1
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Nakano K, Yokota Y, Vu QV, Lagravinese F, Kataoka T. Structure-Activity Relationship of Oleanane-Type Pentacyclic Triterpenoids on Nuclear Factor κB Activation and Intracellular Trafficking and N-Linked Glycosylation of Intercellular Adhesion Molecule-1. Int J Mol Sci 2024; 25:6026. [PMID: 38892215 PMCID: PMC11173061 DOI: 10.3390/ijms25116026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
In our previous study, two oleanane-type pentacyclic triterpenoids (oleanolic acid and maslinic acid) were reported to affect the N-glycosylation and intracellular trafficking of intercellular adhesion molecule-1 (ICAM-1). The present study was aimed at investigating the structure-activity relationship of 13 oleanane-type natural triterpenoids with respect to the nuclear factor κB (NF-κB) signaling pathway and the expression, intracellular trafficking, and N-glycosylation of the ICAM-1 protein in human lung adenocarcinoma A549 cells. Hederagenin, echinocystic acid, erythrodiol, and maslinic acid, which all possess two hydroxyl groups, decreased the viability of A549 cells. Celastrol and pristimerin, both of which possess an α,β-unsaturated carbonyl group, decreased cell viability but more strongly inhibited the interleukin-1α-induced NF-κB signaling pathway. Oleanolic acid, moronic acid, and glycyrrhetinic acid interfered with N-glycosylation without affecting the cell surface expression of the ICAM-1 protein. In contrast, α-boswellic acid and maslinic acid interfered with the N-glycosylation of the ICAM-1 protein, which resulted in the accumulation of high-mannose-type N-glycans. Among the oleanane-type triterpenoids tested, α-boswellic acid and maslinic acid uniquely interfered with the intracellular trafficking and N-glycosylation of glycoproteins.
Collapse
Affiliation(s)
- Kaori Nakano
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuka Yokota
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Quy Van Vu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Francesca Lagravinese
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
3
|
Teng D, Wang W, Jia W, Song J, Gong L, Zhong L, Yang J. The effects of glycosylation modifications on monocyte recruitment and foam cell formation in atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167027. [PMID: 38237743 DOI: 10.1016/j.bbadis.2024.167027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The monocyte recruitment and foam cell formation have been intensively investigated in atherosclerosis. Nevertheless, as the study progressed, it was obvious that crucial molecules participated in the monocyte recruitment and the membrane proteins in macrophages exhibited substantial glycosylation modifications. These modifications can exert a significant influence on protein functions and may even impact the overall progression of diseases. This article provides a review of the effects of glycosylation modifications on monocyte recruitment and foam cell formation. By elaborating on these effects, we aim to understand the underlying mechanisms of atherogenesis further and to provide new insights into the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Da Teng
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenlong Wang
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenjuan Jia
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jikai Song
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Lei Gong
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
| | - Lin Zhong
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China.
| | - Jun Yang
- Yantai Yuhuangding Hospital affiliated to Qingdao University, Yantai, Shandong, People's Republic of China; Qingdao University, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Ziganshina MM, Kulikova GV, Muminova KT, Shchegolev AI, Yarotskaya EL, Khodzhaeva ZS, Sukhikh GT. Features and Comparative Characteristics of Fucosylated Glycans Expression in Endothelial Glycocalyx of Placental Terminal Villi in Patients with Preeclampsia Treated with Different Antihypertensive Regimens. Int J Mol Sci 2023; 24:15611. [PMID: 37958597 PMCID: PMC10649041 DOI: 10.3390/ijms242115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Antihypertensive therapy is an essential part of management of patients with preeclampsia (PE). Methyldopa (Dopegyt®) and nifedipine (Cordaflex®) are basic medications of therapy since they stabilize blood pressure without affecting the fetus. Their effect on the endothelium of placental vessels has not yet been studied. In this study, we analyzed the effect of antihypertensive therapy on the expression of fucosylated glycans in fetal capillaries of placental terminal villi in patients with early-onset PE (EOPE) and late-onset PE (LOPE), and determined correlation between their expression and mother's hemodynamic parameters, fetoplacental system, factors reflecting inflammatory response, and destructive processes in the endothelial glycocalyx (eGC). A total of 76 women were enrolled in the study: the comparison group consisted of 15 women with healthy pregnancy, and the main group comprised 61 women with early-onset and late-onset PE, who received one-component or two-component antihypertensive therapy. Hemodynamic status was assessed by daily blood pressure monitoring, dopplerometry of maternal placental and fetoplacental blood flows, and the levels of IL-18, IL-6, TNFα, galectin-3, endocan-1, syndecan-1, and hyaluronan in the blood of the mother. Expression of fucosylated glycans was assessed by staining placental sections with AAL, UEA-I, LTL lectins, and anti-LeY MAbs. It was found that (i) expression patterns of fucosylated glycans in eGC capillaries of placental terminal villi in EOPE and LOPE are characterized by predominant expression of structures with a type 2 core and have a similar pattern of quantitative changes, which seems to be due to the impact of one-component and two-component antihypertensive therapy on their expression; (ii) correlation patterns indicate interrelated changes in the molecular composition of eGC fucoglycans and indicators reflecting changes in maternal hemodynamics, fetoplacental hemodynamics, and humoral factors associated with eGC damage. The presented study is the first to demonstrate the features of placental eGC in women with PE treated with antihypertensive therapy. This study also considers placental fucoglycans as a functional part of the eGC, which affects hemodynamics in the mother-placenta-fetus system.
Collapse
Affiliation(s)
- Marina M. Ziganshina
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia;
| | - Galina V. Kulikova
- Department of Perinatal Pathology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia; (G.V.K.); (A.I.S.)
| | - Kamilla T. Muminova
- High Risk Pregnancy Department, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia; (K.T.M.); (Z.S.K.)
| | - Alexander I. Shchegolev
- Department of Perinatal Pathology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia; (G.V.K.); (A.I.S.)
| | - Ekaterina L. Yarotskaya
- Department of International Cooperation, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia;
| | - Zulfiya S. Khodzhaeva
- High Risk Pregnancy Department, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia; (K.T.M.); (Z.S.K.)
| | - Gennady T. Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia;
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Faculty for Postgraduate and Advanced Training of Physicians, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
5
|
Zhang C, Guo ZF, Liu W, Kazama K, Hu L, Sun X, Wang L, Lee H, Lu L, Yang XF, Summer R, Sun J. PIMT is a novel and potent suppressor of endothelial activation. eLife 2023; 12:e85754. [PMID: 37070640 PMCID: PMC10112892 DOI: 10.7554/elife.85754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023] Open
Abstract
Proinflammatory agonists provoke the expression of cell surface adhesion molecules on endothelium in order to facilitate leukocyte infiltration into tissues. Rigorous control over this process is important to prevent unwanted inflammation and organ damage. Protein L-isoaspartyl O-methyltransferase (PIMT) converts isoaspartyl residues to conventional methylated forms in cells undergoing stress-induced protein damage. The purpose of this study was to determine the role of PIMT in vascular homeostasis. PIMT is abundantly expressed in mouse lung endothelium and PIMT deficiency in mice exacerbated pulmonary inflammation and vascular leakage to LPS(lipopolysaccharide). Furthermore, we found that PIMT inhibited LPS-induced toll-like receptor signaling through its interaction with TNF receptor-associated factor 6 (TRAF6) and its ability to methylate asparagine residues in the coiled-coil domain. This interaction was found to inhibit TRAF6 oligomerization and autoubiquitination, which prevented NF-κB transactivation and subsequent expression of endothelial adhesion molecules. Separately, PIMT also suppressed ICAM-1 expression by inhibiting its N-glycosylation, causing effects on protein stability that ultimately translated into reduced EC(endothelial cell)-leukocyte interactions. Our study has identified PIMT as a novel and potent suppressor of endothelial activation. Taken together, these findings suggest that therapeutic targeting of PIMT may be effective in limiting organ injury in inflammatory vascular diseases.
Collapse
Affiliation(s)
- Chen Zhang
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Zhi-Fu Guo
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Wennan Liu
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Kyosuke Kazama
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Louis Hu
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Xiaobo Sun
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Lu Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hyoungjoo Lee
- Quantitative Proteomics Resource Center, University of PennsylvaniaPhiladelphiaUnited States
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Ross Summer
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
6
|
Zhang B, Li X, Tang K, Xin Y, Hu G, Zheng Y, Li K, Zhang C, Tan Y. Adhesion to the Brain Endothelium Selects Breast Cancer Cells with Brain Metastasis Potential. Int J Mol Sci 2023; 24:ijms24087087. [PMID: 37108248 PMCID: PMC10138870 DOI: 10.3390/ijms24087087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Tumor cells metastasize from a primary lesion to distant organs mainly through hematogenous dissemination, in which tumor cell re-adhesion to the endothelium is essential before extravasating into the target site. We thus hypothesize that tumor cells with the ability to adhere to the endothelium of a specific organ exhibit enhanced metastatic tropism to this target organ. This study tested this hypothesis and developed an in vitro model to mimic the adhesion between tumor cells and brain endothelium under fluid shear stress, which selected a subpopulation of tumor cells with enhanced adhesion strength. The selected cells up-regulated the genes related to brain metastasis and exhibited an enhanced ability to transmigrate through the blood-brain barrier. In the soft microenvironments that mimicked brain tissue, these cells had elevated adhesion and survival ability. Further, tumor cells selected by brain endothelium adhesion expressed higher levels of MUC1, VCAM1, and VLA-4, which were relevant to breast cancer brain metastasis. In summary, this study provides the first piece of evidence to support that the adhesion of circulating tumor cells to the brain endothelium selects the cells with enhanced brain metastasis potential.
Collapse
Affiliation(s)
- Bai Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xueyi Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yufan Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
7
|
Plavša B, Szavits-Nossan J, Blivajs A, Rapčan B, Radovani B, Šesto I, Štambuk K, Mustapić V, Đerek L, Rudan D, Lauc G, Gudelj I. The N-Glycosylation of Total Plasma Proteins and IgG in Atrial Fibrillation. Biomolecules 2023; 13:biom13040605. [PMID: 37189353 DOI: 10.3390/biom13040605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Atrial fibrillation is a disease with a complex pathophysiology, whose occurrence and persistence are caused not only by aberrant electrical signaling in the heart, but by the development of a susceptible heart substrate. These changes, such as the accumulation of adipose tissue and interstitial fibrosis, are characterized by the presence of inflammation. N-glycans have shown great promise as biomarkers in different diseases, specifically those involving inflammatory changes. To assess the changes in the N-glycosylation of the plasma proteins and IgG in atrial fibrillation, we analyzed the N-glycosylation of 172 patients with atrial fibrillation, before and six months after a pulmonary vein isolation procedure, with 54 cardiovascularly healthy controls. An analysis was performed using ultra-high-performance liquid chromatography. We found one oligomannose N-glycan structure from the plasma N-glycome and six IgG N-glycans, mainly revolving around the presence of bisecting N-acetylglucosamine, that were significantly different between the case and control groups. In addition, four plasma N-glycans, mostly oligomannose structures and a derived trait that was related to them, were found to be different in the patients who experienced an atrial fibrillation recurrence during the six-month follow-up. IgG N-glycosylation was extensively associated with the CHA2DS2-VASc score, confirming its previously reported associations with the conditions that make up the score. This is the first study looking at the N-glycosylation patterns in atrial fibrillation and warrants further investigation into the prospect of glycans as biomarkers for atrial fibrillation.
Collapse
|
8
|
Radovani B, Vučković F, Maggioni AP, Ferrannini E, Lauc G, Gudelj I. IgG N-Glycosylation Is Altered in Coronary Artery Disease. Biomolecules 2023; 13:375. [PMID: 36830744 PMCID: PMC9953309 DOI: 10.3390/biom13020375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disease (CVD), and previous studies have shown a significant association between N-glycosylation, a highly regulated posttranslational modification, and the development of atherosclerotic plaques. Our aim was to determine whether the N-glycome of immunoglobulin G (IgG) is associated with CAD, as N-glycans are known to alter the effector functions of IgG, which may enhance the inflammatory response in CAD. Therefore, in this study, we isolated IgG from subjects with coronary atherosclerosis (CAD+) and from subjects with clean coronaries (CAD-). The purified IgGs were denatured and enzymatically deglycosylated, and the released and fluorescently labelled N-glycans were analysed by ultra-high performance liquid chromatography based on hydrophilic interactions with fluorescence detection (HILIC-UHPLC-FLR). Sex-stratified analysis of 316 CAD- and 156 CAD+ cases revealed differences in IgG N-glycome composition. The most notable differences were observed in women, where the presence of sialylated N-glycan structures was negatively associated with CAD. The obtained chromatograms provide insight into the IgG N-glycome composition in CAD as well as the biomarker potential of IgG N-glycans in CAD.
Collapse
Affiliation(s)
- Barbara Radovani
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Frano Vučković
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Aldo P. Maggioni
- Heart Care Foundation ANMCO Research Center, 50100 Florence, Italy
| | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Gudelj
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Glucose-mediated N-glycosylation of RPTPα affects its subcellular localization and Src activation. Oncogene 2023; 42:1058-1071. [PMID: 36765146 DOI: 10.1038/s41388-023-02622-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Receptor-type protein tyrosine phosphatase α (RPTPα) is one of the typical PTPs that play indispensable roles in many cellular processes associated with cancers. It has been considered as the most powerful regulatory oncogene for Src activation, however it is unclear how its biological function is regulated by post-translational modifications. Here, we show that the extracellular segment of RPTPα is highly N-glycosylated precisely at N21, N36, N68, N80, N86, N104 and N124 sites. Such N-glycosylation modifications mediated by glucose concentration alter the subcellular localization of RPTPα from Golgi apparatus to plasma membrane, enhance the interaction of RPTPα with Src, which in turn enhances the activation of Src and ultimately promotes tumor development. Our results identified the N-glycosylation modifications of RPTPα, and linked it to glucose starvation and Src activation for promoting tumor development, which provides new evidence for the potential antitumor therapy.
Collapse
|
10
|
Fielding RA, Atkinson EJ, Aversa Z, White TA, Heeren AA, Achenbach SJ, Mielke MM, Cummings SR, Pahor M, Leeuwenburgh C, LeBrasseur NK. Associations between biomarkers of cellular senescence and physical function in humans: observations from the lifestyle interventions for elders (LIFE) study. GeroScience 2022; 44:2757-2770. [PMID: 36367600 PMCID: PMC9768064 DOI: 10.1007/s11357-022-00685-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular senescence is a plausible mediator of age-associated declines in physical performance. To test this premise, we examined cross-sectional associations between circulating components of the senescence-associated secretory phenotype (SASP) and measures of physical function and muscle strength in 1377 older adults. We showed significant associations between multiple SASP proteins and the short physical performance battery (SPPB), its subcomponents (gait speed, balance, chair rise time), and 400-m walk time. Activin A, ICAM1, MMP7, VEGFA, and eotaxin showed strong associations based on gradient boost machine learning (GBM), and, when combined with other proteins, effectively identified participants at the greatest risk for mobility disability (SPPB score [Formula: see text] 7). Senescence biomarkers were also associated with lower grip strength, and GBM identified PARC, ADAMTS13, and RANTES as top candidates in females, and MMP2, SOST, and MCP1 in males. These findings highlight an association between senescence biomarkers and physical performance in older adults. ClinicalTrials.gov Identifier: NCT01072500.
Collapse
Affiliation(s)
- Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center On Aging, Tufts University, Boston, MA, USA
| | | | - Zaira Aversa
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Thomas A White
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Amanda A Heeren
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sara J Achenbach
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R Cummings
- Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - Marco Pahor
- Institute On Aging, University of Florida, Gainesville, FL, USA
| | | | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Ziganshina MM, Ziganshin AR, Khalturina EO, Baranov II. Arterial hypertension as a consequence of endothelial glycocalyx dysfunction: a modern view of the problem of cardiovascular diseases. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Arterial hypertension (AH) is a leading risk factor for the development of cardiovascular, cerebrovascular, and renal diseases, which are among the top 10 most common causes of death in the world. The etiology of hypertension has not been fully elucidated, but it has been established that endothelial dysfunction is the most significant pathogenetic link in the formation and progression of the disease. The data obtained in the last 10-15 years on endothelial glycocalyx (eGC) studies indicate that endothelial dysfunction is preceded by destabilization and shedding of eGC with the appearance of its soluble components in the blood, which is equivalent to a process that can be designated as eGC dysfunction. Signs of eGC dysfunction are expressed in the development of hypertension, diseases of the cardiovascular system, and their complications. The purpose of this review is to analyze and substantiate the pathophysiological role of eGC dysfunction in hypertension and cardiovascular diseases and to describe approaches for its assessment and pharmacological correction. Abstracts and full-size articles of 425 publications in Pubmed/MEDLINE databases over 20 years were studied. The review discusses the role of eGC in the regulation of vascular tone, endothelial barrier function, and anti-adhesive properties of eGC. Modifications of eGC under the influence of pro-inflammatory stimuli, changes in eGC with age, and with increased salt load are considered. The aspect associated with eGC dysfunction in atherosclerosis, hyperglycemia and hypertension is covered. Assessment of eGC dysfunction is difficult but can be performed by indirect methods, in particular by detecting eGC components in blood. A brief description of the main approaches to pharmacoprevention and pharmacocorrection of hypertension is given from the position of exposure effects on eGC, which currently has more a fundamental than practical orientation. This opens up great opportunities for clinical studies of eGC dysfunction for the prevention and treatment of hypertension and justifies a new direction in the clinical pharmacology of antihypertensive drugs.
Collapse
Affiliation(s)
- M. M. Ziganshina
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology
| | - A. R. Ziganshin
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology
| | - E. O. Khalturina
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology;
I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. I. Baranov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology
| |
Collapse
|
12
|
Adhesion Molecules and Vulnerable Plaques – Promoters of Acute Coronary Syndromes. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2022. [DOI: 10.2478/jce-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Abstract
Biological factors that characterize extrinsic plaque vulnerability include various pro- and anti-inflammatory cytokines that contribute to the development and progression of atherosclerosis. Adhesion molecules are among the initiators of the atherosclerotic process, by mediation of endothelial inflammation. The soluble forms of these adhesion molecules have been identified in the circulatory blood, with an increased level in case of subjects with atherosclerotic lesions and higher levels in patients with acute coronary syndromes or vulnerable plaques. In addition, several authors have found a significant predictive capacity of these molecules in case of patients presenting with acute coronary and cerebrovascular events. The aim of this manuscript is to provide a short description of the role of adhesion molecules in the development and progression of atherosclerotic lesions towards acute coronary syndromes, as well as their capacity for predicting major adverse cardiovascular events in vulnerable cardiovascular patients.
Collapse
|
13
|
Radovani B, Gudelj I. N-Glycosylation and Inflammation; the Not-So-Sweet Relation. Front Immunol 2022; 13:893365. [PMID: 35833138 PMCID: PMC9272703 DOI: 10.3389/fimmu.2022.893365] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation is the main feature of many long-term inflammatory diseases such as autoimmune diseases, metabolic disorders, and cancer. There is a growing number of studies in which alterations of N-glycosylation have been observed in many pathophysiological conditions, yet studies of the underlying mechanisms that precede N-glycome changes are still sparse. Proinflammatory cytokines have been shown to alter the substrate synthesis pathways as well as the expression of glycosyltransferases required for the biosynthesis of N-glycans. The resulting N-glycosylation changes can further contribute to disease pathogenesis through modulation of various aspects of immune cell processes, including those relevant to pathogen recognition and fine-tuning the inflammatory response. This review summarizes our current knowledge of inflammation-induced N-glycosylation changes, with a particular focus on specific subsets of immune cells of innate and adaptive immunity and how these changes affect their effector functions, cell interactions, and signal transduction.
Collapse
Affiliation(s)
- Barbara Radovani
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
14
|
Rujchanarong D, Scott D, Park Y, Brown S, Mehta AS, Drake R, Sandusky GE, Nakshatri H, Angel PM. Metabolic Links to Socioeconomic Stresses Uniquely Affecting Ancestry in Normal Breast Tissue at Risk for Breast Cancer. Front Oncol 2022; 12:876651. [PMID: 35832545 PMCID: PMC9273232 DOI: 10.3389/fonc.2022.876651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
A primary difference between black women (BW) and white women (WW) diagnosed with breast cancer is aggressiveness of the tumor. Black women have higher mortalities with similar incidence of breast cancer compared to other race/ethnicities, and they are diagnosed at a younger age with more advanced tumors with double the rate of lethal, triple negative breast cancers. One hypothesis is that chronic social and economic stressors result in ancestry-dependent molecular responses that create a tumor permissive tissue microenvironment in normal breast tissue. Altered regulation of N-glycosylation of proteins, a glucose metabolism-linked post-translational modification attached to an asparagine (N) residue, has been associated with two strong independent risk factors for breast cancer: increased breast density and body mass index (BMI). Interestingly, high body mass index (BMI) levels have been reported to associate with increases of cancer-associated N-glycan signatures. In this study, we used matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) to investigate molecular pattern changes of N-glycosylation in ancestry defined normal breast tissue from BW and WW with significant 5-year risk of breast cancer by Gail score. N-glycosylation was tested against social stressors including marital status, single, education, economic status (income), personal reproductive history, the risk factors BMI and age. Normal breast tissue microarrays from the Susan G. Komen tissue bank (BW=43; WW= 43) were used to evaluate glycosylation against socioeconomic stress and risk factors. One specific N-glycan (2158 m/z) appeared dependent on ancestry with high sensitivity and specificity (AUC 0.77, Brown/Wilson p-value<0.0001). Application of a linear regression model with ancestry as group variable and socioeconomic covariates as predictors identified a specific N-glycan signature associated with different socioeconomic stresses. For WW, household income was strongly associated to certain N-glycans, while for BW, marital status (married and single) was strongly associated with the same N-glycan signature. Current work focuses on understanding if combined N-glycan biosignatures can further help understand normal breast tissue at risk. This study lays the foundation for understanding the complexities linking socioeconomic stresses and molecular factors to their role in ancestry dependent breast cancer risk.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Danielle Scott
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Yeonhee Park
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sean Brown
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
15
|
Lajoie JM, Katt ME, Waters EA, Herrin BR, Shusta EV. Identification of lamprey variable lymphocyte receptors that target the brain vasculature. Sci Rep 2022; 12:6044. [PMID: 35411012 PMCID: PMC9001667 DOI: 10.1038/s41598-022-09962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
The blood-brain barrier (BBB) represents a significant bottleneck for the delivery of therapeutics to the central nervous system. In recent years, the promise of coopting BBB receptor-mediated transport systems for brain drug delivery has increased in large part due to the discovery and engineering of BBB-targeting antibodies. Here we describe an innovative screening platform for identification of new BBB targeting molecules from a class of lamprey antigen recognition proteins known as variable lymphocyte receptors (VLRs). Lamprey were immunized with murine brain microvessel plasma membranes, and the resultant repertoire cloned into the yeast surface display system. The library was screened via a unique workflow that identified 16 VLR clones that target extracellular epitopes of in vivo-relevant BBB membrane proteins. Of these, three lead VLR candidates, VLR-Fc-11, VLR-Fc-30, and VLR-Fc-46 selectively target the brain vasculature and traffic within brain microvascular endothelial cells after intravenous administration in mice, with VLR-Fc-30 being confirmed as trafficking into the brain parenchyma. Epitope characterization indicates that the VLRs, in part, recognize sialylated glycostructures. These promising new targeting molecules have the potential for brain targeting and drug delivery with improved brain vascular specificity.
Collapse
Affiliation(s)
- Jason M Lajoie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Moriah E Katt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Elizabeth A Waters
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| |
Collapse
|
16
|
Spampinato SF, Takeshita Y, Obermeier B. An In Vitro Model of the Blood-Brain Barrier to Study Alzheimer's Disease: The Role of β-Amyloid and Its Influence on PBMC Infiltration. Methods Mol Biol 2022; 2492:333-352. [PMID: 35733055 DOI: 10.1007/978-1-0716-2289-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) is a highly specialized structure, constituted by endothelial cells that together with astrocytes and pericytes provide a functional interface between the central nervous system and the periphery. Several pathological conditions may affect its functions, and lately BBB involvement in the pathogenesis of Alzheimer's disease has been demonstrated. Both endothelial cells and astrocytes can be differentially affected during the course of the disease. In vitro BBB models present a powerful tool in evaluating the effects that β-amyloid (Aβ), or other pathogenic stimuli, play on the BBB at cellular level. In vitro BBB models derived from human cell sources are rare and not easily implemented. We generated two conditionally immortalized human cell lines, brain microvascular endothelial cells (TY10), and astrocytes (hAST), that, when co-cultured under appropriate conditions, exhibit BBB-like characteristics. This model allowed us to evaluate the transmigration of peripheral blood mononuclear cells (PBMCs) through the in vitro barrier exposed to Aβ and the role played by astrocytes in the modulation of this phenomenon. We describe here the methodology used in our lab to set up our in vitro model of the BBB and to carry out a PBMC transmigration assay.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
- Departement of Scienza e Tecnologia del Farmaco, Universita' di Turin, Turin, Italy.
| | - Yukio Takeshita
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | | |
Collapse
|
17
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
18
|
Activation of the Constitutive Androstane Receptor Inhibits Leukocyte Adhesiveness to Dysfunctional Endothelium. Int J Mol Sci 2021; 22:ijms22179267. [PMID: 34502180 PMCID: PMC8431649 DOI: 10.3390/ijms22179267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Leukocyte cell recruitment into the vascular subendothelium constitutes an early event in the atherogenic process. As the effect of the constitutive androstane receptor (CAR) on leukocyte recruitment and endothelial dysfunction is poorly understood, this study investigated whether the role of CAR activation can affect this response and the underlying mechanisms involved. Under physiological flow conditions, TNFα-induced endothelial adhesion of human leukocyte cells was concentration-dependently inhibited by preincubation of human umbilical arterial endothelial cells with the selective human CAR ligand CITCO. CAR agonism also prevented TNFα induced VCAM-1 expression, as well as MCP-1/CCL-2 and RANTES/CCL-5 release in endothelial cells. Suppression of CAR expression with a small interfering RNA abrogated the inhibitory effects of CITCO on these responses. Furthermore, CITCO increased interaction of CAR with Retinoid X Receptor (RXR) and reduced TNFα-induced p38-MAPK/NF-κB activation. In vivo, using intravital microscopy in the mouse cremasteric microcirculation treatment with the selective mouse CAR ligand TCPOBOP inhibited TNFα-induced leukocyte rolling flux, adhesion, and emigration and decreased VCAM-1 in endothelium. These results reveal that CAR agonists can inhibit the initial inflammatory response that precedes the atherogenic process by targeting different steps in the leukocyte recruitment cascade. Therefore, CAR agonists may constitute a new therapeutic tool in controlling cardiovascular disease-associated inflammatory processes.
Collapse
|
19
|
Zhang L, Ma L, Li J, Lei J, Chen J, Yu C. VE-cadherin N-glycosylation modified by N-acetylglucosaminyltransferase V regulates VE-cadherin-β-catenin interaction and monocyte adhesion. Exp Physiol 2021; 106:1869-1877. [PMID: 34117813 DOI: 10.1113/ep089617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Inflammation-induced monocyte adhesion is the initiator of most vascular diseases. The underlying mechanisms that mediate monocyte adhesion remain to be clarified fully. What is the main finding and its importance? N-acetylglucosaminyltransferase V (GnT-V)-mediated N-glycosylation of VE-cadherin regulates the dissociation of the VE-cadherin-β-catenin complex to modulate monocyte adhesion, but GnT-V overexpression cannot rescue monocyte adhesion induced by interleukin-1β. This study clarified the molecular mechanism of VE-cadherin in regulating the monocyte adhesion process. ABSTRACT Monocyte adhesion is a crucial step in the initial stage of atherosclerosis, and dysfunction of VE-cadherin has been reported to be involved in this process. Our group previously found that VE-cadherin and its binding protein, β-catenin, were modified by sialylation, and the levels of sialylation were decreased in pro-inflammatory cytokine-treated human umbilical vein EA.hy926 cells. In this study, we confirmed that the sugar chains of VE-cadherin were modified by N-acetylglucosaminyltransferase V (GnT-V). We showed that the levels of GnT-V and β1,6-N-acetylglucosamine on the VE-cadherin were reduced in the presence of interleukin-1β, whereas the level of monocyte transendothelial migration was increased. Moreover, the interaction between VE-cadherin and β-catenin was increased, accompanied by an increased accumulation of degradative VE-cadherin and cytoplasmic β-catenin, indicating impairment of cell-cell junctions after interleukin-1β treatment. Furthermore, GnT-V short hairpin RNA and overexpression analysis confirmed that glycosylation of VE-cadherin was modified by GnT-V in EA.hy926 cells, which contributed to the monocyte-endothelial adhesion process. Taken together, these results suggest that the function of VE-cadherin in facilitating monocyte adhesion might result from the decreasing GnT-V expression and disorder of GnT-V-catalysed N-glycosylation. Our study clarified the molecular mechanism of VE-cadherin in regulation of the monocyte adhesion process and provided new insights into the post-transcriptional modifications of VE-cadherin.
Collapse
Affiliation(s)
- Lei Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China
| | - Jiajia Li
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China.,Department of Pharmacy, Chongqing Hechuan District People's Hospital, Chongqing, PR China
| | - Jin Lei
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, PR China
| |
Collapse
|
20
|
Sánchez‐Martínez D, Gutiérrez‐Agüera F, Romecin P, Vinyoles M, Palomo M, Tirado N, Zanetti SR, Juan M, Carlet M, Jeremias I, Menéndez P. Enforced sialyl-Lewis-X (sLeX) display in E-selectin ligands by exofucosylation is dispensable for CD19-CAR T-cell activity and bone marrow homing. Clin Transl Med 2021; 11:e280. [PMID: 33634970 PMCID: PMC7901721 DOI: 10.1002/ctm2.280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
CD19-directed chimeric antigen receptors (CAR) T cells induce impressive rates of complete response in advanced B-cell malignancies, specially in B-cell acute lymphoblastic leukemia (B-ALL). However, CAR T-cell-treated patients eventually progress due to poor CAR T-cell persistence and/or disease relapse. The bone marrow (BM) is the primary location for acute leukemia. The rapid/efficient colonization of the BM by systemically infused CD19-CAR T cells might enhance CAR T-cell activity and persistence, thus, offering clinical benefits. Circulating cells traffic to BM upon binding of tetrasaccharide sialyl-Lewis X (sLeX)-decorated E-selectin ligands (sialofucosylated) to the E-selectin receptor expressed in the vascular endothelium. sLeX-installation in E-selectin ligands is achieved through an ex vivo fucosylation reaction. Here, we sought to characterize the basal and cell-autonomous display of sLeX in CAR T-cells activated using different cytokines, and to assess whether exofucosylation of E-selectin ligands improves CD19-CAR T-cell activity and BM homing. We report that cell-autonomous sialofucosylation (sLeX display) steadily increases in culture- and in vivo-expanded CAR T cells, and that, the cytokines used during T-cell activation influence both the degree of such endogenous sialofucosylation and the CD19-CAR T-cell efficacy and persistence in vivo. However, glycoengineered enforced sialofucosylation of E-selectin ligands was dispensable for CD19-CAR T-cell activity and BM homing in multiple xenograft models regardless the cytokines employed for T-cell expansion, thus, representing a dispensable strategy for CD19-CAR T-cell therapy.
Collapse
Affiliation(s)
- Diego Sánchez‐Martínez
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Francisco Gutiérrez‐Agüera
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Paola Romecin
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Meritxell Vinyoles
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Marta Palomo
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Néstor Tirado
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Samanta Romina Zanetti
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Manel Juan
- Servei d'ImmunologiaHospital Clínic de BarcelonaBarcelonaSpain
| | - Michela Carlet
- Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center MunichGerman Center for Environmental Health (HMGU)MunichGermany
- Department of PediatricsDr von Hauner Children's Hospital, LMUMunichGermany
| | - Irmela Jeremias
- Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center MunichGerman Center for Environmental Health (HMGU)MunichGermany
- Department of PediatricsDr von Hauner Children's Hospital, LMUMunichGermany
| | - Pablo Menéndez
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of MedicineUniversity of BarcelonaBarcelonaSpain
- Department of Biomedicine, School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red‐Oncología (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| |
Collapse
|
21
|
Spatial N-glycomics of the human aortic valve in development and pediatric endstage congenital aortic valve stenosis. J Mol Cell Cardiol 2021; 154:6-20. [PMID: 33516683 DOI: 10.1016/j.yjmcc.2021.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Congenital aortic valve stenosis (AS) progresses as an obstructive narrowing of the aortic orifice due to deregulated extracellular matrix (ECM) production by aortic valve (AV) leaflets and leads to heart failure with no effective therapies. Changes in glycoprotein and proteoglycan distribution are a hallmark of AS, yet valvular carbohydrate content remains virtually uncharacterized at the molecular level. While almost all glycoproteins clinically linked to stenotic valvular modeling contain multiple sites for N-glycosylation, there are very few reports aimed at understanding how N-glycosylation contributes to the valve structure in disease. Here, we tested for spatial localization of N-glycan structures within pediatric congenital aortic valve stenosis. The study was done on valvular tissues 0-17 years of age with de-identified clinical data reporting pre-operative valve function spanning normal development, aortic valve insufficiency (AVI), and pediatric endstage AS. High mass accuracy imaging mass spectrometry (IMS) was used to localize N-glycan profiles in the AV structure. RNA-Seq was used to identify regulation of N-glycan related enzymes. The N-glycome was found to be spatially localized in the normal aortic valve, aligning with fibrosa, spongiosa or ventricularis. In AVI diagnosed tissue, N-glycans localized to hypertrophic commissures with increases in pauci-mannose structures. In all valve types, sialic acid (N-acetylneuraminic acid) N-glycans were the most abundant N-glycan group. Three sialylated N-glycans showed common elevation in AS independent of age. On-tissue chemical methods optimized for valvular tissue determined that aortic valve tissue sialylation shows both α2,6 and α2,3 linkages. Specialized enzymatic strategies demonstrated that core fucosylation is the primary fucose configuration and localizes to the normal fibrosa with disparate patterning in AS. This study identifies that the human aortic valve structure is spatially defined by N-glycomic signaling and may generate new research directions for the treatment of human aortic valve disease.
Collapse
|
22
|
Prados MB, Sica MP, Miranda S. Inflammatory conditions promote a switch of oligosaccharyltransferase (OST) catalytic subunit isoform expression. Arch Biochem Biophys 2020; 693:108538. [PMID: 32810478 DOI: 10.1016/j.abb.2020.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
Oligosaccharyltransferase (OST) complex catalyzes the N-glycosylation of nascent polypeptides in the endoplasmic reticulum. Glycoproteins are critical for normal cell-cell interactions, especially during an immune response. Abnormal glycosylation is an insignia of several inflammatory diseases. However, the mechanisms that regulate the differential N-glycosylation are not fully understood. The OST complex can be assembled with one out of two catalytic subunits, STT3A or STT3B, which have different enzymatic properties. In this work, we investigated the expression of STT3A and STT3B in several mouse models such as a crossbreeding of normal and abortion-prone mice and an intestinal inflammation model. These animals were either exposed or not to acoustic stress (acute or chronic). The expression of the isoforms was analysed by immunohistochemistry and protein immunoblot. Finally, we investigated the gene regulatory elements employing public databases. Results demonstrated that inflammation alters the balance between the expression of both isoforms in the affected tissues. In homoeostatic conditions, STT3A expression predominates over STT3B, especially in epithelial cells. This relation is reversed as a consequence of inflammation. An increase in STT3B activity was associated to the generation of mannose-rich N-glycans. Accordingly, this type of N-glycans were found to decorate diverse inflamed tissues. The STT3A and STT3B genes are differentially regulated, which could account for the differences in the expression levels observed here. Our results support the idea that these isoforms could play different roles in cellular physiology. This study opens the possibility of studying the STT3A/STT3B expression ratio as a biomarker in acute inflammation or chronic diseases.
Collapse
Affiliation(s)
- María Belén Prados
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires. CONICET, Marcelo T. de Alvear 2270, C1122AAJ, Buenos Aires, Argentina.
| | - Mauricio Pablo Sica
- Instituto de Energía y Desarrollo Sustentable, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, CONICET, Av. E. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina; Instituto Balseiro, Universidad Nacional de Cuyo, Centro Atómico Bariloche, Av. E. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina.
| | - Silvia Miranda
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires. CONICET, Marcelo T. de Alvear 2270, C1122AAJ, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Serum Glycoproteomic Alterations in Patients with Diabetic Retinopathy. Proteomes 2020; 8:proteomes8030025. [PMID: 32933222 PMCID: PMC7565786 DOI: 10.3390/proteomes8030025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
The precise molecular mechanisms of diabetic retinopathy (DR) pathogenesis are unclear, and treatment options are limited. There is an urgent need to discover and develop novel therapeutic targets for the treatment of this disease. Glycosylation is a post-translational modification that plays a critical role in determining protein structure, function, and stability. Recent studies have found that serum glycoproteomic changes are associated with the presence or progression of several inflammatory diseases. However, very little is known about the glycoproteomic changes associated with DR. In this study, glycoproteomic profiling of the serum of diabetic patients with and without DR was performed. A total of 15 glycopeptides from 11 glycoproteins were found to be significantly altered (5 upregulated and 10 downregulated) within the serum glycoproteome of DR patients. These glycoproteins are known to be involved in the maintenance of the extracellular matrix and complement system through peptidolytic activity or regulation.
Collapse
|
24
|
McHowat J, Shakya S, Ford DA. 2-Chlorofatty Aldehyde Elicits Endothelial Cell Activation. Front Physiol 2020; 11:460. [PMID: 32457656 PMCID: PMC7225355 DOI: 10.3389/fphys.2020.00460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Endothelial activation and dysfunction are hallmarks of inflammation. Neutrophil-vascular endothelium interactions have significant effects on vascular wall physiology and pathology. Myeloperoxidase (MPO)-derived products released from activated neutrophils can mediate the inflammatory response and contribute to endothelial dysfunction. 2-Chlorofatty aldehyde (2-ClFALD) is the direct oxidation product of MPO-derived hypochlorous acid (HOCl) targeting plasmalogen phospholipids. The role of 2-ClFALD in endothelial dysfunction is poorly understood and may be dependent on the vascular bed. This study compared the role of 2-ClFALD in eliciting endothelial dysfunction in human coronary artery endothelial cells (HCAEC), human lung microvascular endothelial cells (HLMVEC), and human kidney endothelial cells (HKEC). Profound increases in selectin surface expression as well as ICAM-1 and VCAM-1 surface expression were observed in HCAEC and HLMVEC. The surface expression of these adherence molecules resulted in robust adherence of neutrophils and platelets to 2-ClFALD treated endothelial cells. In contrast to HCAEC and HLMVEC, 2-ClFALD-treated HKEC had substantially reduced adherence molecule surface expression with no resulting increase in platelet adherence. 2-ClFALD-treated HKEC did have an increase in neutrophil adherence. All three endothelial cell lines treated with 2-ClFALD displayed a time-dependent loss of barrier function. Further studies revealed 2-ClHDyA localizes to ER and Golgi when using a synthetic alkyne analog of 2-ClFALD in HCAEC and HLMVEC. These findings indicate 2-ClFALDs promote endothelial cell dysfunction with disparate degrees of responsiveness depending on the vascular bed of origin.
Collapse
Affiliation(s)
- Jane McHowat
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Shubha Shakya
- Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States.,Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David A Ford
- Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States.,Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
25
|
Can Endothelial Glycocalyx Be a Major Morphological Substrate in Pre-Eclampsia? Int J Mol Sci 2020; 21:ijms21093048. [PMID: 32357469 PMCID: PMC7246531 DOI: 10.3390/ijms21093048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Today pre-eclampsia (PE) is considered as a disease of various theories; still all of them agree that endothelial dysfunction is the leading pathogenic factor. Endothelial dysfunction is a sequence of permanent immune activation, resulting in the change of both the phenotype and the functions of an endothelial cell and of the extracellular layer associated with the cell membrane—endothelial glycocalyx (eGC). Numerous studies demonstrate that eGC mediates and regulates the key functions of endothelial cells including regulation of vascular tone and thromboresistance; and these functions are disrupted during PE. Taking into account that eGC and its components undergo alterations under pathological conditions leading to endothelial activation, it is supposed that eGC plays a certain role in pathogenesis of PE. Envisaging the eGC damage as a key factor of PE, might be a new approach to prevention, treatment, and rehabilitation of patients with PE. This approach could include the development of drugs protecting eGC and promoting regeneration of this structure. Since the issue of PE is far from being solved, any effort in this direction might be valuable.
Collapse
|
26
|
Regal-McDonald K, Somarathna M, Lee T, Litovsky SH, Barnes J, Peretik JM, Traylor JG, Orr AW, Patel RP. Assessment of ICAM-1 N-glycoforms in mouse and human models of endothelial dysfunction. PLoS One 2020; 15:e0230358. [PMID: 32208424 PMCID: PMC7092995 DOI: 10.1371/journal.pone.0230358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Endothelial dysfunction is a critical event in vascular inflammation characterized, in part, by elevated surface expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). ICAM-1 is heavily N-glycosylated, and like other surface proteins, it is largely presumed that fully processed, complex N-glycoforms are dominant. However, our recent studies suggest that hypoglycosylated or high mannose (HM)-ICAM-1 N-glycoforms are also expressed on the cell surface during endothelial dysfunction, and have higher affinity for monocyte adhesion and regulate outside-in endothelial signaling by different mechanisms. Whether different ICAM-1 N-glycoforms are expressed in vivo during disease is unknown. In this study, using the proximity ligation assay, we assessed the relative formation of high mannose, hybrid and complex α-2,6-sialyated N-glycoforms of ICAM-1 in human and mouse models of atherosclerosis, as well as in arteriovenous fistulas (AVF) of patients on hemodialysis. Our data demonstrates that ICAM-1 harboring HM or hybrid epitopes as well as ICAM-1 bearing α-2,6-sialylated epitopes are present in human and mouse atherosclerotic lesions. Further, HM-ICAM-1 positively associated with increased macrophage burden in lesions as assessed by CD68 staining, whereas α-2,6-sialylated ICAM-1 did not. Finally, both HM and α-2,6-sialylated ICAM-1 N-glycoforms were present in hemodialysis patients who had AVF maturation failure compared to successful AVF maturation. Collectively, these data provide evidence that HM- ICAM-1 N-glycoforms are present in vivo, and at levels similar to complex α-2,6-sialylated ICAM-1 underscoring the need to better understand their roles in modulating vascular inflammation.
Collapse
Affiliation(s)
- Kellie Regal-McDonald
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Maheshika Somarathna
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timmy Lee
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Silvio H. Litovsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jarrod Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - J. M. Peretik
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - J. G. Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - A. Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
27
|
Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol 2020; 108:787-799. [PMID: 32182390 DOI: 10.1002/jlb.2mr0220-549r] [Citation(s) in RCA: 471] [Impact Index Per Article: 117.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
ICAM-1 is a cell surface glycoprotein and an adhesion receptor that is best known for regulating leukocyte recruitment from circulation to sites of inflammation. However, in addition to vascular endothelial cells, ICAM-1 expression is also robustly induced on epithelial and immune cells in response to inflammatory stimulation. Importantly, ICAM-1 serves as a biosensor to transduce outside-in-signaling via association of its cytoplasmic domain with the actin cytoskeleton following ligand engagement of the extracellular domain. Thus, ICAM-1 has emerged as a master regulator of many essential cellular functions both at the onset and at the resolution of pathologic conditions. Because the role of ICAM-1 in driving inflammatory responses is well recognized, this review will mainly focus on newly emerging roles of ICAM-1 in epithelial injury-resolution responses, as well as immune cell effector function in inflammation and tumorigenesis. ICAM-1 has been of clinical and therapeutic interest for some time now; however, several attempts at inhibiting its function to improve injury resolution have failed. Perhaps, better understanding of its beneficial roles in resolution of inflammation or its emerging function in tumorigenesis will spark new interest in revisiting the clinical value of ICAM-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hannah L Wiesolek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
28
|
Mietani K, Sumitani M, Ogata T, Shimojo N, Inoue R, Abe H, Kawamura G, Yamada Y. Dysfunction of the blood-brain barrier in postoperative delirium patients, referring to the axonal damage biomarker phosphorylated neurofilament heavy subunit. PLoS One 2019; 14:e0222721. [PMID: 31574089 PMCID: PMC6771997 DOI: 10.1371/journal.pone.0222721] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Delirium is the most common postoperative complication of the central nervous system (CNS) that can trigger long-term cognitive impairment. Its underlying mechanism is not fully understood, but the dysfunction of the blood-brain barrier (BBB) has been implicated. The serum levels of the axonal damage biomarker, phosphorylated neurofilament heavy subunit (pNF-H) increase in moderate to severe delirium patients, indicating that postoperative delirium can induce irreversible CNS damage. Here, we investigated the relationship among postoperative delirium, CNS damage and BBB dysfunction, using pNF-H as reference. METHODS Blood samples were collected from 117 patients within 3 postoperative days. These patients were clinically diagnosed with postoperative delirium using the Confusion Assessment Method for the Intensive Care Unit. We measured intercellular adhesion molecule-1, platelet and endothelial cell adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin as biomarkers for BBB disruption, pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6), and pNF-H. We conducted logistic regression analysis including all participants to identify independent biomarkers contributing to serum pNF-H detection. Next, by multiple regression analysis with a stepwise method we sought to determine which biomarkers influence serum pNF-H levels, in pNF-H positive patients. RESULTS Of the 117 subjects, 41 were clinically diagnosed with postoperative delirium, and 30 were positive for serum pNF-H. Sensitivity and specificity of serum pNF-H detection in the patients with postoperative delirium were 56% and 90%, respectively. P-selectin was the only independent variable to associate with pNF-H detection (P < 0.0001) in all 117 patients. In pNF-H positive patients, only PECAM-1 was associated with serum pNF-H levels (P = 0.02). CONCLUSIONS Serum pNF-H could be an objective delirium biomarker, superior to conventional tools in clinical settings. In reference to pNF-H, P-selectin may be involved in the development of delirium-related CNS damage and PECAM-1 may contribute to the progression of delirium- related CNS damage.
Collapse
Affiliation(s)
- Kazuhito Mietani
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
- * E-mail:
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Nobutake Shimojo
- Department of Emergency and Critical Care Medicine, Tsukuba University Hospital, Ibaraki, Japan
| | - Reo Inoue
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroaki Abe
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Gaku Kawamura
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshitsugu Yamada
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
29
|
Spampinato SF, Merlo S, Fagone E, Fruciano M, Barbagallo C, Kanda T, Sano Y, Purrello M, Vancheri C, Ragusa M, Sortino MA. Astrocytes Modify Migration of PBMCs Induced by β-Amyloid in a Blood-Brain Barrier in vitro Model. Front Cell Neurosci 2019; 13:337. [PMID: 31396056 PMCID: PMC6664149 DOI: 10.3389/fncel.2019.00337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Background The brain is protected by the blood-brain barrier (BBB), constituted by endothelial cells supported by pericytes and astrocytes. In Alzheimer’s disease a dysregulation of the BBB occurs since the early phases of the disease leading to an increased access of solutes and immune cells that can participate to the central inflammatory response. Here we investigated whether astrocytes may influence endothelial-leukocytes interaction in the presence of amyloid-β (Aβ). Methods We used an in vitro BBB model, where endothelial cells, cultured alone or with astrocytes were exposed for 5 h to Aβ, both under resting or inflammatory conditions (TNFα and IFNγ), to evaluate endothelial barrier properties, as well as transendothelial migration of peripheral blood mononuclear cells (PBMCs). Results In the co-culture model, barrier permeability to solutes was increased by all treatments, but migration was only observed in inflammatory conditions and was prevented by Aβ treatment. On the contrary, in endothelial monocultures, Aβ induced leukocytes migration under resting conditions and did not modify that induced by inflammatory cytokines. In endothelial astrocyte co-cultures, a low molecular weight (MW) isoform of the adhesion molecule ICAM-1, important to allow interaction with PBMCs, was increased after 5 h exposure to inflammatory cytokines, an effect that was prevented by Aβ. This modulation by Aβ was not observed in endothelial monocultures. In addition, endothelial expression of β-1,4-N-acetylglucosaminyltransferase III (Gnt-III), responsible for the formation of the low MW ICAM-1 isoform, was enhanced in inflammatory conditions, but negatively modulated by Aβ only in the co-culture model. miR-200b, increased in astrocytes following Aβ treatment and may represent one of the factors involved in the control of Gnt-III expression. Conclusion These data point out that, at least in the early phases of Aβ exposure, astrocytes play a role in the modulation of leukocytes migration through the endothelial layer.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sara Merlo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Evelina Fagone
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mary Fruciano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University, Yamaguchi, Japan
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University, Yamaguchi, Japan
| | - Michele Purrello
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute - IRCCS, Troina, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Chandler KB, Leon DR, Kuang J, Meyer RD, Rahimi N, Costello CE. N-Glycosylation regulates ligand-dependent activation and signaling of vascular endothelial growth factor receptor 2 (VEGFR2). J Biol Chem 2019; 294:13117-13130. [PMID: 31308178 DOI: 10.1074/jbc.ra119.008643] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/10/2019] [Indexed: 11/06/2022] Open
Abstract
The tumor microenvironment and proinflammatory signals significantly alter glycosylation of cell-surface proteins on endothelial cells. By altering the N-glycosylation machinery in the endoplasmic reticulum and Golgi, proinflammatory cytokines promote the modification of endothelial glycoproteins such as vascular endothelial growth factor receptor 2 (VEGFR2) with sialic acid-capped N-glycans. VEGFR2 is a highly N-glycosylated receptor tyrosine kinase involved in pro-angiogenic signaling in physiological and pathological contexts, including cancer. Here, using glycoside hydrolase and kinase assays and immunoprecipitation and MS-based analyses, we demonstrate that N-linked glycans at the Asn-247 site in VEGFR2 hinder VEGF ligand-mediated receptor activation and signaling in endothelial cells. We provide evidence that cell surface-associated VEGFR2 displays sialylated N-glycans at Asn-247 and, in contrast, that the nearby sites Asn-145 and Asn-160 contain lower levels of sialylated N-glycans and higher levels of high-mannose N-glycans, respectively. Furthermore, we report that VEGFR2 Asn-247-linked glycans capped with sialic acid oppose ligand-mediated VEGFR2 activation, whereas the uncapped asialo-glycans favor activation of this receptor. We propose that N-glycosylation, specifically the capping of N-glycans at Asn-247 by sialic acid, tunes ligand-dependent activation and signaling of VEGFR2 in endothelial cells.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Deborah R Leon
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jenevieve Kuang
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118; Department of Chemistry, Boston University, Boston, Massachusetts 02118
| | - Rosana D Meyer
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Massachusetts 02118
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Massachusetts 02118
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118; Department of Chemistry, Boston University, Boston, Massachusetts 02118.
| |
Collapse
|
31
|
Melatonin improves the structure and function of autografted mice ovaries through reducing inflammation: A stereological and biochemical analysis. Int Immunopharmacol 2019; 74:105679. [PMID: 31202180 DOI: 10.1016/j.intimp.2019.105679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
Melatonin has anti-oxidant, anti-inflammatory and anti-apoptotic properties. We aimed to investigate the effect of melatonin on the structure and function of mice ovaries following autograft transplantation. NMRI mice were divided into: control, autografted + saline, autografted + melatonin (20 mg/kg/day i.p. injection for 1 day before until 7 days after transplantation). 28 days post transplantation, ovary compartments were studied stereologically. Follicle apoptosis and the level of progesterone and estradiol were also measured. The inflammation, serum MDA concentration and total antioxidant capacity were also assessed on day 7 post transplantation. The total volume of the ovary, cortex and medulla (P < 0.05) and the number of different types of follicles (P < 0.001), the concentration of IL-10, progesterone and estradiol (P < 0.001) and TAC (P < 0.01) significantly decreased in the autografted + saline group compared to the control. The levels of IL-6 (P < 0.01), TNF-α, MDA and the apoptotic rate (P < 0.001) increased significantly in the autografted + saline group compared to the control, while the total volume of the ovary, cortex and medulla (P < 0.05) and the number of different types of follicles (P < 0.001), the concentration of IL-10, progesterone and estradiol (P < 0.001) and TAC (P < 0.01) significantly increased in the autografted + melatonin group compared to the autografted + saline group. The levels of IL-6 (P < 0.01), TNF-α, MDA and the apoptotic rate (P < 0.001) decreased significantly in the autografted + melatonine group compared to the autografted + saline group. In the autografted + melatonin group, the localization of CD31-positive cells in the theca layer was similar to the control group. Melatonin can improve the structure and function of the grafted ovary.
Collapse
|
32
|
Chandler KB, Costello CE, Rahimi N. Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis. Cells 2019; 8:E544. [PMID: 31195728 PMCID: PMC6627046 DOI: 10.3390/cells8060544] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 01/27/2023] Open
Abstract
Just as oncogene activation and tumor suppressor loss are hallmarks of tumor development, emerging evidence indicates that tumor microenvironment-mediated changes in glycosylation play a crucial functional role in tumor progression and metastasis. Hypoxia and inflammatory events regulate protein glycosylation in tumor cells and associated stromal cells in the tumor microenvironment, which facilitates tumor progression and also modulates a patient's response to anti-cancer therapeutics. In this review, we highlight the impact of altered glycosylation on angiogenic signaling and endothelial cell adhesion, and the critical consequences of these changes in tumor behavior.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
33
|
Polfus LM, Raffield LM, Wheeler MM, Tracy RP, Lange LA, Lettre G, Miller A, Correa A, Bowler RP, Bis JC, Salimi S, Jenny NS, Pankratz N, Wang B, Preuss MH, Zhou L, Moscati A, Nadkarni GN, Loos RJF, Zhong X, Li B, Johnsen JM, Nickerson DA, Reiner AP, Auer PL. Whole genome sequence association with E-selectin levels reveals loss-of-function variant in African Americans. Hum Mol Genet 2019; 28:515-523. [PMID: 30307499 PMCID: PMC6337694 DOI: 10.1093/hmg/ddy360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022] Open
Abstract
E-selectin mediates the rolling of circulating leukocytes during inflammatory processes. Previous genome-wide association studies in European and Asian individuals have identified the ABO locus associated with E-selectin levels. Using Trans-Omics for Precision Medicine whole genome sequencing data in 2249 African Americans (AAs) from the Jackson Heart Study, we examined genome-wide associations with soluble E-selectin levels. In addition to replicating known signals at ABO, we identified a novel association of a common loss-of-function, missense variant in Fucosyltransferase 6 (FUT6; rs17855739,p.Glu274Lys, P = 9.02 × 10-24) with higher soluble E-selectin levels. This variant is considerably more common in populations of African ancestry compared to non-African ancestry populations. We replicated the association of FUT6 p.Glu274Lys with higher soluble E-selectin in an independent population of 748 AAs from the Women's Health Initiative and identified an additional pleiotropic association with vitamin B12 levels. Despite the broad role of both selectins and fucosyltransferases in various inflammatory, immune and cancer-related processes, we were unable to identify any additional disease associations of the FUT6 p.Glu274Lys variant in an electronic medical record-based phenome-wide association scan of over 9000 AAs.
Collapse
Affiliation(s)
- Linda M Polfus
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Marsha M Wheeler
- Department of Genome Sciences, University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Guillaume Lettre
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute, Montréal, QC, Canada
| | - Amanda Miller
- Zilber School of Public Health, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Adolfo Correa
- Department of Pediatrics and Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Shabnam Salimi
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nancy Swords Jenny
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Biqi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael H Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisheng Zhou
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arden Moscati
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish N Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xue Zhong
- Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Bingshan Li
- Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Jill M Johnsen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | | |
Collapse
|
34
|
Maas SL, Soehnlein O, Viola JR. Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta. Front Immunol 2018; 9:2739. [PMID: 30538702 PMCID: PMC6277681 DOI: 10.3389/fimmu.2018.02739] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Immune responses are dependent on the recruitment of leukocytes to the site of inflammation. The classical leukocyte recruitment cascade, consisting of capture, rolling, arrest, adhesion, crawling, and transendothelial migration, is thoroughly studied but mostly in model systems, such as the cremasteric microcirculation. This cascade paradigm, which is widely accepted, might be applicable to many tissues, however recruitment mechanisms might substantially vary in different organs. Over the last decade, several studies shed light on organ-specific mechanisms of leukocyte recruitment. An improved awareness of this matter opens new therapeutic windows and allows targeting inflammation in a tissue-specific manner. The aim of this review is to summarize the current understanding of the leukocyte recruitment in general and how this varies in different organs. In particular we focus on neutrophils, as these are the first circulating leukocytes to reach the site of inflammation. Specifically, the recruitment mechanism in large arteries, as well as vessels in the lungs, liver, and kidney will be addressed.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Physiology and Pharmacology (FyFa) and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joana R Viola
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
35
|
Castro PR, Barbosa AS, Pereira JM, Ranfley H, Felipetto M, Gonçalves CAX, Paiva IR, Berg BB, Barcelos LS. Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6740408. [PMID: 30406137 PMCID: PMC6199857 DOI: 10.1155/2018/6740408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
The microvasculature heterogeneity is a complex subject in vascular biology. The difficulty of building a dynamic and interactive view among the microenvironments, the cellular and molecular heterogeneities, and the basic aspects of the vessel formation processes make the available knowledge largely fragmented. The neovascularisation processes, termed vasculogenesis, angiogenesis, arteriogenesis, and lymphangiogenesis, are important to the formation and proper functioning of organs and tissues both in the embryo and the postnatal period. These processes are intrinsically related to microvascular cells, such as endothelial and mural cells. These cells are able to adjust their activities in response to the metabolic and physiological requirements of the tissues, by displaying a broad plasticity that results in a significant cellular and molecular heterogeneity. In this review, we intend to approach the microvasculature heterogeneity in an integrated view considering the diversity of neovascularisation processes and the cellular and molecular heterogeneity that contribute to microcirculatory homeostasis. For that, we will cover their interactions in the different blood-organ barriers and discuss how they cooperate in an integrated regulatory network that is controlled by specific molecular signatures.
Collapse
Affiliation(s)
- Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Alan Sales Barbosa
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Jousie Michel Pereira
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Hedden Ranfley
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Mariane Felipetto
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Carlos Alberto Xavier Gonçalves
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Isabela Ribeiro Paiva
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Bárbara Betônico Berg
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Luciola Silva Barcelos
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
36
|
Fukuhara S, Tanigaki R, Kimura KI, Kataoka T. Kujigamberol interferes with pro-inflammatory cytokine-induced expression of and N-glycan modifications to cell adhesion molecules at different stages in human umbilical vein endothelial cells. Int Immunopharmacol 2018; 62:313-325. [PMID: 30053729 DOI: 10.1016/j.intimp.2018.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
Kujigamberol is the norlabdane compound isolated from Kuji amber and has recently been shown to prevent Ca2+-signal transduction and exert anti-allergy effects in vitro and in vivo. However, the anti-inflammatory activities of kujigamberol remain unclear. In the present study, we investigated the biological activities of kujigamberol on cell adhesion molecules expressed on human umbilical vein endothelial cells (HUVEC) in response to pro-inflammatory cytokines. Kujigamberol decreased the molecular weight of intercellular adhesion molecule-1 (ICAM-1) by altering N-glycan modifications. In contrast to ICAM-1, kujigamberol reduced the interleukin-1α- or tumor necrosis factor α-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin at the mRNA and protein levels. Kujigamberol B, but not kujiol A, decreased the molecular weight of the ICAM-1 protein. Kujigamberol moderately inhibited yeast α-glucosidases, whereas it was only weakly inhibited by kujigamberol B and more weakly by kujiol A. Three compounds did not inhibit Jack bean α-mannosidases. The present results reveal new biological activities of kujigamberol, which interfere with the pro-inflammatory cytokine-induced expression of and N-glycan modifications to cell adhesion molecules in HUVEC.
Collapse
Affiliation(s)
- Sayuri Fukuhara
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Riho Tanigaki
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ken-Ichi Kimura
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| |
Collapse
|
37
|
Zhang J, Liu Y, Deng X, Chen L, Yang X, Yu C. ST6GAL1 negatively regulates monocyte transendothelial migration and atherosclerosis development. Biochem Biophys Res Commun 2018; 500:249-255. [DOI: 10.1016/j.bbrc.2018.04.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/09/2018] [Indexed: 11/26/2022]
|
38
|
Nordén R, Samuelsson E, Nyström K. NFκB-mediated activation of the cellular FUT3, 5 and 6 gene cluster by herpes simplex virus type 1. Glycobiology 2018; 27:999-1005. [PMID: 28973293 DOI: 10.1093/glycob/cwx079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 has the ability to induce expression of a human gene cluster located on chromosome 19 upon infection. This gene cluster contains three fucosyltransferases (encoded by FUT3, FUT5 and FUT6) with the ability to add a fucose to an N-acetylglucosamine residue. Little is known regarding the transcriptional activation of these three genes in human cells. Intriguingly, herpes simplex virus type 1 activates all three genes simultaneously during infection, a situation not observed in uninfected tissue, pointing towards a virus specific mechanism for transcriptional activation. The aim of this study was to define the underlying mechanism for the herpes simplex virus type 1 activation of FUT3, FUT5 and FUT6 transcription. The transcriptional activation of the FUT-gene cluster on chromosome 19 in fibroblasts was specific, not involving adjacent genes. Moreover, inhibition of NFκB signaling through panepoxydone treatment significantly decreased the induction of FUT3, FUT5 and FUT6 transcriptional activation, as did siRNA targeting of p65, in herpes simplex virus type 1 infected fibroblasts. NFκB and p65 signaling appears to play an important role in the regulation of FUT3, FUT5 and FUT6 transcriptional activation by herpes simplex virus type 1 although additional, unidentified, viral factors might account for part of the mechanism as direct interferon mediated stimulation of NFκB was not sufficient to induce the fucosyltransferase encoding gene cluster in uninfected cells.
Collapse
Affiliation(s)
- Rickard Nordén
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Guldhedsgatan 10B, SE-413 46 Gothenburg, Sweden
| | - Ebba Samuelsson
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Guldhedsgatan 10B, SE-413 46 Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Guldhedsgatan 10B, SE-413 46 Gothenburg, Sweden
| |
Collapse
|
39
|
Protein N-Glycosylation in Cardiovascular Diseases and Related Risk Factors. CURRENT CARDIOVASCULAR RISK REPORTS 2018. [DOI: 10.1007/s12170-018-0579-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Guipaud O, Jaillet C, Clément-Colmou K, François A, Supiot S, Milliat F. The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy. Br J Radiol 2018; 91:20170762. [PMID: 29630386 DOI: 10.1259/bjr.20170762] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Altered by ionising radiation, the vascular network is considered as a prime target to limit normal tissue damage and improve tumour control in radiotherapy (RT). Irradiation damages and/or activates endothelial cells, which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Radiation-induced lesions are associated with infiltration of immune-inflammatory cells from the blood and/or the lymph circulation. Damaged cells from the tissues and immune-inflammatory resident cells release factors that attract cells from the circulation, leading to the restoration of tissue balance by fighting against infection, elimination of damaged cells and healing of the injured area. In normal tissues that surround the tumours, the development of an immune-inflammatory reaction in response to radiation-induced tissue injury can turn out to be chronic and deleterious for the organ concerned, potentially leading to fibrosis and/or necrosis of the irradiated area. Similarly, tumours can elicit an immune-inflammation reaction, which can be initialised and amplified by cancer therapy such as radiotherapy, although immune checkpoints often allow many cancers to be protected by inhibiting the T-cell signal. Herein, we have explored the involvement of vascular endothelium in the fate of healthy tissues and tumours undergoing radiotherapy. This review also covers current investigations that take advantage of the radiation-induced response of the vasculature to spare healthy tissue and/or target tumours better.
Collapse
Affiliation(s)
- Olivier Guipaud
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Cyprien Jaillet
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Karen Clément-Colmou
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Agnès François
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Stéphane Supiot
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Fabien Milliat
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| |
Collapse
|
41
|
Jaillet C, Morelle W, Slomianny MC, Paget V, Tarlet G, Buard V, Selbonne S, Caffin F, Rannou E, Martinez P, François A, Foulquier F, Allain F, Milliat F, Guipaud O. Radiation-induced changes in the glycome of endothelial cells with functional consequences. Sci Rep 2017; 7:5290. [PMID: 28706280 PMCID: PMC5509684 DOI: 10.1038/s41598-017-05563-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
As it is altered by ionizing radiation, the vascular network is considered as a prime target in limiting normal tissue damage and improving tumor control in radiation therapy. Irradiation activates endothelial cells which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Since protein glycosylation is an important determinant of cell adhesion, we hypothesized that radiation could alter the glycosylation pattern of endothelial cells and thereby impact adhesion of circulating cells. Herein, we show that ionizing radiation increases high mannose-type N-glycans and decreases glycosaminoglycans. These changes stimulate interactions measured under flow conditions between irradiated endothelial cells and monocytes. Targeted transcriptomic approaches in vitro in endothelial cells and in vivo in a radiation enteropathy mouse model confirm that genes involved in N- and O-glycosylation are modulated by radiation, and in silico analyses give insight into the mechanism by which radiation modifies glycosylation. The endothelium glycome may therefore be considered as a key therapeutic target for modulating the chronic inflammatory response observed in healthy tissues or for participating in tumor control by radiation therapy.
Collapse
Affiliation(s)
- Cyprien Jaillet
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Willy Morelle
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Marie-Christine Slomianny
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Sonia Selbonne
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Fanny Caffin
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Emilie Rannou
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France.,Department of Molecular, Cell and Developmental Biology, UCLA, CA 90095-7239, Los Angeles, USA
| | - Pierre Martinez
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.,GSK - GlaxoSmithKline, 1300, Wavre, Belgium
| | - Agnès François
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - François Foulquier
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Fabrice Allain
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Fabien Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Olivier Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France.
| |
Collapse
|
42
|
The importance of N-glycosylation on β 3 integrin ligand binding and conformational regulation. Sci Rep 2017; 7:4656. [PMID: 28680094 PMCID: PMC5498496 DOI: 10.1038/s41598-017-04844-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022] Open
Abstract
N-glycosylations can regulate the adhesive function of integrins. Great variations in both the number and distribution of N-glycosylation sites are found in the 18 α and 8 β integrin subunits. Crystal structures of αIIbβ3 and αVβ3 have resolved the precise structural location of each N-glycan site, but the structural consequences of individual N-glycan site on integrin activation remain unclear. By site-directed mutagenesis and structure-guided analyses, we dissected the function of individual N-glycan sites in β3 integrin activation. We found that the N-glycan site, β3-N320 at the headpiece and leg domain interface positively regulates αIIbβ3 but not αVβ3 activation. The β3-N559 N-glycan at the β3-I-EGF3 and αIIb-calf-1 domain interface, and the β3-N654 N-glycan at the β3-β-tail and αIIb-calf-2 domain interface positively regulate the activation of both αIIbβ3 and αVβ3 integrins. In contrast, removal of the β3-N371 N-glycan near the β3 hybrid and I-EGF3 interface, or the β3-N452 N-glycan at the I-EGF1 domain rendered β3 integrin more active than the wild type. We identified one unique N-glycan at the βI domain of β1 subunit that negatively regulates α5β1 activation. Our study suggests that the bulky N-glycans influence the large-scale conformational rearrangement by potentially stabilizing or destabilizing the domain interfaces of integrin.
Collapse
|
43
|
Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities. Biochem J 2017; 473:1471-82. [PMID: 27234584 PMCID: PMC4888457 DOI: 10.1042/bj20151154] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
Current knowledge about the glycosylation of matrix metalloproteinases (MMPs) and the inhibitors of metalloproteinases (TIMPs) is reviewed. Whereas structural and functional aspects of the glycobiology of many MMPs is unknown, research on MMP-9 and MMP-14 glycosylation reveals important functional implications, such as altered inhibitor binding and cellular localization. This, together with the fact that MMPs contain conserved and many potential attachment sites for N-linked and O-linked oligosaccharides, proves the need for further studies on MMP glycobiology. Matrix metalloproteases (MMPs) are crucial components of a complex and dynamic network of proteases. With a wide range of potential substrates, their production and activity are tightly controlled by a combination of signalling events, zymogen activation, post-translational modifications and extracellular inhibition. Slight imbalances may result in the initiation or progression of specific disease states, such as cancer and pathological inflammation. As glycosylation modifies the structures and functions of glycoproteins and many MMPs contain N- or O-linked oligosaccharides, we examine, compare and evaluate the evidence for whether glycosylation affects MMP catalytic activity and other functions. It is interesting that the catalytic sites of MMPs do not contain O-linked glycans, but instead possess a conserved N-linked glycosylation site. Both N- and O-linked oligosaccharides, attached to specific protein domains, endow these domains with novel functions such as the binding to lectins, cell-surface receptors and tissue inhibitors of metalloproteases (TIMPs). Validated glycobiological data on N- and O-linked oligosaccharides of gelatinase B/MMP-9 and on O-linked structures of membrane-type 1 MMP/MMP-14 indicate that in-depth research of other MMPs may yield important insights, e.g. about subcellular localizations and functions within macromolecular complexes.
Collapse
|
44
|
Fabian KL, Storkus WJ. Immunotherapeutic Targeting of Tumor-Associated Blood Vessels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:191-211. [PMID: 29275473 DOI: 10.1007/978-3-319-67577-0_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathological angiogenesis occurs during tumor progression and leads in the formation of an abnormal vasculature in the tumor microenvironment (TME). The tumor vasculature is disorganized, tortuous and leaky, resulting in high interstitial pressure and hypoxia in the TME, all of which are events that support tumor growth and survival. Given the sustaining role of the tumor vasculature, it has become an increasingly attractive target for the development of anti-cancer therapies. Antibodies, tyrosine kinase inhibitors and cancer vaccines that target pro-angiogenic factors, angiogenesis-associated receptors or tumor blood vessel-associated antigens continue to be developed and tested for therapeutic efficacy. Preferred anti-angiogenic protocols include those that "normalize" the tumor-associated vasculature which reduce hypoxia and improve tumor blood perfusion, resulting in tumor cell apoptosis, decreased immunosuppression, and enhanced effector immune cell infiltration/tumoricidal action within the TME.
Collapse
Affiliation(s)
- Kellsye L Fabian
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Lertkiatmongkol P, Paddock C, Newman DK, Zhu J, Thomas MJ, Newman PJ. The Role of Sialylated Glycans in Human Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1)-mediated Trans Homophilic Interactions and Endothelial Cell Barrier Function. J Biol Chem 2016; 291:26216-26225. [PMID: 27793989 DOI: 10.1074/jbc.m116.756502] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/12/2016] [Indexed: 11/06/2022] Open
Abstract
Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1) is a major component of the endothelial cell intercellular junction. Previous studies have shown that PECAM-1 homophilic interactions, mediated by amino-terminal immunoglobulin homology domain 1, contribute to maintenance of the vascular permeability barrier and to its re-establishment following inflammatory or thrombotic insult. PECAM-1 glycans account for ∼30% of its molecular mass, and the newly solved crystal structure of human PECAM-1 immunoglobulin homology domain 1 reveals that a glycan emanating from the asparagine residue at position 25 (Asn-25) is located within the trans homophilic-binding interface, suggesting a role for an Asn-25-associated glycan in PECAM-1 homophilic interactions. In support of this possibility, unbiased molecular docking studies revealed that negatively charged α2,3 sialic acid moieties bind tightly to a groove within the PECAM-1 homophilic interface in an orientation that favors the formation of an electrostatic bridge with positively charged Lys-89, mutation of which has been shown previously to disrupt PECAM-1-mediated homophilic binding. To verify the contribution of the Asn-25 glycan to endothelial barrier function, we generated an N25Q mutant form of PECAM-1 that is not glycosylated at this position and examined its ability to contribute to vascular integrity in endothelial cell-like REN cells. Confocal microscopy showed that although N25Q PECAM-1 concentrates normally at cell-cell junctions, the ability of this mutant form of PECAM-1 to support re-establishment of a permeability barrier following disruption with thrombin was significantly compromised. Taken together, these data suggest that a sialic acid-containing glycan emanating from Asn-25 reinforces dynamic endothelial cell-cell interactions by stabilizing the PECAM-1 homophilic binding interface.
Collapse
Affiliation(s)
- Panida Lertkiatmongkol
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and.,the Departments of Pharmacology
| | - Cathy Paddock
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and
| | - Debra K Newman
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and.,the Departments of Pharmacology
| | - Jieqing Zhu
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and.,Biochemistry, and
| | | | - Peter J Newman
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and .,the Departments of Pharmacology.,Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
46
|
Pap A, Medzihradszky KF, Darula Z. Using "spectral families" to assess the reproducibility of glycopeptide enrichment: human serum O-glycosylation revisited. Anal Bioanal Chem 2016; 409:539-550. [PMID: 27766363 DOI: 10.1007/s00216-016-9960-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/02/2016] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
Abstract
Growing evidence on the diverse biological roles of extracellular glycosylation as well as the need for quality control of protein pharmaceuticals make glycopeptide analysis both exciting and important again after a long hiatus. High-throughput O-glycosylation studies have to tackle the complexity of glycosylation as well as technical difficulties and, up to now, have yielded only limited results mostly from single enrichment experiments. In this study, we address the technical reproducibility of the characterization of the most prevalent O-glycosylation (mucin-type core 1 structures) in human serum, using a two-step lectin affinity-based workflow. Our results are based on automated glycopeptide identifications from higher-energy C-trap dissociation and electron transfer dissociation MS/MS data. Assignments meeting strict acceptance criteria served as the foundation for generating "spectral families" incorporating low-scoring MS/MS identifications, supported by accurate mass measurements and expected chromatographic retention times. We show that this approach helped to evaluate the reproducibility of the glycopeptide enrichment more reliably and also contributed to the expansion of the glycoform repertoire of already identified glycosylated sequences. The roadblocks hindering more in-depth investigations and quantitative analyses will also be discussed.
Collapse
Affiliation(s)
- Adam Pap
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, 6726, Szeged, Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, 6726, Szeged, Hungary.,Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Genentech Hall N474A, San Francisco, CA, 94158-2517, USA
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, 6726, Szeged, Hungary.
| |
Collapse
|
47
|
Ortega-Gomez A, Salvermoser M, Rossaint J, Pick R, Brauner J, Lemnitzer P, Tilgner J, de Jong RJ, Megens RTA, Jamasbi J, Döring Y, Pham CT, Scheiermann C, Siess W, Drechsler M, Weber C, Grommes J, Zarbock A, Walzog B, Soehnlein O. Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation 2016; 134:1176-1188. [PMID: 27660294 DOI: 10.1161/circulationaha.116.024790] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Therapeutic targeting of arterial leukocyte recruitment in the context of atherosclerosis has been disappointing in clinical studies. Reasons for such failures include the lack of knowledge of arterial-specific recruitment patterns. Here we establish the importance of the cathepsin G (CatG) in the context of arterial myeloid cell recruitment. METHODS Intravital microscopy of the carotid artery, the jugular vein, and cremasteric arterioles and venules in Apoe-/-and CatG-deficient mice (Apoe-/-Ctsg-/-) was used to study site-specific myeloid cell behavior after high-fat diet feeding or tumor necrosis factor stimulation. Atherosclerosis development was assessed in aortic root sections after 4 weeks of high-fat diet, whereas lung inflammation was assessed after inhalation of lipopolysaccharide. Endothelial deposition of CatG and CCL5 was quantified in whole-mount preparations using 2-photon and confocal microscopy. RESULTS Our observations elucidated a crucial role for CatG during arterial leukocyte adhesion, an effect not found during venular adhesion. Consequently, CatG deficiency attenuates atherosclerosis but not acute lung inflammation. Mechanistically, CatG is immobilized on arterial endothelium where it activates leukocytes to firmly adhere engaging integrin clustering, a process of crucial importance to achieve effective adherence under high-shear flow. Therapeutic neutralization of CatG specifically abrogated arterial leukocyte adhesion without affecting myeloid cell adhesion in the microcirculation. Repetitive application of CatG-neutralizing antibodies permitted inhibition of atherogenesis in mice. CONCLUSIONS Taken together, these findings present evidence of an arterial-specific recruitment pattern centered on CatG-instructed adhesion strengthening. The inhibition of this process could provide a novel strategy for treatment of arterial inflammation with limited side effects.
Collapse
Affiliation(s)
- Almudena Ortega-Gomez
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Melanie Salvermoser
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Jan Rossaint
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Robert Pick
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Janine Brauner
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Patricia Lemnitzer
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Jessica Tilgner
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Renske J de Jong
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Remco T A Megens
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Janina Jamasbi
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Yvonne Döring
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Christine T Pham
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Christoph Scheiermann
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Wolfgang Siess
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Maik Drechsler
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Christian Weber
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Jochen Grommes
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Alexander Zarbock
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Barbara Walzog
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Oliver Soehnlein
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.).
| |
Collapse
|
48
|
Thaysen-Andersen M, Packer NH, Schulz BL. Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease. Mol Cell Proteomics 2016; 15:1773-90. [PMID: 26929216 PMCID: PMC5083109 DOI: 10.1074/mcp.o115.057638] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
The glycoproteome remains severely understudied because of significant analytical challenges associated with glycoproteomics, the system-wide analysis of intact glycopeptides. This review introduces important structural aspects of protein N-glycosylation and summarizes the latest technological developments and applications in LC-MS/MS-based qualitative and quantitative N-glycoproteomics. These maturing technologies provide unique structural insights into the N-glycoproteome and its synthesis and regulation by complementing existing methods in glycoscience. Modern glycoproteomics is now sufficiently mature to initiate efforts to capture the molecular complexity displayed by the N-glycoproteome, opening exciting opportunities to increase our understanding of the functional roles of protein N-glycosylation in human health and disease.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia;
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin L Schulz
- §School of Chemistry & Molecular Biosciences, St Lucia, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
49
|
Sukhikh GT, Ziganshina MM, Nizyaeva NV, Kulikova GV, Volkova JS, Yarotskaya EL, Kan NE, Shchyogolev AI, Tyutyunnik VL. Differences of glycocalyx composition in the structural elements of placenta in preeclampsia. Placenta 2016; 43:69-76. [PMID: 27324102 DOI: 10.1016/j.placenta.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Glycans expressed in the fetal-maternal interface were shown to exert immunomodulating effects and to mediate interactions between the cells. The aim of this study was to investigate alterations in the structure of carbohydrate chains of glycocalyx in placental tissue in pregnancies complicated with preeclampsia (PE). METHODS A histochemical analysis of placental tissues was performed with a panel of biotinylated lectins. We analyzed placental tissues in women who had severe or moderate PE and compared them to placentas from women with normal pregnancies. RESULTS There was decreased content of terminal residues of α(2,6)-linked sialic acid (as stained by SNA lectin) in the carbohydrate chains of glycocalyx of the endothelium of placental terminal villi in patients with moderate preeclampsia. The composition of the glycocalyx of syncytiotrophoblast in patients of this group did not differ from the control group. Amount of the glycans with terminal β-Gal- (ECL) and α-mannosyl residues (ConA) in the syncytiotrophoblast and capillary endothelium of the placenta was significantly higher in the group with severe PE compared to the control group. The increased content of sialoglycans with α(2,6)-linked sialic acids residues were discovered in the syncytium, and the decreased content of α(2,3)-linked sialic acids residues - in the endothelium of terminal villi in preeclampsia. DISCUSSION The most prominent alteration of the glycocalyx composition was found in the placentas of women with severe preeclampsia. It is likely that the modified glycome of syncytiotrophoblast and capillary endothelium may play an important role in pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- G T Sukhikh
- Federal State Budget Institution «Research Center for Obstetrics, Gynecology and Perinatology» of Ministry of Healthcare of the Russian Federation, Russian Federation
| | - M M Ziganshina
- Laboratory of Clinical Immunology, Federal State Budget Institution «Research Center for Obstetrics, Gynecology and Perinatology» of Ministry of Healthcare of the Russian Federation, Russian Federation.
| | - N V Nizyaeva
- Department of Perinatal Pathology, Federal State Budget Institution «Research Center for Obstetrics, Gynecology and Perinatology» of Ministry of Healthcare of the Russian Federation, Russian Federation
| | - G V Kulikova
- Department of Perinatal Pathology, Federal State Budget Institution «Research Center for Obstetrics, Gynecology and Perinatology» of Ministry of Healthcare of the Russian Federation, Russian Federation
| | - J S Volkova
- Department of Perinatal Pathology, Federal State Budget Institution «Research Center for Obstetrics, Gynecology and Perinatology» of Ministry of Healthcare of the Russian Federation, Russian Federation
| | - E L Yarotskaya
- Department of International Cooperation, Federal State Budget Institution «Research Center for Obstetrics, Gynecology and Perinatology» of Ministry of Healthcare of the Russian Federation, Russian Federation
| | - N E Kan
- Observational Department, Federal State Budget Institution «Research Center for Obstetrics, Gynecology and Perinatology» of Ministry of Healthcare of the Russian Federation, Russian Federation
| | - A I Shchyogolev
- Department of Perinatal Pathology, Federal State Budget Institution «Research Center for Obstetrics, Gynecology and Perinatology» of Ministry of Healthcare of the Russian Federation, Russian Federation
| | - V L Tyutyunnik
- Obstetrical Physiologic Department, Federal State Budget Institution «Research Center for Obstetrics, Gynecology and Perinatology» of Ministry of Healthcare of the Russian Federation, Russian Federation
| |
Collapse
|
50
|
Loke I, Kolarich D, Packer NH, Thaysen-Andersen M. Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 2016; 51:31-55. [PMID: 27086127 DOI: 10.1016/j.mam.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Proteins are frequently modified by complex carbohydrates (glycans) that play central roles in maintaining the structural and functional integrity of cells and tissues in humans and lower organisms. Mannose forms an essential building block of protein glycosylation, and its functional involvement as components of larger and diverse α-mannosidic glycoepitopes in important intra- and intercellular glycoimmunological processes is gaining recognition. With a focus on the mannose-rich asparagine (N-linked) glycosylation type, this review summarises the increasing volume of literature covering human and non-human protein mannosylation, including their structures, biosynthesis and spatiotemporal expression. The review also covers their known interactions with specialised host and microbial mannose-recognising C-type lectin receptors (mrCLRs) and antibodies (mrAbs) during inflammation and pathogen infection. Advances in molecular mapping technologies have recently revealed novel immuno-centric mannose-terminating truncated N-glycans, termed paucimannosylation, on human proteins. The cellular presentation of α-mannosidic glycoepitopes on N-glycoproteins appears tightly regulated; α-mannose determinants are relative rare glycoepitopes in physiological extracellular environments, but may be actively secreted or leaked from cells to transmit potent signals when required. Simultaneously, our understanding of the molecular basis on the recognition of mannosidic epitopes by mrCLRs including DC-SIGN, mannose receptor, mannose binding lectin and mrAb is rapidly advancing, together with the functional implications of these interactions in facilitating an effective immune response during physiological and pathophysiological conditions. Ultimately, deciphering these complex mannose-based receptor-ligand interactions at the detailed molecular level will significantly advance our understanding of immunological disorders and infectious diseases, promoting the development of future therapeutics to improve patient clinical outcomes.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|