genomic resources in plant breeding for sustainable agriculture. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153351. [PMID: 33412425 PMCID: PMC7903322 DOI: 10.1016/j.jplph.2020.153351] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
Climate change during the last 40 years has had a serious impact on agriculture and threatens global food and nutritional security. From over half a million plant species, cereals and legumes are the most important for food and nutritional security. Although systematic plant breeding has a relatively short history, conventional breeding coupled with advances in technology and crop management strategies has increased crop yields by 56 % globally between 1965-85, referred to as the Green Revolution. Nevertheless, increased demand for food, feed, fiber, and fuel necessitates the need to break existing yield barriers in many crop plants. In the first decade of the 21st century we witnessed rapid discovery, transformative technological development and declining costs of genomics technologies. In the second decade, the field turned towards making sense of the vast amount of genomic information and subsequently moved towards accurately predicting gene-to-phenotype associations and tailoring plants for climate resilience and global food security. In this review we focus on genomic resources, genome and germplasm sequencing, sequencing-based trait mapping, and genomics-assisted breeding approaches aimed at developing biotic stress resistant, abiotic stress tolerant and high nutrition varieties in six major cereals (rice, maize, wheat, barley, sorghum and pearl millet), and six major legumes (soybean, groundnut, cowpea, common bean, chickpea and pigeonpea). We further provide a perspective and way forward to use genomic breeding approaches including marker-assisted selection, marker-assisted backcrossing, haplotype based breeding and genomic prediction approaches coupled with machine learning and artificial intelligence, to speed breeding approaches. The overall goal is to accelerate genetic gains and deliver climate resilient and high nutrition crop varieties for sustainable agriculture.
Collapse
Affiliation(s)
- Mahendar Thudi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; University of Southern Queensland, Toowoomba, Australia
| | - Ramesh Palakurthi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Emma Mace
- Agri-Science Queensland, Department of Agriculture & Fisheries (DAF), Warwick, Australia
| | - Rakesh K Srivastava
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - C Tara Satyavathi
- Indian Council of Agricultural Research (ICAR)- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Damaris Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | | | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Yan Bin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Vikas K Singh
- South Asia Hub, International Rice Research Institute (IRRI), Hyderabad, India
| | - Guowei Li
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CYMMIT), Mexico DF, Mexico; Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sanjay Kaila
- Department of Biotechnology, Ministry of Science and Technology, Government of India, India
| | - Henry Nguyen
- National Centre for Soybean Research, University of Missouri, Columbia, USA
| | - Sobhana Sivasankar
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | | | - Wan Shubo
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
46
|
Li Z, Zhang X, Zhao K, Zhao K, Qu C, Gao G, Gong F, Ma X, Yin D. Comprehensive Transcriptome Analyses Reveal Candidate Genes for Variation in Seed Size/Weight During Peanut ( Arachis hypogaea L.) Domestication. FRONTIERS IN PLANT SCIENCE 2021; 12:666483. [PMID: 34093624 PMCID: PMC8170302 DOI: 10.3389/fpls.2021.666483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 05/05/2023]
Abstract
Seed size/weight, a key domestication trait, is also an important selection target during peanut breeding. However, the mechanisms that regulate peanut seed development are unknown. We re-sequenced 12 RNA samples from developing seeds of two cultivated peanut accessions (Lines 8106 and 8107) and wild Arachis monticola at 15, 30, 45, and 60 days past flowering (DPF). Transcriptome analyses showed that ∼36,000 gene loci were expressed in each of the 12 RNA samples, with nearly half exhibiting moderate (2 ≤ FPKM < 10) expression levels. Of these genes, 12.2% (4,523) were specifically expressed during seed development, mainly at 15 DPF. Also, ∼12,000 genes showed significant differential expression at 30, 45, and/or 60 DPF within each of the three peanut accessions, accounting for 31.8-34.1% of the total expressed genes. Using a method that combined comprehensive transcriptome analysis and previously mapped QTLs, we identified several candidate genes that encode transcription factor TGA7, topless-related protein 2, IAA-amino acid hydrolase ILR1-like 5, and putative pentatricopeptide repeat-containing (PPR) protein. Based on sequence variations identified in these genes, SNP markers were developed and used to genotype both 30 peanut landraces and a genetic segregated population, implying that EVM0025654 encoding a PPR protein may be associated with the increased seed size/weight of the cultivated accessions in comparison with the allotetraploid wild peanut. Our results provide additional knowledge for the identification and functional research into candidate genes responsible for the seed size/weight phenotype in peanut.
Collapse
|
47
|
Luo L, Wan Q, Zhang K, Zhang X, Guo R, Wang C, Zheng C, Liu F, Ding Z, Wan Y. AhABI4s Negatively Regulate Salt-Stress Response in Peanut. FRONTIERS IN PLANT SCIENCE 2021; 12:741641. [PMID: 34721468 PMCID: PMC8551806 DOI: 10.3389/fpls.2021.741641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
Soil salinity is one of the major factors that limit the area of cultivable land and yield potential of crops. The ability of salt tolerance varies with plant species. Peanut (Arachis hypogaea L.) is a moderately salt-sensitive and economically important crop, however, their biological processes involved in salt-stress response remain unclear. In this study, we investigated the role of A. hypogaea L. ABSCISIC ACID INSENSITIVE 4s (AhABI4s) in salt tolerance and elucidated its mode of action in peanuts. The results showed that the downregulation of AhABI4s via whole plant virus-induced gene silencing has enhanced the survival rate, biomass accumulation, and root/shoot ratio of peanut seedlings in response to salt-stress. Transcriptomics, quantitative proteomics, and phosphoproteomic analyses were performed using AhABI4s-silenced and Mock plants. The expression pattern of 15,247 genes, 1,900 proteins, and 2,620 phosphorylation sites were affected by silencing of AhABI4s in peanut leaf and root after sodium chloride (NaCl) treatment. Among them, 63 potential downstream target genes of ABI4 changed consistently at both transcription and translation levels, and the protein/phosphorylation levels of 31 ion transporters/channels were also affected. Electrophoretic mobility shift assays (EMSA) showed that ABI4 was able to bind to the promoters of HSP70, fructokinase (FRK), and pyruvate kinase (PK) coding genes in vitro. In addition, we also detected a binding preference of AhABI4 for CACT(G/T)GCA motif in the promoters of down-regulated genes in peanut leaf. Collectively, the potential downstream targets which were regulated at the levels of transcription and translation, binding preference, and in vivo phosphorylation sites that had been revealed in this study will provide new insight into the AhABI4s-mediated salt tolerance regulation mechanism in peanuts.
Collapse
Affiliation(s)
- Lu Luo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Qian Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Kun Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiurong Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Ruijie Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Cai Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
- *Correspondence: Fengzhen Liu
| | - Zhaojun Ding
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
- Zhaojun Ding
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
- Yongshan Wan
| |
Collapse
|
48
|
Construction of Pseudomolecules for the Chinese Chestnut ( Castanea mollissima) Genome. G3-GENES GENOMES GENETICS 2020; 10:3565-3574. [PMID: 32847817 PMCID: PMC7534444 DOI: 10.1534/g3.120.401532] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Chinese chestnut (Castanea mollissima Bl.) is a woody nut crop with a high ecological value. Although many cultivars have been selected from natural seedlings, elite lines with comprehensive agronomic traits and characters remain rare. To explore genetic resources with aid of whole genome sequence will play important roles in modern breeding programs for chestnut. In this study, we generated a high-quality C. mollissima genome assembly by combining 90× Pacific Biosciences long read and 170× high-throughput chromosome conformation capture data. The assembly was 688.93 Mb in total, with a contig N50 of 2.83 Mb. Most of the assembled sequences (99.75%) were anchored onto 12 chromosomes, and 97.07% of the assemblies were accurately anchored and oriented. A total of 33,638 protein-coding genes were predicted in the C. mollissima genome. Comparative genomic and transcriptomic analyses provided insights into the genes expressed in specific tissues, as well as those associated with burr development in the Chinese chestnut. This highly contiguous assembly of the C. mollissima genome provides a valuable resource for studies aiming at identifying and characterizing agronomical-important traits, and will aid the design of breeding strategies to develop more focused, faster, and predictable improvement programs.
Collapse
|
49
|
Yuan C, Li C, Lu X, Zhao X, Yan C, Wang J, Sun Q, Shan S. Comprehensive genomic characterization of NAC transcription factor family and their response to salt and drought stress in peanut. BMC PLANT BIOLOGY 2020; 20:454. [PMID: 33008287 PMCID: PMC7532626 DOI: 10.1186/s12870-020-02678-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/24/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Peanut is one of the most important oil crop species worldwide. NAC transcription factor (TF) genes play important roles in the salt and drought stress responses of plants by activating or repressing target gene expression. However, little is known about NAC genes in peanut. RESULTS We performed a genome-wide characterization of NAC genes from the diploid wild peanut species Arachis duranensis and Arachis ipaensis, which included analyses of chromosomal locations, gene structures, conserved motifs, expression patterns, and cis-acting elements within their promoter regions. In total, 81 and 79 NAC genes were identified from A. duranensis and A. ipaensis genomes. Phylogenetic analysis of peanut NACs along with their Arabidopsis and rice counterparts categorized these proteins into 18 distinct subgroups. Fifty-one orthologous gene pairs were identified, and 46 orthologues were found to be highly syntenic on the chromosomes of both A. duranensis and A. ipaensis. Comparative RNA sequencing (RNA-seq)-based analysis revealed that the expression of 43 NAC genes was up- or downregulated under salt stress and under drought stress. Among these genes, the expression of 17 genes in cultivated peanut (Arachis hypogaea) was up- or downregulated under both stresses. Moreover, quantitative reverse transcription PCR (RT-qPCR)-based analysis revealed that the expression of most of the randomly selected NAC genes tended to be consistent with the comparative RNA-seq results. CONCLUSION Our results facilitated the functional characterization of peanut NAC genes, and the genes involved in salt and drought stress responses identified in this study could be potential genes for peanut improvement.
Collapse
Affiliation(s)
- Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Xiaodong Lu
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, 266100, China.
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, 266100, China.
| |
Collapse
|
50
|
Guo S, Cao L, Song W, Shi P, Gao Y, Gong Y, Chen J, Hoffmann AA, Wei S. Chromosome‐level assembly of the melon thrips genome yields insights into evolution of a sap‐sucking lifestyle and pesticide resistance. Mol Ecol Resour 2020; 20:1110-1125. [DOI: 10.1111/1755-0998.13189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Shao‐Kun Guo
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Li‐Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Wei Song
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Pan Shi
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Yong‐Fu Gao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ya‐Jun Gong
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Jin‐Cui Chen
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ary Anthony Hoffmann
- School of BioSciences Bio21 Molecular Science & Biotechnology Institute University of Melbourne Parkville Vic. Australia
| | - Shu‐Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| |
Collapse
|