1
|
Wang J, Fang S, Jiang Y, Hua Q. Unraveling the Mechanism of Action of Ubiquitin-Specific Protease 5 and Its Inhibitors in Tumors. Clin Med Insights Oncol 2024; 18:11795549241281932. [PMID: 39391229 PMCID: PMC11465303 DOI: 10.1177/11795549241281932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5), a member of the ubiquitin-specific proteases (USPs) family, functions by specifically removing ubiquitin chains from target proteins for stabilization and degrading unbound polyubiquitin chains to maintain a steady-state monoubiquitin pool. Ubiquitin-specific protease 5 regulates various cellular activities, including DNA double-strand break repair, transmission of neuropathic and inflammatory pain signals, immune response, and tumor cell proliferation. Furthermore, USP5 is involved in the development of multiple tumors such as liver, lung, pancreatic, and breast cancers as well as melanoma. Downstream regulatory mechanisms associated with USP5 are complex and diverse. Ubiquitin-specific protease 5 has been revealed as an emerging target for tumor treatment. This study has introduced some molecules upstream to control the expression of USP5 at the levels of transcription, translation, and post-translation. Furthermore, the study incorporated inhibitors known to be associated with USP5, including partially selective deubiquitinase (DUB) inhibitors such as WP1130, EOAI3402143, vialinin A, and chalcone derivatives. It also included the ubiquitin-activating enzyme E1 inhibitor, PYR-41. These small molecule inhibitors impact the occurrence and development of various tumors. Therefore, this article comprehensively reviews the pivotal role of USP5 in different signaling pathways during tumor progression and resumes the progress made in developing USP5 inhibitors, providing a theoretical foundation for their clinical translation.
Collapse
Affiliation(s)
| | | | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Beyer S, Wehrmann M, Meister S, Trillsch F, Ganster F, Schmoeckel E, Corradini S, Mahner S, Jeschke U, Kessler M, Burges A, Kolben T. Expression of Intracellular Galectin-8 and -9 in Endometrial Cancer. Int J Mol Sci 2024; 25:6907. [PMID: 39000016 PMCID: PMC11241125 DOI: 10.3390/ijms25136907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Endometrial cancer (EC) is a common gynecological cancer worldwide. Treatment has been improved in recent years; however, in advanced stages, therapeutic options are still limited. The expression of galectins is increased in several tumor types and that they are involved in important cell processes. Large studies on endometrial cancer are still pending; Specimens of 225 patients with EC were immunohistochemically stained with antibodies for Gal-8 and Gal-9. Expression was correlated with histopathological variables. The cytosolic expression of both galectins is associated with grading and survival. Cytosolic Galectin-8 expression is a positive prognostic factor for overall survival (OS) and progression-free survival (PFS), while nuclear Gal-8 expression correlates only to OS. The cytosolic presence of Galectin-9 is correlated with a better prognosis regarding OS. Our results suggest that expression of both galectins is associated with OS and PFS in EC. Further studies are needed to understand the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Maya Wehrmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Franziska Ganster
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Elisa Schmoeckel
- Institute of Pathology, TUM School of Medicine and Health, Trogerstraße 18, 81675 Munich, Germany;
| | - Stefanie Corradini
- Department of Radiation-Oncology, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
- Department of Obstetrics and Gynecology, University Hospital, Universitätsklinikum Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| |
Collapse
|
3
|
Yang Q, Sun J, Wu W, Xing Z, Yan X, Lv X, Wang L, Song L. A galectin-9 involved in the microbial recognition and haemocyte autophagy in the Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105063. [PMID: 37730190 DOI: 10.1016/j.dci.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Galectin-9 is a tandem-repeat type member of galectin family participating in various immune responses, such as cell agglutination, phagocytosis, and autophagy. In the present study, a tandem repeat galectin-9 (defined as CgGal-9) was identified from Pacific oyster Crassostrea gigas, which consisted of two conserved carbohydrate recognition domains (CRDs) joined by a linker peptide. CgGal-9 was closely clustered with CaGal-9 from C. angulata, and they were assigned into the branch of invertebrate galectin-9s in the phylogenetic tree. The mRNA transcripts of CgGal-9 were detected in all the tested tissues, with the highest expression level in haemocytes. The mRNA expressions of CgGal-9 in haemocytes increased significantly after lipopolysaccharide (LPS) and Vibrio splendidus stimulation. The recombinant CgGal-9 was able to bind all the examined pathogen-associated molecular patterns (LPS, peptidoglycan, and mannose) and microbes (V. splendidus, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and Pichia pastoris), and agglutinated most of them in the presence of Ca2+. In CgGal-9-RNAi oysters, the mRNA expressions of autophagy related genes (CgBeclin1, CgATG5, CgP62 and CgLC3) in haemocytes decreased significantly while that of CgmTOR increased significantly at 3 h after V. splendidus stimulation. The autophagy level and mRNA expressions of autophagy related genes decreased in haemocytes after CgGal-9 was blocked by the corresponding antibody. These results revealed that CgGal-9 was able to bind different microbes and might be involved in haemocyte autophagy in the immune response of oyster.
Collapse
Affiliation(s)
- Qian Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhen Xing
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Prevention and Control of Aquatic Animal Diseases, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Prevention and Control of Aquatic Animal Diseases, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
4
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
5
|
Beyer S, Wehrmann M, Meister S, Kolben TM, Trillsch F, Burges A, Czogalla B, Schmoeckel E, Mahner S, Jeschke U, Kolben T. Galectin-8 and -9 as prognostic factors for cervical cancer. Arch Gynecol Obstet 2022; 306:1211-1220. [PMID: 35377045 PMCID: PMC9470666 DOI: 10.1007/s00404-022-06449-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/09/2022] [Indexed: 11/21/2022]
Abstract
Purpose Galectins are carbohydrate-binding proteins with multiple effects on cell biology. Research shows that they play an important role in tumor development and progression. Therefore, in this study, the presence of Galectin-8 and -9 (Gal), both already known as prognostic factors in other tumor entities, were investigated in cervical cancer. Our aim was to examine the association of Gal-8 and -9 expression with histopathological markers and survival of the patients. Methods Gal-8 and -9 expression was investigated in 250 cervical cancer samples by immunohistochemistry. The staining was evaluated using the immunoreactive score (IRS). The results were correlated to clinical and pathological data. The correlation of Gal-8 and -9 expression with overall and relapse-free survival was analyzed. Results Expression of Gal-8 was associated with negative N-status and lower FIGO status. Detection of Gal-9 was connected to negative N-status and lower grading regarding all specimens. A correlation of Gal-9 with lower FIGO status was detected for squamous cell carcinoma (SCC) only. Expression of Gal-8 was associated with relapse-free survival of SCC patients in a positive manner. Gal-9 expression was associated with better overall survival. Conclusion Our results suggest that expression of both galectins is inversely associated with tumor stage and progression. Gal-8 expression is associated with relapse-free survival of patients with SCC, while presence of Gal-9 in cervical cancer is associated with a better prognosis in regard of overall survival. Supplementary Information The online version contains supplementary material available at 10.1007/s00404-022-06449-9.
Collapse
Affiliation(s)
- Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Maya Wehrmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Theresa M Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital, Universitätsklinikum Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
6
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
7
|
Wang T, Zhang P, Chen L, Qi H, Chen H, Zhu Y, Zhang L, Zhong M, Shi X, Li Q. Ixazomib induces apoptosis and suppresses proliferation in esophageal squamous cell carcinoma through activation of the c-Myc/NOXA pathway. J Pharmacol Exp Ther 2021; 380:15-25. [PMID: 34740946 DOI: 10.1124/jpet.121.000837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the major subtypes of esophageal cancer. More than half of the ESCC patients in the world are in China, and the 5-year survival rate is less than 10%. As a new oral proteasome inhibitor, ixazomib has shown strong therapeutic effect in many solid tumors. In this study, we aimed to investigate the effects of ixazomib on the proliferation inhibition and apoptosis of ESCC cells.We used four human ESCC cell lines, cell viability assay, cell cycle and apoptosis assay, RT-PCR, Western blot, immunohistochemistry and ESCC xenografts model to clarify the roles of the therapeutic effect and mechanism of ixazomib in ESCC. Ixazomib significantly inhibited the proliferation and induced apoptosis in ESCC cells. RT-PCR results showed that the expression of endoplasmic reticulum stress-related gene NOXA and c-Myc significant increase after treatment with ixazomib in ESCC cell. Then we knockdown the NOXA and c-Myc by siRNA, the therapeutic effect of ixazomib markedly decrease, which confirmed that c-Myc/NOXA pathway played a key role in the treatment of ESCC with ixazomib. In vivo, the xenograft ESCC model mice were given 10 mg/kg of ixazomib every other day for 30 days. The results showed that the tumor size in the treatment group was significantly smaller than the control group. These results suggested that ixazomib is known to suppress proliferation and induce apoptosis in an ESCC cell lines, and this effect was likely mediated by increased activation of the c-Myc/NOXA signaling pathways. Significance Statement Esophageal squamous cell carcinoma (ESCC) is the common worldwide malignant tumors,but conventional chemotherapeutics suffer from a number of limitations. In this study, our results suggested that ixazomib is known to suppress proliferation and induce apoptosis in an ESCC cell lines. Therefore, ixazomib may be a potential new stratgegy for ESCC therapy.
Collapse
|
8
|
Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan-Lectin Interactions in Cancer and Viral Infections and How to Disrupt Them. Int J Mol Sci 2021; 22:10577. [PMID: 34638920 PMCID: PMC8508825 DOI: 10.3390/ijms221910577] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glycan-lectin interactions play an essential role in different cellular processes. One of their main functions is involvement in the immune response to pathogens or inflammation. However, cancer cells and viruses have adapted to avail themselves of these interactions. By displaying specific glycosylation structures, they are able to bind to lectins, thus promoting pathogenesis. While glycan-lectin interactions promote tumor progression, metastasis, and/or chemoresistance in cancer, in viral infections they are important for viral entry, release, and/or immune escape. For several years now, a growing number of investigations have been devoted to clarifying the role of glycan-lectin interactions in cancer and viral infections. Various overviews have already summarized and highlighted their findings. In this review, we consider the interactions of the lectins MGL, DC-SIGN, selectins, and galectins in both cancer and viral infections together. A possible transfer of ways to target and disrupt them might lead to new therapeutic approaches in different pathological backgrounds.
Collapse
Affiliation(s)
- Stefanie Maria Kremsreiter
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Ann-Sophie Helene Kroell
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Katharina Weinberger
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Heike Boehm
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Galectin-9, a Player in Cytokine Release Syndrome and a Surrogate Diagnostic Biomarker in SARS-CoV-2 Infection. mBio 2021; 12:mBio.00384-21. [PMID: 33947753 PMCID: PMC8262904 DOI: 10.1128/mbio.00384-21] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The outbreak of SARS-CoV-2 infection has enormously impacted our lives. Clinical evidence has implicated the emergence of cytokine release syndrome as the prominent cause of mortality in COVID-19 patients. In this study, we observed massive elevation of plasma Galectin-9 (Gal-9) in COVID-19 patients compared to healthy controls (HCs). By using the receiver operating characteristic (ROC) curve, we found that a baseline of 2,042 pg/ml plasma Gal-9 can differentiate SARS-CoV-2-infected from noninfected individuals with high specificity/sensitivity (95%). Analysis of 30 cytokines and chemokines detected a positive correlation of the plasma Gal-9 with C-reactive protein (CRP) and proinflammatory cytokines/chemokines such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10, MIP-1α, and MCP-1 but an inverse correlation with transforming growth factor β (TGF-β) in COVID-19 patients. In agreement, we found enhanced production of IL-6 and TNF-α by monocytes and NK cells of COVID-19 patients once treated with the recombinant human Gal-9 in vitro. Also, we observed that although the cell-membrane expression of Gal-9 on monocytes does not change in COVID-19 patients, those with higher Gal-9 expression exhibit an activated phenotype. Furthermore, we noted significant downregulation of surface Gal-9 in neutrophils from COVID-19 patients compared to HCs. Our further investigations indicated that immune activation following SARS-CoV-2 infection results in Gal-9 shedding from neutrophils. The strong correlation of Gal-9 with proinflammatory mediators suggests that inhibition of Gal-9 may severe as a therapeutic approach in COVID-19 infection. Besides, the plasma Gal-9 measurement may be used as a surrogate diagnostic biomarker in COVID-19 patients.
Collapse
|
10
|
Kgatle MM, Boshomane TMG, Lawal IO, Mokoala KMG, Mokgoro NP, Lourens N, Kairemo K, Zeevaart JR, Vorster M, Sathekge MM. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach. Int J Mol Sci 2021; 22:4109. [PMID: 33921181 PMCID: PMC8071559 DOI: 10.3390/ijms22084109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Emerging research demonstrates that co-inhibitory immune checkpoints (ICs) remain the most promising immunotherapy targets in various malignancies. Nonetheless, ICIs have offered insignificant clinical benefits in the treatment of advanced prostate cancer (PCa) especially when they are used as monotherapies. Current existing PCa treatment initially offers an improved clinical outcome and overall survival (OS), however, after a while the treatment becomes resistant leading to aggressive and uncontrolled disease associated with increased mortality and morbidity. Concurrent combination of the ICIs with radionuclides therapy that has rapidly emerged as safe and effective targeted approach for treating PCa patients may shift the paradigm of PCa treatment. Here, we provide an overview of the contextual contribution of old and new emerging inhibitory ICs in PCa, preclinical and clinical studies supporting the use of these ICs in treating PCa patients. Furthermore, we will also describe the potential of using a combinatory approach of ICIs and radionuclides therapy in treating PCa patients to enhance efficacy, durable cancer control and OS. The inhibitory ICs considered in this review are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1), V-domain immunoglobulin suppressor of T cell activation (VISTA), indoleamine 2,3-dioxygenase (IDO), T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), B7 homolog 3 (B7-H3) and B7-H4.
Collapse
Affiliation(s)
- Mankgopo M. Kgatle
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Neo P. Mokgoro
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Nico Lourens
- Department of Urology, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kalevo Kairemo
- Departments of Molecular Radiotherapy & Nuclear Medicine, Docrates Cancer Center, 00180 Helsinki, Finland;
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Radiochemistry, South African Nuclear Energy Corporation SOC (Necsa), Pelindaba 0001, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
11
|
Immunoreactivity of receptor and transporters for lactate located in astrocytes and epithelial cells of choroid plexus of human brain. Neurosci Lett 2020; 741:135479. [PMID: 33212210 DOI: 10.1016/j.neulet.2020.135479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022]
Abstract
Glucose metabolism produces lactate and hydrogen ions in an anaerobic environment. Cerebral ischemia or hypoxia is believed to become progressively lactacidemic. Monocarboxylate transporters (MCTs) in endothelial cells are essential for the transport of lactate from the blood into the brain. In addition, it is considered that MCTs located in astrocytic and neuronal cells play a key role in the shuttling of energy metabolites between neurons and astrocytes. However, roles of lactate in the brain remain to be clarified. In this study, the localization of lactate transporters and a receptor for cellular uptake of lactate was immunohistochemically examined in autopsied human brains. Immunoreactivity for MCT1 was observed in the apical cytoplasmic membrane of some epithelial cells in the choroid plexus as well as astrocytes and the capillary wall, whereas that for MCT4 was found in the basolateral cytoplasmic membrane of small number of epithelial cells as well as astrocytes and the capillary wall. In addition, immunoreactivity for the hydroxy-carboxylic acid 1 receptor (HCA1 receptor), a receptor for cellular uptake of lactate, was also found on the basolateral cytoplasmic membrane of epithelial cells as well as astrocytic and neuronal cells. Immunoreactivity for lactate dehydrogenase (LDH)-B was observed in the cytoplasm of epithelial cells in the choroid plexus as well as astrocytes and the capillary wall. These immunohistochemical findings indicate the localization of MCT1, MCT4, the HCA1 receptor, and LDH-B in epithelial cells of the choroid plexus as well as astrocytes, and suggest the transport of intravascular lactate into the brain through epithelial cells of the choroid plexus as well as cerebral vessels and the possibility of lactate being utilized in epithelial cells.
Collapse
|
12
|
Sudhakar JN, Lu HH, Chiang HY, Suen CS, Hwang MJ, Wu SY, Shen CN, Chang YM, Li FA, Liu FT, Shui JW. Lumenal Galectin-9-Lamp2 interaction regulates lysosome and autophagy to prevent pathogenesis in the intestine and pancreas. Nat Commun 2020; 11:4286. [PMID: 32855403 PMCID: PMC7453023 DOI: 10.1038/s41467-020-18102-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Intracellular galectins are carbohydrate-binding proteins capable of sensing and repairing damaged lysosomes. As in the physiological conditions glycosylated moieties are mostly in the lysosomal lumen but not cytosol, it is unclear whether galectins reside in lysosomes, bind to glycosylated proteins, and regulate lysosome functions. Here, we show in gut epithelial cells, galectin-9 is enriched in lysosomes and predominantly binds to lysosome-associated membrane protein 2 (Lamp2) in a Asn(N)-glycan dependent manner. At the steady state, galectin-9 binding to glycosylated Asn175 of Lamp2 is essential for functionality of lysosomes and autophagy. Loss of N-glycan-binding capability of galectin-9 causes its complete depletion from lysosomes and defective autophagy, leading to increased endoplasmic reticulum (ER) stress preferentially in autophagy-active Paneth cells and acinar cells. Unresolved ER stress consequently causes cell degeneration or apoptosis that associates with colitis and pancreatic disorders in mice. Therefore, lysosomal galectins maintain homeostatic function of lysosomes to prevent organ pathogenesis.
Collapse
Affiliation(s)
| | - Hsueh-Han Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Yu Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sung-Yu Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jr-Wen Shui
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
13
|
Wang H, Han X, Xu J. Lysosome as the Black Hole for Checkpoint Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:325-346. [PMID: 32185717 DOI: 10.1007/978-981-15-3266-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lysosomes, as digestive organelles full of hydrolases, have complex functions and play an important role in cellular physiological and pathological processes. In normal physiological conditions, lysosomes can sense the nutritional state and be responsible for recycling raw materials to provide nutrients, affecting cell signaling pathways and regulating cell proliferation. Lysosomes are related to many diseases and associated with metastasis and drug resistance of tumors. In recent years, much attention has been paid to the tumor immunotherapy especially immune checkpoint blockade therapy. Accumulating data suggest that lysosomes may serve as a major destruction for immune checkpoint molecules, and secretory lysosomes can temporarily store immune checkpoint proteins. Once activated, the compounds contained in secretory lysosomes are released to the surface of cell membrane rapidly. Inhibitions of lysosomes can overcome the chemoresistance of some tumors and enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Huanbin Wang
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Xue Han
- Institutes of Biological Sciences, Fudan University, Shanghai, 200032, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|