1
|
Nie J, Eom K, AlGhosain HM, Neifert A, Cherian A, Gerbaka GM, Ma KY, Liu T, Lee J. Intravitreally Injected Plasmonic Nanorods Activate Bipolar Cells with Patterned Near-Infrared Laser Projection. ACS NANO 2025; 19:11823-11840. [PMID: 40110744 DOI: 10.1021/acsnano.4c14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Retinal prostheses aim to restore vision in individuals affected by degenerative conditions, such as age-related macular degeneration and retinitis pigmentosa. Traditional approaches, including implantable electrode arrays and optogenetics, often require invasive surgery or genetic modification and face limitations in spatial resolution and visual field size. While emerging nanoparticle-based methods offer minimally invasive solutions, some of them rely on intense visible light, which may interfere with residual vision. Plasmonic gold nanorods (AuNRs), tuned to absorb near-infrared (NIR) light, provide a promising alternative by enabling photothermal neuromodulation without affecting the remaining sight. However, effectively utilizing photothermal stimulation with patterned laser projection for precise neural activation remains underexplored. In this study, we introduce a less invasive approach using intravitreally injected anti-Thy1 antibody-conjugated AuNRs to primarily activate bipolar cells─a target traditionally reached through more invasive subretinal injections. This technique allows for extensive retinal coverage and facilitates high-resolution visual restoration via patterned NIR stimulation. Following injection, a scanning NIR laser beam projected in a square pattern with a spot size of 20 μm consistently triggered highly localized neuronal activation, specifically stimulating bipolar cells through temperature-sensitive ion channels. In vivo, this patterned stimulation evoked electrocorticogram responses in the visual cortex of both wild-type and fully blind mouse models without inducing systemic toxicity or significant retinal damage. Our innovative approach promises significant advancements in spatial resolution and broad applicability, offering a precise, customizable, and less invasive method to restore vision.
Collapse
Affiliation(s)
- Jiarui Nie
- School of Engineering, Brown University, Providence Rhode Island 02912, United States
- Carney Institute for Brain Science, Brown University, Providence Rhode Island 02906, United States
- Institute for Biology, Engineering and Medicine, Brown University, Providence Rhode Island 02912, United States
| | - Kyungsik Eom
- School of Engineering, Brown University, Providence Rhode Island 02912, United States
- Department of Electronics Engineering, Pusan National University, Busan 43241, South Korea
| | - Hafithe M AlGhosain
- School of Engineering, Brown University, Providence Rhode Island 02912, United States
- Institute for Biology, Engineering and Medicine, Brown University, Providence Rhode Island 02912, United States
| | - Alexander Neifert
- Institute for Biology, Engineering and Medicine, Brown University, Providence Rhode Island 02912, United States
| | - Aaron Cherian
- Institute for Biology, Engineering and Medicine, Brown University, Providence Rhode Island 02912, United States
| | - Gaia Marie Gerbaka
- Institute for Biology, Engineering and Medicine, Brown University, Providence Rhode Island 02912, United States
| | - Kristine Y Ma
- Institute for Biology, Engineering and Medicine, Brown University, Providence Rhode Island 02912, United States
| | - Tao Liu
- Department of Biostatistics, Brown University School of Public Health, Providence Rhode Island 02912, United States
| | - Jonghwan Lee
- School of Engineering, Brown University, Providence Rhode Island 02912, United States
- Carney Institute for Brain Science, Brown University, Providence Rhode Island 02906, United States
- Institute for Biology, Engineering and Medicine, Brown University, Providence Rhode Island 02912, United States
- Center on the Biology of Aging, Brown University, Providence Rhode Island 02912, United States
- Center for Alternative to Animals in Testing, Brown University, Providence Rhode Island 02912, United States
| |
Collapse
|
2
|
Georgiou M, Robson AG, Fujinami K, de Guimarães TAC, Fujinami-Yokokawa Y, Daich Varela M, Pontikos N, Kalitzeos A, Mahroo OA, Webster AR, Michaelides M. Phenotyping and genotyping inherited retinal diseases: Molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes. Prog Retin Eye Res 2024; 100:101244. [PMID: 38278208 DOI: 10.1016/j.preteyeres.2024.101244] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population and in children. The scope of this review is to familiarise clinicians and scientists with the current landscape of molecular genetics, clinical phenotype, retinal imaging and therapeutic prospects/completed trials in IRD. Herein we present in a comprehensive and concise manner: (i) macular dystrophies (Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), PRPH2-associated pattern dystrophy, Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)), (ii) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4, KCNV2 and RPGR), (iii) predominant rod or rod-cone dystrophies (retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)), (iv) Leber congenital amaurosis/early-onset severe retinal dystrophy (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (v) cone dysfunction syndromes (achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6), X-linked cone dysfunction with myopia and dichromacy (Bornholm Eye disease; OPN1LW/OPN1MW array), oligocone trichromacy, and blue-cone monochromatism (OPN1LW/OPN1MW array)). Whilst we use the aforementioned classical phenotypic groupings, a key feature of IRD is that it is characterised by tremendous heterogeneity and variable expressivity, with several of the above genes associated with a range of phenotypes.
Collapse
Affiliation(s)
- Michalis Georgiou
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Kaoru Fujinami
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| | - Thales A C de Guimarães
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan.
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Nikolas Pontikos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Angelos Kalitzeos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Section of Ophthalmology, King s College London, St Thomas Hospital Campus, London, United Kingdom; Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Translational Ophthalmology, Wills Eye Hospital, Philadelphia, PA, USA.
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
3
|
CDHR1-Related Cone-Rod Dystrophy: Clinical Characteristics, Imaging Findings, and Genetic Test Results-A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020399. [PMID: 36837600 PMCID: PMC9966332 DOI: 10.3390/medicina59020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Background: Cone-rod dystrophies (CRDs) are a heterogeneous group of inherited retinal diseases (IRDs) characterized by cone photoreceptor loss, that is followed by subsequent rod photoreceptor impairment. Case presentation: A 49-year-old man complaining of diminution of vision in both eyes (OU) was referred to our outpatient clinic. He reported visual loss for 5 years, but it was most progressive during the last few months. The best-corrected visual acuity (BCVA) at presentation was 0.4 in the right eye (RE) and 1.0 in the left eye (LE). Fundus fluorescein angiography (FFA) revealed granular hyperfluorescence in the macula and concomitant areas of capillary atrophy. Flash full-field electroretinography (ffERG) showed lowering of a and b waves as well as prolonged peak time in light-adapted conditions. However, outcomes of dark-adapted ERGs were within normal limits. Based on the constellation of clinical, angiographic, and electrophysiological tests findings, a diagnosis of IRD was suspected. Genetic testing showed a homozygous, pathogenic c.783G>A mutation in the cadherin-related family member 1 (CDHR1) gene, which confirmed CRD type 15 (CRD15). Conclusions: We demonstrate the clinical characteristics, retinal imaging outcomes, and genetic test results of a patient with CRD15. Our case contributes to expanding our knowledge of the clinical involvement of the pathogenic mutation c.783G>A in CDHR1 variants.
Collapse
|
4
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
5
|
Ling JP, Bygrave AM, Santiago CP, Carmen-Orozco RP, Trinh VT, Yu M, Li Y, Liu Y, Bowden KD, Duncan LH, Han J, Taneja K, Dongmo R, Babola TA, Parker P, Jiang L, Leavey PJ, Smith JJ, Vistein R, Gimmen MY, Dubner B, Helmenstine E, Teodorescu P, Karantanos T, Ghiaur G, Kanold PO, Bergles D, Langmead B, Sun S, Nielsen KJ, Peachey N, Singh MS, Dalton WB, Rajaii F, Huganir RL, Blackshaw S. Cell-specific regulation of gene expression using splicing-dependent frameshifting. Nat Commun 2022; 13:5773. [PMID: 36182931 PMCID: PMC9526712 DOI: 10.1038/s41467-022-33523-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/21/2022] [Indexed: 01/29/2023] Open
Abstract
Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length. This method, which we denote splicing-linked expression design (SLED), can be combined in a Boolean manner with existing techniques such as minipromoters and viral capsids. SLED can use strong constitutive promoters, without sacrificing precision, by decoupling the tradeoff between promoter strength and selectivity. AAV-packaged SLED vectors can selectively deliver fluorescent reporters and calcium indicators to various neuronal subtypes in vivo. We also demonstrate gene therapy utility by creating SLED vectors that can target PRPH2 and SF3B1 mutations. The flexibility of SLED technology enables creative avenues for basic and translational research.
Collapse
Affiliation(s)
- Jonathan P Ling
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Alexei M Bygrave
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rogger P Carmen-Orozco
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vickie T Trinh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Yini Li
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ying Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kyra D Bowden
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Leighton H Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeong Han
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kamil Taneja
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rochinelle Dongmo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Travis A Babola
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patrick Parker
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Patrick J Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jennifer J Smith
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rachel Vistein
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Megan Y Gimmen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin Dubner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Eric Helmenstine
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Patric Teodorescu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Theodoros Karantanos
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gabriel Ghiaur
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Patrick O Kanold
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Dwight Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ben Langmead
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shuying Sun
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristina J Nielsen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Neal Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - W Brian Dalton
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fatemeh Rajaii
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Leroy BP, Fischer MD, Flannery JG, MacLaren RE, Dalkara D, Scholl HPN, Chung DC, Spera C, Viriato D, Banhazi J. Gene Therapy for Inherited Retinal Disease: Long-Term Durability of Effect. Ophthalmic Res 2022; 66:179-196. [PMID: 36103843 DOI: 10.1159/000526317] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/27/2022] [Indexed: 12/23/2023]
Abstract
The recent approval of voretigene neparvovec (Luxturna®) for patients with biallelic RPE65 mutation-associated inherited retinal dystrophy with viable retinal cells represents an important step in the development of ocular gene therapies. Herein, we review studies investigating the episomal persistence of different recombinant adeno-associated virus (rAAV) vector genomes and the preclinical and clinical evidence of long-term effects of different RPE65 gene replacement therapies. A targeted review of articles published between 1974 and January 2021 in Medline®, Embase®, and other databases was conducted, followed by a descriptive longitudinal analysis of the clinical trial outcomes of voretigene neparvovec. Following an initial screening, 14 publications examining the episomal persistence of different rAAV genomes and 71 publications evaluating gene therapies in animal models were included. Viral genomes were found to persist for at least 22 months (longest study follow-up) as transcriptionally active episomes. Treatment effects lasting almost a decade were reported in canine disease models, with more pronounced effects the earlier the intervention. The clinical trial outcomes of voretigene neparvovec are consistent with preclinical findings and reveal sustained results for up to 7.5 years for the full-field light sensitivity threshold test and 5 years for the multi-luminance mobility test in the Phase I and Phase III trials, respectively. In conclusion, the therapeutic effect of voretigene neparvovec lasts for at least a decade in animal models and 7.5 years in human subjects. Since retinal cells can retain functionality over their lifetime after transduction, these effects may be expected to last even longer in patients with a sufficient number of outer retinal cells at the time of intervention.
Collapse
Affiliation(s)
- Bart P Leroy
- Department of Ophthalmology & Centre for Medical Genetics, Ghent University Hospital & Ghent University, Ghent, Belgium
- Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
- Oxford Eye Hospital, University of Oxford NHS Foundation Trust and NIHR Oxford Biomedical Research Centre, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - John G Flannery
- School of Optometry and the Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, USA
| | - Robert E MacLaren
- Oxford Eye Hospital, University of Oxford NHS Foundation Trust and NIHR Oxford Biomedical Research Centre, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
7
|
Peng H, Ramadurgum P, Woodard DR, Daniel S, Nakahara E, Renwick M, Aredo B, Datta S, Chen B, Ufret-Vincenty R, Hulleman JD. Utility of the DHFR-based destabilizing domain across mouse models of retinal degeneration and aging. iScience 2022; 25:104206. [PMID: 35521529 PMCID: PMC9062244 DOI: 10.1016/j.isci.2022.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli dihydrofolate reductase (DHFR) destabilizing domain (DD) serves as a promising approach to conditionally regulate protein abundance in a variety of tissues. To test whether this approach could be effectively applied to a wide variety of aged and disease-related ocular mouse models, we evaluated the DHFR DD system in the eyes of aged mice (up to 24 months), a light-induced retinal degeneration (LIRD) model, and two genetic models of retinal degeneration (rd2 and Abca4−/− mice). The DHFR DD was effectively degraded in all model systems, including rd2 mice, which showed significant defects in chymotrypsin proteasomal activity. Moreover, trimethoprim (TMP) administration stabilized the DHFR DD in all mouse models. Thus, the DHFR DD-based approach allows for control of protein abundance in a variety of mouse models, laying the foundation to use this strategy for the conditional control of gene therapies to potentially treat multiple eye diseases. Destabilizing domains (DDs) confer conditional control of ocular protein abundance The DHFR DD is effectively turned over and stabilized in aged mouse’s retina DHFR DDs perform well in environmental and genetic retinal degenerative models
Collapse
|
8
|
Georgiou M, Fujinami K, Michaelides M. Inherited retinal diseases: Therapeutics, clinical trials and end points-A review. Clin Exp Ophthalmol 2021; 49:270-288. [PMID: 33686777 DOI: 10.1111/ceo.13917] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of disorders characterised by photoreceptor degeneration or dysfunction. These disorders typically present with severe vision loss that can be progressive, with disease onset ranging from congenital to late adulthood. The advances in genetics, retinal imaging and molecular biology, have conspired to create the ideal environment for establishing treatments for IRDs, with the first approved gene therapy and the commencement of multiple clinical trials. The scope of this review is to familiarise clinicians and scientists with the current management and the prospects for novel therapies for: (1) macular dystrophies, (2) cone and cone-rod dystrophies, (3) cone dysfunction syndromes, (4) Leber congenital amaurosis, (5) rod-cone dystrophies, (6) rod dysfunction syndromes and (7) chorioretinal dystrophies. We also briefly summarise the investigated end points for the ongoing trials.
Collapse
Affiliation(s)
- Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Chakraborty D, Strayve DG, Makia MS, Conley SM, Kakahel M, Al-Ubaidi MR, Naash MI. Novel molecular mechanisms for Prph2-associated pattern dystrophy. FASEB J 2019; 34:1211-1230. [PMID: 31914632 DOI: 10.1096/fj.201901888r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/10/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023]
Abstract
Mutations in peripherin 2 (PRPH2) have been associated with retinitis pigmentosa (RP) and macular/pattern dystrophies, but the origin of this phenotypic variability is unclear. The majority of Prph2 mutations are located in the large intradiscal loop (D2), a region that contains seven cysteines involved in intra- and intermolecular disulfide bonding and protein folding. A mutation at cysteine 213, which is engaged in an intramolecular disulfide bond, leads to butterfly-shaped pattern dystrophy in humans, in sharp contrast to mutations in the adjacent cysteine at position 214 which result in RP. To help understand this unexpected phenotypic variability, we generated a knockin mouse line carrying the C213Y disease mutation. The mutant Prph2 protein lost the ability to oligomerize with rod outer segment membrane protein 1 (Rom1), but retained the ability to form homotetramers. C213Y heterozygotes had significantly decreased overall Prph2 levels as well as decreased rod and cone function. Critically, supplementation with extra wild-type Prph2 protein elicited improvements in Prph2 protein levels and rod outer segment structure, but not functional rescue in rods or cones. These findings suggest that not all interruptions of D2 loop intramolecular disulfide bonding lead to haploinsufficiency-related RP, but rather that more subtle changes can lead to mutant proteins stable enough to exert gain-of-function defects in rods and cones. This outcome highlights the difficulty in targeting Prph2-associated gain-of-function disease and suggests that elimination of the mutant protein will be a pre-requisite for any curative therapeutic strategy.
Collapse
Affiliation(s)
- Dibyendu Chakraborty
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel G Strayve
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mashal Kakahel
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
10
|
Gill JS, Georgiou M, Kalitzeos A, Moore AT, Michaelides M. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. Br J Ophthalmol 2019; 103:bjophthalmol-2018-313278. [PMID: 30679166 PMCID: PMC6709772 DOI: 10.1136/bjophthalmol-2018-313278] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022]
Abstract
Progressive cone and cone-rod dystrophies are a clinically and genetically heterogeneous group of inherited retinal diseases characterised by cone photoreceptor degeneration, which may be followed by subsequent rod photoreceptor loss. These disorders typically present with progressive loss of central vision, colour vision disturbance and photophobia. Considerable progress has been made in elucidating the molecular genetics and genotype-phenotype correlations associated with these dystrophies, with mutations in at least 30 genes implicated in this group of disorders. We discuss the genetics, and clinical, psychophysical, electrophysiological and retinal imaging characteristics of cone and cone-rod dystrophies, focusing particularly on four of the most common disease-associated genes: GUCA1A, PRPH2, ABCA4 and RPGR Additionally, we briefly review the current management of these disorders and the prospects for novel therapies.
Collapse
Affiliation(s)
- Jasdeep S Gill
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK
- Ophthalmology Department, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Petit L, Ma S, Cheng SY, Gao G, Punzo C. Rod Outer Segment Development Influences AAV-Mediated Photoreceptor Transduction After Subretinal Injection. Hum Gene Ther 2018; 28:464-481. [PMID: 28510482 PMCID: PMC5488363 DOI: 10.1089/hum.2017.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vectors based on the adeno-associated virus (AAV) are currently the preferred tools for delivering genes to photoreceptors (PR) in small and large animals. AAVs have been applied successfully in various models of PR dystrophies. However, unknown barriers still limit AAV's efficient application in several forms of severe PR degenerations due to insufficient transgene expression and/or treated cells at the time of injection. Optimizations of PR gene therapy strategies will likely benefit from the identification of the cellular factors that influence PR transduction. Interestingly, recent studies have shown that the AAV transduction profile of PRs differs significantly between neonatal and adult mouse retinas after subretinal injection. This phenomenon may provide clues to identify host factors that influence the efficiency of AAV-mediated PR transduction. This study demonstrates that rod outer segments are critical modulators of efficient AAV-mediated rod transduction. During retinal development, rod transduction correlated temporally and spatially with the differentiation order of PRs when vectors were introduced subretinally but not when introduced intravitreally. All subretinally injected vectors had an initial preference to transduce cones in the absence of formed rod outer segments and then displayed a preference for rods as the cells matured, independently of the expression cassette or AAV serotype. Consistent with this observation, altered development of rod outer segments was associated with a strong reduction of rod transduction and an increase in the percentage of transduced cones by 2- to 2.8-fold. A similar increase of cone transduction was observed in the adult retinal degeneration 1 (rd1) retina compared to wild-type mice. These results suggest that the loss of rod outer segments in diseased retinas could markedly affect gene transfer efficiency of AAV vectors by limiting the ability of AAVs to infect dying rods efficiently. This information could be exploited for the development of more efficient AAV-based PR gene delivery procedures.
Collapse
Affiliation(s)
- Lolita Petit
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Shan Ma
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Shun-Yun Cheng
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Guangping Gao
- 3 Department of Microbiology and Physiological Systems and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Claudio Punzo
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
12
|
Auricchio A, Smith AJ, Ali RR. The Future Looks Brighter After 25 Years of Retinal Gene Therapy. Hum Gene Ther 2017; 28:982-987. [PMID: 28825330 DOI: 10.1089/hum.2017.164] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The first report of in vivo gene delivery to the retina dates back to 1987 when a retroviral vector was injected intraocularly in newborn mice. Later came the observation that retinal cells could be successfully transduced using adenoviral and then adeno-associated and lentiviral vectors. By 2000, it had become clear that the eye, compared to other organs and tissues, provides a number of advantages for in vivo gene therapy with regard to safety, efficacy, and route to clinical application. This has prompted the development of many successful proof-of-concept studies in animal models. The demonstration that sight could be restored in a large-animal model with a congenital form of blindness was a major landmark that opened the door to the first-in-human trials for recessively inherited blinding conditions. With these first human studies demonstrating safety as well as some efficacy, retinal gene therapy has now come of age. Rapid clinical development has highlighted various new challenges, including the treatment of patients with advanced photoreceptor degeneration or dominantly inherited retinal dystrophies and those with defects in large genes. Yet, given the progress over the last 25 years, a bright future is expected for retinal gene therapy.
Collapse
Affiliation(s)
- Alberto Auricchio
- 1 Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,2 Department of Advanced Biomedicine, "Federico II" University , Naples, Italy
| | - Alexander J Smith
- 3 Department of Genetics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Robin R Ali
- 3 Department of Genetics, UCL Institute of Ophthalmology , London, United Kingdom.,4 Kellogg Eye Center, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
13
|
Genetic rescue models refute nonautonomous rod cell death in retinitis pigmentosa. Proc Natl Acad Sci U S A 2017; 114:5259-5264. [PMID: 28468800 DOI: 10.1073/pnas.1615394114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited neurodegenerative disease, in which the death of mutant rod photoreceptors leads secondarily to the non-cell autonomous death of cone photoreceptors. Gene therapy is a promising treatment strategy. Unfortunately, current methods of gene delivery treat only a fraction of diseased cells, yielding retinas that are a mosaic of treated and untreated rods, as well as cones. In this study, we created two RP mouse models to test whether dying, untreated rods negatively impact treated, rescued rods. In one model, treated and untreated rods were segregated. In the second model, treated and untreated rods were diffusely intermixed, and their ratio was controlled to achieve low-, medium-, or high-efficiency rescue. Analysis of these mosaic retinas demonstrated that rescued rods (and cones) survive, even when they are greatly outnumbered by dying photoreceptors. On the other hand, the rescued photoreceptors did exhibit long-term defects in their outer segments (OSs), which were less severe when more photoreceptors were treated. In summary, our study suggests that even low-efficiency gene therapy may achieve stable survival of rescued photoreceptors in RP patients, albeit with OS dysgenesis.
Collapse
|
14
|
Dai X, Zhang H, Han J, He Y, Zhang Y, Qi Y, Pang JJ. Effects of Subretinal Gene Transfer at Different Time Points in a Mouse Model of Retinal Degeneration. PLoS One 2016; 11:e0156542. [PMID: 27228218 PMCID: PMC4882044 DOI: 10.1371/journal.pone.0156542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is necessary for photoreceptors to generate an important lipid component of their membranes. The absence of LPCAT1 results in early and rapid rod and cone degeneration. Retinal degeneration 11 (rd11) mice carry a mutation in the Lpcat1 gene, and are an excellent model of early-onset rapid retinal degeneration (RD). To date, no reports have documented gene therapy administration in the rd11 mouse model at different ages. In this study, the AAV8 (Y733F)-smCBA-Lpcat1 vector was subretinally injected at postnatal day (P) 10, 14, 18, or 22. Four months after injection, immunohistochemistry and analysis of retinal morphology showed that treatment at P10 rescued about 82% of the wild-type retinal thickness. However, the diffusion of the vector and the resulting rescue were limited to an area around the injection site that was only 31% of the total retinal area. Injection at P14 resulted in vector diffusion that covered approximately 84% of the retina, and we found that gene therapy was more effective against RD when exposure to light was limited before and after treatment. We observed long-term preservation of electroretinogram (ERG) responses, and preservation of retinal structure, indicating that early treatment followed by limited light exposure can improve gene therapy effectiveness for the eyes of rd11 mice. Importantly, delayed treatment still partially preserved M-cones, but not S-cones, and M-cones in the rd11 retina appeared to have a longer window of opportunity for effective preservation with gene therapy. These results provide important information regarding the effects of subretinal gene therapy in the mouse model of LPCAT1-deficiency.
Collapse
Affiliation(s)
- Xufeng Dai
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- * E-mail: (XD); (JP)
| | - Hua Zhang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Juanjuan Han
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ying He
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yangyang Zhang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yan Qi
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ji-jing Pang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- * E-mail: (XD); (JP)
| |
Collapse
|
15
|
Koch SF, Tsai YT, Duong JK, Wu WH, Hsu CW, Wu WP, Bonet-Ponce L, Lin CS, Tsang SH. Halting progressive neurodegeneration in advanced retinitis pigmentosa. J Clin Invest 2015; 125:3704-13. [PMID: 26301813 DOI: 10.1172/jci82462] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/13/2015] [Indexed: 01/03/2023] Open
Abstract
Hereditary retinal degenerative diseases, such as retinitis pigmentosa (RP), are characterized by the progressive loss of rod photoreceptors followed by loss of cones. While retinal gene therapy clinical trials demonstrated temporary improvement in visual function, this approach has yet to achieve sustained functional and anatomical rescue after disease onset in patients. The lack of sustained benefit could be due to insufficient transduction efficiency of viral vectors ("too little") and/or because the disease is too advanced ("too late") at the time therapy is initiated. Here, we tested the latter hypothesis and developed a mouse RP model that permits restoration of the mutant gene in all diseased photoreceptor cells, thereby ensuring sufficient transduction efficiency. We then treated mice at early, mid, or late disease stages. At all 3 time points, degeneration was halted and function was rescued for at least 1 year. Not only do our results demonstrate that gene therapy effectively preserves function after the onset of degeneration, our study also demonstrates that there is a broad therapeutic time window. Moreover, these results suggest that RP patients are treatable, despite most being diagnosed after substantial photoreceptor loss, and that gene therapy research must focus on improving transduction efficiency to maximize clinical impact.
Collapse
|
16
|
Tolmachov OE. Transgenic DNA modules with pre-programmed self-destruction: Universal molecular devices to escape 'genetic litter' in gene and cell therapy. Med Hypotheses 2015; 85:686-9. [PMID: 26319641 DOI: 10.1016/j.mehy.2015.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/03/2015] [Accepted: 08/15/2015] [Indexed: 02/06/2023]
Abstract
Gene delivery to human somatic cells is a well-established therapeutic strategy to treat a variety of diseases. In addition, gene transfer to human cells is required to generate human induced pluripotent cells and also to eliminate tumorigenic undifferentiated cells in many types of stem-cell derived transplantation material. The expression of transgenes in these medical technologies is often required only in some of the recipient cells and only in specific limited time-windows, with inappropriately located or untimely expressed transgenes presenting a risk of undesired collateral effects. Unfortunately, current gene transfer procedures commonly result in a number of cells in the patient's body containing fragments of transferred genetic material which are either not therapeutically necessary at all, are no longer necessary or are necessary but in some other cells. Such transgenic material in the patient, created as a by-product of the chosen therapeutic procedure, constitutes, in fact, 'genetic litter', that is, persisting potentially-hazardous foreign genetic material which is neither required therapeutically nor explicitly chosen by an informed and free-willing person as an artificial body element. Wider use and more frequent administration of gene and cell therapy in the future are likely to give greater prominence to the issue of misdelivered genetic medicines and of their unwanted remainders accumulating in human bodies. Thus, novel DNA templates, which, on the one hand, are capable of providing transgene expression over broad time-windows, and, on the other hand, do not leave unwanted permanent 'genetic traces', are required. I propose that the problem of 'genetic litter' in patients' bodies can be addressed through the employment of a new type of gene vectors delivering DNA-based transgenic modules with pre-programmed self-destruction. Such vectors could deliver therapeutic DNA cargo and then execute self-liquidation through pre-scheduled activation of co-delivered genome editing tools, such as CRISPR/Cas9 nucleases, specific for the DNA to be eliminated. In this model, all unnecessary transgenic DNA is edited away precisely at a desired time point. Activity of the gene correction apparatus for the specific and effective destruction of transgenic DNA could be turned on by well-timed external signals or could be triggered through intracellular sensors of particular epigenetic signatures. It is expected that the employment of the proposed DNA-based gene vectors equipped with a transgene self-destruct mechanism can extend the safe and ethical application of gene and cell therapy to a broader range of curative and lifestyle-choice medical treatments, e.g., full body prophylactic gene therapy of cancer.
Collapse
Affiliation(s)
- Oleg E Tolmachov
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
17
|
Khan AO, Al Rashaed S, Neuhaus C, Bergmann C, Bolz HJ. Peripherin mutations cause a distinct form of recessive Leber congenital amaurosis and dominant phenotypes in asymptomatic parents heterozygous for the mutation. Br J Ophthalmol 2015; 100:209-15. [PMID: 26061163 DOI: 10.1136/bjophthalmol-2015-306844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Dominant mutations in peripherin (PRPH2) are associated with a spectrum of retinal dystrophy phenotypes, many of which are adult onset and involve the macula. Recessive PRPH2 mutations cause retinal dystrophy associated with prominent maculopathy in adulthood; however, the presenting childhood phenotype has not been defined. We characterise this phenotype. METHODS Retrospective case series of families harbouring bi-allelic PRPH2 mutations (2010-2014). RESULTS Three children (two families; assessed at 2 years old) and two adults (one family; assessed at 24 and 35 years old) with homozygous PRPH2 mutations (c.497G>A (p.Cys166Tyr) or c.136C>T (p.Arg46*)) all had infantile nystagmus and decreased vision noted soon after birth and a history of staring at lights during infancy (photophilia). The three children had high hyperopia, a normal or near normal fundus, and non-recordable electroretinographies (ERGs). The two adults had slight myopia, macular and peripheral retinal changes, and non-recordable ERGs. All five available carrier parents had macular±peripheral retinal findings, although they considered themselves asymptomatic except for one mother who had developed visual loss in one eye at 48 years old and had an associated subfoveal lesion. CONCLUSIONS Bi-allelic PRPH2 mutations cause a distinct Leber congenital amaurosis phenotype in infancy; affected adults have prominent maculopathy. Heterozygous parents can be asymptomatic but have clinically obvious macular phenotypes with or without peripheral retinal findings, which can be helpful in making the genetic diagnosis in affected children. The difference between the heterozygous and homozygous phenotypes is likely related to gene product dosage effect.
Collapse
Affiliation(s)
- Arif O Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Saba Al Rashaed
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany Department of Medicine, University Freiburg Medical Center, Freiburg, Germany
| | - Hanno J Bolz
- Center for Human Genetics, Bioscientia, Ingelheim, Germany Institute of Human Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Rex TS. Gene therapy to treat inherited and complex retinal degenerative diseases. Mol Ther Methods Clin Dev 2015; 2:15027. [PMID: 26251841 PMCID: PMC4525775 DOI: 10.1038/mtm.2015.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 01/22/2023]
|
19
|
Conley SM, Naash MI. Gene therapy for PRPH2-associated ocular disease: challenges and prospects. Cold Spring Harb Perspect Med 2014; 4:a017376. [PMID: 25167981 DOI: 10.1101/cshperspect.a017376] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The peripherin-2 (PRPH2) gene encodes a photoreceptor-specific tetraspanin protein called peripherin-2/retinal degeneration slow (RDS), which is critical for the formation and maintenance of rod and cone outer segments. Over 90 different disease-causing mutations in PRPH2 have been identified, which cause a variety of forms of retinitis pigmentosa and macular degeneration. Given the disease burden associated with PRPH2 mutations, the gene has long been a focus for preclinical gene therapy studies. Adeno-associated viruses and compacted DNA nanoparticles carrying PRPH2 have been successfully used to mediate improvement in the rds(-/-) and rds(+/-) mouse models. However, complexities in the pathogenic mechanism for PRPH2-associated macular disease coupled with the need for a precise dose of peripherin-2 to combat a severe haploinsufficiency phenotype have delayed the development of clinically viable genetic treatments. Here we discuss the progress and prospects for PRPH2-associated gene therapy.
Collapse
Affiliation(s)
- Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Muna I Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
20
|
Recent advances of stem cell therapy for retinitis pigmentosa. Int J Mol Sci 2014; 15:14456-74. [PMID: 25141102 PMCID: PMC4159862 DOI: 10.3390/ijms150814456] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by progressive loss of photoreceptors and eventually leads to retina degeneration and atrophy. Until now, the exact pathogenesis and etiology of this disease has not been clear, and many approaches for RP therapies have been carried out in animals and in clinical trials. In recent years, stem cell transplantation-based attempts made some progress, especially the transplantation of bone marrow-derived mesenchymal stem cells (BMSCs). This review will provide an overview of stem cell-based treatment of RP and its main problems, to provide evidence for the safety and feasibility for further clinical treatment.
Collapse
|
21
|
Roosing S, Thiadens AAHJ, Hoyng CB, Klaver CCW, den Hollander AI, Cremers FPM. Causes and consequences of inherited cone disorders. Prog Retin Eye Res 2014; 42:1-26. [PMID: 24857951 DOI: 10.1016/j.preteyeres.2014.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022]
Abstract
Hereditary cone disorders (CDs) are characterized by defects of the cone photoreceptors or retinal pigment epithelium underlying the macula, and include achromatopsia (ACHM), cone dystrophy (COD), cone-rod dystrophy (CRD), color vision impairment, Stargardt disease (STGD) and other maculopathies. Forty-two genes have been implicated in non-syndromic inherited CDs. Mutations in the 5 genes implicated in ACHM explain ∼93% of the cases. On the contrary, only 21% of CRDs (17 genes) and 25% of CODs (8 genes) have been elucidated. The fact that the large majority of COD and CRD-associated genes are yet to be discovered hints towards the existence of unknown cone-specific or cone-sensitive processes. The ACHM-associated genes encode proteins that fulfill crucial roles in the cone phototransduction cascade, which is the most frequently compromised (10 genes) process in CDs. Another 7 CD-associated proteins are required for transport processes towards or through the connecting cilium. The remaining CD-associated proteins are involved in cell membrane morphogenesis and maintenance, synaptic transduction, and the retinoid cycle. Further novel genes are likely to be identified in the near future by combining large-scale DNA sequencing and transcriptomics technologies. For 31 of 42 CD-associated genes, mammalian models are available, 14 of which have successfully been used for gene augmentation studies. However, gene augmentation for CDs should ideally be developed in large mammalian models with cone-rich areas, which are currently available for only 11 CD genes. Future research will aim to elucidate the remaining causative genes, identify the molecular mechanisms of CD, and develop novel therapies aimed at preventing vision loss in individuals with CD in the future.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
|
23
|
Petrs-Silva H, Linden R. Advances in gene therapy technologies to treat retinitis pigmentosa. Clin Ophthalmol 2013; 8:127-36. [PMID: 24391438 PMCID: PMC3878960 DOI: 10.2147/opth.s38041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Retinitis pigmentosa (RP) is a class of diseases that leads to progressive degeneration of the retina. Experimental approaches to gene therapy for the treatment of inherited retinal dystrophies have advanced in recent years, inclusive of the safe delivery of genes to the human retina. This review is focused on the development of gene therapy for RP using recombinant adenoassociated viral vectors, which show a positive safety record and have so far been successful in several clinical trials for congenital retinal disease. Gene therapy for RP is under development in a variety of animal models, and the results raise expectations of future clinical application. Nonetheless, the translation of such strategies to the bedside requires further understanding of the mutations and mechanisms that cause visual defects, as well as thorough examination of potential adverse effects.
Collapse
Affiliation(s)
- Hilda Petrs-Silva
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Linden
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
|
25
|
Transient photoreceptor deconstruction by CNTF enhances rAAV-mediated cone functional rescue in late stage CNGB3-achromatopsia. Mol Ther 2013; 21:1131-41. [PMID: 23568263 DOI: 10.1038/mt.2013.50] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Achromatopsia is a genetic disorder of cones, and one of the most common forms is a channelopathy caused by mutations in the β-subunit, CNGB3, of the cone cyclic nucleotide-gated (CNG) channel. Recombinant adeno-associated virus of serotype 5 (rAAV5)-mediated gene transfer of human CNGB3 cDNA to mutant dog cones results in functional and structural rescue in dogs <0.5 years of age, but treatment is minimally effective in dogs >1 year. We now test a new therapeutic concept by combining gene therapy with the administration of ciliary neurotrophic factor (CNTF). Intravitreal CNTF causes transient dedifferentiation of photoreceptors, a process called deconstruction, whereby visual cells become immature with short outer segments, and decreased retinal function and gene expression that subsequently return to normal. Cone function was successfully rescued in all mutant dogs treated between 14 and 42 months of age with this strategy. CNTF-mediated deconstruction and regeneration of the photoreceptor outer segments prepares the mutant cones optimally for gene augmentation therapy.
Collapse
|
26
|
McClements ME, MacLaren RE. Gene therapy for retinal disease. Transl Res 2013; 161:241-54. [PMID: 23305707 PMCID: PMC3831157 DOI: 10.1016/j.trsl.2012.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 01/16/2023]
Abstract
Gene therapy strategies for the treatment of inherited retinal diseases have made major advances in recent years. This review focuses on adeno-associated viral (AAV) vector approaches to treat retinal degeneration and, thus, prevent or delay the onset of blindness. Data from human clinical trials of gene therapy for retinal disease show encouraging signs of safety and efficacy from AAV vectors. Recent progress in enhancing cell-specific targeting and transduction efficiency of the various retinal layers plus the use of AAV-delivered growth factors to augment the therapeutic effect and limit cell death suggest even greater success in future human trials is possible.
Collapse
Affiliation(s)
- Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
27
|
Gross JB, Furterer A, Carlson BM, Stahl BA. An integrated transcriptome-wide analysis of cave and surface dwelling Astyanax mexicanus. PLoS One 2013; 8:e55659. [PMID: 23405189 PMCID: PMC3566029 DOI: 10.1371/journal.pone.0055659] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/28/2012] [Indexed: 01/02/2023] Open
Abstract
Numerous organisms around the globe have successfully adapted to subterranean environments. A powerful system in which to study cave adaptation is the freshwater characin fish, Astyanax mexicanus. Prior studies in this system have established a genetic basis for the evolution of numerous regressive traits, most notably vision and pigmentation reduction. However, identification of the precise genetic alterations that underlie these morphological changes has been delayed by limited genetic and genomic resources. To address this, we performed a transcriptome analysis of cave and surface dwelling Astyanax morphs using Roche/454 pyrosequencing technology. Through this approach, we obtained 576,197 Pachón cavefish-specific reads and 438,978 surface fish-specific reads. Using this dataset, we assembled transcriptomes of cave and surface fish separately, as well as an integrated transcriptome that combined 1,499,568 reads from both morphotypes. The integrated assembly was the most successful approach, yielding 22,596 high quality contiguous sequences comprising a total transcriptome length of 21,363,556 bp. Sequence identities were obtained through exhaustive blast searches, revealing an adult transcriptome represented by highly diverse Gene Ontology (GO) terms. Our dataset facilitated rapid identification of sequence polymorphisms between morphotypes. These data, along with positional information collected from the Danio rerio genome, revealed several syntenic regions between Astyanax and Danio. We demonstrated the utility of this positional information through a QTL analysis of albinism in a surface x Pachón cave F(2) pedigree, using 65 polymorphic markers identified from our integrated assembly. We also adapted our dataset for an RNA-seq study, revealing many genes responsible for visual system maintenance in surface fish, whose expression was not detected in adult Pachón cavefish. Conversely, several metabolism-related genes expressed in cavefish were not detected in surface fish. This resource will enable powerful genetic and genomic analyses in the future that will better clarify the heritable genetic changes governing adaptation to the cave environment.
Collapse
Affiliation(s)
- Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Allison Furterer
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Brian M. Carlson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
28
|
Bennett J, Maguire AM. Gene Therapy for Retinal Disease. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Han Z, Conley SM, Makkia R, Guo J, Cooper MJ, Naash MI. Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery. PLoS One 2012; 7:e52189. [PMID: 23272225 PMCID: PMC3525534 DOI: 10.1371/journal.pone.0052189] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/13/2012] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is a critical tool for the treatment of monogenic retinal diseases. However, the limited vector capacity of the current benchmark delivery strategy, adeno-associated virus (AAV), makes development of larger capacity alternatives, such as compacted DNA nanoparticles (NPs), critical. Here we conduct a side-by-side comparison of self-complementary AAV and CK30PEG NPs using matched ITR plasmids. We report that although AAVs are more efficient per vector genome (vg) than NPs, NPs can drive gene expression on a comparable scale and longevity to AAV. We show that subretinally injected NPs do not leave the eye while some of the AAV-injected animals exhibited vector DNA and GFP expression in the visual pathways of the brain from PI-60 onward. As a result, these NPs have the potential to become a successful alternative for ocular gene therapy, especially for the multitude of genes too large for AAV vectors.
Collapse
Affiliation(s)
- Zongchao Han
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Rasha Makkia
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Junjing Guo
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Mark J. Cooper
- Copernicus Therapeutics, Inc., Cleveland, Ohio, United States of America
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
30
|
Yan H, Cui J, Wang Y, Yu Y. Comparison of the effects between intravitreal and periocular injections of adenoviral vectored pigment epithelium-derived factor on suppressing choroidal neovascularization in rats. Ophthalmic Res 2012; 49:81-9. [PMID: 23257710 DOI: 10.1159/000342979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022]
Abstract
PURPOSE To compare the effects between intravitreal and periocular injections of adenoviral vectored pigment epithelium-derived factor (AdPEDF) on suppressing established choroidal neovascularization (CNV) in rats. METHODS Sixty-eight female BN rats (136 eyes) aged 6-8 weeks were involved in this study. The CNV animal models were created with laser photocoagulation. After CNV, 16 rats underwent intravitreal injection with AdPEDF 1 µl (group A), 16 rats received intravitreal injection with control vector (AdNull) 1 µl (group B), 16 rats had periocular injection with AdPEDF 1 µl (group C), and 16 rats had periocular injection with AdNull 1 µl (group D). The effects between intravitreal and periocular AdPEDF injections on suppressing established CNV in rats were compared and evaluated by fundus fluorescein angiography (FFA), maximal thickness of CNV, histopathology and transferase-mediated uridine nick end labeling (TUNEL) staining 3, 7, 14 and 28 days after treatment. RESULTS (1) There were no significant changes in leakage in groups A and C 3 days after injection compared with that before injection seen by FFA (p > 0.05). The leakages in groups A and C decreased significantly 7 days after injection compared with that before injection (p < 0.05). (2) There was no significant difference in the incidence of CNV between groups A and B, as well as groups C and D 3 days after injection (p > 0.05). The incidence of CNV decreased significantly in group A compared with that in group B 7, 14 and 28 days after injection (p < 0.01). CNV retained fibrovascular proliferation in groups B and D 7 days after injection. (3) The maximal thickness of CNV in groups A and C diminished significantly compared with that in the control group after injection, and it still diminished with time (p < 0.05). There was no significant difference in maximal thickness of CNV between 14 and 28 days after injection of AdPEDF (p > 0.05). The maximal thickness of CNV in group A was larger than that in group C 3 days after injection (p < 0.05), yet it was smaller than that in group C 14 and 28 days after injection (p < 0.05). (4) Histopathologically, a great deal of CNV was shown 3 days after injection of AdPEDF or AdNull. CNV decreased significantly with lumen diminution 14 days after injection of AdPEDF. (5) TUNEL cells appeared in groups A and C 7, 14 and 28 days after injection, and there were no TUNEL cells in groups B and D. TUNEL cells were not seen in choroidal inherent vascular endothelial cells in all groups. CONCLUSION Compared with the effect of periocular AdPEDF injection on suppressing established CNV in rats, the effect of intravitreal injection started slowly, but lasted longer. The effect appeared on day 7, reached the peak on day 14 and remained stable on day 28 after the treatment.
Collapse
Affiliation(s)
- Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.
| | | | | | | |
Collapse
|
31
|
Restoration of vision in the pde6β-deficient dog, a large animal model of rod-cone dystrophy. Mol Ther 2012; 20:2019-30. [PMID: 22828504 DOI: 10.1038/mt.2012.134] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Defects in the β subunit of rod cGMP phosphodiesterase 6 (PDE6β) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6β (n = 4) or AAV2/8RK.cpde6β (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6β- and AAV2/8RK.cpde6β-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment.
Collapse
|
32
|
Suppression of rds expression by siRNA and gene replacement strategies for gene therapy using rAAV vector. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:215-23. [PMID: 22183336 PMCID: PMC3556273 DOI: 10.1007/978-1-4614-0631-0_29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Small interfering RNA (siRNA) is a promising tool for the treatment of dominant diseases. Autosomal dominant eye disease like retinitis pigmentosa, are a leading cause of blindness. Mutations in rds/peripherin lead to the degeneration of photoreceptors and are associated with several autosomal retinal diseases. Our goal is to develop a gene therapy for rds mutations. We describe a siRNA based mutation-independent approach, targeting rds in which levels of endogenous mutant and wild-type mRNA were reduced, and a siRNA-resistant version of rds gene was supplied simultaneously. siRNAs and resistant rds were delivered to the photoreceptors by recombinant adeno-associated virus (rAAV) vector through subretinal injections. The retinal phenotype was examined, both structurally and functionally at different time points after rAAV delivery. We demonstrate suppression of rds transcript by up to 50% with concomitant expression of replacement transcript in the retina of mice in vivo. These results validate the concept of suppression of rds and replacement strategies of gene therapy with rAAV vectors containing siRNA.
Collapse
|
33
|
Abstract
With the recent progress in identifying disease-causing genes in humans and in animal models, there are more and more opportunities for using retinal gene transfer to learn more about retinal physiology and also to develop therapies for blinding disorders. Success in preclinical studies for one form of inherited blindness have led to testing in human clinical trials. This paves the way to consider a number of other retinal diseases as ultimate gene therapy targets in human studies. The information presented here is designed to assist scientists and clinicians to use gene transfer to probe the biology of the retina and/or to move appropriate gene-based treatment studies from the bench to the clinic.
Collapse
Affiliation(s)
- Jean Bennett
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
34
|
Smith AJ, Bainbridge JWB, Ali RR. Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther 2011; 19:154-61. [DOI: 10.1038/gt.2011.161] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Abstract
The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.
Collapse
Affiliation(s)
- Melissa M Liu
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bldg 10, Rm 10N103, NIH/NEI, Bethesda, MD 20895-1857, USA
| | | | | |
Collapse
|
36
|
Abstract
The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.
Collapse
Affiliation(s)
- Melissa M Liu
- Immunopathology Section, Laboratory of Immunology, NIH/NEI, Bethesda, MD 20895-1857, USA
| | | | | |
Collapse
|
37
|
Wang S, Liu P, Song L, Lu L, Zhang W, Wu Y. Adeno-associated virus (AAV) based gene therapy for eye diseases. Cell Tissue Bank 2011; 12:105-10. [DOI: 10.1007/s10561-011-9243-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/04/2011] [Indexed: 12/27/2022]
|
38
|
Dzhemileva LU, Grinberg ER, Tazetdinov AM, Zaidullin IS, Bikbov MM, Musina VV, Khusnutdinova EK. Molecular genetic basis of tapetoretinal degeneration. Mol Biol 2011. [DOI: 10.1134/s0026893308010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Abstract
Ocular gene therapy is becoming a well-established field. Viral gene therapies for the treatment of Leber's congentinal amaurosis (LCA) are in clinical trials, and many other gene therapy approaches are being rapidly developed for application to diverse ophthalmic pathologies. Of late, development of non-viral gene therapies has been an area of intense focus and one technology, polymer-compacted DNA nanoparticles, is especially promising. However, development of pharmaceutically and clinically viable therapeutics depends not only on having an effective and safe vector but also on a practical treatment strategy. Inherited retinal pathologies are caused by mutations in over 220 genes, some of which contain over 200 individual disease-causing mutations, which are individually very rare. This review will focus on both the progress and future of nanoparticles and also on what will be required to make them relevant ocular pharmaceutics.
Collapse
Affiliation(s)
- Shannon M Conley
- University of Oklahoma Health Sciences Center, Department of Cell Biology, BMSB 781, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
40
|
Gene therapy in the Retinal Degeneration Slow model of retinitis pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:611-9. [PMID: 20238065 DOI: 10.1007/978-1-4419-1399-9_70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human blinding disorders are often initiated by hereditary mutations that insult rod and/or cone photoreceptors and cause subsequent cellular death. Generally, the disease phenotype can be predicted from the specific mutation as many photoreceptor genes are specific to rods or cones; however certain genes, such as Retinal Degeneration Slow (RDS), are expressed in both cell types and cause different forms of retinal disease affecting rods, cones, or both photoreceptors. RDS is a transmembrane glycoprotein critical for photoreceptor outer segment disc morphogenesis, structural maintenance, and renewal. Studies using animal models with Rds mutations provide valuable insight into Rds gene function and regulation; and a better understanding of the physiology, pathology, and underlying degenerative mechanisms of inherited retinal disease. Furthermore, these models are an excellent tool in the process of developing therapeutic interventions for the treatment of inherited retinal degenerations. In this paper, we review these topics with particular focus on the use of rds models in gene therapy.
Collapse
|
41
|
Cai X, Conley SM, Nash Z, Fliesler SJ, Cooper MJ, Naash MI. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J 2009; 24:1178-91. [PMID: 19952284 DOI: 10.1096/fj.09-139147] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The purpose of the present study was to test the therapeutic efficiency and safety of compacted-DNA nanoparticle-mediated gene delivery into the subretinal space of a juvenile mouse model of retinitis pigmentosa. Nanoparticles containing the mouse opsin promoter and wild-type mouse Rds gene were injected subretinally into mice carrying a haploinsufficiency mutation in the retinal degeneration slow (rds(+ or -)) gene at postnatal day (P)5 and 22. Control mice were either injected with saline, injected with uncompacted naked plasmid DNA carrying the Rds gene, or remained untreated. Rds mRNA levels peaked at postinjection day 2 to 7 (PI-2 to PI-7) for P5 injections, stabilized at levels 2-fold higher than in uninjected controls for both P5 and P22 injections, and remained elevated at the latest time point examined (PI-120). Rod function (measured by electroretinography) showed modest but statistically significant improvement compared with controls after both P5 and P22 injections. Cone function in nanoparticle-injected eyes reached wild-type levels for both ages of injections, indicating full prevention of cone degeneration. Ultrastructural examination at PI-120 revealed significant improvement in outer segment structures in P5 nanoparticle-injected eyes, while P22 injection had a modest structural improvement. There was no evidence of macrophage activation or induction of IL-6 or TNF-alpha mRNA in P5 or P22 nanoparticle-dosed eyes at either PI-2 or PI-30. Thus, compacted-DNA nanoparticles can efficiently and safely drive gene expression in both mitotic and postmitotic photoreceptors and retard degeneration in this model. These findings, using a clinically relevant treatment paradigm, illustrate the potential for application of nanoparticle-based gene replacement therapy for treatment of human retinal degenerations.-Cai, X., Conley, S. M., Nash, Z., Fliesler, S. J., Cooper, M. J., Naash, M. I. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa.
Collapse
Affiliation(s)
- Xue Cai
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 781, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Johnson LN, Cashman SM, Read SP, Kumar-Singh R. Cell penetrating peptide POD mediates delivery of recombinant proteins to retina, cornea and skin. Vision Res 2009; 50:686-97. [PMID: 19733192 DOI: 10.1016/j.visres.2009.08.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 01/11/2023]
Abstract
Recently we described a novel cell penetrating peptide, peptide for ocular delivery (POD) that could deliver small molecules including fluorescent dyes into retinal cells. The objective of the current study was to examine whether biologically relevant macromolecules such as proteins, genetically fused with POD could also be delivered into retinal tissues in vivo. We generated a POD-GFP fusion protein and examined its cell and tissue penetrating properties. We found that endogenously expressed POD-GFP fusion protein localized to the nucleus, suggesting that POD acts as a nuclear localization signal. Adenovirus (Ad) vectors expressing POD-GFP fusion protein were constructed and the recombinant protein was purified from Ad-infected human embryonic retinoblasts (HER). Exogenously supplied POD-GFP fusion protein rapidly transduced A549 and HER cells and colocalized in part with markers of late endosomes, from which it could escape. Following subretinal delivery, POD-GFP localized to the retinal pigment epithelium and the photoreceptor cell bodies. When injected into the vitreous, POD-GFP localized to the ganglion cells and the inner nuclear layer of the retina as well as the lens capsule. Topical application of POD-GFP to ocular surfaces resulted in uptake by the corneal epithelium. POD-GFP also transduced non-ocular tissues, including the epidermis of the skin following topical application.
Collapse
Affiliation(s)
- Leslie N Johnson
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
43
|
Shintani K, Shechtman DL, Gurwood AS. Review and update: Current treatment trends for patients with retinitis pigmentosa. ACTA ACUST UNITED AC 2009; 80:384-401. [DOI: 10.1016/j.optm.2008.01.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/23/2007] [Accepted: 01/07/2008] [Indexed: 11/29/2022]
|
44
|
A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles. PLoS One 2009; 4:e5290. [PMID: 19390689 PMCID: PMC2669177 DOI: 10.1371/journal.pone.0005290] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/19/2009] [Indexed: 12/13/2022] Open
Abstract
Previously we have shown that compacted DNA nanoparticles can drive high levels of transgene expression after subretinal injection in the mouse eye. Here we delivered compacted DNA nanoparticles containing a therapeutic gene to the retinas of a mouse model of retinitis pigmentosa. Nanoparticles containing the wild-type retinal degeneration slow (Rds) gene were injected into the subretinal space of rds+/− mice on postnatal day 5. Gene expression was sustained for up to four months at levels up to four times higher than in controls injected with saline or naked DNA. The nanoparticles were taken up into virtually all photoreceptors and mediated significant structural and biochemical rescue of the disease without histological or functional evidence of toxicity. Electroretinogram recordings showed that nanoparticle-mediated gene transfer restored cone function to a near-normal level in contrast to transfer of naked plasmid DNA. Rod function was also improved. These findings demonstrate that compacted DNA nanoparticles represent a viable option for development of gene-based interventions for ocular diseases and obviate major barriers commonly encountered with non-viral based therapies.
Collapse
|
45
|
Naturally occurring animal models with outer retina phenotypes. Vision Res 2009; 49:2636-52. [PMID: 19375447 DOI: 10.1016/j.visres.2009.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 01/28/2023]
Abstract
Naturally occurring and laboratory generated animal models serve as powerful tools with which to investigate the etiology of human retinal degenerations, especially retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), cone dystrophies (CD) and macular degeneration (MD). Much progress has been made in elucidating gene defects underlying disease, in understanding mechanisms leading to disease, and in designing molecules for translational research and gene-based therapy to interfere with the progression of disease. Key to this progress has been study of naturally occurring murine and canine retinal degeneration mutants. This article will review the history, phenotypes and gene defects of select animal models with outer retina (photoreceptor and retinal pigment epithelium) degeneration phenotypes.
Collapse
|
46
|
Smith AJ, Bainbridge JW, Ali RR. Prospects for retinal gene replacement therapy. Trends Genet 2009; 25:156-65. [DOI: 10.1016/j.tig.2009.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 01/09/2023]
|
47
|
Bainbridge JWB. Prospects for gene therapy of inherited retinal disease. Eye (Lond) 2009; 23:1898-903. [DOI: 10.1038/eye.2008.412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
48
|
Peeters L, Lentacker I, Vandenbroucke RE, Lucas B, Demeester J, Sanders NN, De Smedt SC. Can ultrasound solve the transport barrier of the neural retina? Pharm Res 2008; 25:2657-65. [PMID: 18649123 DOI: 10.1007/s11095-008-9684-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 07/03/2008] [Indexed: 01/30/2023]
Abstract
PURPOSE Intravitreal injection of nonviral gene complexes may be promising in the treatment of retinal diseases. This study investigates the permeation of lipoplexes and polystyrene nanospheres through the neural retina and their uptake by the retinal pigment epithelium (RPE) either with or without ultrasound application. MATERIALS AND METHODS Anterior parts and vitreous of bovine eyes were removed. The neural retina was left intact or peeled away from the RPE. (Non)pegylated lipoplexes and pegylated nanospheres were applied. After 2 h incubation, the RPE cells were detached and analyzed for particle uptake by flow cytometry and confocal microscopy. RESULTS The neural retina is a significant transport barrier for pegylated nanospheres and (non)pegylated lipoplexes. Applying ultrasound improved the permeation of the nanoparticles up to 130 nm. CONCLUSIONS Delivery of liposomal DNA complexes to the RPE cells is strongly limited by the neural retina. Ultrasound energy may be a useful tool to improve the neural retina permeability, given the nucleic acid carriers are small enough. Our results underline the importance to design and develop very small carriers for the delivery of nucleic acids to the neural retina and the RPE after intravitreal injection.
Collapse
Affiliation(s)
- Liesbeth Peeters
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
49
|
Barriers for retinal gene therapy: separating fact from fiction. Vision Res 2008; 48:1671-1680. [PMID: 18565565 DOI: 10.1016/j.visres.2008.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/25/2008] [Accepted: 05/01/2008] [Indexed: 12/22/2022]
Abstract
The majority of recent preclinical gene therapy studies targeting the retina have used adeno-associated virus (AAV) as the gene transfer vector. However, AAV has several limitations including the ability to generate innate inflammatory responses, the ability to cause insertional mutagenesis at a frequency of up to 56% in some tissues and a limited cloning capacity of 4.8Kb. Furthermore, AAV is known to generate limiting immune responses in humans despite the absence of similar immune responses in preclinical canine and murine studies. Three clinical trials to treat Leber's congenital amaurosis using AAV are under way. A clinical trial to treat Stargardt's using lentivirus vectors has also been recently announced. However, very limited evidence currently exists that lentivirus vectors can efficiently transduce photoreceptor cells. In contrast, very few preclinical ocular gene therapy studies have utilized adenovirus as the gene therapy vector. Nonetheless, the only two ocular gene therapy clinical trials performed to date have each used adenovirus as the vector and more significantly, in these published trials there has been no observed serious adverse event. These trials appear to be poised for Phase II/III status. Activation of cytotoxic T lymphocytes limits duration of transgene expression in the retina from first generation adenovirus vectors. However, an advanced class of adenovirus vectors referred to as Helper-dependent Adenovirus (Hd-Ad) have recently been shown to be capable of expressing transgenes in ocular tissues for more than one year. Hd-Ad vectors have many properties that potentially warrant their inclusion in the retinal gene therapy toolbox for the treatment of retinal degenerative diseases.
Collapse
|
50
|
An empty E1, E3, E4 adenovirus vector protects photoreceptors from light-induced degeneration. J Ocul Biol Dis Infor 2008; 1:30-6. [PMID: 20072633 PMCID: PMC2802415 DOI: 10.1007/s12177-008-9004-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/12/2008] [Indexed: 11/30/2022] Open
Abstract
We have previously identified a neuroprotective effect associated with empty (E1−, E3−, E4−) adenovirus vector delivery in a model of light-induced, photoreceptor cell death. In this study, we further characterize this protective effect in light-injured retina and investigate its molecular basis. Dark-adapted BALB/c mice, aged 6–8 weeks, were exposed to standardized, intense fluorescent light for 96 or 144 h. Prior to dark adaptation, all mice received intravitreous injection of 1 × 109 particles of an empty (E1−, E3−, E4−) adenovirus vector in one eye and vehicle in the other. Following light challenge of 96 or 144 h, histopathological analysis and quantitative photoreceptor cell counts were conducted. Semiquantitative assessment of messenger ribonucleic acid (mRNA) for the apoptosis related genes: p50, p65, IkBa, caspase-1, caspase-3, Bad, c-Jun, Bax, Bak, Bcl-2, c-Fos, and p53 using quantitative reverse transcriptase polymerase chain reaction was performed on eyes following 12 h of light exposure. Following 96 h of light exposure, the photoreceptor cell density for E1−, E3−, E4− adenovirus vector and vehicle-injected eyes were 87.5 ± 9.5 and 79.3 ± 10.1, respectively, (p = 0.79). After 144 h of light exposure, the photoreceptor cell density was preserved in vector-injected eyes as compared to vehicle treated eyes, 68.9 ± 10.0 and 49.2 ± 4.6, respectively (p = 0.016). Relative mRNA levels of c-Fos and c-Jun at 12-h light exposure after injection differed significantly between vector- and vehicle-injected eyes (p = 0.036, 0.016, respectively). The expression of the other apoptosis-related genes evaluated was not significantly affected. This study investigates the molecular basis of photoreceptor neuroprotective pathway induction associated with E1−, E3−, E4− adenovirus vectors. The results indicate that empty adenovirus vectors protect photoreceptors from light-induced degeneration by the modulation of apoptotic pathways. Gene expression changes suggest that the suppression of c-Fos and c-Jun upregulation contributes significantly to the neuroprotective effect. Understanding the molecular basis of the neuroprotective pathway induction in photoreceptors is critical to the development of novel therapies for retinal degenerations.
Collapse
|