1
|
Feng Y, Pogan R, Thiede L, Müller-Guhl J, Uetrecht C, Roos WH. Fucose Binding Cancels out Mechanical Differences between Distinct Human Noroviruses. Viruses 2023; 15:1482. [PMID: 37515170 PMCID: PMC10383637 DOI: 10.3390/v15071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The majority of nonbacterial gastroenteritis in humans and livestock is caused by noroviruses. Like most RNA viruses, frequent mutations result in various norovirus variants. The strain-dependent binding profiles of noroviruses to fucose are supposed to facilitate norovirus infection. It remains unclear, however, what the molecular mechanism behind strain-dependent functioning is. In this study, by applying atomic force microscopy (AFM) nanoindentation technology, we studied norovirus-like particles (noroVLPs) of three distinct human norovirus variants. We found differences in viral mechanical properties even between the norovirus variants from the same genogroup. The noroVLPs were then subjected to fucose treatment. Surprisingly, after fucose treatment, the previously found considerable differences in viral mechanical properties among these variants were diminished. We attribute a dynamic switch of the norovirus P domain upon fucose binding to the reduced differences in viral mechanical properties across the tested norovirus variants. These findings shed light on the mechanisms used by norovirus capsids to adapt to environmental changes and, possibly, increase cell infection. Hereby, a new step towards connecting viral mechanical properties to viral prevalence is taken.
Collapse
Affiliation(s)
- Yuzhen Feng
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747AG Groningen, The Netherlands
| | - Ronja Pogan
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Faculty V: School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Lars Thiede
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Faculty V: School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Jürgen Müller-Guhl
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Partner Site Hamburg-Lübeck-Borstel-Riems, Bernhard Nocht Institute for Tropical Medicine and German Center for Infection Research (DZIF), 20359 Hamburg, Germany
| | - Charlotte Uetrecht
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Faculty V: School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
2
|
Saikia K, Saharia N, Singh CS, Borah PP, Namsa ND. Association of histo-blood group antigens and predisposition to gastrointestinal diseases. J Med Virol 2022; 94:5149-5162. [PMID: 35882942 DOI: 10.1002/jmv.28028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/26/2022] [Accepted: 07/23/2022] [Indexed: 12/15/2022]
Abstract
Infectious gastroenteritis is a common illness afflicting people worldwide. The two most common etiological agents of viral gastroenteritis, rotavirus and norovirus are known to recognize histo-blood group antigens (HBGAs) as attachment receptors. ABO, Lewis, and secretor HBGAs are distributed abundantly on mucosal epithelia, red blood cell membranes, and also secreted in biological fluids, such as saliva, intestinal content, milk, and blood. HBGAs are fucosylated glycans that have been implicated in the attachment of some enteric pathogens such as bacteria, parasites, and viruses. Single nucleotide polymorphisms in the genes encoding ABO (H), fucosyltransferase gene FUT2 (Secretor/Se), FUT3 (Lewis/Le) have been associated with changes in enzyme expression and HBGAs production. The highly polymorphic HBGAs among different populations and races influence genotype-specific susceptibility or resistance to enteric pathogens and its epidemiology, and vaccination seroconversion. Therefore, there is an urgent need to conduct population-based investigations to understand predisposition to enteric infections and gastrointestinal diseases. This review focuses on the relationship between HBGAs and predisposition to common human gastrointestinal illnesses caused by viral, bacterial, and parasitic agents.
Collapse
Affiliation(s)
- Kasturi Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Niruprabha Saharia
- Department of Paediatrics, Tezpur Medical College and Hospital, Bihaguri, Tezpur, Assam, India
| | - Chongtham S Singh
- Department of Paediatrics, Regional Institute of Medical Sciences, Imphal, India
| | - Partha P Borah
- Department of Paediatrics and Neonatology, Pratiksha Hospital, Guwahati, Assam, India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India.,Centre for Multi-disciplinary Research, Tezpur University, Napaam, Assam, India
| |
Collapse
|
3
|
Cao H, Wu J, Luan N, Wang Y, Lin K, Liu C. Evaluation of a bivalent recombinant vaccine candidate targeting norovirus and rotavirus: Antibodies to rotavirus NSP4 exert antidiarrheal effects without virus neutralization. J Med Virol 2022; 94:3847-3856. [PMID: 35474320 DOI: 10.1002/jmv.27809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022]
Abstract
We previously found that when tandemly expressed with SR69A -VP8*, nonstructural protein 4 (NSP4) of the rotavirus Wa strain exerts a minor effect on elevating the antibody responses targeting the rotavirus antigen VP8* of the 60-valent nanoparticle SR69A -VP8* but could fully protect mice from diarrhea induced by the rotavirus strain Wa. In this study, we chose comparably less immunogenic norovirus 24-valent P particles with homogenous (i.e., VP8* from rotavirus) and heterogeneous (i.e., protruding domain of norovirus) antigens and in more challenging rotavirus SA11 strain-induced diarrhea mouse models to evaluate its main role in recombinant gastroenteritis virus-specific vaccines. The results showed that although as an adjuvant NSP4 exerted limited effects on the elevation of norovirus-specific or VP8*-specific neutralizing antibody production, as an antigen it could confer potent protection, particularly when synergized with VP8*, in rotavirus SA11 strain-induced diarrhea mouse models, possibly blocking the invasion of the intestinal wall by enterotoxin. NSP4 may be unnecessary for other recombinant vaccines as adjuvants, and its display mode should be evaluated specifically to avoid blocking coexpressed antigens in the norovirus P particles. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Yunfei Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Kangyang Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| |
Collapse
|
4
|
Peters T, Creutznacher R, Maass T, Mallagaray A, Ogrissek P, Taube S, Thiede L, Uetrecht C. Norovirus-glycan interactions - how strong are they really? Biochem Soc Trans 2022; 50:347-359. [PMID: 34940787 PMCID: PMC9022987 DOI: 10.1042/bst20210526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022]
Abstract
Infection with human noroviruses requires attachment to histo blood group antigens (HBGAs) via the major capsid protein VP1 as a primary step. Several crystal structures of VP1 protruding domain dimers, so called P-dimers, complexed with different HBGAs have been solved to atomic resolution. Corresponding binding affinities have been determined for HBGAs and other glycans exploiting different biophysical techniques, with mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy being most widely used. However, reported binding affinities are inconsistent. At the extreme, for the same system MS detects binding whereas NMR spectroscopy does not, suggesting a fundamental source of error. In this short essay, we will explain the reason for the observed differences and compile reliable and reproducible binding affinities. We will then highlight how a combination of MS techniques and NMR experiments affords unique insights into the process of HBGA binding by norovirus capsid proteins.
Collapse
Affiliation(s)
- Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
| | - Robert Creutznacher
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
| | - Thorben Maass
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
| | - Alvaro Mallagaray
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
| | - Patrick Ogrissek
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
| | - Stefan Taube
- Institute of Virology and Cell Biology, University of Lübeck, 23562 Lübeck, Germany
| | - Lars Thiede
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg & Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
| | - Charlotte Uetrecht
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg & Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
- School of Life Sciences, University of Siegen, 57076 Siegen & Deutsches Elektronensynchrotron (DESY), 22607 Hamburg & European XFEL GmbH, 22869 Schenefeld, Germany
| |
Collapse
|
5
|
Protein Secondary Structure Affects Glycan Clustering in Native Mass Spectrometry. Life (Basel) 2021; 11:life11060554. [PMID: 34208397 PMCID: PMC8231113 DOI: 10.3390/life11060554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Infection by the humannoroviruses (hNoV), for the vast majority of strains, requires attachment of the viral capsid to histo blood group antigens (HBGAs). The HBGA-binding pocket is formed by dimers of the protruding domain (P dimers) of the capsid protein VP1. Several studies have focused on HBGA binding to P dimers, reporting binding affinities and stoichiometries. However, nuclear magnetic resonance spectroscopy (NMR) and native mass spectrometry (MS) analyses yielded incongruent dissociation constants (KD) for the binding of HBGAs to P dimers and, in some cases, disagreed on whether glycans bind at all. We hypothesized that glycan clustering during electrospray ionization in native MS critically depends on the physicochemical properties of the protein studied. It follows that the choice of a reference protein is crucial. We analysed carbohydrate clustering using various P dimers and eight non-glycan binding proteins serving as possible references. Data from native and ion mobility MS indicate that the mass fraction of β-sheets has a strong influence on the degree of glycan clustering. Therefore, the determination of specific glycan binding affinities from native MS must be interpreted cautiously.
Collapse
|
6
|
Dülfer J, Yan H, Brodmerkel MN, Creutznacher R, Mallagaray A, Peters T, Caleman C, Marklund EG, Uetrecht C. Glycan-Induced Protein Dynamics in Human Norovirus P Dimers Depend on Virus Strain and Deamidation Status. Molecules 2021; 26:molecules26082125. [PMID: 33917179 PMCID: PMC8067865 DOI: 10.3390/molecules26082125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Noroviruses are the major cause of viral gastroenteritis and re-emerge worldwide every year, with GII.4 currently being the most frequent human genotype. The norovirus capsid protein VP1 is essential for host immune response. The P domain mediates cell attachment via histo blood-group antigens (HBGAs) in a strain-dependent manner but how these glycan-interactions actually relate to cell entry remains unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) is used to investigate glycan-induced protein dynamics in P dimers of different strains, which exhibit high structural similarity but different prevalence in humans. While the almost identical strains GII.4 Saga and GII.4 MI001 share glycan-induced dynamics, the dynamics differ in the emerging GII.17 Kawasaki 308 and rare GII.10 Vietnam 026 strain. The structural aspects of glycan binding to fully deamidated GII.4 P dimers have been investigated before. However, considering the high specificity and half-life of N373D under physiological conditions, large fractions of partially deamidated virions with potentially altered dynamics in their P domains are likely to occur. Therefore, we also examined glycan binding to partially deamidated GII.4 Saga and GII.4 MI001 P dimers. Such mixed species exhibit increased exposure to solvent in the P dimer upon glycan binding as opposed to pure wildtype. Furthermore, deamidated P dimers display increased flexibility and a monomeric subpopulation. Our results indicate that glycan binding induces strain-dependent structural dynamics, which are further altered by N373 deamidation, and hence hint at a complex role of deamidation in modulating glycan-mediated cell attachment in GII.4 strains.
Collapse
Affiliation(s)
- Jasmin Dülfer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (J.D.); (H.Y.)
| | - Hao Yan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (J.D.); (H.Y.)
| | - Maxim N. Brodmerkel
- Department of Chemistry—BMC, Uppsala University, 75105 Uppsala, Sweden; (M.N.B.); (E.G.M.)
| | - Robert Creutznacher
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany; (R.C.); (A.M.); (T.P.)
| | - Alvaro Mallagaray
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany; (R.C.); (A.M.); (T.P.)
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany; (R.C.); (A.M.); (T.P.)
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, 75105 Uppsala, Sweden;
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Erik G. Marklund
- Department of Chemistry—BMC, Uppsala University, 75105 Uppsala, Sweden; (M.N.B.); (E.G.M.)
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (J.D.); (H.Y.)
- European XFEL GmbH, 22869 Schenefeld, Germany
- Correspondence:
| |
Collapse
|
7
|
NMR Experiments Shed New Light on Glycan Recognition by Human and Murine Norovirus Capsid Proteins. Viruses 2021; 13:v13030416. [PMID: 33807801 PMCID: PMC8001558 DOI: 10.3390/v13030416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Glycan–protein interactions are highly specific yet transient, rendering glycans ideal recognition signals in a variety of biological processes. In human norovirus (HuNoV) infection, histo-blood group antigens (HBGAs) play an essential but poorly understood role. For murine norovirus infection (MNV), sialylated glycolipids or glycoproteins appear to be important. It has also been suggested that HuNoV capsid proteins bind to sialylated ganglioside head groups. Here, we study the binding of HBGAs and sialoglycans to HuNoV and MNV capsid proteins using NMR experiments. Surprisingly, the experiments show that none of the norovirus P-domains bind to sialoglycans. Notably, MNV P-domains do not bind to any of the glycans studied, and MNV-1 infection of cells deficient in surface sialoglycans shows no significant difference compared to cells expressing respective glycans. These findings redefine glycan recognition by noroviruses, challenging present models of infection.
Collapse
|
8
|
Creutznacher R, Schulze E, Wallmann G, Peters T, Stein M, Mallagaray A. Chemical-Shift Perturbations Reflect Bile Acid Binding to Norovirus Coat Protein: Recognition Comes in Different Flavors. Chembiochem 2020; 21:1007-1021. [PMID: 31644826 PMCID: PMC7186840 DOI: 10.1002/cbic.201900572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 12/31/2022]
Abstract
Bile acids have been reported as important cofactors promoting human and murine norovirus (NoV) infections in cell culture. The underlying mechanisms are not resolved. Through the use of chemical shift perturbation (CSP) NMR experiments, we identified a low-affinity bile acid binding site of a human GII.4 NoV strain. Long-timescale MD simulations reveal the formation of a ligand-accessible binding pocket of flexible shape, allowing the formation of stable viral coat protein-bile acid complexes in agreement with experimental CSP data. CSP NMR experiments also show that this mode of bile acid binding has a minor influence on the binding of histo-blood group antigens and vice versa. STD NMR experiments probing the binding of bile acids to virus-like particles of seven different strains suggest that low-affinity bile acid binding is a common feature of human NoV and should therefore be important for understanding the role of bile acids as cofactors in NoV infection.
Collapse
Affiliation(s)
- Robert Creutznacher
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM)Institute of Chemistry and MetabolomicsRatzeburger Allee 16023562LübeckGermany
| | - Eric Schulze
- Max Planck Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | - Georg Wallmann
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM)Institute of Chemistry and MetabolomicsRatzeburger Allee 16023562LübeckGermany
| | - Thomas Peters
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM)Institute of Chemistry and MetabolomicsRatzeburger Allee 16023562LübeckGermany
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | - Alvaro Mallagaray
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM)Institute of Chemistry and MetabolomicsRatzeburger Allee 16023562LübeckGermany
| |
Collapse
|
9
|
A Survey of Analytical Techniques for Noroviruses. Foods 2020; 9:foods9030318. [PMID: 32164213 PMCID: PMC7142446 DOI: 10.3390/foods9030318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
As the leading cause of acute gastroenteritis worldwide, human noroviruses (HuNoVs) have caused around 685 million cases of infection and nearly $60 billion in losses every year. Despite their highly contagious nature, an effective vaccine for HuNoVs has yet to become commercially available. Therefore, rapid detection and subtyping of noroviruses is crucial for preventing viral spread. Over the past half century, there has been monumental progress in the development of techniques for the detection and analysis of noroviruses. However, currently no rapid, portable assays are available to detect and subtype infectious HuNoVs. The purpose of this review is to survey and present different analytical techniques for the detection and characterization of noroviruses.
Collapse
|
10
|
Kim CH. Viral Protein Interaction with Host Cells GSLs. GLYCOSPHINGOLIPIDS SIGNALING 2020:53-92. [DOI: 10.1007/978-981-15-5807-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
11
|
Chen G, Fan M, Liu Y, Sun B, Liu M, Wu J, Li N, Guo M. Advances in MS Based Strategies for Probing Ligand-Target Interactions: Focus on Soft Ionization Mass Spectrometric Techniques. Front Chem 2019; 7:703. [PMID: 31709232 PMCID: PMC6819514 DOI: 10.3389/fchem.2019.00703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
The non-covalent interactions between small drug molecules and disease-related proteins (ligand-target interactions) mediate various pharmacological processes in the treatment of different diseases. The development of the analytical methods to assess those interactions, including binding sites, binding energies, stoichiometry and association-dissociation constants, could assist in clarifying the mechanisms of action, precise treatment of targeted diseases as well as the targeted drug discovery. For the last decades, mass spectrometry (MS) has been recognized as a powerful tool to study the non-covalent interactions of the ligand-target complexes with the characteristics of high sensitivity, high-resolution, and high-throughput. Soft ionization mass spectrometry, especially the electrospray mass spectrometry (ESI-MS) and matrix assisted laser desorption ionization mass spectrometry (MALDI-MS), could achieve the complete transformation of the target analytes into the gas phase, and subsequent detection of the small drug molecules and disease-related protein complexes, and has exerted great advantages for studying the drug ligands-protein targets interactions, even in case of identifying active components as drug ligands from crude extracts of medicinal plants. Despite of other analytical techniques for this purpose, such as the NMR and X-ray crystallography, this review highlights the principles, research hotspots and recent applications of the soft ionization mass spectrometry and its hyphenated techniques, including hydrogen-deuterium exchange mass spectrometry (HDX-MS), chemical cross-linking mass spectrometry (CX-MS), and ion mobility spectrometry mass spectrometry (IMS-MS), in the study of the non-covalent interactions between small drug molecules and disease-related proteins.
Collapse
Affiliation(s)
- Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ye Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meixian Liu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Han L, Zheng R, Richards MR, Tan M, Kitova EN, Jiang X, Klassen JS. Quantifying the binding stoichiometry and affinity of histo-blood group antigen oligosaccharides for human noroviruses. Glycobiology 2018; 28:488-498. [PMID: 29562255 DOI: 10.1093/glycob/cwy028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Human noroviruses (HuNoVs) are a major cause of acute gastroenteritis. Many HuNoVs recognize histo-blood group antigens (HBGAs) as cellular receptors or attachment factors for infection. It was recently proposed that HuNoV recognition of HBGAs involves a cooperative, multistep binding mechanism that exploits both known and previously unknown glycan binding sites. In this study, binding measurements, implemented using electrospray ionization mass spectrometry (ESI-MS) were performed on homodimers of the protruding domain (P dimers) of the capsid protein of three HuNoV strains [Saga (GII.4), Vietnam 026 (GII.10) and VA387 (GII.4)] with the ethyl glycoside of the B trisaccharide (α-d-Gal-(1→3)-[α-l-Fuc-(1→2)]-β-d-Gal-OC2H5) and free B type 1 tetrasaccharide (α-d-Gal-(1→3)-[α-l-Fuc-(1→2)]-β-d-Gal-(1→3)-d-GlcNAc) in an effort to confirm the existence of new HBGA binding sites. After correcting the mass spectra for nonspecific interactions that form in ESI droplets as they evaporate to dryness, all three P dimers were found to bind a maximum of two B trisaccharides at the highest concentrations investigated. The apparent affinities measured for stepwise binding of B trisaccharide suggest positive cooperativity. Similar results were obtained for B type 1 tetrasaccharide binding to Saga P dimer. Based on these results, it is proposed that HuNoV P dimers possess only two HBGA binding sites. It is also shown that nonspecific binding corrections applied to mass spectra acquired using energetic ion source conditions that promote in-source dissociation can lead to apparent HuNoV-HBGA oligosaccharide binding stoichiometries and affinities that are artificially high. Finally, evidence that high concentrations of oligosaccharide can induce conformational changes in HuNoV P dimers is presented.
Collapse
Affiliation(s)
- Ling Han
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ruixiang Zheng
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Michele R Richards
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Ishida T. Computational analysis of carbohydrate recognition based on hybrid QM/MM modeling: a case study of norovirus capsid protein in complex with Lewis antigen. Phys Chem Chem Phys 2018; 20:4652-4665. [PMID: 29372731 DOI: 10.1039/c7cp07701g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Norovirus is a major pathogen of nonbacterial acute gastroenteritis in humans and animals. Carbohydrate recognition between norovirus capsid proteins and Lewis antigens is considered to play a critical role in initiating infection of eukaryotic cells. In this article, we first report a detailed atomistic simulation study of the norovirus capsid protein in complex with the Lewis antigen based on ab initio QM/MM combined with MD-FEP simulations. To understand the mechanistic details of ligand binding, we analyzed and compared the carbohydrate recognition mechanism of the wild-type P domain protein with a mutant protein. Small structural differences between two capsid proteins are observed on the weak interaction site of residue 389, which is located on the solvent exposed surface of the P domain. To further clarify affinity differences in ligand binding, we directly evaluated free energy changes of the ligand binding process. Although the mutant protein loses its interaction energy with the Lewis antigen, this small amount of energy penalty is compensated for by an increase in the solvation stability, which is induced by structural reorganization at the ligand binding site on the protein surface. As a sum of these opposite energy components, the mutant P domain obtains a slightly enhanced binding affinity for the Lewis antigen. The present computational study clearly demonstrated that a detailed free energy balance of the interaction energy between the capsid protein and the surrounding aqueous solvent is the mechanistic basis of carbohydrate recognition in the norovirus capsid protein.
Collapse
Affiliation(s)
- Toyokazu Ishida
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, 305-8568, Japan.
| |
Collapse
|
14
|
Bücher KS, Yan H, Creutznacher R, Ruoff K, Mallagaray A, Grafmüller A, Dirks JS, Kilic T, Weickert S, Rubailo A, Drescher M, Schmidt S, Hansman G, Peters T, Uetrecht C, Hartmann L. Fucose-Functionalized Precision Glycomacromolecules Targeting Human Norovirus Capsid Protein. Biomacromolecules 2018; 19:3714-3724. [PMID: 30071731 DOI: 10.1021/acs.biomac.8b00829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Norovirus infection is the major cause of nonbacterial gastroenteritis in humans and has been the subject of numerous studies investigating the virus's biophysical properties and biochemical function with the aim of deriving novel and highly potent entry inhibitors to prevent infection. Recently, it has been shown that the protruding P domain dimer (P-dimer) of a GII.10 Norovirus strain exhibits two new binding sites for l-fucose in addition to the canonical binding sites. Thus, these sites provide a novel target for the design of multivalent fucose ligands as entry inhibitors of norovirus infections. In this current study, a first generation of multivalent fucose-functionalized glycomacromolecules was synthesized and applied as model structures to investigate the potential targeting of fucose binding sites in human norovirus P-dimer. Following previously established solid phase polymer synthesis, eight precision glycomacromolecules varying in number and position of fucose ligands along an oligo(amidoamine) backbone were obtained and then used in a series of binding studies applying native MS, NMR, and X-ray crystallography. We observed only one fucose per glycomacromolecule binding to one P-dimer resulting in similar binding affinities for all fucose-functionalized glycomacromolecules, which based on our current findings we attribute to the overall size of macromolecular ligands and possibly to steric hindrance.
Collapse
Affiliation(s)
- Katharina Susanne Bücher
- Heinrich-Heine-University Düsseldorf , Institute for Organic Chemistry and Macromolecular Chemistry , Düsseldorf , Germany
| | - Hao Yan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Robert Creutznacher
- Institute of Chemistry and Metabolomics , University of Lübeck , Lübeck , Germany
| | - Kerstin Ruoff
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany and Department of Infectious Diseases, Virology , University of Heidelberg , Heidelberg , Germany
| | - Alvaro Mallagaray
- Institute of Chemistry and Metabolomics , University of Lübeck , Lübeck , Germany
| | - Andrea Grafmüller
- Max-Planck-Institute of Colloids and Interfaces , Department of Theory and Bio-Systems , Potsdam , Germany
| | - Jan Sebastian Dirks
- Heinrich-Heine-University Düsseldorf , Institute for Organic Chemistry and Macromolecular Chemistry , Düsseldorf , Germany
| | - Turgay Kilic
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany and Department of Infectious Diseases, Virology , University of Heidelberg , Heidelberg , Germany
| | - Sabrina Weickert
- University of Konstanz , Department of Chemistry and Konstanz Research School Chemical Biology , Konstanz , Germany
| | - Anna Rubailo
- University of Konstanz , Department of Chemistry and Konstanz Research School Chemical Biology , Konstanz , Germany
| | - Malte Drescher
- University of Konstanz , Department of Chemistry and Konstanz Research School Chemical Biology , Konstanz , Germany
| | - Stephan Schmidt
- Heinrich-Heine-University Düsseldorf , Institute for Organic Chemistry and Macromolecular Chemistry , Düsseldorf , Germany
| | - Grant Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany and Department of Infectious Diseases, Virology , University of Heidelberg , Heidelberg , Germany
| | - Thomas Peters
- Institute of Chemistry and Metabolomics , University of Lübeck , Lübeck , Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany.,European XFEL GmbH , Schenefeld , Germany
| | - Laura Hartmann
- Heinrich-Heine-University Düsseldorf , Institute for Organic Chemistry and Macromolecular Chemistry , Düsseldorf , Germany
| |
Collapse
|
15
|
Taube S, Mallagaray A, Peters T. Norovirus, glycans and attachment. Curr Opin Virol 2018; 31:33-42. [PMID: 29754860 DOI: 10.1016/j.coviro.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 10/16/2022]
|
16
|
Wegener H, Mallagaray Á, Schöne T, Peters T, Lockhauserbäumer J, Yan H, Uetrecht C, Hansman GS, Taube S. Human norovirus GII.4(MI001) P dimer binds fucosylated and sialylated carbohydrates. Glycobiology 2018; 27:1027-1037. [PMID: 28973640 DOI: 10.1093/glycob/cwx078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022] Open
Abstract
Human noroviruses (HuNoV), members of the family Caliciviridae, are the major cause of acute viral gastroenteritis worldwide. Successful infection is linked to the ability of the protruding (P) domain of the viral capsid to bind histo-blood group antigens (HBGA). Binding to gangliosides plays a major role for many nonhuman calici- and noroviruses. Increasing evidence points to a broader role of sialylated carbohydrates such as gangliosides in norovirus infection. Here, we compare HBGA and ganglioside binding of a GII.4 HuNoV variant (MI001), previously shown to be infectious in a HuNoV mouse model. Saturation transfer difference nuclear magnetic resonance spectroscopy, native mass spectrometry (MS) and surface plasmon resonance spectroscopy were used to characterize binding epitopes, affinities, stoichiometry and dynamics, focusing on 3'-sialyllactose, the GM3 ganglioside saccharide and B antigen. Binding was observed for 3'-sialyllactose and various HBGAs following a multistep binding process. Intrinsic affinities (Kd) of fucose, 3'-sialyllactose and B antigen were determined for the individual binding steps. Stronger affinities were observed for B antigen over 3'-sialyllactose and fucose, which bound in the mM range. Binding stoichiometry was analyzed by native MS showing the presence of four B antigens or two 3'-sialyllactose in the complex. Epitope mapping of 3'-sialyllactose revealed direct interaction of α2,3-linked sialic acid with the P domain. The ability of HuNoV to engage multiple carbohydrates emphasizes the multivalent nature of norovirus glycan-specificity. Our findings reveal direct binding of a GII.4 HuNoV P dimer to α2,3-linked sialic acid and support a broader role of ganglioside binding in norovirus infection.
Collapse
Affiliation(s)
- Henrik Wegener
- University of Lübeck, Institute of Virology and Cell Biology,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Álvaro Mallagaray
- University of Lübeck, Institute of Chemistry,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Schöne
- University of Lübeck, Institute of Chemistry,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Thomas Peters
- University of Lübeck, Institute of Chemistry,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Julia Lockhauserbäumer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology,Martinistrasse 52, 20251 Hamburg, Germany
| | - Hao Yan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology,Martinistrasse 52, 20251 Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Grant S Hansman
- German Cancer Research Center (DKFZ), CHS Foundation at the University of Heidelberg, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Stefan Taube
- University of Lübeck, Institute of Virology and Cell Biology,Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
17
|
Kitova EN, Yao Y, Klassen JS. Stabilizing protein-ligand complexes in ESI–MS using solution additives: Comparing the effects of amino acids and imidazole. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2017; 420:2-8. [DOI: 10.1016/j.ijms.2017.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Shams-Ud-Doha K, Kitova EN, Kitov PI, St-Pierre Y, Klassen JS. Human Milk Oligosaccharide Specificities of Human Galectins. Comparison of Electrospray Ionization Mass Spectrometry and Glycan Microarray Screening Results. Anal Chem 2017; 89:4914-4921. [PMID: 28345865 DOI: 10.1021/acs.analchem.6b05169] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The affinities of thirty-two free human milk oligosaccharides (HMOs) for four human galectin proteins, a stable mutant of hGal1 (hGal-1), a C-terminal fragment of hGal-3 (hGal-3C), hGal-7, and an N-terminal fragment of hGal-9 (hGal-9N), were measured using electrospray ionization mass spectrometry (ESI-MS). The binding data show that each of the four galectins recognize the majority of the HMOs tested (hGal-1 binds thirty-two HMOs, hGal-3C binds twenty-six, hGal-7 binds thirty-one, and hGal-9N binds twenty-six). Twenty-five of the HMOs tested bind all four galectins, with affinities ranging from 103 to 105 M-1. The reliability of the ESI-MS assay for quantifying the affinities of HMOs for lectins was established from the agreement found between the ESI-MS data and affinities of a small number of HMOs for hGal-1, hGal-3C, and hGal-7 measured by isothermal titration calorimetry (ITC). Comparison of the relative affinities (of 14 HMOs) measured by ESI-MS with the reported specificities of hGal-1, hGal-3, hGal-7, and hGal-9 for these same HMOs established using the shotgun human milk glycan microarray (HM-SGM-v2) showed fair-to-poor correlation, with evidence of false positives and false negatives in the microarray data. The results of this study suggest that HMO specificities of lectins established using microarrays may not accurately reflect their true HMO-binding properties and that the use of "in solution" assays such as ESI-MS and ITC is to be preferred.
Collapse
Affiliation(s)
- Km Shams-Ud-Doha
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , Edmonton, Alberta Canada T6G 2G2
| | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , Edmonton, Alberta Canada T6G 2G2
| | - Pavel I Kitov
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , Edmonton, Alberta Canada T6G 2G2
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier , Laval, Québec Canada H7 V 1B7
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , Edmonton, Alberta Canada T6G 2G2
| |
Collapse
|
19
|
Han L, Shams-Ud-Doha K, Kitova EN, Klassen JS. Screening Oligosaccharide Libraries against Lectins Using the Proxy Protein Electrospray Ionization Mass Spectrometry Assay. Anal Chem 2016; 88:8224-31. [PMID: 27366913 DOI: 10.1021/acs.analchem.6b02044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ling Han
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G
2G2
| | - Km Shams-Ud-Doha
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G
2G2
| | - Elena N. Kitova
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G
2G2
| | - John S. Klassen
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G
2G2
| |
Collapse
|
20
|
Ishii K, Noda M, Uchiyama S. Mass spectrometric analysis of protein-ligand interactions. Biophys Physicobiol 2016; 13:87-95. [PMID: 27924262 PMCID: PMC5042164 DOI: 10.2142/biophysico.13.0_87] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/16/2016] [Indexed: 12/01/2022] Open
Abstract
The interactions of small molecules with proteins (protein–ligand interactions) mediate various biological phenomena including signal transduction and protein transcription and translation. Synthetic compounds such as drugs can also bind to target proteins, leading to the inhibition of protein–ligand interactions. These interactions typically accompany association–dissociation equilibrium according to the free energy difference between free and bound states; therefore, the quantitative biophysical analysis of the interactions, which uncovers the stoichiometry and dissociation constant, is important for understanding biological reactions as well as for rational drug development. Mass spectrometry (MS) has been used to determine the precise molecular masses of molecules. Recent advancements in MS enable us to determine the molecular masses of protein–ligand complexes without disrupting the non-covalent interactions through the gentle desolvation of the complexes by increasing the vacuum pressure of a chamber in a mass spectrometer. This method is called MS under non-denaturing conditions or native MS and allows the unambiguous determination of protein–ligand interactions. Under a few assumptions, MS has also been applied to determine the dissociation constants for protein–ligand interactions. The structural information of a protein–ligand interaction, such as the location of the interaction and conformational change in a protein, can also be analyzed using hydrogen/deuterium exchange MS. In this paper, we briefly describe the history, principle, and recent applications of MS for the study of protein–ligand interactions.
Collapse
Affiliation(s)
- Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Yao Y, Richards MR, Kitova EN, Klassen JS. Influence of Sulfolane on ESI-MS Measurements of Protein-Ligand Affinities. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:498-506. [PMID: 26667179 DOI: 10.1007/s13361-015-1312-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein-ligand affinities are described. Binding measurements carried out on four protein-carbohydrate complexes, lysozyme with β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-D-GlcNAc, a single chain variable fragment and α-D-Gal-(1→2)-[α-D-Abe-(1→3)]-α-D-Man-OCH3, cholera toxin B subunit homopentamer with β-D-Gal-(1→3)-β-D-GalNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal-(1→4)-β-D-Glc, and a fragment of galectin 3 and α-L-Fuc-(1→2)-β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein-ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme-tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.
Collapse
Affiliation(s)
- Yuyu Yao
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Michele R Richards
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
22
|
Attachment of Norovirus to Histo Blood Group Antigens: A Cooperative Multistep Process. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Mallagaray A, Lockhauserbäumer J, Hansman G, Uetrecht C, Peters T. Attachment of norovirus to histo blood group antigens: a cooperative multistep process. Angew Chem Int Ed Engl 2015; 54:12014-9. [PMID: 26329854 DOI: 10.1002/anie.201505672] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/11/2022]
Abstract
Human noroviruses recognize histo blood group antigens (HBGAs) as cellular attachment factors. Recently, it has been discovered that norovirus infection can be significantly enhanced by HBGA binding. Yet the attachment process and how it promotes host-cell entry is only poorly understood. The binding of a norovirus protruding (P) domain of a predominant GII.4 Saga strain to HBGAs at atomic resolution was studied. So far, independent and equivalent multiple binding sites were held responsible for attachment. Using NMR experiments we show that norovirus-HBGA binding is a cooperative multi-step process, and native mass spectrometry reveals four instead of two HBGA binding sites per P-dimer. An accompanying crystallographic study has disclosed four instead of two L-fucose binding sites per P-dimer of a related GII.10 strain1 further supporting our findings. We have uncovered a novel paradigm for norovirus-HBGA recognition that will inspire further studies into norovirus-host interactions.
Collapse
Affiliation(s)
- Alvaro Mallagaray
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck (Germany)
| | - Julia Lockhauserbäumer
- Dynamics of Viral Structures, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg (Germany).,Sample Environment Group, European XFEL GmbH, Notkestrasse 85, 22607 Hamburg (Germany)
| | - Grant Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, 69120 Heidelberg (Germany).,Department of Infectious Diseases and Virology, University of Heidelberg, 69120 Heidelberg (Germany)
| | - Charlotte Uetrecht
- Dynamics of Viral Structures, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg (Germany).,Sample Environment Group, European XFEL GmbH, Notkestrasse 85, 22607 Hamburg (Germany)
| | - Thomas Peters
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck (Germany).
| |
Collapse
|
24
|
Currier RL, Payne DC, Staat MA, Selvarangan R, Shirley SH, Halasa N, Boom JA, Englund JA, Szilagyi PG, Harrison CJ, Klein EJ, Weinberg GA, Wikswo ME, Parashar U, Vinjé J, Morrow AL. Innate Susceptibility to Norovirus Infections Influenced by FUT2 Genotype in a United States Pediatric Population. Clin Infect Dis 2015; 60:1631-8. [PMID: 25744498 PMCID: PMC4447782 DOI: 10.1093/cid/civ165] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/24/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Norovirus is a leading cause of acute gastroenteritis (AGE). Noroviruses bind to gut histo-blood group antigens (HBGAs), but only 70%-80% of individuals have a functional copy of the FUT2 ("secretor") gene required for gut HBGA expression; these individuals are known as "secretors." Susceptibility to some noroviruses depends on FUT2 secretor status, but the population impact of this association is not established. METHODS From December 2011 to November 2012, active AGE surveillance was performed at 6 geographically diverse pediatric sites in the United States. Case patients aged <5 years were recruited from emergency departments and inpatient units; age-matched healthy controls were recruited at well-child visits. Salivary DNA was collected to determine secretor status and genetic ancestry. Stool was tested for norovirus by real-time reverse transcription polymerase chain reaction. Norovirus genotype was then determined by sequencing. RESULTS Norovirus was detected in 302 of 1465 (21%) AGE cases and 52 of 826 (6%) healthy controls. Norovirus AGE cases were 2.8-fold more likely than norovirus-negative controls to be secretors (P < .001) in a logistic regression model adjusted for ancestry, age, site, and health insurance. Secretors comprised all 155 cases and 21 asymptomatic infections with the most prevalent norovirus, GII.4. Control children of Meso-American ancestry were more likely than children of European or African ancestry to be secretors (96% vs 74%; P < .001). CONCLUSIONS FUT2 status is associated with norovirus infection and varies by ancestry. GII.4 norovirus exclusively infected secretors. These findings are important to norovirus vaccine trials and design of agents that may block norovirus-HBGA binding.
Collapse
Affiliation(s)
- Rebecca L. Currier
- Cincinnati Children's Hospital Medical Center
- University of Cincinnati Medical Scientist Training Program
- University of Cincinnati Molecular Epidemiology in Children's Environmental Health Training Program, Ohio
| | - Daniel C. Payne
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Rangaraj Selvarangan
- Children's Mercy Hospitals and Clinics, Kansas City
- School of Medicine, University of Missouri–Kansas City
| | - S. Hannah Shirley
- Centers for Disease Control and Prevention, Atlanta, Georgia
- Atlanta Research and Education Foundation, Decatur, Georgia
| | - Natasha Halasa
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | - Christopher J. Harrison
- Children's Mercy Hospitals and Clinics, Kansas City
- School of Medicine, University of Missouri–Kansas City
| | | | | | - Mary E. Wikswo
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umesh Parashar
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jan Vinjé
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
25
|
Yao Y, Shams-Ud-Doha K, Daneshfar R, Kitova EN, Klassen JS. Quantifying protein-carbohydrate interactions using liquid sample desorption electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:98-106. [PMID: 25315460 DOI: 10.1007/s13361-014-1008-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
The application of liquid sample desorption electrospray ionization mass spectrometry (liquid sample DESI-MS) for quantifying protein-carbohydrate interactions in vitro is described. Association constants for the interactions between lysozyme and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc, and between a single chain antibody and α-D-Galp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 and β-D-Glcp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 measured using liquid sample DESI-MS were found to be in good agreement with values measured by isothermal titration calorimetry and the direct ESI-MS assay. The reference protein method, which was originally developed to correct ESI mass spectra for the occurrence of nonspecific ligand-protein binding, was shown to reliably correct liquid sample DESI mass spectra for nonspecific binding. The suitability of liquid sample DESI-MS for quantitative binding measurements carried out using solutions containing high concentrations of the nonvolatile biological buffer phosphate buffered saline (PBS) was also explored. Binding of lysozyme to β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc in aqueous solutions containing up to 1× PBS was successfully monitored using liquid sample DESI-MS; with ESI-MS the binding measurements were limited to concentrations less than 0.02 X PBS.
Collapse
Affiliation(s)
- Yuyu Yao
- Alberta Glycomics Center and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | | | | | | | |
Collapse
|
26
|
Hopper JTS, Robinson CV. Mass spectrometry quantifies protein interactions--from molecular chaperones to membrane porins. Angew Chem Int Ed Engl 2014; 53:14002-15. [PMID: 25354304 DOI: 10.1002/anie.201403741] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 12/16/2022]
Abstract
Proteins possess an intimate relationship between their structure and function, with folded protein structures generating recognition motifs for the binding of ligands and other proteins. Mass spectrometry (MS) can provide information on a number of levels of protein structure, from the primary amino acid sequence to its three-dimensional fold and quaternary interactions. Given that MS is a gas-phase technique, with its foundations in analytical chemistry, it is perhaps counter-intuitive to use it to study the structure and non-covalent interactions of proteins that form in solution. Herein we show, however, that MS can go beyond simply preserving protein interactions in the gas phase by providing new insight into dynamic interaction networks, dissociation mechanisms, and the cooperativity of ligand binding. We consider potential pitfalls in data interpretation and place particular emphasis on recent studies that revealed quantitative information about dynamic protein interactions, in both soluble and membrane-embedded assemblies.
Collapse
Affiliation(s)
- Jonathan T S Hopper
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ (UK)
| | | |
Collapse
|
27
|
Hopper JTS, Robinson CV. Massenspektrometrie zur Quantifizierung von Wechselwirkungen zwischen Proteinen - von molekularen Chaperonen zu Membranporinen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Han L, Kitova EN, Tan M, Jiang X, Pluvinage B, Boraston AB, Klassen JS. Affinities of human histo-blood group antigens for norovirus capsid protein complexes. Glycobiology 2014; 25:170-80. [PMID: 25395406 DOI: 10.1093/glycob/cwu100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The binding profiles of many human noroviruses (huNoVs) for human histo-blood group antigens have been characterized. However, quantitative-binding data for these important virus-host interactions are lacking. Here, we report on the intrinsic (per binding site) affinities of HBGA oligosaccharides for the huNoV VA387 virus-like particles (VLPs) and the associated subviral P particles measured using electrospray ionization mass spectrometry. The affinities of 13 HBGA oligosaccharides, containing A, B and H epitopes, with variable sizes (disaccharide to tetrasaccharide) and different precursor chain types (types 1, 2, 3, 5 and 6), were measured for the P particle, while the affinities of the A and B trisaccharides and A and B type 6 tetrasaccharides for the VLP were determined. The intrinsic affinities of the HBGA oligosaccharides for the P particle range from 500 to 2300 M(-1), while those of the A and B trisaccharides and the A and B type 6 tetrasaccharides for the VLP range from 1000 to 4000 M(-1). Comparison of these binding data with those measured previously for the corresponding P dimer reveals that the HBGA oligosaccharides tested exhibit similar intrinsic affinities for the P dimer and P particle. The intrinsic affinities for the VLP are consistently higher than those measured for the P particle, but within a factor of three. While the cause of the subtle differences in HBGA oligosaccharide affinities for the P dimer and P particle and those for the VLP remains unknown, the present data support the use of P dimers or P particles as surrogates to the VLP for huNoV-receptor-binding studies.
Collapse
Affiliation(s)
- Ling Han
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Elena N Kitova
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | - John S Klassen
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| |
Collapse
|
29
|
Han L, Tan M, Xia M, Kitova EN, Jiang X, Klassen JS. Gangliosides are ligands for human noroviruses. J Am Chem Soc 2014; 136:12631-7. [PMID: 25105447 PMCID: PMC4160279 DOI: 10.1021/ja505272n] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Human
noroviruses (NoVs) are known to recognize histo-blood group
antigens (HBGAs) as attachment factors. We report the first experimental
evidence that sialic acid-containing glycosphingolipids (gangliosides)
are also ligands for human NoVs. Electrospray ionization mass spectrometry-based
carbohydrate binding measurements performed on assemblies (P dimer,
P particle, and virus-like particle) of recombinant viral capsid proteins
of two NoV strains, VA387 (GII.4) and VA115 (GI.3), identified binding
to the oligosaccharides of mono-, di-, and trisialylated gangliosides.
The intrinsic (per binding site) affinities measured for these ligands
are similar in magnitude (102–103 M–1) to those of human HBGAs. Binding of NoV VLPs, P
particles, and glutathione S-transferase (GST)-P domain fusion proteins
to sialic acid-containing glycoconjugates, observed in enzyme-linked
immunosorbent assays, provided additional confirmation of the NoV–ganglioside
interactions.
Collapse
Affiliation(s)
- Ling Han
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Wang L, Cao D, Wei C, Meng XJ, Jiang X, Tan M. A dual vaccine candidate against norovirus and hepatitis E virus. Vaccine 2014; 32:445-452. [PMID: 24291540 PMCID: PMC3898346 DOI: 10.1016/j.vaccine.2013.11.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023]
Abstract
Norovirus (NoV) and hepatitis E virus (HEV) are both enterically-transmitted viruses causing gastroenteritis and hepatitis, respectively, in humans. While a vaccine against HEVs recently became available in China, there is no prophylactic or therapeutic approach against NoVs. Both NoV and HEV have surface protrusions formed by dimers of the protruding (P) domains of the viral capsids, which is responsible for virus-host interactions and eliciting viral neutralizing antibody. We developed in this study a bivalent vaccine against the two viruses through a recently developed polyvalent complex platform. The dimeric P domains of NoV and HEV were fused together, designated as NoV P(-)-HEV P, which was then linked with the dimeric glutathione-S-transferase (GST). After expression and purification in E. coli, the GST-NoV P(-)-HEV P fusion protein assembled into polyvalent complexes with a mean size of 1.8μm, while the NoV P(-)-HEV P formed oligomers ranging from 100 to 420kDa. Mouse immunization study demonstrated that both GST-NoV P(-)-HEV P and NoV P(-)-HEV P complexes induced significantly higher antibody titers to NoV P(-) and HEV P, respectively, than those induced by a mixture of the NoV P(-) and HEV P dimers. Furthermore, the complex-induced antisera exhibited significantly higher neutralizing activity against HEV infection in HepG2/3A cells and higher blocking activity on NoV P particles binding to HBGA receptors than those of the dimer-induced antisera. Thus, GST-NoV P(-)-HEV P and NoV P(-)-HEV P complexes are promising dual vaccine candidates against both NoV and HEV.
Collapse
Affiliation(s)
- Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, United States
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, United States
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
31
|
Han L, Kitova EN, Tan M, Jiang X, Klassen JS. Identifying carbohydrate ligands of a norovirus P particle using a catch and release electrospray ionization mass spectrometry assay. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:111-9. [PMID: 24096878 DOI: 10.1007/s13361-013-0752-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Noroviruses (NoVs), the major cause of epidemic acute gastroenteritis, recognize human histo-blood group antigens (HBGAs), which are present as free oligosaccharides in bodily fluid or glycolipids and glycoproteins on the surfaces of cells. The subviral P particle formed by the protruding (P) domain of the NoV capsid protein serves as a useful model for the study NoV-HBGA interactions. Here, we demonstrate the application of a catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay for screening carbohydrate libraries against the P particle to rapidly identify NoV ligands and potential inhibitors. Carbohydrate libraries of 50 and 146 compounds, which included 18 and 24 analogs of HBGA receptors, respectively, were screened against the P particle of VA387, a member of the predominant GII.4 NoVs. Deprotonated ions corresponding to the P particle bound to carbohydrates were isolated and subjected to collision-induced dissociation to release the ligands in their deprotonated forms. The released ligands were identified by ion mobility separation followed by mass analysis. All 13 and 16 HBGA ligands with intrinsic affinities >500 M(-1) were identified in the 50 and the 146 compound libraries, respectively. Furthermore, screening revealed interactions with a series of oligosaccharides with structures found in the cell wall of mycobacteria and human milk. The affinities of these newly discovered ligands are comparable to those of the HBGA receptors, as estimated from the relative abundance of released ligand ions.
Collapse
Affiliation(s)
- Ling Han
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | | | | | | | |
Collapse
|
32
|
Shang J, Piskarev VE, Xia M, Huang P, Jiang X, Likhosherstov LM, Novikova OS, Newburg DS, Ratner DM. Identifying human milk glycans that inhibit norovirus binding using surface plasmon resonance. Glycobiology 2013; 23:1491-8. [PMID: 24026239 DOI: 10.1093/glycob/cwt077] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human milk glycans inhibit binding between norovirus and its host glycan receptor; such competitive inhibition by human milk glycans is associated with a reduced risk of infection. The relationship between the presence of specific structural motifs in the human milk glycan and its ability to inhibit binding by specific norovirus strains requires facile, accurate and miniaturized-binding assays. Toward this end, a high-throughput biosensor platform was developed based on surface plasmon resonance imaging (SPRi) of glycan microarrays. The SPRi was validated, and its utility was tested, by measuring binding specificities between defined human milk glycan epitopes and the capsids of two common norovirus strains, VA387 and Norwalk. Human milk oligosaccharide (HMOS)-based neoglycoconjugates, including chemically derived neoglycoproteins and oligosaccharide-glycine derivatives, were used to represent polyvalent glycoconjugates and monovalent oligosaccharides, respectively, in human milk. SPRi binding results established that the glycan motifs that bind norovirus capsids depend upon strain; VA387 capsid interacts with two neoglycoproteins, whereas Norwalk capsid binds to a different set of HMOS motifs in the form of both polyvalent neoglycoproteins and monovalent oligosaccharides. SPRi competitive binding assays further demonstrated that specific norovirus-binding glycans are able to inhibit norovirus capsid binding to their host receptors. A polyvalent neoglycoconjugate with clustered carbohydrate moieties is required for the inhibition of VA387 capsid binding to host receptor glycans, whereas both monovalent oligosaccharides and polyvalent neoglycoconjugates are able to inhibit Norwalk capsid binding to its host receptor. Binding of HMOS and HMOS-based neoglycoconjugates to norovirus capsids depends upon the specific strain characteristics, implying that HMOS and their polyvalent derivatives are potential anti-adhesive agents for norovirus prophylaxis.
Collapse
Affiliation(s)
- Jing Shang
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|