1
|
Chandler KB, Pavan CH, Cotto Aparicio HG, Sackstein R. Enrichment and nLC-MS/MS Analysis of Head and Neck Cancer Mucinome Glycoproteins. J Proteome Res 2023; 22:1231-1244. [PMID: 36971183 DOI: 10.1021/acs.jproteome.2c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Mucin-domain glycoproteins expressed on cancer cell surfaces play central roles in cell adhesion, cancer progression, stem cell renewal, and immune evasion. Despite abundant evidence that mucin-domain glycoproteins are critical to the pathobiology of head and neck squamous cell carcinoma (HNSCC), our knowledge of the composition of that mucinome is grossly incomplete. Here, we utilized a catalytically inactive point mutant of the enzyme StcE (StcEE447D) to capture mucin-domain glycoproteins in head and neck cancer cell line lysates followed by their characterization using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), in-gel digestion, nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), and enrichment analyses. We demonstrate the feasibility of this workflow for the study of mucin-domain glycoproteins in HNSCC, identify a set of mucin-domain glycoproteins common to multiple HNSCC cell lines, and report a subset of mucin-domain glycoproteins that are uniquely expressed in HSC-3 cells, a cell line derived from a highly aggressive metastatic tongue squamous cell carcinoma. This effort represents the first attempt to identify mucin-domain glycoproteins in HNSCC in an untargeted, unbiased analysis, paving the way for a more comprehensive characterization of the mucinome components that mediate aggressive tumor cell phenotypes. Data associated with this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029420.
Collapse
|
2
|
Sørensen DM, Büll C, Madsen TD, Lira-Navarrete E, Clausen TM, Clark AE, Garretson AF, Karlsson R, Pijnenborg JFA, Yin X, Miller RL, Chanda SK, Boltje TJ, Schjoldager KT, Vakhrushev SY, Halim A, Esko JD, Carlin AF, Hurtado-Guerrero R, Weigert R, Clausen H, Narimatsu Y. Identification of global inhibitors of cellular glycosylation. Nat Commun 2023; 14:948. [PMID: 36804936 PMCID: PMC9941569 DOI: 10.1038/s41467-023-36598-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Madriz Sørensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Thomas D Madsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- The Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, 50018, Zaragoza, Spain
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Thomas Mandel Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alex E Clark
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aaron F Garretson
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Johan F A Pijnenborg
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aaron F Carlin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- The Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, 50018, Zaragoza, Spain
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
3
|
Enoiu SI, Nygaard MB, Bungum M, Ziebe S, Petersen MR, Almstrup K. Expression of membrane fusion proteins in spermatozoa and total fertilisation failure during in vitro fertilisation. Andrology 2022; 10:1317-1327. [PMID: 35727923 PMCID: PMC9540887 DOI: 10.1111/andr.13215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Background Couples increasingly experience infertility and seek help from assisted reproductive techniques to become pregnant. However, 5%–15% of the couples that are selected for in vitro fertilisation (IVF) experience a total fertilisation failure (TFF), where no zygotes develop despite oocytes and semen parameters appear to be normal. We hypothesise that TFF during IVF could be related to improper membrane fusion of gametes. Objective To investigate the membrane integrity and fusion proteins in spermatozoa from men in couples experiencing TFF. Materials and methods A total of 33 infertile couples, 17 of which experienced TFF during IVF and 16 matched control couples with normal IVF fertilisation rates, were selected and the men re‐called to deliver an additional semen sample. Proteins involved in gamete membrane fusion on spermatozoa (IZUMO1, SPESP1 and Syncytin‐1) as well as O‐glycosylation patterns (Tn and GALNT3), were investigated by immunofluorescence. The DNA fragmentation index, acrosomal integrity and viability of spermatozoa were determined by flow and image cytometry. Results No significant changes in the expression of GALNT3, Tn and Syncytin‐1 were observed between the TFF and control groups. The fraction of spermatozoa expressing SPESP1, the median IZUMO1 staining intensity, and the percentage of viable acrosome‐intact spermatozoa were significantly lower in the TFF group compared to controls. Furthermore, following progesterone‐induced acrosomal exocytosis, a significant difference in the fraction of spermatozoa expressing SPESP1 and the median IZUMO1 staining intensity were observed between the control and TFF group. Discussion and conclusion Our results indicate that acrosomal exocytosis, IZUMO1 and SPESP1 expression in spermatozoa could play a crucial role in achieving fertilisation during IVF. However, the size of our cohort was quite small, and our results need to be validated with quantitative methods in larger cohorts.
Collapse
Affiliation(s)
- Simona Ioana Enoiu
- The Fertility Clinic, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark.,Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Marie Berg Nygaard
- The Fertility Clinic, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark.,Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Mona Bungum
- Reproductive Medicine Centre, Skåne University Hospital, Malmo, Sweden
| | - Søren Ziebe
- The Fertility Clinic, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Morten R Petersen
- The Fertility Clinic, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Kato K, Hansen L, Clausen H. Polypeptide N-acetylgalactosaminyltransferase-Associated Phenotypes in Mammals. Molecules 2021; 26:5504. [PMID: 34576978 PMCID: PMC8472655 DOI: 10.3390/molecules26185504] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
Mucin-type O-glycosylation involves the attachment of glycans to an initial O-linked N-acetylgalactosamine (GalNAc) on serine and threonine residues on proteins. This process in mammals is initiated and regulated by a large family of 20 UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) (EC 2.4.1.41). The enzymes are encoded by a large gene family (GALNTs). Two of these genes, GALNT2 and GALNT3, are known as monogenic autosomal recessive inherited disease genes with well characterized phenotypes, whereas a broad spectrum of phenotypes is associated with the remaining 18 genes. Until recently, the overlapping functionality of the 20 members of the enzyme family has hindered characterizing the specific biological roles of individual enzymes. However, recent evidence suggests that these enzymes do not have full functional redundancy and may serve specific purposes that are found in the different phenotypes described. Here, we summarize the current knowledge of GALNT and associated phenotypes.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Eco-Epidemiology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| |
Collapse
|
5
|
Steentoft C, Yang Z, Wang S, Ju T, Vester-Christensen MB, Festari MF, King SL, Moremen K, Larsen ISB, Goth CK, Schjoldager KT, Hansen L, Bennett EP, Mandel U, Narimatsu Y. A validated collection of mouse monoclonal antibodies to human glycosyltransferases functioning in mucin-type O-glycosylation. Glycobiology 2019; 29:645-656. [PMID: 31172184 PMCID: PMC6704369 DOI: 10.1093/glycob/cwz041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023] Open
Abstract
Complex carbohydrates serve a wide range of biological functions in cells and tissues, and their biosynthesis involves more than 200 distinct glycosyltransferases (GTfs) in human cells. The kinetic properties, cellular expression patterns and subcellular topology of the GTfs direct the glycosylation capacity of a cell. Most GTfs are ER or Golgi resident enzymes, and their specific subcellular localization is believed to be distributed in the secretory pathway according to their sequential role in the glycosylation process, although detailed knowledge for individual enzymes is still highly fragmented. Progress in quantitative transcriptome and proteome analyses has greatly advanced our understanding of the cellular expression of this class of enzymes, but availability of appropriate antibodies for in situ monitoring of expression and subcellular topology have generally been limited. We have previously used catalytically active GTfs produced as recombinant truncated secreted proteins in insect cells for generation of mouse monoclonal antibodies (mAbs) to human enzymes primarily involved in mucin-type O-glycosylation. These mAbs can be used to probe subcellular topology of active GTfs in cells and tissues as well as their presence in body fluids. Here, we present several new mAbs to human GTfs and provide a summary of our entire collection of mAbs, available to the community. Moreover, we present validation of specificity for many of our mAbs using human cell lines with CRISPR/Cas9 or zinc finger nuclease (ZFN) knockout and knockin of relevant GTfs.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Shengjun Wang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Malene B Vester-Christensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Mammalian Expression, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - María F Festari
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Sarah L King
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kelley Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Bldg., Athens, GA, 30602, USA
| | - Ida S B Larsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
6
|
Pothukuchi P, Agliarulo I, Russo D, Rizzo R, Russo F, Parashuraman S. Translation of genome to glycome: role of the Golgi apparatus. FEBS Lett 2019; 593:2390-2411. [PMID: 31330561 DOI: 10.1002/1873-3468.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.) While information to produce cell type-specific glycans is encoded in the genome, how this information is translated into cell type-specific glycome (Glycome refers to the quantitative distribution of all glycan structures present in a given cell type.) is not completely understood. We summarize here the factors that are known to influence the fidelity of glycan biosynthesis and integrate them into known glycosylation pathways so as to rationalize the translation of genetic information to cell type-specific glycome.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Seetharaman Parashuraman
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
7
|
Narimatsu Y, Joshi HJ, Schjoldager KT, Hintze J, Halim A, Steentoft C, Nason R, Mandel U, Bennett EP, Clausen H, Vakhrushev SY. Exploring Regulation of Protein O-Glycosylation in Isogenic Human HEK293 Cells by Differential O-Glycoproteomics. Mol Cell Proteomics 2019; 18:1396-1409. [PMID: 31040225 PMCID: PMC6601209 DOI: 10.1074/mcp.ra118.001121] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/26/2019] [Indexed: 02/04/2023] Open
Abstract
Most proteins trafficking the secretory pathway of metazoan cells will acquire GalNAc-type O-glycosylation. GalNAc-type O-glycosylation is differentially regulated in cells by the expression of a repertoire of up to twenty genes encoding polypeptide GalNAc-transferase isoforms (GalNAc-Ts) that initiate O-glycosylation. These GalNAc-Ts orchestrate the positions and patterns of O-glycans on proteins in coordinated, but poorly understood ways - guided partly by the kinetic properties and substrate specificities of their catalytic domains, as well as by modulatory effects of their unique GalNAc-binding lectin domains. Here, we provide the hereto most comprehensive characterization of nonredundant contributions of individual GalNAc-T isoforms to the O-glycoproteome of the human HEK293 cell using quantitative differential O-glycoproteomics on a panel of isogenic HEK293 cells with knockout of GalNAc-T genes (GALNT1, T2, T3, T7, T10, or T11). We confirm that a major part of the O-glycoproteome is covered by redundancy, whereas distinct O-glycosite subsets are covered by nonredundant GalNAc-T isoform-specific functions. We demonstrate that the GalNAc-T7 and T10 isoforms function in follow-up of high-density O-glycosylated regions, and that GalNAc-T11 has highly restricted functions and essentially only serves the low-density lipoprotein-related receptors in linker regions (C6XXXTC1) between the ligand-binding repeats.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Hiren J Joshi
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - John Hintze
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catharina Steentoft
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Rebecca Nason
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Ulla Mandel
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Eric P Bennett
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
8
|
Chia J, Tay F, Bard F. The GalNAc-T Activation (GALA) Pathway: Drivers and markers. PLoS One 2019; 14:e0214118. [PMID: 30889231 PMCID: PMC6424425 DOI: 10.1371/journal.pone.0214118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
The enzymes GALNTs add GalNAc sugar to Ser and Thr residues, forming the Tn glycan. GALNTs are activated by trafficking from Golgi to ER, a process driven by the Src kinase and negatively regulated by ERK8. This GALNTs activation (aka GALA) pathway induces high Tn levels and is a key driver of liver tumor growth. Recently, Tabak and colleagues have contested our previous data that EGF stimulation can induce GALNTs relocation. Here, we show that relocation induced by EGF is actually detectable in the very images acquired by Tabak et al. Furthermore, we show that over-expression of EGFR strongly enhances EGF-induced relocation and that EGFR appears required to drive relocation induced by ERK8 depletion. Direct co-localisation of GALNT with the ER marker Calnexin is observed after EGF stimulation. We furthermore propose that quantification of O-glycosylation of the ER resident protein PDIA4 provides a mean to quantify GALA independently of imaging. In sum, we demonstrate that the claimed non-reproducibility was due to experimental imaging conditions, that EGFR is indeed a driver of GALA and propose additional markers to facilitate the study of this pathway.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
9
|
Recombinant Glycoprotein E of Varicella Zoster Virus Contains Glycan-Peptide Motifs That Modulate B Cell Epitopes into Discrete Immunological Signatures. Int J Mol Sci 2019; 20:ijms20040954. [PMID: 30813247 PMCID: PMC6412795 DOI: 10.3390/ijms20040954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
A recombinant subunit vaccine (Shingrix®) was recently licensed for use against herpes zoster. This vaccine is based on glycoprotein E (gE) of varicella zoster virus (VZV), the most abundantly expressed protein of VZV, harboring sites for N- and O-linked glycosylation. The subunit vaccine elicits stronger virus-specific CD4+ T cell response as well as antibody B cell response to gE, compared to the currently used live attenuated vaccine (Zostavax®). This situation is at variance with the current notion since a live vaccine, causing an active virus infection, should be far more efficient than a subunit vaccine based on only one single viral glycoprotein. We previously found gE to be heavily glycosylated, not least by numerous clustered O-linked glycans, when it was produced in human fibroblasts. However, in contrast to Zostavax®, which is produced in fibroblasts, the recombinant gE of Shingrix® is expressed in Chinese hamster ovary (CHO) cells. Hence, the glycan occupancy and glycan structures of gE may differ considerably between the two vaccine types. Here, we aimed at (i) defining the glycan structures and positions of recombinant gE and (ii) identifying possible features of the recombinant gE O-glycosylation pattern contributing to the vaccine efficacy of Shingrix®. Firstly, recombinant gE produced in CHO cells (“Shingrix situation”) is more scarcely decorated by O-linked glycans than gE from human fibroblasts (“Zostavax situation”), with respect to glycan site occupancy. Secondly, screening of immunodominant B cell epitopes of gE, using a synthetic peptide library against serum samples from VZV-seropositive individuals, revealed that the O-linked glycan signature promoted binding of IgG antibodies via a decreased number of interfering O-linked glycans, but also via specific O-linked glycans enhancing antibody binding. These findings may, in part, explain the higher protective efficacy of Shingrix®, and can also be of relevance for development of subunit vaccines to other enveloped viruses.
Collapse
|
10
|
Hintze J, Ye Z, Narimatsu Y, Madsen TD, Joshi HJ, Goth CK, Linstedt A, Bachert C, Mandel U, Bennett EP, Vakhrushev SY, Schjoldager KT. Probing the contribution of individual polypeptide GalNAc-transferase isoforms to the O-glycoproteome by inducible expression in isogenic cell lines. J Biol Chem 2018; 293:19064-19077. [PMID: 30327431 PMCID: PMC6295722 DOI: 10.1074/jbc.ra118.004516] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
The GalNAc-type O-glycoproteome is orchestrated by a large family of polypeptide GalNAc-transferase isoenzymes (GalNAc-Ts) with partially overlapping contributions to the O-glycoproteome besides distinct nonredundant functions. Increasing evidence indicates that individual GalNAc-Ts co-regulate and fine-tune specific protein functions in health and disease, and deficiencies in individual GALNT genes underlie congenital diseases with distinct phenotypes. Studies of GalNAc-T specificities have mainly been performed with in vitro enzyme assays using short peptide substrates, but recently quantitative differential O-glycoproteomics of isogenic cells with and without GALNT genes has enabled a more unbiased exploration of the nonredundant contributions of individual GalNAc-Ts. Both approaches suggest that fairly small subsets of O-glycosites are nonredundantly regulated by specific GalNAc-Ts, but how these isoenzymes orchestrate regulation among competing redundant substrates is unclear. To explore this, here we developed isogenic cell model systems with Tet-On inducible expression of two GalNAc-T genes, GALNT2 and GALNT11, in a knockout background in HEK293 cells. Using quantitative O-glycoproteomics with tandem-mass-tag (TMT) labeling, we found that isoform-specific glycosites are glycosylated in a dose-dependent manner and that induction of GalNAc-T2 or -T11 produces discrete glycosylation effects without affecting the major part of the O-glycoproteome. These results support previous findings indicating that individual GalNAc-T isoenzymes can serve in fine-tuned regulation of distinct protein functions.
Collapse
Affiliation(s)
- John Hintze
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Zilu Ye
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Thomas Daugbjerg Madsen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Hiren J Joshi
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Christoffer K Goth
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Adam Linstedt
- the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Collin Bachert
- the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Ulla Mandel
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Eric P Bennett
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Katrine T Schjoldager
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| |
Collapse
|
11
|
Nygaard MB, Herlihy AS, Jeanneau C, Nielsen JE, Bennett EP, Jørgensen N, Clausen H, Mandel U, Rajpert-De Meyts E, Almstrup K. Expression of the O-Glycosylation Enzyme GalNAc-T3 in the Equatorial Segment Correlates with the Quality of Spermatozoa. Int J Mol Sci 2018; 19:E2949. [PMID: 30262754 PMCID: PMC6212898 DOI: 10.3390/ijms19102949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 02/04/2023] Open
Abstract
We question whether the expression of GalNAc-T3, the only known O-GalNAc-transferase present in germ cells, is correlated with qualitative and functional parameters of spermatozoa. We investigated the expression of GalNAc-T3 in ejaculated spermatozoa with immunocytochemistry in swim-up purified and acrosome-reacted spermatozoa from quality-control semen donors and in semen samples from 206 randomly selected men representing a broad spectrum of semen quality. Using donor ejaculates and immunofluorescence detection we found that expression of GalNAc-T3 and the presence of the immature O-glycans Tn and T localized to the equatorial segment of spermatozoa. The proportion of GalNAc-T3-positive spermatozoa in the ejaculate increased after swim-up and appeared unaffected by induction of acrosomal exocytosis. The fraction of spermatozoa with equatorial expression of GalNAc-T3 correlated with classical semen parameters (concentration p = 9 × 10-6, morphology p = 7 × 10-8, and motility p = 1.8 × 10-5) and was significantly lower in men with oligoteratoasthenozoospermia (p = 0.0048). In conclusion, GalNAc-T3 was highly expressed by motile spermatozoa and the expression correlated positively with the classical semen parameters. Therefore, GalNAc-T3 expression seems related to the quality of the spermatozoa, and we propose that reduced expression of GalNAc-T3 may lead to impaired O-glycosylation of proteins and thereby abnormal maturation and reduced functionality of the spermatozoa.
Collapse
Affiliation(s)
- Marie B Nygaard
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
- The Fertility Clinic, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| | - Amy S Herlihy
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| | - Charlotte Jeanneau
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - John E Nielsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| | - Eric Paul Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Niels Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
12
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
13
|
Ubillos L, Berriel E, Mazal D, Victoria S, Barrios E, Osinaga E, Berois N. Polypeptide-GalNAc-T6 expression predicts better overall survival in patients with colon cancer. Oncol Lett 2018; 16:225-234. [PMID: 29928405 PMCID: PMC6006374 DOI: 10.3892/ol.2018.8686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Colorectal carcinoma (CRC) is the second leading cause of cancer mortality worldwide. O-glycosylated mucins at the cell surface of colonic mucosa exhibit alterations in cancer and are involved in fundamental biological processes, including invasion and metastasis. Certain members of the GalNAc-transferase family may be responsible for these changes and are being investigated as novel biomarkers of cancer. In the present study the prognostic significance of GalNAc-T6 was investigated in patients with CRC patients. GalNAc-T6 expression was observed in all three colon cancer cell lines analyzed by reverse transcription-polymerase chain reaction, immunofluorescence and flow cytometry. A cohort of 81 colon cancer specimens was analyzed by immunohistochemical staining using MAb T6.3. It was demonstrated that GalNAc-T6 was expressed in 35/81 (43%) cases of colon cancer but not in the normal colonic mucosa. No association was observed with the clinical-pathologic parameters. However, patients expressing GalNAc-T6 had a significantly increased overall survival (median, 58 months; P<0.001) compared with GalNAc-T6 negative patients, especially those with advanced disease. These results suggest that GalNAc-T6 expression predicts an improved outcome in patients with CRC. The molecular mechanism underlying the less aggressive behavior of colon cancer cells expressing GalNAc-T6 remains to be elucidated.
Collapse
Affiliation(s)
- Luis Ubillos
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay.,Servicio de Oncología Clínica, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Edgardo Berriel
- Clínica Quirúrgica 1, Hospital Pasteur, Facultad de Medicina, Universidad de la República, Montevideo 11400, Uruguay.,Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Daniel Mazal
- Cátedra de Anatomía Patológica, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Sabina Victoria
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Enrique Barrios
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay.,Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| |
Collapse
|
14
|
Narimatsu Y, Joshi HJ, Yang Z, Gomes C, Chen YH, Lorenzetti FC, Furukawa S, Schjoldager KT, Hansen L, Clausen H, Bennett EP, Wandall HH. A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Glycobiology 2018; 28:295-305. [PMID: 29315387 DOI: 10.1093/glycob/cwx101] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Over 200 glycosyltransferases are involved in the orchestration of the biosynthesis of the human glycome, which is comprised of all glycan structures found on different glycoconjugates in cells. The glycome is vast, and despite advancements in analytic strategies it continues to be difficult to decipher biological roles of glycans with respect to specific glycan structures, type of glycoconjugate, particular glycoproteins, and distinct glycosites on proteins. In contrast to this, the number of glycosyltransferase genes involved in the biosynthesis of the human glycome is manageable, and the biosynthetic roles of most of these enzymes are defined or can be predicted with reasonable confidence. Thus, with the availability of the facile CRISPR/Cas9 gene editing tool it now seems easier to approach investigation of the functions of the glycome through genetic dissection of biosynthetic pathways, rather than by direct glycan analysis. However, obstacles still remain with design and validation of efficient gene targeting constructs, as well as with the interpretation of results from gene targeting and the translation of gene function to glycan structures. This is especially true for glycosylation steps covered by isoenzyme gene families. Here, we present a library of validated high-efficiency gRNA designs suitable for individual and combinatorial targeting of the human glycosyltransferase genome together with a global view of the predicted functions of human glycosyltransferases to facilitate and guide gene targeting strategies in studies of the human glycome.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay Aps, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay Aps, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catarina Gomes
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- Instituto de Investigação e Inovação em Saúde,i3S; Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Flaminia C Lorenzetti
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
15
|
Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends Biochem Sci 2018; 43:269-284. [PMID: 29506880 DOI: 10.1016/j.tibs.2018.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/23/2022]
Abstract
Limited proteolytic processing is an essential and ubiquitous post-translational modification (PTM) affecting secreted proteins; failure to regulate the process is often associated with disease. Glycosylation is also a ubiquitous protein PTM and site-specific O-glycosylation in close proximity to sites of proteolysis can regulate and direct the activity of proprotein convertases, a disintegrin and metalloproteinases (ADAMs), and metalloproteinases affecting the activation or inactivation of many classes of proteins, including G-protein-coupled receptors (GPCRs). Here, we summarize the emerging data that suggest O-glycosylation to be a key regulator of limited proteolysis, and highlight the potential for crosstalk between multiple PTMs.
Collapse
|
16
|
Lavrsen K, Dabelsteen S, Vakhrushev SY, Levann AMR, Haue AD, Dylander A, Mandel U, Hansen L, Frödin M, Bennett EP, Wandall HH. De novo expression of human polypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-T6) in colon adenocarcinoma inhibits the differentiation of colonic epithelium. J Biol Chem 2017; 293:1298-1314. [PMID: 29187600 DOI: 10.1074/jbc.m117.812826] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/27/2017] [Indexed: 12/25/2022] Open
Abstract
Aberrant expression of O-glycans is a hallmark of epithelial cancers. Mucin-type O-glycosylation is initiated by a large family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) that target different proteins and are differentially expressed in cells and organs. Here, we investigated the expression patterns of all of the GalNAc-Ts in colon cancer by analyzing transcriptomic data. We found that GalNAc-T6 was highly up-regulated in colon adenocarcinomas but absent in normal-appearing adjacent colon tissue. These results were verified by immunohistochemistry, suggesting that GalNAc-T6 plays a role in colon carcinogenesis. To investigate the function of GalNAc-T6 in colon cancer, we used precise gene targeting to produce isogenic colon cancer cell lines with a knockout/rescue system for GALNT6 GalNAc-T6 expression was associated with a cancer-like, dysplastic growth pattern, whereas GALNT6 knockout cells showed a more normal differentiation pattern, reduced proliferation, normalized cell-cell adhesion, and formation of crypts in tissue cultures. O-Glycoproteomic analysis of the engineered cell lines identified a small set of GalNAc-T6-specific targets, suggesting that this isoform has unique cellular functions. In support of this notion, the genetically and functionally closely related GalNAc-T3 homolog did not show compensatory functionality for effects observed for GalNAc-T6. Taken together, these data strongly suggest that aberrant GalNAc-T6 expression and site-specific glycosylation is involved in oncogenic transformation.
Collapse
Affiliation(s)
- Kirstine Lavrsen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Sally Dabelsteen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Asha M R Levann
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Amalie Dahl Haue
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - August Dylander
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Ulla Mandel
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Lars Hansen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK 2200, Copenhagen N, Denmark
| | - Eric P Bennett
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Hans H Wandall
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| |
Collapse
|
17
|
Molyneux K, Wimbury D, Pawluczyk I, Muto M, Bhachu J, Mertens PR, Feehally J, Barratt J. β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells. Kidney Int 2017; 92:1458-1468. [PMID: 28750925 DOI: 10.1016/j.kint.2017.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/23/2017] [Accepted: 05/11/2017] [Indexed: 12/29/2022]
Abstract
IgA nephropathy is characterized by mesangial deposition of IgA, mesangial cell proliferation, and extracellular matrix production. Mesangial cells bind IgA, but the identity of all potential receptors involved remains incomplete. The transferrin receptor (CD71) acts as a mesangial cell IgA receptor and its expression is upregulated in many forms of glomerulonephritis, including IgA nephropathy. CD71 is not expressed in healthy glomeruli and blocking CD71 does not completely abrogate mesangial cell IgA binding. Previously we showed that mesangial cells express a receptor that binds the Fc portion of IgA and now report that this receptor is an isoform of β-1,4-galactosyltransferase. A human mesangial cell cDNA library was screened for IgA binding proteins and β-1,4-galactosyltransferase identified. Cell surface expression of the long isoform of β-1,4-galactosyltransferase was shown by flow cytometry and confocal microscopy and confirmed by immunoblotting. Glomerular β-1,4-galactosyltransferase expression was increased in IgA nephropathy. IgA binding and IgA-induced mesangial cell phosphorylation of spleen tyrosine kinase and IL-6 synthesis were inhibited by a panel of β-1,4-galactosyltransferase-specific antibodies, suggesting IgA binds to the catalytic domain of β-1,4-galactosyltransferase. Thus, β-1,4-galactosyltransferase is a constitutively expressed mesangial cell IgA receptor with an important role in both mesangial IgA clearance and the initial response to IgA deposition.
Collapse
Affiliation(s)
- Karen Molyneux
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - David Wimbury
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Izabella Pawluczyk
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Masahiro Muto
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Jasraj Bhachu
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - John Feehally
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.
| |
Collapse
|
18
|
Herbomel GG, Rojas RE, Tran DT, Ajinkya M, Beck L, Tabak LA. The GalNAc-T Activation Pathway (GALA) is not a general mechanism for regulating mucin-type O-glycosylation. PLoS One 2017; 12:e0179241. [PMID: 28719662 PMCID: PMC5515409 DOI: 10.1371/journal.pone.0179241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/25/2017] [Indexed: 12/03/2022] Open
Abstract
Mucin-type O-glycosylation is initiated by the UDP-GalNAc polypeptide:N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes. Their activity results in the GalNAc α1-O-Thr/Ser structure, termed the Tn antigen, which is further decorated with additional sugars. In neoplastic cells, the Tn antigen is often overexpressed. Because O-glycosylation is controlled by the activity of GalNAc-Ts, their regulation is of great interest. Previous reports suggest that growth factors, EGF or PDGF, induce Golgi complex-to-endoplasmic reticulum (ER) relocation of both GalNAc-Ts and Tn antigen in HeLa cells, offering a mechanism for Tn antigen overexpression termed "GALA". However, we were unable to reproduce these findings. Upon treatment of HeLa cells with either EGF or PDGF we observed no change in the co-localization of endogenous GalNAc-T1, GalNAc-T2 or Tn antigen with the Golgi complex marker TGN46. There was also no enhancement of localization with the ER marker calnexin. We conclude that growth factors do not cause redistribution of GalNAc-Ts from the Golgi complex to the ER in HeLa cells.
Collapse
Affiliation(s)
- Gaetan G. Herbomel
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raul E. Rojas
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Duy T. Tran
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Monica Ajinkya
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lauren Beck
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lawrence A. Tabak
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Yao X, Yang H, Zhang Y, Ren C, Nie H, Fan Y, Zhou W, Wang S, Feng X, Wang F. Characterization of GALNTL5 gene sequence and expression in ovine testes and sperm. Theriogenology 2017; 95:54-61. [PMID: 28460680 DOI: 10.1016/j.theriogenology.2017.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
The polypeptide N-acetylgalactosaminyltransferase-like protein 5 (GALNTL5), which belongs to the polypeptide N-acetylgalactosaminyltransferase (pp-GalNAc-T) gene family, is a newly identified gene that is specifically expressed in testis and involved in spermatogenesis. However, there is no data showing the existence of GALNTL5 in ram testis at various developmental stages and its influence on sperm motility. Therefore, the objectives of the present study were to evaluate the presence of GALNTL5 in the testis of 3-24 months (M) ram and to investigate the expression of GALNTL5 in spermatozoa with different motilities. We detected a 1602 bp cDNA fragment of GALNTL5 that included a 1326 bp coding sequence, encoding 441 amino acids and 90 and 185 bp of the 5' and 3' untranslated regions, respectively. The GALNTL5 amino acid sequence showed 51.87-83.48% identity with the sequences of proteins from other species. It was detected exclusively in the testis and the levels of both the mRNA and protein were progressively increased with age. Immunohistochemistry further revealed that GALNTL5 specifically localized in the elongating spermatids and spermatozoa, and it was demonstrated to be strongly concentrated in the head, neck, and mid-piece region of spermatozoa by immunocytochemistry. The sperm density and the percentage of live sperm in the high motility group (≥80%) were significantly higher than in the low motility group (≤50%), and the reverse trend was observed with the abnormal sperm. Western blot analysis showed that the protein expression of PGK2, ALDOA, and GALNTL5 were significantly higher in the high motility group than in the low motility group. Overall, the data suggest that GALNTL5 is an important functional molecule during spermatogenesis. Moreover, it is the first to suggest that the expression level of GALNTL5 is positively correlated with the sperm motility.
Collapse
Affiliation(s)
- Xiaolei Yao
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hua Yang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanli Zhang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Caifang Ren
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haitao Nie
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yixuan Fan
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjun Zhou
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuting Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xu Feng
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
20
|
Festari MF, Trajtenberg F, Berois N, Pantano S, Revoredo L, Kong Y, Solari-Saquieres P, Narimatsu Y, Freire T, Bay S, Robello C, Bénard J, Gerken TA, Clausen H, Osinaga E. Revisiting the human polypeptide GalNAc-T1 and T13 paralogs. Glycobiology 2017; 27:140-153. [PMID: 27913570 PMCID: PMC5224595 DOI: 10.1093/glycob/cww111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
Polypeptide GalNAc-transferases (GalNAc-Ts) constitute a family of 20 human glycosyltransferases (comprising 9 subfamilies), which initiate mucin-type O-glycosylation. The O-glycoproteome is thought to be differentially regulated via the different substrate specificities and expression patterns of each GalNAc-T isoforms. Here, we present a comprehensive in vitro analysis of the peptide substrate specificity of GalNAc-T13, showing that it essentially overlaps with the ubiquitous expressed GalNAc-T1 isoform found in the same subfamily as T13. We have also identified and partially characterized nine splice variants of GalNAc-T13, which add further complexity to the GalNAc-T family. Two variants with changes in their lectin domains were characterized by in vitro glycosylation assays, and one (Δ39Ex9) was inactive while the second one (Ex10b) had essentially unaltered activity. We used reverse transcription-polymerase chain reaction analysis of human neuroblastoma cell lines, normal brain and a small panel of neuroblastoma tumors to demonstrate that several splice variants (Ex10b, ΔEx9, ΔEx2-7 and ΔEx6/8-39bpEx9) were highly expressed in tumor cell lines compared with normal brain, although the functional implications remain to be unveiled. In summary, the GalNAc-T13 isoform is predicted to function similarly to GalNAc-T1 against peptide substrates in vivo, in contrast to a prior report, but is unique by being selectively expressed in the brain.
Collapse
Affiliation(s)
- María Florencia Festari
- Laboratory of Tumor Immunology and Glycobiology, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125 (C.P. 11800), Montevideo, Uruguay
| | | | - Nora Berois
- Laboratory of Tumor Immunology and Glycobiology, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
| | - Sergio Pantano
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
| | - Leslie Revoredo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yun Kong
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Patricia Solari-Saquieres
- Laboratory of Tumor Immunology and Glycobiology, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
| | - Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Teresa Freire
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125 (C.P. 11800), Montevideo, Uruguay
| | - Sylvie Bay
- Unité de Chimie de Biomoleculares, CNRS UMR 3523 Institut Pasteur, Paris, France
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125 (C.P. 11800), Montevideo, Uruguay
| | - Jean Bénard
- CNRS UMR 8126, Université Paris-Sud 11, and Département de Biologie et Pathologie Médicales Institut Gustave Roussy, Villejuif Cedex, France
| | - Thomas A Gerken
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Departments of Pediatrics and Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Henrik Clausen
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eduardo Osinaga
- Laboratory of Tumor Immunology and Glycobiology, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125 (C.P. 11800), Montevideo, Uruguay
| |
Collapse
|
21
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
22
|
Olofsson S, Blixt O, Bergström T, Frank M, Wandall HH. Viral O-GalNAc peptide epitopes: a novel potential target in viral envelope glycoproteins. Rev Med Virol 2015; 26:34-48. [PMID: 26524377 DOI: 10.1002/rmv.1859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023]
Abstract
Viral envelope glycoproteins are major targets for antibodies that bind to and inactivate viral particles. The capacity of a viral vaccine to induce virus-neutralizing antibodies is often used as a marker for vaccine efficacy. Yet the number of known neutralization target epitopes is restricted owing to various viral escape mechanisms. We expand the range of possible viral glycoprotein targets, by presenting a previously unknown type of viral glycoprotein epitope based on a short peptide stretch modified with small O-linked glycans. Besides being immunologically active, these epitopes have a high potential for antigenic variation. Thus, sera from patients infected with EBV develop individual IgG responses addressing the different possible glycopeptide glycoforms of one short peptide backbone that reflect individual variations in the course of virus infection. In contrast, in HSV type 2 meningitis patients, CSF antibodies are focussed to only one single glycoform peptide of a major viral glycoprotein. Thus, dependent on the viral disease, the serological response may be variable or constant with respect to the number of targeted peptide glycoforms. Mapping of these epitopes relies on a novel three-step procedure that identifies any reactive viral O-glycosyl peptide epitope with respect to (i) relevant peptide sequence, (ii) the reactive glycoform out of several possible glycopeptide isomers of that peptide sequence, and (iii) possibly tolerated carbohydrate or peptide structural variations at glycosylation sites. In conclusion, the viral O-glycosyl peptide epitopes may be of relevance for development of subunit vaccines and for improved serodiagnosis of viral diseases. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sigvard Olofsson
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Bergström
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | | | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Tenorio MJ, Luchsinger C, Mardones GA. Protein kinase A activity is necessary for fission and fusion of Golgi to endoplasmic reticulum retrograde tubules. PLoS One 2015; 10:e0135260. [PMID: 26258546 PMCID: PMC4530959 DOI: 10.1371/journal.pone.0135260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity.
Collapse
Affiliation(s)
- María J. Tenorio
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
| | - Charlotte Luchsinger
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
24
|
Marcos-Silva L, Ricardo S, Chen K, Blixt O, Arigi E, Pereira D, Høgdall E, Mandel U, Bennett EP, Vakhrushev SY, David L, Clausen H. A novel monoclonal antibody to a defined peptide epitope in MUC16. Glycobiology 2015. [PMID: 26201951 DOI: 10.1093/glycob/cwv056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The MUC16 mucin is overexpressed and aberrantly glycosylated in ovarian carcinomas. Immunodetection of circulating MUC16 is one of the most used cancer biomarker assays, but existing antibodies to MUC16 fail to distinguish normal and aberrant cancer glycoforms. Although all antibodies react with the tandem-repeat region, their epitopes appear to be conformational dependent and not definable by a short peptide. Aberrant glycoforms of MUC16 may constitute promising targets for diagnostic and immunotherapeutic intervention, and it is important to develop well-defined immunogens for induction of potent MUC16 immunity. Here, we developed a MUC16 vaccine based on a 1.7TR (264 aa) expressed in Escherichia coli and in vitro enzymatically glycosylated to generate the aberrant cancer-associated glycoform Tn. This vaccine elicited a potent serum IgG response in mice and we identified two major immunodominant linear peptide epitopes within the tandem repeat. We developed one monoclonal antibody, 5E11, reactive with a minimum epitope with the sequence FNTTER. This sequence contains potential N- and O-glycosylation sites and, interestingly, glycosylation blocked binding of 5E11. In immunochemistry of ovarian benign and cancer lesions, 5E11 showed similar reactivity as traditional MUC16 antibodies, suggesting that the epitope is not efficiently glycosylated. The study provides a vaccine design and immunodominant MUC16 TR epitopes.
Collapse
Affiliation(s)
- Lara Marcos-Silva
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sara Ricardo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Kowa Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Ola Blixt
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Emma Arigi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Daniela Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Leonor David
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal Faculty of Medicine, University of Porto, Porto, Portugal
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
25
|
Glycosyltransferases as Markers for Early Tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:792672. [PMID: 26161413 PMCID: PMC4486746 DOI: 10.1155/2015/792672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
Background. Glycosylation is the most frequent posttranslational modification of proteins and lipids influencing inter- and intracellular communication and cell adhesion. Altered glycosylation patterns are characteristically observed in tumour cells. Normal and altered carbohydrate chains are transferred to their acceptor structures via glycosyltransferases. Here, we present the correlation between the presence of three different glycosyltransferases and tumour characteristics. Methods. 235 breast cancer tissue samples were stained immunohistochemically for the glycosyltransferases N-acetylgalactosaminyltransferase 6 (GALNT6), β-1,6-N-acetylglucosaminyltransferase 2 (GCNT2), and ST6 (α-N-acetyl-neuraminyl-2,3-β-galactosyl-1,3)-N-acetylgalactosamine α-2,6-sialyltransferase 1 (ST6GALNac1). Staining was evaluated by light microscopy and was correlated to different tumour characteristics by statistical analysis. Results. We found a statistically significant correlation for the presence of glycosyltransferases and tumour size and grading. Specifically smaller tumours with low grading revealed the highest incidences of glycosyltransferases. Additionally, Her4-expression but not pHer4-expression is correlated with the presence of glycosyltransferases. All other investigated parameters could not uncover any statistically significant reciprocity. Conclusion. Here we show, that glycosyltransferases can identify small tumours with well-differentiated cells; hence, glycosylation patterns could be used as a marker for early tumourigenesis. This assumption is supported by the fact that Her4 is also correlated to glycosylation, whereas the activated form of Her4 does not show such a connection with glycosylation.
Collapse
|
26
|
Campos D, Freitas D, Gomes J, Magalhães A, Steentoft C, Gomes C, Vester-Christensen MB, Ferreira JA, Afonso LP, Santos LL, Pinto de Sousa J, Mandel U, Clausen H, Vakhrushev SY, Reis CA. Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery. Mol Cell Proteomics 2015; 14:1616-29. [PMID: 25813380 PMCID: PMC4458724 DOI: 10.1074/mcp.m114.046862] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO "SimpleCell" (SC) strategy to characterize the O-glycoproteome of two gastric cancer SimpleCell lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses at least partially truncated O-glycans. Overall, we identified 499 O-glycoproteins and 1236 O-glycosites in gastric cancer SimpleCells, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer and healthy individuals to identify circulating O-glycoproteins with the STn glycoform. We identified 37 O-glycoproteins in the pool of cancer sera, and only nine of these were also found in sera from healthy individuals. Two identified candidate O-glycoprotein biomarkers (CD44 and GalNAc-T5) circulating with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to show that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set of O-glycoprotein candidates with biomarker potential in gastric cancer.
Collapse
Affiliation(s)
- Diana Campos
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Daniela Freitas
- §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Joana Gomes
- §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Magalhães
- §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Catharina Steentoft
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catarina Gomes
- §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Malene B Vester-Christensen
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - José Alexandre Ferreira
- ¶Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida 4200-072 Porto, Portugal; ‖QOPNA, Department of Chemistry of the University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Luis P Afonso
- **Department of Pathology, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida 4200-072 Porto, Portugal
| | - Lúcio L Santos
- ¶Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida 4200-072 Porto, Portugal
| | - João Pinto de Sousa
- ‡‡Faculty of Medicine of the University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ulla Mandel
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark;
| | - Celso A Reis
- §IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; ‡‡Faculty of Medicine of the University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; §§Institute of Biomedical Sciences Abel Salazar, ICBAS, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
| |
Collapse
|
27
|
Yang Z, Steentoft C, Hauge C, Hansen L, Thomsen AL, Niola F, Vester-Christensen MB, Frödin M, Clausen H, Wandall HH, Bennett EP. Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res 2015; 43:e59. [PMID: 25753669 PMCID: PMC4482057 DOI: 10.1093/nar/gkv126] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 12/16/2022] Open
Abstract
The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect by traditional methods. Here we present a method for fast, sensitive and simple indel detection that accurately defines indel sizes down to ±1 bp. The method coined IDAA for Indel Detection by Amplicon Analysis is based on tri-primer amplicon labelling and DNA capillary electrophoresis detection, and IDAA is amenable for high throughput analysis.
Collapse
Affiliation(s)
- Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Camilla Hauge
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Allan Lind Thomsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Francesco Niola
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Malene B Vester-Christensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Morten Frödin
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
28
|
Bagdonaite I, Nordén R, Joshi HJ, Dabelsteen S, Nyström K, Vakhrushev SY, Olofsson S, Wandall HH. A strategy for O-glycoproteomics of enveloped viruses--the O-glycoproteome of herpes simplex virus type 1. PLoS Pathog 2015; 11:e1004784. [PMID: 25830354 PMCID: PMC4382219 DOI: 10.1371/journal.ppat.1004784] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of viral envelope proteins is important for infectivity and interaction with host immunity, however, our current knowledge of the functions of glycosylation is largely limited to N-glycosylation because it is difficult to predict and identify site-specific O-glycosylation. Here, we present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B were previously implicated in virus attachment to immune cells. We show that HSV-1 infection distorts the secretory pathway and that infected cells accumulate glycoproteins with truncated O-glycans, nonetheless retaining the ability to elongate most of the surface glycans. With the use of precise gene editing, we further demonstrate that elongated O-glycans are essential for HSV-1 in human HaCaT keratinocytes, where HSV-1 produced markedly lower viral titers in HaCaT with abrogated O-glycans compared to the isogenic counterpart with normal O-glycans. The roles of O-linked glycosylation for viral entry, formation, secretion, and immune recognition are poorly understood, and the O-glycoproteomics strategy presented here now opens for unbiased discovery on all enveloped viruses. Information on site-specific O-glycosylation of viral envelope glycoproteins is generally very limited despite important functions. We present a powerful mass-spectrometry based strategy to globally identify O-glycosylation sites on viral envelope proteins of a given virus in the context of a productive infection. We successfully utilized the strategy to map O-linked glycosylation sites on the complex HSV-1 virus demonstrating that O-glycosylation is widely distributed on most envelope proteins. Moreover, we used genetically engineered keratinocytes lacking O-glycan elongation capacity to demonstrate that O-linked glycans are indeed important for HSV-1 biology as HSV-1 particles produced in these cells had significantly lower titers compared to wild-type keratinocytes. These tools enable wider discovery and detailed analysis of the role of site-specific O-glycosylation in virology.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rickard Nordén
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hiren J. Joshi
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Institute of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Nyström
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sigvard Olofsson
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans H. Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
29
|
Nordén R, Halim A, Nyström K, Bennett EP, Mandel U, Olofsson S, Nilsson J, Larson G. O-linked glycosylation of the mucin domain of the herpes simplex virus type 1-specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner. J Biol Chem 2014; 290:5078-5091. [PMID: 25548287 DOI: 10.1074/jbc.m114.616409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) glycoprotein gC-1, participating in viral receptor interactions and immunity interference, harbors a mucin-like domain with multiple clustered O-linked glycans. Using HSV-1-infected diploid human fibroblasts, an authentic target for HSV-1 infection, and a protein immunoaffinity procedure, we enriched fully glycosylated gC-1 and a series of its biosynthetic intermediates. This fraction was subjected to trypsin digestion and a LC-MS/MS glycoproteomics approach. In parallel, we characterized the expression patterns of the 20 isoforms of human GalNAc transferases responsible for initiation of O-linked glycosylation. The gC-1 O-glycosylation was regulated in an orderly manner initiated by synchronous addition of one GalNAc unit each to Thr-87 and Thr-91 and one GalNAc unit to either Thr-99 or Thr-101, forming a core glycopeptide for subsequent additions of in all 11 GalNAc residues to selected Ser and Thr residues of the Thr-76-Lys-107 stretch of the mucin domain. The expression patterns of GalNAc transferases in the infected cells suggested that initial additions of GalNAc were carried out by initiating GalNAc transferases, in particular GalNAc-T2, whereas subsequent GalNAc additions were carried out by followup transferases, in particular GalNAc-T10. Essentially all of the susceptible Ser or Thr residues had to acquire their GalNAc units before any elongation to longer O-linked glycans of the gC-1-associated GalNAc units was permitted. Because the GalNAc occupancy pattern is of relevance for receptor binding of gC-1, the data provide a model to delineate biosynthetic steps of O-linked glycosylation of the gC-1 mucin domain in HSV-1-infected target cells.
Collapse
Affiliation(s)
- Rickard Nordén
- From the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, DK-2200 Copenhagen, Denmark, and; Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Kristina Nyström
- From the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, DK-2200 Copenhagen, Denmark, and
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, DK-2200 Copenhagen, Denmark, and
| | - Sigvard Olofsson
- From the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden.
| |
Collapse
|
30
|
Liang KH, Yang PC, Yeh CT. Genotyping the GALNT14 gene by joint analysis of two linked single nucleotide polymorphisms using liver tissues for clinical and geographical comparisons. Oncol Lett 2014; 8:2215-2220. [PMID: 25295111 PMCID: PMC4186602 DOI: 10.3892/ol.2014.2507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 07/23/2014] [Indexed: 01/24/2023] Open
Abstract
A GALNT14 single nucleotide polymorphism, rs9679162, has recently been found to be capable of predicting chemotherapy responses in patients with far-advanced hepatocellular carcinoma (HCC). In the present study, a novel assay was designed and genotyping was performed on 244 surgically removed liver tissues. This assay employed two polymerase chain reaction (PCR)-generated restriction enzyme sites to simultaneously determine the genotypes of two adjacent single nucleotide polymorphisms (SNPs), rs9679162 and rs6752303, on the GALNT14 gene. Genotypes determined by this assay reached 100% concordance with those detected by the direct sequencing method. Clinical analysis showed that the TT genotype of rs9679162 was lower in percentage among patients with virus-originated HCC compared with those with non-viral HCC (22.57 vs. 47.06%, respectively; P=0.023). The proportion of the TT genotype in the 244 HCC patients (24.18%) did not deviate significantly from those of two public-domain (HapMap) Chinese cohorts from Denver, Colorado, USA (28.44%) and Beijing, China (30.15%) (P>0.05). The proportion of the TT genotype was significantly higher in Japanese and African populations (42.11–54.55%; P<0.0001) but significantly lower in an Italian cohort (7.84%; P=0.0004). In conclusion, the novel PCR-generated double restriction enzyme sites method could correctly determine the genotypes of two target SNPs in GALNT14 in liver tissues. The TT genotype was associated with the non-viral etiology of HCC. A marked variation in ethnicity was found for the distribution of this genotype.
Collapse
Affiliation(s)
- Kung-Hao Liang
- Liver Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan, R.O.C
| | - Pei-Ching Yang
- Liver Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan, R.O.C
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan, R.O.C. ; Molecular Medicine Research Center, Chang Gung University, Taoyuan 10507, Taiwan, R.O.C
| |
Collapse
|
31
|
Lin MC, Huang MJ, Liu CH, Yang TL, Huang MC. GALNT2 enhances migration and invasion of oral squamous cell carcinoma by regulating EGFR glycosylation and activity. Oral Oncol 2014; 50:478-84. [PMID: 24582885 DOI: 10.1016/j.oraloncology.2014.02.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is one of the leading cancers worldwide. Aberrant glycosylation affects many cellular properties in cancers, including OSCC. This study aimed to explore the role of N-acetylgalactosaminyltransferase 2 (GALNT2) in OSCC. MATERIALS AND METHODS Immunohistochemistry was performed to study the expression of GALNT2 in an OSCC tissue microarray. Effects of GALNT2 overexpression and knockdown on cell migration and invasion were analyzed in SAS cells by transwell migration assay and matrigel invasion assay, respectively. The Vicia villosa agglutinin (VVA) pull down assay was conducted to detect changes in O-glycans on acceptor substrates of GALNT2. Cell signaling was analyzed by Western blotting. RESULTS GALNT2 was overexpressed in 73% (35/48) of OSCC tissues. Moreover, GALNT2 expression was localized in the invasive front and increased in high grade OSCC. GALNT2 overexpression enhanced migration and invasion of SAS cells triggered by fetal bovine serum (FBS) and epidermal growth factor (EGF). In contrast, GALNT2 knockdown inhibited SAS cell migration and invasion. Furthermore, GALNT2 overexpression enhanced VVA binding to epidermal growth factor receptor (EGFR) and EGF-induced phosphorylation of EGFR and AKT. Conversely, GALNT2 knockdown decreased VVA binding and suppressed activity of EGFR and AKT. CONCLUSION GALNT2 is frequently overexpressed in OSCC, especially in the carcinoma cells at the invasive front. GALNT2 overexpression enhances the invasive potential of OSCC cells via modifying O-glycosylation and activity of EGFR. These findings suggest that GALNT2 plays an important role in the invasive behavior of OSCC and that targeting GALNT2 could be a promising approach for OSCC therapy.
Collapse
Affiliation(s)
- Mei-Chun Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Miao-Juei Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiung-Hui Liu
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
32
|
Generation of monoclonal antibodies to native active human glycosyltransferases. Methods Mol Biol 2014; 1022:403-20. [PMID: 23765678 DOI: 10.1007/978-1-62703-465-4_30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Complex carbohydrates serve a wide range of biological functions in cells and tissues. Their biosynthesis involves more than 200 distinct glycosyltransferases in human cells, and the expression, properties, and topology of these enzymes regulate the glycosylation patterns of proteins and lipids. Glycosyltransferases are ER-Golgi resident enzymes with slow turnover, which makes monitoring of protein expression a method more directly linked to enzyme function, than monitoring gene expression. In situ monitoring of expression and subcellular topology of glycosyltransferase proteins by immunological techniques using monoclonal antibodies therefore provides an excellent strategy to analyze the glycosylation process in cells. A major drawback has been difficulties in generating antibodies to glycosyltransferases and validating their specificities. Here we describe a simple strategy for generating and characterizing monoclonal antibodies to human glycosyltransferases. This strategy includes a process for recombinant production and purification of enzymes for immunization, a simple selection strategy for isolation of antibodies with optimal properties for in situ detection of enzyme expression, and a comprehensive strategy for characterizing the fine specificity of such antibodies.
Collapse
|
33
|
Libisch MG, Casás M, Chiribao M, Moreno P, Cayota A, Osinaga E, Oppezzo P, Robello C. GALNT11 as a new molecular marker in chronic lymphocytic leukemia. Gene 2013; 533:270-9. [PMID: 24076351 DOI: 10.1016/j.gene.2013.09.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/17/2013] [Indexed: 01/27/2023]
Abstract
Aberrant mucin O-glycosylation often occurs in different cancers and is characterized by immature expression of simple mucin-type carbohydrates. At present, there are some controversial reports about the Tn antigen (GalNAcα-O-Ser/Thr) expression and there is a great lack of information about the [UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-Ts)] expression in chronic lymphocytic leukemia (CLL). To gain insight in these issues we evaluated the Tn antigen expression in CLL patient samples using two Tn binding proteins with different fine specificity. We also studied the expression from 14 GalNAc-Ts genes in CLL patients by RT-PCR. Our results have provided additional information about the expression level of the Tn antigen, suggesting that a low density of Tn residues is expressed in CLL cells. We also found that GALNT11 was expressed in CLL cells and normal T cell whereas little or no expression was found in normal B cells. Based on these results, GALNT11 expression was assessed by qPCR in a cohort of 50 CLL patients. We found significant over-expression of GALNT11 in 96% of B-CLL cells when compared to normal B cells. Moreover, we confirmed the expression of this enzyme at the protein level. Finally we found that GALNT11 expression was significantly associated with the mutational status of the immunoglobulin heavy chain variable region (IGHV), [א(2)(1)=18.26; P<0.0001], lipoprotein lipase expression [א(2)(1)=13.72; P=0.0002] and disease prognosis [א(2)(1)=15.49; P<0.0001]. Our evidence suggests that CLL patient samples harbor aberrant O-glycosylation highlighted by Tn antigen expression and that the over-expression of GALNT11 constitutes a new molecular marker for CLL.
Collapse
Affiliation(s)
- M G Libisch
- Molecular Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KTBG, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Paul Bennett E, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 2013; 32:1478-88. [PMID: 23584533 PMCID: PMC3655468 DOI: 10.1038/emboj.2013.79] [Citation(s) in RCA: 1025] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/18/2013] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O-glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O-glycosylation (SimpleCells) that enables proteome-wide discovery of O-glycan sites using 'bottom-up' ETD-based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O-glycoproteome with almost 3000 glycosites in over 600 O-glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O-glycosylation. The finding of unique subsets of O-glycoproteins in each cell line provides evidence that the O-glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O-glycoproteome should facilitate the exploration of how site-specific O-glycosylation regulates protein function.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
- Center for Biological Sequence Analysis, Department of Systems Biology Technical University of Denmark, Lyngby, Denmark
| | - Yun Kong
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Malene B Vester-Christensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Katrine T-B G Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Kirstine Lavrsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Sally Dabelsteen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Nis B Pedersen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Lara Marcos-Silva
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ramneek Gupta
- Center for Biological Sequence Analysis, Department of Systems Biology Technical University of Denmark, Lyngby, Denmark
| | - Eric Paul Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Steven B Levery
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
35
|
van der Post S, Subramani DB, Bäckström M, Johansson MEV, Vester-Christensen MB, Mandel U, Bennett EP, Clausen H, Dahlén G, Sroka A, Potempa J, Hansson GC. Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB). J Biol Chem 2013; 288:14636-14646. [PMID: 23546879 PMCID: PMC3656315 DOI: 10.1074/jbc.m113.459479] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a synthetic peptide covering the IRTT sequence. Only GalNAc-T3 was able to glycosylate the second Thr in IRTT, rendering the sequence resistant to cleavage by RgpB. Furthermore, when GalNAc-T3 was expressed in CHO cells expressing the MUC2 C terminus, the second threonine was glycosylated, and the protein became resistant to RgpB cleavage. These findings suggest that bacteria can produce proteases capable of dissolving the inner protective mucus layer by specific cleavages in the MUC2 mucin and that this cleavage can be modulated by site-specific O-glycosylation.
Collapse
Affiliation(s)
- Sjoerd van der Post
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Durai B Subramani
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Bäckström
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malene B Vester-Christensen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and Odontology, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and Odontology, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and Odontology, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and Odontology, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Gunnar Dahlén
- Department of Oral Microbiology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Aneta Sroka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; Oral Health and Systemic Diseases Group, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
36
|
Abstract
Glycosyltransferases control the biosynthesis of glycans expressed in cells. Alterations in glycosylation in the gastrointestinal tract stem from deregulation of glycosyltransferase expression. These modifications can be detected in situ by cell and tissue immunolabelling techniques which are highly informative in physiological and pathological contexts. The protocols described here are single and double-labelling immunofluorescence techniques that allow the detection of a specific glycosyltransferase and, in the case of double labelling, the concomitant detection of the glycosyltransferase and its glycan product.
Collapse
Affiliation(s)
- Joana Gomes
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Faculdade de Medicina, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
37
|
HUA DONG, SHEN LI, XU LAN, JIANG ZHI, ZHOU YINGHUI, YUE AIHUAN, ZOU SHITAO, CHENG ZHIHONG, WU SHILIANG. Polypeptide N-acetylgalactosaminyltransferase 2 regulates cellular metastasis-associated behavior in gastric cancer. Int J Mol Med 2012; 30:1267-74. [PMID: 22992780 PMCID: PMC4042861 DOI: 10.3892/ijmm.2012.1130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/27/2012] [Indexed: 01/12/2023] Open
Abstract
Aberrant glycosylation of cell surface glycoprotein due to specific alterations of glycosyltransferase activity is usually associated with invasion and metastasis of cancer, particularly of gastric carcinomas. Polypeptide N-acetylgalactosaminyltransferase 2 (ppGalNAc-T2), which catalyzes initiation of mucin-type O-glycosylation, is also involved in tumor migration and invasion. However, a comprehensive understanding of how ppGalNAc-T2 correlates with the metastasic potential of human gastric cancer is not currently available. In the present study, ppGalNAc-T2 was detected in a variety of human poorly differentiated tumor cells, and expression appeared to be higher in SGC7901 gastric cancer cells. In addition, we investigated the potential effects of ppGalNAc-T2 on growth and metastasis-associated behavior in SGC7901 cells after stable transfection with ppGalNAc-T2 sense and antisense vectors. We found that cell proliferation, adhesion and invasion were decreased in ppGalNAc-T2 overexpressed cells but increased in ppGalNAc-T2 downregulated cells. Therefore, we attempted to clarify the mechanisms underlying the anti-metastatic activities of ppGalNAc-T2. Further investigation indicated that overexpression of ppGalNAc-T2 is involved in the inhibition of matrix metalloproteinase (MMP)-2 expression at both the protein and mRNA levels, which may be associated with ppGalNAc-T2 suppressing the expression of transforming growth factor (TGF)-β1. However, it did not exhibit any apparent correlation with MMP-14 expression levels. Our data show the effect of ppGalNAc-T2 on proliferation, adhesion or invasion of SGC7901 gastric cancer cells, suggesting that ppGalNAc-T2 may exert anti-proliferative and anti-metastatic activity through the decrease of MMP-2 and TGF-β1. These results indicate that ppGalNAc‑T2 may be used as a novel therapeutic target for human gastric cancer treatment.
Collapse
Affiliation(s)
- DONG HUA
- The Fourth Affiliated Hospital of Soochow University, Wuxi, Jiangsu
214062
| | - LI SHEN
- Department of Biochemistry and Mollecular Biology, School of Medicine,
Soochow University, Suzhou, Jiangsu 215123
- Department of Biochemistry and Molecular Biology, Hubei University of
Medicine, Shiyan, Hubei 442000, P.R. China
| | - LAN XU
- Department of Biochemistry and Mollecular Biology, School of Medicine,
Soochow University, Suzhou, Jiangsu 215123
| | - ZHI JIANG
- Department of Biochemistry and Mollecular Biology, School of Medicine,
Soochow University, Suzhou, Jiangsu 215123
| | - YINGHUI ZHOU
- Department of Biochemistry and Mollecular Biology, School of Medicine,
Soochow University, Suzhou, Jiangsu 215123
| | - AIHUAN YUE
- Department of Biochemistry and Mollecular Biology, School of Medicine,
Soochow University, Suzhou, Jiangsu 215123
| | - SHITAO ZOU
- Department of Biochemistry and Mollecular Biology, School of Medicine,
Soochow University, Suzhou, Jiangsu 215123
| | - ZHIHONG CHENG
- The Fourth Affiliated Hospital of Soochow University, Wuxi, Jiangsu
214062
| | - SHILIANG WU
- Department of Biochemistry and Mollecular Biology, School of Medicine,
Soochow University, Suzhou, Jiangsu 215123
| |
Collapse
|
38
|
Berois N, Gattolliat CH, Barrios E, Capandeguy L, Douc-Rasy S, Valteau-Couanet D, Bénard J, Osinaga E. GALNT9 gene expression is a prognostic marker in neuroblastoma patients. Clin Chem 2012; 59:225-33. [PMID: 23136245 DOI: 10.1373/clinchem.2012.192328] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The enzymes encoded by the GALNT [UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GALNAC-T)] gene family catalyze the first step of O-glycosylation. Little is known about the link between expression of the genes encoding GALNAC-T enzymes and tumor progression in neuroblastoma, a pediatric cancer that can be classified as either low or high risk. We assessed the expression of genes in the GALNT family in a large cohort of neuroblastoma patients and characterized members of this family that might be used as new prognostic markers. METHODS Reverse-transcription PCR analysis of 14 GALNT genes with a panel of neuroblastoma cell lines identified the GALNT9 gene as playing a potential role in disease progression. We used the log-rank test and the multivariable Cox proportional hazards model with a cohort of 122 neuroblastoma patients to analyze the relationship between GALNT9 expression and overall survival or disease-free survival. RESULTS In the high-risk neuroblastoma experimental model IGR-N-91, GALNT9 expression was present in neuroblasts derived from primary tumors but not in neuroblasts from metastatic bone marrow. Moreover, GALNT9 in neuroblastoma cell lines was expressed in substrate adherent (S)-type cell lines but not in neuronal (N)-type lines. In the tumor cohort, GALNT9 expression was associated with high overall survival, independent of the standard risk-stratification covariates. GALNT9 expression was significantly associated with disease-free survival for patients currently classified as at low risk (P < 0.0007). CONCLUSIONS GALNT9 expression correlates with both improved overall survival in low- and high-risk groups and an improved clinical outcome (overall and disease-free survival) in low-risk patients. Thus, the GALNT9 expression may be a prognostic marker for personalized therapy.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fanayan S, Hincapie M, Hancock WS. Using lectins to harvest the plasma/serum glycoproteome. Electrophoresis 2012; 33:1746-54. [PMID: 22740463 DOI: 10.1002/elps.201100567] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aberrant protein glycosylation has been shown to be associated with disease processes and identification of disease-specific glycoproteins and glycosylation changes may serve as potential diagnostic and therapeutic biomarkers. However despite recent advances in proteomic-based biomarker discovery, this knowledge has not yet translated into an extensive mining of the glycoproteome for potential biomarkers. The major challenge for a comprehensive glycoproteomics analysis arises primarily from the enormous complexity and the large dynamic range in protein constituent in biological samples. Methods that specifically target glycoproteins are therefore necessary to facilitate their selective enrichment prior to their identification by MS-based analysis. The use of lectins, with selective affinities for specific carbohydrate epitopes, to enrich glycoprotein fractions coupled with modern MS, have greatly enhanced the identification of the glycoproteome. On account of their ability to specifically bind cell surface carbohydrates lectins have, during the recent past, found extensive applications in elucidation of the architecture and dynamics of cell surface carbohydrates, glycoconjugate purification, and structural characterization. Combined with complementary depletion and MS technologies, lectin affinity chromatography is becoming the most widely employed method of choice for biomarker discovery in cancer and other diseases.
Collapse
Affiliation(s)
- Susan Fanayan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| | | | | |
Collapse
|
40
|
Stuchlová Horynová M, Raška M, Clausen H, Novak J. Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma. Cell Mol Life Sci 2012; 70:829-39. [PMID: 22864623 DOI: 10.1007/s00018-012-1082-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 11/30/2022]
Abstract
Glycosylation abnormalities have been observed in autoimmune diseases and cancer. Here, we compare mechanisms of aberrant O-glycosylation, i.e., formation of Tn and sialyl-Tn structures, on MUC1 in breast cancer, and on IgA1 in an autoimmune disease, IgA nephropathy. The pathways of aberrant O-glycosylation, although different for MUC1 and IgA1, include dysregulation in glycosyltransferase expression, stability, and/or intracellular localization. Moreover, these aberrant glycoproteins are recognized by antibodies, although with different consequences. In breast cancer, elevated levels of antibodies recognizing aberrant MUC1 are associated with better outcome, whereas in IgA nephropathy, the antibodies recognizing aberrant IgA1 are part of the pathogenetic process.
Collapse
Affiliation(s)
- Milada Stuchlová Horynová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | | | | | | |
Collapse
|
41
|
Wandall HH, Rumjantseva V, Sørensen ALT, Patel-Hett S, Josefsson EC, Bennett EP, Italiano JE, Clausen H, Hartwig JH, Hoffmeister KM. The origin and function of platelet glycosyltransferases. Blood 2012; 120:626-35. [PMID: 22613794 PMCID: PMC3401214 DOI: 10.1182/blood-2012-02-409235] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/14/2012] [Indexed: 11/20/2022] Open
Abstract
Platelets are megakaryocyte subfragments that participate in hemostatic and host defense reactions and deliver pro- and antiangiogenic factors throughout the vascular system. Although they are anucleated cells that lack a complex secretory apparatus with distinct Golgi/endoplasmic reticulum compartments, past studies have shown that platelets have glycosyltransferase activities. In the present study, we show that members of 3 distinct glycosyltransferase families are found within and on the surface of platelets. Immunocytology and flow cytometry results indicated that megakaryocytes package these Golgi-derived glycosyltransferases into vesicles that are sent via proplatelets to nascent platelets, where they accumulate. These glycosyltransferases are active, and intact platelets glycosylate large exogenous substrates. Furthermore, we show that activation of platelets results in the release of soluble glycosyltransferase activities and that platelets contain sufficient levels of sugar nucleotides for detection of glycosylation of exogenously added substrates. Therefore, the results of the present study show that blood platelets are a rich source of both glycosyltransferases and donor sugar substrates that can be released to function in the extracellular space. This platelet-glycosylation machinery offers a pathway to a simple glycoengineering strategy improving storage of platelets and may serve hitherto unknown biologic functions.
Collapse
Affiliation(s)
- Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhao J, Gao Y, Cheng C, Yan M, Wang J. Upregulation of β-1,4-galactosyltransferase I in rat spinal cord with experimental autoimmune encephalomyelitis. J Mol Neurosci 2012; 49:437-45. [PMID: 22706684 DOI: 10.1007/s12031-012-9824-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/28/2012] [Indexed: 12/23/2022]
Abstract
Inflammatory infiltration has been recently emphasized in the demyelinating diseases of the central nervous system including multiple sclerosis. β-1,4-Galactosyltransferase I (β-1,4-GalT-I) is a major galactosyltransferase responsible for selectin-ligand biosynthesis, mediating rolling of the inflammatory lymphocytes. In the present study, Western blot showed that expression of β-1,4-GalT-I was low in normal or complete Freund's adjuvant (CFA) control rats' spinal cords, and it began to increase since early stage and peaked at E4 stage of experimental autoimmune encephalomyelitis (EAE) and restored approximately at normal level in the recovery stage. Immunohistochemisty revealed that upregulation of β-1,4-GalT-I was predominantly distributed in the white matter of spinal cord , while there was also some increased staining of β-1,4-GalT-I in the grey matter. Meanwhile, the expression of E-selectin, the substrate of β-1,4-GalT-I, was significantly increased, with a peak at E4 stage of EAE, and gradually decreased thereafter. Lectin blot showed that the protein bands with molecular weights of 65-25 kDa reacted a remarkable increase at the peak stage of EAE when compared with the normal and CFA control. Ricinus Communis Agglutinin-I (RCA-I) histochemistry revealed that RCA-Ι-positive signals were most intense in white matter of lumbosacral spinal cord at the peak stage of EAE (E4). Immunohistochemistry showed that β-1,4-GalT-I and CD62E, a marker for E-selectin stainings located in a considerable number of ED1 (+) macrophages in perivascular or in the white matter in EAE lesions, and a good co-localization of ED1 (+) cells with CD62E was observed. All these results suggest that β-1,4-GalT-I might serve as an inflammatory mediator regulating adhesion and migration of inflammatory cells in EAE, possibly through influencing the modification of galactosylated carbohydrate chains to modulate selectin-ligand biosynthesis and interaction with E-selectin.
Collapse
Affiliation(s)
- Jianmei Zhao
- Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, 225121, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Gomes J, Magalhães A, Carvalho AS, Hernandez GE, Papp SL, Head SR, Michel V, David L, Gärtner F, Touati E, Reis CA. Glycophenotypic alterations induced by Pteridium aquilinum in mice gastric mucosa: synergistic effect with Helicobacter pylori infection. PLoS One 2012; 7:e38353. [PMID: 22719879 PMCID: PMC3374793 DOI: 10.1371/journal.pone.0038353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/08/2012] [Indexed: 01/13/2023] Open
Abstract
The bracken fern Pteridium aquilinum is a plant known to be carcinogenic to animals. Epidemiological studies have shown an association between bracken fern exposure and gastric cancer development in humans. The biological effects of exposure to this plant within the gastric carcinogenesis process are not fully understood. In the present work, effects in the gastric mucosa of mice treated with Pteridium aquilinum were evaluated, as well as molecular mechanisms underlying the synergistic role with Helicobacter pylori infection. Our results showed that exposure to Pteridium aquilinum induces histomorphological modifications including increased expression of acidic glycoconjugates in the gastric mucosa. The transcriptome analysis of gastric mucosa showed that upon exposure to Pteridium aquilinum several glycosyltransferase genes were differently expressed, including Galntl4, C1galt1 and St3gal2, that are mainly involved in the biosynthesis of simple mucin-type carbohydrate antigens. Concomitant treatment with Pteridium aquilinum and infection with Helicobacter pylori also resulted in differently expressed glycosyltransferase genes underlying the biosynthesis of terminal sialylated Lewis antigens, including Sialyl-Lewisx. These results disclose the molecular basis for the altered pattern of glycan structures observed in the mice gastric mucosa. The gene transcription alterations and the induced glycophenotypic changes observed in the gastric mucosa contribute for the understanding of the molecular mechanisms underlying the role of Pteridium aquilinum in the gastric carcinogenesis process.
Collapse
Affiliation(s)
- Joana Gomes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Universidade do Porto, Porto, Portugal
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France
| | - Ana Magalhães
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Universidade do Porto, Porto, Portugal
| | - Ana S. Carvalho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Universidade do Porto, Porto, Portugal
| | | | - Suzanne L. Papp
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Steven R. Head
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Valérie Michel
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France
| | - Leonor David
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Eliette Touati
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France
| | - Celso A. Reis
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
44
|
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012; 22:736-56. [PMID: 22183981 PMCID: PMC3409716 DOI: 10.1093/glycob/cwr182] [Citation(s) in RCA: 612] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 12/15/2022] Open
Abstract
Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.
Collapse
Affiliation(s)
- Eric P Bennett
- Department of Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Nørre Alle 20, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
45
|
Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells. Proc Natl Acad Sci U S A 2012; 109:9893-8. [PMID: 22566642 DOI: 10.1073/pnas.1203563109] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our knowledge of the O-glycoproteome [N-acetylgalactosamine (GalNAc) type] is highly limited. The O-glycoproteome is differentially regulated in cells by dynamic expression of a subset of 20 polypeptide GalNAc-transferases (GalNAc-Ts), and methods to identify important functions of individual GalNAc-Ts are largely unavailable. We recently introduced SimpleCells, i.e., human cell lines made deficient in O-glycan extension by zinc finger nuclease targeting of a key gene in O-glycan elongation (Cosmc), which allows for proteome-wide discovery of O-glycoproteins. Here we have extended the SimpleCell concept to include proteome-wide discovery of unique functions of individual GalNAc-Ts. We used the GalNAc-T2 isoform implicated in dyslipidemia and the human HepG2 liver cell line to demonstrate unique functions of this isoform. We confirm that GalNAc-T2-directed site-specific O-glycosylation inhibits proprotein activation of the lipase inhibitor ANGPTL3 in HepG2 cells and further identify eight O-glycoproteins exclusively glycosylated by T2 of which one, ApoC-III, is implicated in dyslipidemia. Our study supports an essential role for GalNAc-T2 in lipid metabolism, provides serum biomarkers for GalNAc-T2 enzyme function, and validates the use of GALNT gene targeting with SimpleCells for broad discovery of disease-causing deficiencies in O-glycosylation. The presented glycoengineering strategy opens the way for proteome-wide discovery of functions of GalNAc-T isoforms and their role in congenital diseases and disorders.
Collapse
|
46
|
Shao C, Yu Y, Yu L, Pei Y, Feng Q, Chu F, Fang Z, Zhou Y. Amplification and up-regulation of microRNA-30b in oral squamous cell cancers. Arch Oral Biol 2012; 57:1012-7. [PMID: 22542163 DOI: 10.1016/j.archoralbio.2012.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/01/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) are negative regulators of protein coding genes which are frequently deregulated in mammary cancers. Over-expression of microRNA-30b (hsa-miR-30b) is implicated in tumour invasion and immunosuppression during metastasis. The chromosome locus of MIR30B gene, 8q24, is frequently amplified in oral squamous cell cancers (OSCCs). In the present study, we aimed to investigate the copy number variations as well as expression levels of MIR30B gene in OSCCs and analyse their correlation with tumour stage. DESIGN Quantitative real-time PCR was performed to examine the copy number of MIR-30B gene as well as hsa-miR-30b expression in 107 OSCC samples with matched adjacent normal tissues. Proportional odds regression and two-way repeated measurement ANOVA were used to analyse the association between copy number variations (CNVs) and hsa-miR-30b expression. RESULTS Copy number gains of MIR-30B gene were detected in a relatively large percentage of the OSCC samples (27.1%, 29 out of 107) and were correlated with tumour stages (p<0.001). MIR30B gene amplification also showed a close correlation with hsa-miR-30b over-expression in OSCCs (p<0.001). On the other hand, enhanced miR-30b expression was also detected in a group of OSCC samples with unaltered copy number of MIR30B gene. CONCLUSIONS Copy number increase of MIR30B is frequent in advanced OSCC and is correlated with hsa-miR-30b over-expression. Sporadic OSCCs can exhibit different mechanisms of MIR30B regulation.
Collapse
Affiliation(s)
- Chenying Shao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu C, Lin D, Xu L, Jiang Z, Zhou Y, Wu S. An anti-human ppGalNAcT-2 monoclonal antibody. Hybridoma (Larchmt) 2011; 30:549-54. [PMID: 22149281 DOI: 10.1089/hyb.2011.0022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aberrant mucin O-glycosylation is a pathological alteration that is widespread in cancer. The UDP-N-acetyl-D-galactosamine polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-T) family of enzymes regulates the initial key steps of mucin O-glycosylation. ppGalNAc-T2, as a member of the ppGalNAc-T family, was recently described as an altered expression in oral squamous cell carcinoma and colorectal and breast carcinoma. In order to gain further insight into the role of ppGalNAc-T2, we produced the anti-human ppGalNAc-T2 monoclonal antibody (MAb) 5F3. The IgM κ isotype of this MAb was further characterized using ELISA, Western blot analysis, flow cytometry, and immunofluorescent staining. In the present study, MAb 5F3 can specifically recognize human ppGalNAc-T2 protein in various formats by Western blot analysis, flow cytometry, and immunofluorescent staining. For the first time, it was shown that both Jurkat and HepG2 cell lines clearly express ppGalNAc-T2.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Biochemistry and Molecular Biology, Medical College, Institute of Bioengineering, Soochow University, Suzhou, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Steentoft C, Vakhrushev SY, Vester-Christensen MB, Schjoldager KTBG, Kong Y, Bennett EP, Mandel U, Wandall H, Levery SB, Clausen H. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat Methods 2011; 8:977-82. [PMID: 21983924 DOI: 10.1038/nmeth.1731] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/09/2011] [Indexed: 11/09/2022]
Abstract
Zinc-finger nuclease (ZFN) gene targeting is emerging as a versatile tool for engineering of multiallelic gene deficiencies. A longstanding obstacle for detailed analysis of glycoproteomes has been the extensive heterogeneities in glycan structures and attachment sites. Here we applied ZFN targeting to truncate the O-glycan elongation pathway in human cells, generating stable 'SimpleCell' lines with homogenous O-glycosylation. Three SimpleCell lines expressing only truncated GalNAcα or NeuAcα2-6GalNAcα O-glycans were produced, allowing straightforward isolation and sequencing of GalNAc O-glycopeptides from total cell lysates using lectin chromatography and nanoflow liquid chromatography-mass spectrometry (nLC-MS/MS) with electron transfer dissociation fragmentation. We identified >100 O-glycoproteins with >350 O-glycan sites (the great majority previously unidentified), including a GalNAc O-glycan linkage to a tyrosine residue. The SimpleCell method should facilitate analyses of important functions of protein glycosylation. The strategy is also applicable to other O-glycoproteomes.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pedersen JW, Bennett EP, Schjoldager KTBG, Meldal M, Holmér AP, Blixt O, Cló E, Levery SB, Clausen H, Wandall HH. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J Biol Chem 2011; 286:32684-96. [PMID: 21768105 PMCID: PMC3173194 DOI: 10.1074/jbc.m111.273722] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/09/2011] [Indexed: 11/06/2022] Open
Abstract
UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively. Thus far, only the catalytic domain has been shown to have peptide sequence specificity, whereas the primary function of the lectin domain is to increase affinity to previously glycosylated substrates. Whether the lectin domain also has peptide sequence selectivity has remained unclear. Using a glycopeptide array with a library of synthetic and recombinant glycopeptides based on sequences of mucins MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC7 as well as a random glycopeptide bead library, we examined the binding properties of four different lectin domains. The lectin domains of GalNAc-T1, -T2, -T3, and -T4 bound different subsets of small glycopeptides. These results indicate an additional level of complexity in the initiation step of O-glycosylation by GalNAc-Ts.
Collapse
Affiliation(s)
| | - Eric P. Bennett
- School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N and
| | | | - Morten Meldal
- the Carlsberg Laboratory and Nano Science Center, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | | - Ola Blixt
- From the Department of Cellular and Molecular Medicine and
| | - Emiliano Cló
- From the Department of Cellular and Molecular Medicine and
| | | | - Henrik Clausen
- From the Department of Cellular and Molecular Medicine and
| | | |
Collapse
|
50
|
Gaziel-Sovran A, Segura MF, Di Micco R, Collins MK, Hanniford D, de Miera EVS, Rakus JF, Dankert JF, Shang S, Kerbel RS, Bhardwaj N, Shao Y, Darvishian F, Zavadil J, Erlebacher A, Mahal LK, Osman I, Hernando E. miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell 2011; 20:104-18. [PMID: 21741600 PMCID: PMC3681522 DOI: 10.1016/j.ccr.2011.05.027] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 02/25/2011] [Accepted: 05/26/2011] [Indexed: 12/18/2022]
Abstract
To metastasize, a tumor cell must acquire abilities such as the capacity to colonize new tissue and evade immune surveillance. Recent evidence suggests that microRNAs can promote the evolution of malignant behaviors by regulating multiple targets. We performed a microRNA analysis of human melanoma, a highly invasive cancer, and found that miR-30b/30d upregulation correlates with stage, metastatic potential, shorter time to recurrence, and reduced overall survival. Ectopic expression of miR-30b/30d promoted the metastatic behavior of melanoma cells by directly targeting the GalNAc transferase GALNT7, resulted in increased synthesis of the immunosuppressive cytokine IL-10, and reduced immune cell activation and recruitment. These data support a key role of miR-30b/30d and GalNAc transferases in metastasis, by simultaneously promoting cellular invasion and immunosuppression.
Collapse
Affiliation(s)
- Avital Gaziel-Sovran
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Medical Center. New York, New York 10016, USA
| | - Miguel F. Segura
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Medical Center. New York, New York 10016, USA
| | - Raffaella Di Micco
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Medical Center. New York, New York 10016, USA
| | - Mary K. Collins
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
| | - Douglas Hanniford
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Medical Center. New York, New York 10016, USA
| | - Eleazar Vega-Saenz de Miera
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Medical Center. New York, New York 10016, USA
- Department of Dermatology, NYU Medical Center. New York, New York 10016, USA
| | - John F. Rakus
- NYU Center for Health Informatics and Bioinformatics, NYU Medical Center. New York, New York 10016, USA
| | - John F. Dankert
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Medical Center. New York, New York 10016, USA
| | - Shulian Shang
- Department of Environmental Medicine, NYU Medical Center. New York, New York 10016, USA
| | - Robert S. Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5 Canada
| | - Nina Bhardwaj
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Medical Center. New York, New York 10016, USA
- Department of Medicine, NYU Medical Center. New York, New York 10016, USA
| | - Yongzhao Shao
- Department of Environmental Medicine, NYU Medical Center. New York, New York 10016, USA
| | - Farbod Darvishian
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Medical Center. New York, New York 10016, USA
| | - Jiri Zavadil
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
- NYU Center for Health Informatics and Bioinformatics, NYU Medical Center. New York, New York 10016, USA
| | - Adrian Erlebacher
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
| | | | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Medical Center. New York, New York 10016, USA
- Department of Dermatology, NYU Medical Center. New York, New York 10016, USA
- Department of Medicine, NYU Medical Center. New York, New York 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU Medical Center. New York, New York 10016, USA
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Medical Center. New York, New York 10016, USA
| |
Collapse
|