1
|
Ryan EM, Norinskiy MA, Bracken AK, Lueders EE, Chen X, Fu Q, Anderson ET, Zhang S, Abbasov ME. Activity-Based Acylome Profiling with N-(Cyanomethyl)- N-(phenylsulfonyl)amides for Targeted Lysine Acylation and Post-Translational Control of Protein Function in Cells. J Am Chem Soc 2024; 146:27622-27643. [PMID: 39348182 PMCID: PMC11899832 DOI: 10.1021/jacs.4c09073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Lysine acylations are ubiquitous and structurally diverse post-translational modifications that vastly expand the functional heterogeneity of the human proteome. Hence, the targeted acylation of lysine residues has emerged as a strategic approach to exert biomimetic control over the protein function. However, existing strategies for targeted lysine acylation in cells often rely on genetic intervention, recruitment of endogenous acylation machinery, or nonspecific acylating agents and lack methods to quantify the magnitude of specific acylations on a global level. In this study, we develop activity-based acylome profiling (ABAP), a chemoproteomic strategy that exploits elaborate N-(cyanomethyl)-N-(phenylsulfonyl)amides and lysine-centric probes for site-specific introduction and proteome-wide mapping of posttranslational lysine acylations in human cells. Harnessing this framework, we quantify various artificial acylations and rediscover numerous endogenous lysine acylations. We validate site-specific acetylation of target lysines and establish a structure-activity relationship for N-(cyanomethyl)-N-(phenylsulfonyl)amides in proteins from diverse structural and functional classes. We identify paralog-selective chemical probes that acetylate conserved lysines within interferon-stimulated antiviral RNA-binding proteins, generating de novo proteoforms with obstructed RNA interactions. We further demonstrate that targeted acetylation of a key enzyme in retinoid metabolism engenders a proteoform with a conformational change in the protein structure, leading to a gain-of-function phenotype and reduced drug potency. These findings underscore the versatility of our strategy in biomimetic control over protein function through targeted delivery and global profiling of endogenous and artificial lysine acylations, potentially advancing therapeutic modalities and our understanding of biological processes orchestrated by these post-translational modifications.
Collapse
Affiliation(s)
- Elizabeth M Ryan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael A Norinskiy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Amy K Bracken
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Emma E Lueders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xueer Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Mikail E Abbasov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Harris LA, Saad H, Shelton K, Zhu L, Guo X, Mitchell DA. Tryptophan-Centric Bioinformatics Identifies New Lasso Peptide Modifications. Biochemistry 2024; 63:865-879. [PMID: 38498885 PMCID: PMC11197979 DOI: 10.1021/acs.biochem.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) defined by a macrolactam linkage between the N-terminus and the side chain of an internal aspartic acid or glutamic acid residue. Instead of adopting a branched-cyclic conformation, lasso peptides are "threaded", with the C-terminal tail passing through the macrocycle to present a kinetically trapped rotaxane conformation. The availability of enhanced bioinformatics methods has led to a significant increase in the number of secondary modifications found on lasso peptides. To uncover new ancillary modifications in a targeted manner, a bioinformatic strategy was developed to discover lasso peptides with modifications to tryptophan. This effort identified numerous putative lasso peptide biosynthetic gene clusters with core regions of the precursor peptides enriched in tryptophan. Parsing of these tryptophan (Trp)-rich biosynthetic gene clusters uncovered several putative ancillary modifying enzymes, including halogenases and dimethylallyltransferases expected to act upon Trp. Characterization of two gene products yielded a lasso peptide with two 5-Cl-Trp modifications (chlorolassin) and another bearing 5-dimethylallyl-Trp and 2,3-didehydro-Tyr modifications (wygwalassin). Bioinformatic analysis of the requisite halogenase and dimethylallyltransferase revealed numerous other putative Trp-modified lasso peptides that remain uncharacterized. We anticipate that the Trp-centric strategy reported herein may be useful in discovering ancillary modifications for other RiPP classes and, more generally, guide the functional prediction of enzymes that act on specific amino acids.
Collapse
Affiliation(s)
- Lonnie A. Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hamada Saad
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kyle Shelton
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaorui Guo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Campillo-Balderas JA, Lazcano A, Cottom-Salas W, Jácome R, Becerra A. Pangenomic Analysis of Nucleo-Cytoplasmic Large DNA Viruses. I: The Phylogenetic Distribution of Conserved Oxygen-Dependent Enzymes Reveals a Capture-Gene Process. J Mol Evol 2023; 91:647-668. [PMID: 37526693 PMCID: PMC10598087 DOI: 10.1007/s00239-023-10126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
The Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs) infect a wide range of eukaryotic species, including amoeba, algae, fish, amphibia, arthropods, birds, and mammals. This group of viruses has linear or circular double-stranded DNA genomes whose size spans approximately one order of magnitude, from 100 to 2500 kbp. The ultimate origin of this peculiar group of viruses remains an open issue. Some have argued that NCLDVs' origin may lie in a bacteriophage ancestor that increased its genome size by subsequent recruitment of eukaryotic and bacterial genes. Others have suggested that NCLDVs families originated from cells that underwent an irreversible process of genome reduction. However, the hypothesis that a number of NCLDVs sequences have been recruited from the host genomes has been largely ignored. In the present work, we have performed pangenomic analyses of each of the seven known NCLDVs families. We show that these families' core- and shell genes have cellular homologs, supporting possible escaping-gene events as part of its evolution. Furthermore, the detection of sequences that belong to two protein families (small chain ribonucleotide reductase and Erv1/Air) and to one superfamily [2OG-Fe(II) oxygenases] that are for distribution in all NCLDVs core and shell clusters encoding for oxygen-dependent enzymes suggests that the highly conserved core these viruses originated after the Proterozoic Great Oxidation Event that transformed the terrestrial atmosphere 2.4-2.3 Ga ago.
Collapse
Affiliation(s)
- J A Campillo-Balderas
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
| | - A Lazcano
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, 06020, Mexico City, CP, Mexico
| | - W Cottom-Salas
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R Jácome
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
| | - A Becerra
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico.
| |
Collapse
|
4
|
Abstract
INTRODUCTION Hemophilia A (HA) or B (HB) is an X-linked recessive disorder caused by a defect in the factor VIII (FVIII) or factor IX (FIX) gene which leads to the dysfunction of blood coagulation. Protein replacement therapy (PRT) uses recombinant proteins and plasma-derived products, which incurs high cost and inconvenience requiring routine intravenous infusions and life-time treatment. Understanding of detailed molecular mechanisms on FVIII gene function could provide innovative solutions to amend this disorder. In recent decades, gene therapeutics have advanced rapidly and a one-time cure solution has been proposed. AREAS COVERED This review summarizes current understanding of molecular pathways involved in blood coagulation, with emphasis on FVIII's functional role. The existing knowledge and challenges on FVIII gene expression, from transcription, translation, post-translational modification including glycosylation to protein processing and secretion, and co-factor interactions are deciphered and potential molecular interventions discussed. EXPERT OPINION This article reviews the potential treatment targets for HA and HB, including antibodies, small molecules and gene therapeutics, based on molecular mechanisms of FVIII biosynthesis, and further, assessing the pros and cons of these various treatment strategies. Understanding detailed FVIII protein synthesis and secretory pathways could provide exciting opportunities in identifying novel therapeutics to ameliorate hemophilia state.
Collapse
Affiliation(s)
- Jie Gong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Hao-Lin Wang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China.,Geno-Immune Medical Institute, Shenzhen, China
| |
Collapse
|
5
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
6
|
Harzandi A, Lee S, Bidkhori G, Saha S, Hendry BM, Mardinoglu A, Shoaie S, Sharpe CC. Acute kidney injury leading to CKD is associated with a persistence of metabolic dysfunction and hypertriglyceridemia. iScience 2021; 24:102046. [PMID: 33554059 PMCID: PMC7843454 DOI: 10.1016/j.isci.2021.102046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Fibrosis is the pathophysiological hallmark of progressive chronic kidney disease (CKD). The kidney is a highly metabolically active organ, and it has been suggested that disruption in its metabolism leads to renal fibrosis. We developed a longitudinal mouse model of acute kidney injury leading to CKD and an in vitro model of epithelial to mesenchymal transition to study changes in metabolism, inflammation, and fibrosis. Using transcriptomics, metabolic modeling, and serum metabolomics, we observed sustained fatty acid metabolic dysfunction in the mouse model from early to late stages of CKD. Increased fatty acid biosynthesis and downregulation of catabolic pathways for triglycerides and diacylglycerides were associated with a marked increase in these lipids in the serum. We therefore suggest that the kidney may be the source of the abnormal lipid profile seen in patients with CKD, which may provide insights into the association between CKD and cardiovascular disease. Following AKI, markers of fibrosis and inflammation go up simultaneously AKI is associated with reduced fatty acid oxidation and oxidative phosphorylation Changes in metabolism persist as chronic kidney disease develops Changes in metabolism are associated with increased serum levels of triglycerides
Collapse
Affiliation(s)
- Azadeh Harzandi
- Renal Sciences, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9NU London, UK
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea, 61005
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT London, UK
| | - Gholamreza Bidkhori
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT London, UK
| | - Sujit Saha
- Renal Sciences, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9NU London, UK
| | - Bruce M. Hendry
- Renal Sciences, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9NU London, UK
| | - Adil Mardinoglu
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT London, UK
- Science for Life Laboratory (SciLifeLab), KTH - Royal Institute of Technology, Tomtebodavägen 23, Solna, Stockholm 171 65, Sweden
- Corresponding author
| | - Saeed Shoaie
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT London, UK
- Science for Life Laboratory (SciLifeLab), KTH - Royal Institute of Technology, Tomtebodavägen 23, Solna, Stockholm 171 65, Sweden
- Corresponding author
| | - Claire C. Sharpe
- Renal Sciences, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9NU London, UK
- Corresponding author
| |
Collapse
|
7
|
Dubot P, Astudillo L, Touati G, Baruteau J, Broué P, Roche S, Sabourdy F, Levade T. Pregnancy outcome in Refsum disease: Affected fetuses and children born to an affected mother. JIMD Rep 2019; 46:11-15. [PMID: 31240149 PMCID: PMC6498833 DOI: 10.1002/jmd2.12020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 11/06/2022] Open
Abstract
We describe the case of a young woman, from a consanguineous family, affected by adult Refsum disease (ARD, OMIM#266500). ARD is a rare peroxisomal autosomal recessive disease due to deficient alpha-oxidation of phytanic acid (PA), a branched-chain fatty acid. The accumulation of PA in organs is thought to be responsible for disease symptoms. The patient presented only bilateral shortening of metatarsals and has been treated with a low-PA diet. She is homoallelic for the c.135-2A > G mutation of PHYH, and she married her first cousin carrying the same mutation. She was pregnant seven times and had two homozygous girls. Due to a potential exacerbation of the disease during the third trimester of pregnancy, her weight and plasma PA levels were monitored. No specific events were noticed for the mother during the pregnancies and postpartum periods. This case also raised the question of potential exposure to PA (and its subsequent toxicity) of a homozygous fetus in a homozygous mother. Despite modestly elevated plasma concentrations of PA at birth (<30 μmol/L), the two affected girls did not present any specific sign of ARD and have so far developed normally. As only a few determinations of plasma PA levels in the mother could be performed during pregnancies, showing mild elevations (<350 μmol/L), it remains difficult to conclude as to a possible transplacental crossing of PA.
Collapse
Affiliation(s)
- Patricia Dubot
- Laboratoire de Biochimie MétaboliqueCentre de Référence en Maladies Héréditaires du Métabolisme, Institut Fédératif de Biologie, CHU de ToulouseToulouseFrance
- INSERM UMR1037CRCT (Cancer Research Center of Toulouse)ToulouseFrance
| | - Léonardo Astudillo
- INSERM UMR1037CRCT (Cancer Research Center of Toulouse)ToulouseFrance
- Service de Médecine InterneCentre de Référence en Maladies Héréditaires du Métabolisme, CHU de ToulouseToulouseFrance
| | - Guy Touati
- Département d'Hépato‐gastroentérologie pédiatrique, Centre de Référence en Maladies Héréditaires du MétabolismeHôpital des Enfants, CHU de ToulouseToulouseFrance
| | - Julien Baruteau
- Département d'Hépato‐gastroentérologie pédiatrique, Centre de Référence en Maladies Héréditaires du MétabolismeHôpital des Enfants, CHU de ToulouseToulouseFrance
| | - Pierre Broué
- Département d'Hépato‐gastroentérologie pédiatrique, Centre de Référence en Maladies Héréditaires du MétabolismeHôpital des Enfants, CHU de ToulouseToulouseFrance
| | - Sandrine Roche
- Département d'Hépato‐gastroentérologie pédiatrique, Centre de Référence en Maladies Héréditaires du MétabolismeHôpital des Enfants, CHU de ToulouseToulouseFrance
| | - Frédérique Sabourdy
- Laboratoire de Biochimie MétaboliqueCentre de Référence en Maladies Héréditaires du Métabolisme, Institut Fédératif de Biologie, CHU de ToulouseToulouseFrance
- INSERM UMR1037CRCT (Cancer Research Center of Toulouse)ToulouseFrance
| | - Thierry Levade
- Laboratoire de Biochimie MétaboliqueCentre de Référence en Maladies Héréditaires du Métabolisme, Institut Fédératif de Biologie, CHU de ToulouseToulouseFrance
- INSERM UMR1037CRCT (Cancer Research Center of Toulouse)ToulouseFrance
| |
Collapse
|
8
|
Stähr K, Kuechler A, Gencik M, Arnolds J, Dendy M, Lang S, Arweiler-Harbeck D. Cochlear Implantation in Siblings With Refsum’s Disease. Ann Otol Rhinol Laryngol 2017; 126:611-614. [DOI: 10.1177/0003489417717269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kerstin Stähr
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Martin Gencik
- Laboratory of human genetic, diagenos, Osnabrück, Germany
| | - Judith Arnolds
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Meaghan Dendy
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Stephan Lang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Diana Arweiler-Harbeck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
9
|
Mezzar S, De Schryver E, Asselberghs S, Meyhi E, Morvay PL, Baes M, Van Veldhoven PP. Phytol-induced pathology in 2-hydroxyacyl-CoA lyase (HACL1) deficient mice. Evidence for a second non-HACL1-related lyase. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28629946 DOI: 10.1016/j.bbalip.2017.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
2-Hydroxyacyl-CoA lyase (HACL1) is a key enzyme of the peroxisomal α-oxidation of phytanic acid. To better understand its role in health and disease, a mouse model lacking HACL1 was investigated. Under normal conditions, these mice did not display a particular phenotype. However, upon dietary administration of phytol, phytanic acid accumulated in tissues, mainly in liver and serum of KO mice. As a consequence of phytanic acid (or a metabolite) toxicity, KO mice displayed a significant weight loss, absence of abdominal white adipose tissue, enlarged and mottled liver and reduced hepatic glycogen and triglycerides. In addition, hepatic PPARα was activated. The central nervous system of the phytol-treated mice was apparently not affected. In addition, 2OH-FA did not accumulate in the central nervous system of HACL1 deficient mice, likely due to the presence in the endoplasmic reticulum of an alternate HACL1-unrelated lyase. The latter may serve as a backup system in certain tissues and account for the formation of pristanic acid in the phytol-fed KO mice. As the degradation of pristanic acid is also impaired, both phytanoyl- and pristanoyl-CoA levels are increased in liver, and the ω-oxidized metabolites are excreted in urine. In conclusion, HACL1 deficiency is not associated with a severe phenotype, but in combination with phytanic acid intake, the normal situation in man, it might present with phytanic acid elevation and resemble a Refsum like disorder.
Collapse
Affiliation(s)
- Serena Mezzar
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Evelyn De Schryver
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Stanny Asselberghs
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Els Meyhi
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Petruta L Morvay
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Myriam Baes
- Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | | |
Collapse
|
10
|
The Challenges of a Successful Pregnancy in a Patient with Adult Refsum's Disease due to Phytanoyl-CoA Hydroxylase Deficiency. JIMD Rep 2016; 33:49-53. [PMID: 27518778 DOI: 10.1007/8904_2016_569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 02/28/2023] Open
Abstract
We describe the management and outcomes of pregnancy in a 27-year-old woman with infantile-onset Adult Refsum's disease (ARD). She presented in infancy but was diagnosed with ARD at the age of 10 on basis of phytanic acidaemia and later confirmed to have the phytanoyl-CoA hydroxylase ((PHYH) c.164delT, p.L55fsX12) mutation. Despite repeated plasmapheresis sessions and strict dietary surveillance for 20 years, her phytanic acid levels persistently stayed above the ideal target level of 100 μmol/L but remained below 400 μmol/L. Initially the pregnancy was uncomplicated but in the third trimester of pregnancy the patient was admitted to the hospital with fluctuating hypertension, sinus tachycardia and breathlessness. The patient was compliant with diet during pregnancy and her phytanic levels were remained well controlled: 177 and 188 μmol/L in the first and second trimester, respectively. Peri-partum management required a coordinated team approach including a high-calorie and restricted diet to reduce the risk of acute metabolic decompensation. During the induced labour she required 10% dextrose infusions.Post-partum it took the mother a long time to recover from childbirth - her appetite was poor due to post-natal depression and her body weight decreased rapidly by 11 kg within 3 weeks after childbirth, resulting in a spike in phytanic acid to 366 μmol/L. Measures were taken to minimise the risk of acute neurological decompensation. The infant was unaffected and has made normal developmental progress in the subsequent 2 years.
Collapse
|
11
|
Berger J, Dorninger F, Forss-Petter S, Kunze M. Peroxisomes in brain development and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:934-55. [PMID: 26686055 PMCID: PMC4880039 DOI: 10.1016/j.bbamcr.2015.12.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022]
Abstract
Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann.
Collapse
Affiliation(s)
- Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Wanders RJA, Ferdinandusse S, Ebberink MS, Waterham HR. Phytanoyl-CoA Hydroxylase: A 2-Oxoglutarate-Dependent Dioxygenase Crucial for Fatty Acid Alpha-Oxidation in Humans. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phytanoyl-CoA hydroxylase belongs to the family of 2-oxoglutarate-dependent dioxygenases and plays a crucial role in the α-oxidation of fatty acids. The complete α-oxidation pathway involves five different enzymes localized in peroxisomes. Thus far, phytanoyl-CoA hydroxylase deficiency has remained the only genetically determined inborn error of metabolism affecting the α-oxidation pathway. In this chapter we describe the current state of knowledge on fatty acid α-oxidation with special emphasis on phytanoyl-CoA hydroxylase and its deficiency in Refsum disease.
Collapse
Affiliation(s)
- Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| | - Merel S. Ebberink
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| |
Collapse
|
13
|
Malheiro AR, da Silva TF, Brites P. Plasmalogens and fatty alcohols in rhizomelic chondrodysplasia punctata and Sjögren-Larsson syndrome. J Inherit Metab Dis 2015; 38:111-21. [PMID: 25432520 DOI: 10.1007/s10545-014-9795-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/29/2022]
Abstract
Plasmalogens are a special class of ether-phospholipids, best recognized by their vinyl-ether bond at the sn-1 position of the glycerobackbone and by the observation that their deficiency causes rhizomelic chondrodysplasia punctata (RCDP). The complex plasmalogen biosynthetic pathway involves multiple enzymatic steps carried-out in peroxisomes and in the endoplasmic reticulum. The rate limiting step in the biosynthesis of plasmalogens resides in the formation of the fatty alcohol responsible for the formation of an intermediate with an alkyl-linked moiety. The regulation in the biosynthesis of plasmalogens also takes place at this step using a feedback mechanism to stimulate or inhibit the biosynthesis. As such, fatty alcohols play a relevant role in the formation of ether-phospholipids. These advances in our understanding of complex lipid biosynthesis brought two seemingly distinct disorders into the spotlight. Sjögren-Larsson syndrome (SLS) is caused by defects in the microsomal fatty aldehyde dehydrogenase (FALDH) leading to the accumulation of fatty alcohols and fatty aldehydes. In RCDP cells, the defect in plasmalogens is thought to generate a feedback signal to increase their biosynthesis, through the activity of fatty acid reductases to produce fatty alcohols. However, the enzymatic defects in either glyceronephosphate O-acyltransferase (GNPAT) or alkylglycerone phosphate synthase (AGPS) disrupt the biosynthesis and result in the accumulation of the fatty alcohols. A detailed characterization on the processes and enzymes that govern these intricate biosynthetic pathways, as well as, the metabolic characterization of defects along the pathway should increase our understanding of the causes and mechanisms behind these disorders.
Collapse
Affiliation(s)
- Ana R Malheiro
- Lab Nerve Regeneration, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal
| | | | | |
Collapse
|
14
|
Solomon BD, Pineda-Alvarez DE, Bear KA, Mullikin JC, Evans JP. Applying Genomic Analysis to Newborn Screening. Mol Syndromol 2012; 3:59-67. [PMID: 23112750 DOI: 10.1159/000341253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2012] [Indexed: 01/30/2023] Open
Abstract
Large-scale genomic analysis such as whole-exome and whole-genome sequencing is becoming increasingly prevalent in the research arena. Clinically, many potential uses of this technology have been proposed. One such application is the extension or augmentation of newborn screening. In order to explore this application, we examined data from 3 children with normal newborn screens who underwent whole-exome sequencing as part of research participation. We analyzed sequence information for 151 selected genes associated with conditions ascertained by newborn screening. We compared findings with publicly available databases and results from over 500 individuals who underwent whole-exome sequencing at the same facility. Novel variants were confirmed through bidirectional dideoxynucleotide sequencing. High-density microarrays (Illumina Omni1-Quad) were also performed to detect potential copy number variations affecting these genes. We detected an average of 87 genetic variants per individual. After excluding artifacts, 96% of the variants were found to be reported in public databases and have no evidence of pathogenicity. No variants were identified that would predict disease in the tested individuals, which is in accordance with their normal newborn screens. However, we identified 6 previously reported variants and 2 novel variants that, according to published literature, could result in affected offspring if the reproductive partner were also a mutation carrier; other specific molecular findings highlight additional means by which genomic testing could augment newborn screening.
Collapse
Affiliation(s)
- B D Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md., USA
| | | | | | | | | | | |
Collapse
|
15
|
Zolotov D, Wagner S, Kalb K, Bunia J, Heibges A, Klingel R. Long-term strategies for the treatment of Refsum's disease using therapeutic apheresis. J Clin Apher 2012; 27:99-105. [DOI: 10.1002/jca.21200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 10/31/2011] [Indexed: 01/06/2023]
|
16
|
Van Veldhoven PP. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 2010; 51:2863-95. [PMID: 20558530 DOI: 10.1194/jlr.r005959] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In humans, peroxisomes harbor a complex set of enzymes acting on various lipophilic carboxylic acids, organized in two basic pathways, alpha-oxidation and beta-oxidation; the latter pathway can also handle omega-oxidized compounds. Some oxidation products are crucial to human health (primary bile acids and polyunsaturated FAs), whereas other substrates have to be degraded in order to avoid neuropathology at a later age (very long-chain FAs and xenobiotic phytanic acid and pristanic acid). Whereas total absence of peroxisomes is lethal, single peroxisomal protein deficiencies can present with a mild or severe phenotype and are more informative to understand the pathogenic factors. The currently known single protein deficiencies equal about one-fourth of the number of proteins involved in peroxisomal FA metabolism. The biochemical properties of these proteins are highlighted, followed by an overview of the known diseases.
Collapse
Affiliation(s)
- Paul P Van Veldhoven
- Katholieke Universiteit Leuven, Department of Molecular Cell Biology, LIPIT, Campus Gasthuisberg, Herestraat, Leuven, Belgium.
| |
Collapse
|
17
|
Gong S, Blundell TL. Structural and functional restraints on the occurrence of single amino acid variations in human proteins. PLoS One 2010; 5:e9186. [PMID: 20169194 PMCID: PMC2820541 DOI: 10.1371/journal.pone.0009186] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/24/2010] [Indexed: 11/19/2022] Open
Abstract
Human genetic variation is the incarnation of diverse evolutionary history, which reflects both selectively advantageous and selectively neutral change. In this study, we catalogue structural and functional features of proteins that restrain genetic variation leading to single amino acid substitutions. Our variation dataset is divided into three categories: i) Mendelian disease-related variants, ii) neutral polymorphisms and iii) cancer somatic mutations. We characterize structural environments of the amino acid variants by the following properties: i) side-chain solvent accessibility, ii) main-chain secondary structure, and iii) hydrogen bonds from a side chain to a main chain or other side chains. To address functional restraints, amino acid substitutions in proteins are examined to see whether they are located at functionally important sites involved in protein-protein interactions, protein-ligand interactions or catalytic activity of enzymes. We also measure the likelihood of amino acid substitutions and the degree of residue conservation where variants occur. We show that various types of variants are under different degrees of structural and functional restraints, which affect their occurrence in human proteome.
Collapse
Affiliation(s)
- Sungsam Gong
- Biocomputing Group, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tom L. Blundell
- Biocomputing Group, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Chiavérini C. Ichtyoses génétiques. Ann Dermatol Venereol 2009; 136:923-34. [DOI: 10.1016/j.annder.2009.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 01/23/2009] [Indexed: 01/07/2023]
|
19
|
Hao Y, Winans SC, Glick BR, Charles TC. Identification and characterization of new LuxR/LuxI-type quorum sensing systems from metagenomic libraries. Environ Microbiol 2009; 12:105-17. [PMID: 19735279 DOI: 10.1111/j.1462-2920.2009.02049.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Quorum sensing (QS) cell-cell communication systems are utilized by bacteria to coordinate their behaviour according to cell density. Several different types of QS signal molecules have been identified, among which acyl-homoserine lactones (AHLs) produced by Proteobacteria have been studied to the greatest extent. Although QS has been studied extensively in cultured microorganisms, little is known about the QS systems of uncultured microorganisms and the roles of these systems in microbial communities. To extend our knowledge of QS systems and to better understand the signalling that takes place in the natural environment, metagenomic libraries constructed using DNA from activated sludge and soil were screened, using an Agrobacterium biosensor strain, for novel QS synthase genes. Three cosmids (QS6-1, QS10-1 and QS10-2) that encode the production of QS signals were identified and DNA sequence analysis revealed that all three clones encode a novel luxI family AHL synthase and a luxR family transcriptional regulator. Thin layer chromatography revealed that these LuxI homologue proteins are able to synthesize multiple AHL signals. Tandem mass spectrometry analysis revealed that LuxI(QS6-1) directs the synthesis of at least three AHLs, 3-O-C14:1 HSL, 3-O-C16:1 HSL and 3-O-C14 HSL; LuxI(QS10-1) directs the synthesis of at least 3-O-C12 HSL and 3-O-C14 HSL; while LuxI(QS10-2) directs the synthesis of at least C8 HSL and C10 HSL. Two possible new AHLs, C14:3 HSL and (?)-hydroxymethyl-3-O-C14 HSL, were also found to be synthesized by LuxI(QS6-1).
Collapse
Affiliation(s)
- Youai Hao
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | | |
Collapse
|
20
|
Finsterer J, Regelsberger G, Voigtländer T. Non-manifesting Refsum heterozygotes carrying the c.135-2A>G PAHX gene transition. Neurol Sci 2008; 29:173-5. [PMID: 18612766 DOI: 10.1007/s10072-008-0931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
Abstract
So far, subjects heterozygous for PAHX mutations are regarded as non-symptomatic. In the 24-year-old, HIV-negative daughter and the 26-year-old, HIV-negative son of a patient with Refsum disease due to the homozygous c.135-2A>G transition at the splice site before exon 3 of the PAHX gene, slight abnormalities suggestive of the disease became apparent. The daughter reported a single fever cramp in childhood, recurrent, short-lived amaurotic episodes after getting up from supine, short-sightedness, hypoacusis, and restless legs. The son complained about restless legs, hyperhidrosis, hypoacusis, and bulbar oscillations. Though both children carried the same mutation as their mother in the heterozygous form, clinical neurologic examination, nerve conduction studies and serum phytanic acid concentration were normal in both of them, implying that the described abnormalities were not causally related to the PAHX mutation. In the absence of elevated phytanic acid concentrations, clinical neurologic abnormalities in heterozygous relatives of Refsum patients are not attributable to heterozygosity for PAHX mutations.
Collapse
|
21
|
Finsterer J, Regelsberger G, Voigtländer T. Refsum disease due to the splice-site mutation c.135-2A>G before exon 3 of the PHYH gene, diagnosed eight years after detection of retinitis pigmentosa. J Neurol Sci 2008; 266:182-6. [PMID: 17905308 DOI: 10.1016/j.jns.2007.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/30/2007] [Accepted: 09/06/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVES If Refsum disease (RD) is not considered as a differential at onset of the initial manifestations the diagnosis of RD remains unrecognized for a long time as in the following case. CASE REPORT A 55-y old Caucasian female with hyperextensible joints developed progressive visual impairment due to retinitis pigmentosa and sensorimotor polyneuropathy of the lower limbs since age 32 y. Screening for causes of polyneuropathy at age 40 y revealed markedly elevated serum phytanic acid (PA) with a maximum value of 293.6 microg/ml (n:<6 microg/ml) why RD was diagnosed. Since age 48 y slowly progressive hypacusis was noted. RD was caused by the known transition A135G in exon 3 of the PHYH gene. Additionally, the polymorphism T153C in exon 3 of the PHYH gene was detected. Upon strict adherence to the Chelsea diet PA levels slightly decreased since onset of this therapy. CONCLUSION This case confirms that RD remains unrecognized for a long time if RD is not considered as a differential of retinitis pigmentosa as the initial manifestation of the disease. Early recognition of RD is important since there is the therapeutic option of starting a diet.
Collapse
|
22
|
Structural and mechanistic studies on the peroxisomal oxygenase phytanoyl-CoA 2-hydroxylase (PhyH). Biochem Soc Trans 2007; 35:870-5. [DOI: 10.1042/bst0350870] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytanic acid (PA) is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric β-methyl group, PA cannot be metabolized by β-oxidation. Instead, it is metabolized in peroxisomes via α-oxidation to give pristanic acid, which is then oxidized by β-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase, also known as PAHX), an Fe(II) and 2OG (2-oxoglutarate) oxygenase, catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH ablate its role in α-oxidation, resulting in PA accumulation and ARD (adult Refsum's disease). The structure and function of PhyH is discussed in terms of its clinical importance and unusual selectivity. Most point mutations of PhyH causing ARD cluster in two distinct groups around the Fe(II)- and 2OG-binding sites. Therapaeutic possibilities for the treatment of Refsum's disease involving PhyH are discussed.
Collapse
|
23
|
Abstract
Peroxisomes are involved in the synthesis and degradation of complex fatty acids. They contain enzymes involved in the α-, β- and ω-oxidation pathways for fatty acids. Investigation of these pathways and the diseases associated with mutations in enzymes involved in the degradation of phytanic acid have led to the clarification of the pathophysiology of Refsum's disease, rhizomelic chondrodysplasia and AMACR (α-methylacyl-CoA racemase) deficiency. This has highlighted the role of an Fe(II)- and 2-oxoglutarate-dependent oxygenases [PhyH (phytanoyl-CoA 2-hydroxylase), also known as PAHX], thiamin-dependent lyases (phytanoyl-CoA lyase) and CYP (cytochrome P450) family 4A in fatty acid metabolism. The differential regulation and biology of these pathways is suggesting novel ways to treat the neuro-ophthalmological sequelae of Refsum's disease. More recently, the discovery that AMACR and other peroxisomal β-oxidation pathway enzymes are highly expressed in prostate and renal cell cancers has prompted active investigation into the role of these oxidation pathways and the peroxisome in the progression of obesity- and insulin resistance-related cancers.
Collapse
|
24
|
Jansen GA, Wanders RJA. Alpha-Oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1403-12. [PMID: 16934890 DOI: 10.1016/j.bbamcr.2006.07.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/24/2006] [Indexed: 11/15/2022]
Abstract
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched chain fatty acid, which is a constituent of the human diet. The presence of the 3-methyl group of phytanic acid prevents degradation by beta-oxidation. Instead, the terminal carboxyl group is first removed by alpha-oxidation. The mechanism of the alpha-oxidation pathway and the enzymes involved are described in this review.
Collapse
Affiliation(s)
- Gerbert A Jansen
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
25
|
Palau F, Espinós C. Autosomal recessive cerebellar ataxias. Orphanet J Rare Dis 2006; 1:47. [PMID: 17112370 PMCID: PMC1664553 DOI: 10.1186/1750-1172-1-47] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/17/2006] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia.
Collapse
Affiliation(s)
- Francesc Palau
- Genetics and Molecular Medicine Unit, Instituto de Biomedicina, CSIC, Jaume Roig, 11 46010 Valencia, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Carmen Espinós
- Genetics and Molecular Medicine Unit, Instituto de Biomedicina, CSIC, Jaume Roig, 11 46010 Valencia, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| |
Collapse
|
26
|
Mazereeuw-Hautier J, Descargues P, Rolland M, Bonafe J, Levade T, Hovnanian A. P173 - Une ichtyose peut en cacher une autre. Ann Dermatol Venereol 2005. [DOI: 10.1016/s0151-9638(05)79902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
McDonough MA, Kavanagh KL, Butler D, Searls T, Oppermann U, Schofield CJ. Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease. J Biol Chem 2005; 280:41101-10. [PMID: 16186124 DOI: 10.1074/jbc.m507528200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Refsum disease (RD), a neurological syndrome characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia, is caused by elevated levels of phytanic acid. Many cases of RD are associated with mutations in phytanoyl-CoA 2-hydroxylase (PAHX), an Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the initial alpha-oxidation step in the degradation of phytenic acid in peroxisomes. We describe the x-ray crystallographic structure of PAHX to 2.5 A resolution complexed with Fe(II) and 2OG and predict the molecular consequences of mutations causing RD. Like other 2OG oxygenases, PAHX possesses a double-stranded beta-helix core, which supports three iron binding ligands (His(175), Asp(177), and His(264)); the 2-oxoacid group of 2OG binds to the Fe(II) in a bidentate manner. The manner in which PAHX binds to Fe(II) and 2OG together with the presence of a cysteine residue (Cys(191)) 6.7 A from the Fe(II) and two further histidine residues (His(155) and His(281)) at its active site distinguishes it from that of the other human 2OG oxygenase for which structures are available, factor inhibiting hypoxia-inducible factor. Of the 15 PAHX residues observed to be mutated in RD patients, 11 cluster in two distinct groups around the Fe(II) (Pro(173), His(175), Gln(176), Asp(177), and His(220)) and 2OG binding sites (Trp(193), Glu(197), Ile(199), Gly(204), Asn(269), and Arg(275)). PAHX may be the first of a new subfamily of coenzyme A-binding 2OG oxygenases.
Collapse
Affiliation(s)
- Michael A McDonough
- Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Searls T, Butler D, Chien W, Mukherji M, Lloyd MD, Schofield CJ. Studies on the specificity of unprocessed and mature forms of phytanoyl-CoA 2-hydroxylase and mutation of the iron binding ligands. J Lipid Res 2005; 46:1660-7. [PMID: 15930519 DOI: 10.1194/jlr.m500034-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mature form of phytanoyl-coenzyme A 2-hydroxylase (PAHX), a nonheme Fe(II)- and 2-oxoglutarate-dependent oxygenase, catalyzes the alpha-hydroxylation of phytanoyl-CoA within peroxisomes. Mutations in PAHX result in some forms of adult Refsum's disease. Unprocessed PAHX (pro-PAHX) contains an N-terminal peroxisomal targeting sequence that is cleaved to give mature PAHX (mat-PAHX). Previous studies have implied a difference in the substrate specificity of the unprocessed and mature forms of PAHX. We demonstrate that both forms are able to hydroxylate a range of CoA derivatives, but under the same assay conditions, the N-terminal hexa-His-tagged unprocessed form is less active than the nontagged mature form. Analyses of the assay conditions suggest a rationale for the lack of activity previously reported for some substrates (e.g. isovaleryl-CoA) for the (His)6pro-PAHX. Site-directed mutagenesis was used to support proposals for the identity of the iron binding ligands (His-175, Asp-177, His-264) of the 2-His-1-carboxylate motif of PAHX. Mutation of other histidine residues (His-213, His-220, His-259) suggested that these residues were not involved in Fe(II) binding.
Collapse
Affiliation(s)
- Timothy Searls
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | | | | | | | | | | |
Collapse
|
29
|
Richard G. Molecular genetics of the ichthyoses. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 131C:32-44. [PMID: 15452860 DOI: 10.1002/ajmg.c.30032] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ichthyoses are a large, clinically, genetically, and etiologically heterogeneous group of disorders of cornification due to abnormal differentiation and desquamation of the epidermis. Although they differ in clinical features, inheritance, and structural and biochemical abnormalities of the epidermis, they often pose a diagnostic challenge. For each of the 12 ichthyoses and related disorders described here, the major disease genes have been identified and genotype-phenotype correlation have begun to emerge. The molecular findings reveal the functional importance and interactions of many different epidermal proteins and metabolic pathways, including major structural proteins (keratins, loricrin), enzymes involved in lipid metabolism (transglutaminase 1, lipoxygenases, fatty aldehyde dehydrogenase, steroid sulfatase, glucocerebrosidase, Delta8-Delta7 sterol isomerase, 3beta-hydroxysteroid dehydrogenase), and protein catabolism (LEKTI), peroxisomal transport and processing (Peroxin 7 receptor, Phytanoyl-CoA hydroxylase) and DNA repair (proteins of the transcription repair complex). This review highlights the spectacular advances in the molecular genetics and biology of heritable ichthyoses over the past decade. It illustrates the power of molecular diagnostics for refining disease classification, providing prenatal diagnosis, improving genetic counseling, and clinical management.
Collapse
Affiliation(s)
- Gabriele Richard
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
30
|
Abstract
The group of peroxisomal disorders now includes 17 different disorders with Zellweger syndrome as prototype. Thanks to the explosion of new information about the functions and biogenesis of peroxisomes, the metabolic and molecular basis of most of the peroxisomal disorders has been resolved. A review of peroxisomal disorders is provided in this paper.
Collapse
Affiliation(s)
- Ronald J A Wanders
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry, Emma Children's Hospital, Laboratory of Genetic Metabolic Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH. Structure and Biosynthesis of the Jamaicamides, New Mixed Polyketide-Peptide Neurotoxins from the Marine Cyanobacterium Lyngbya majuscula. ACTA ACUST UNITED AC 2004; 11:817-33. [PMID: 15217615 DOI: 10.1016/j.chembiol.2004.03.030] [Citation(s) in RCA: 364] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/13/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
A screening program for bioactive compounds from marine cyanobacteria led to the isolation of jamaicamides A-C. Jamaicamide A is a novel and highly functionalized lipopeptide containing an alkynyl bromide, vinyl chloride, beta-methoxy eneone system, and pyrrolinone ring. The jamaicamides show sodium channelblocking activity and fish toxicity. Precursor feeding to jamaicamide-producing cultures mapped out the series of acetate and amino acid residues and helped develop an effective cloning strategy for the biosynthetic gene cluster. The 58 kbp gene cluster is composed of 17 open reading frames that show an exact colinearity with their expected utilization. A novel cassette of genes appears to form a pendent carbon atom possessing the vinyl chloride functionality; at its core this contains an HMG-CoA synthase-like motif, giving insight into the mechanism by which this functional group is created.
Collapse
Affiliation(s)
- Daniel J Edwards
- College of Pharmacy, Oregon State University, Corvallis, OR 9733, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Christopher J Schofield
- The Oxford Centre for Molecular Sciences and The Dyson Perrins Laboratory, Department of Chemistry, South Parks Road, Oxford OX1 3QY, UK
| | | |
Collapse
|
33
|
Jansen GA, Waterham HR, Wanders RJA. Molecular basis of Refsum disease: sequence variations in phytanoyl-CoA hydroxylase (PHYH) and the PTS2 receptor (PEX7). Hum Mutat 2004; 23:209-18. [PMID: 14974078 DOI: 10.1002/humu.10315] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Refsum disease has long been known to be an inherited disorder of lipid metabolism characterized by the accumulation of phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) caused by an alpha-oxidation deficiency of this branched chain fatty acid in peroxisomes. The mechanism of phytanic acid alpha-oxidation and the enzymes involved had long remained mysterious, but they have been resolved in recent years. This has led to the resolution of the molecular basis of Refsum disease. Interestingly, Refsum disease is genetically heterogeneous; two genes, PHYH (also named PAHX) and PEX7, have been identified to cause Refsum disease, as reviewed in this work.
Collapse
Affiliation(s)
- Gerbert A Jansen
- Laboratory of Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
34
|
Foulon V, Asselberghs S, Geens W, Mannaerts GP, Casteels M, Van Veldhoven PP. Further studies on the substrate spectrum of phytanoyl-CoA hydroxylase: implications for Refsum disease? J Lipid Res 2003; 44:2349-55. [PMID: 12923223 DOI: 10.1194/jlr.m300230-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Refsum disease is a peroxisomal disorder characterized by adult-onset retinitis pigmentosa, anosmia, sensory neuropathy, ataxia, and an accumulation of phytanic acid in plasma and tissues. Approximately 45% of cases are caused by mutations in phytanoyl-CoA hydroxylase (PAHX), the enzyme catalyzing the second step in the peroxisomal alpha-oxidation of 3-methyl-branched fatty acids. To study the substrate specificity of human PAHX, different 3-alkyl-branched substrates were synthesized and incubated with a recombinant polyhistidine-tagged protein. The enzyme showed activity not only toward racemic phytanoyl-CoA and the isomers of 3-methylhexadecanoyl-CoA, but also toward a variety of other mono-branched 3-methylacyl-CoA esters with a chain length down to seven carbon atoms. Furthermore, PAHX hydroxylated a 3-ethylacyl-CoA quite well, whereas a 3-propylacyl-CoA was a poor substrate. Hydroxylation of neither 2- or 4-methyl-branched acyl-CoA esters, nor long or very long straight-chain acyl-CoA esters could be detected. The results presented in this paper show that the substrate specificity of PAHX, with regard to the length of both the acyl-chain and the branch at position 3, is broader than expected. Hence, Refsum disease might be characterized by an accumulation of not only phytanic acid but also other 3-alkyl-branched fatty acids.
Collapse
Affiliation(s)
- Veerle Foulon
- Departement Moleculaire Celbiologie, Afdeling Farmacologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
35
|
Mukherji M, Schofield CJ, Wierzbicki AS, Jansen GA, Wanders RJA, Lloyd MD. The chemical biology of branched-chain lipid metabolism. Prog Lipid Res 2003; 42:359-76. [PMID: 12814641 DOI: 10.1016/s0163-7827(03)00016-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian metabolism of some lipids including 3-methyl and 2-methyl branched-chain fatty acids occurs within peroxisomes. Such lipids, including phytanic and pristanic acids, are commonly found within the human diet and may be derived from chlorophyll in plant extracts. Due to the presence of a methyl group at its beta-carbon, the well-characterised beta-oxidation pathway cannot degrade phytanic acid. Instead its alpha-methylene group is oxidatively excised to give pristanic acid, which can be metabolised by the beta-oxidation pathway. Many defects in the alpha-oxidation pathway result in an accumulation of phytanic acid, leading to neurological distress, deterioration of vision, deafness, loss of coordination and eventual death. Details of the alpha-oxidation pathway have only recently been elucidated, and considerable progress has been made in understanding the detailed enzymology of one of the oxidative steps within this pathway. This review summarises these recent advances and considers the roles and likely mechanisms of the enzymes within the alpha-oxidation pathway.
Collapse
Affiliation(s)
- Mridul Mukherji
- The Oxford Centre for Molecular Sciences & The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, UK
| | | | | | | | | | | |
Collapse
|
36
|
Ofman R, Ruiter JPN, Feenstra M, Duran M, Poll-The BT, Zschocke J, Ensenauer R, Lehnert W, Sass JO, Sperl W, Wanders RJA. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene. Am J Hum Genet 2003; 72:1300-7. [PMID: 12696021 PMCID: PMC1180283 DOI: 10.1086/375116] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 02/24/2003] [Indexed: 01/12/2023] Open
Abstract
2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency is a novel inborn error of isoleucine degradation. In this article, we report the elucidation of the molecular basis of MHBD deficiency. To this end, we purified the enzyme from bovine liver. MALDI-TOF mass spectrometry analysis revealed that the purified protein was identical to bovine 3-hydroxyacyl-CoA dehydrogenase type II. The human homolog of this bovine enzyme is a short-chain 3-hydroxyacyl-CoA dehydrogenase, also known as the "endoplasmic reticulum-associated amyloid-beta binding protein" (ERAB). This led to the identification of the X-chromosomal gene involved, which previously had been denoted "HADH2." Sequence analysis of the HADH2 gene from patients with MHBD deficiency revealed the presence of two missense mutations (R130C and L122V). Heterologous expression of the mutant cDNAs in Escherichia coli showed that both mutations almost completely abolish enzyme activity. This confirms that MHBD deficiency is caused by mutations in the HADH2 gene.
Collapse
Affiliation(s)
- Rob Ofman
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Jos P. N. Ruiter
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Marike Feenstra
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Marinus Duran
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Bwee Tien Poll-The
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Johannes Zschocke
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Regina Ensenauer
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Willy Lehnert
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Jörn Oliver Sass
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Wolfgang Sperl
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Ronald J. A. Wanders
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| |
Collapse
|
37
|
Casteels M, Foulon V, Mannaerts GP, Van Veldhoven PP. Alpha-oxidation of 3-methyl-substituted fatty acids and its thiamine dependence. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1619-27. [PMID: 12694175 DOI: 10.1046/j.1432-1033.2003.03534.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
3-Methyl-branched fatty acids, as phytanic acid, undergo peroxisomal alpha-oxidation in which they are shortened by 1 carbon atom. This process includes four steps: activation, 2-hydroxylation, thiamine pyrophosphate dependent cleavage and aldehyde dehydrogenation. The thiamine pyrophosphate dependence of the third step is unique in peroxisomal mammalian enzymology. Human pathology due to a deficient alpha-oxidation is mostly linked to mutations in the gene coding for the second enzyme of the sequence, phytanoyl-CoA hydroxylase.
Collapse
Affiliation(s)
- Minne Casteels
- Afdeling Farmacologie, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Belgium.
| | | | | | | |
Collapse
|
38
|
Wanders RJA, Jansen GA, Lloyd MD. Phytanic acid alpha-oxidation, new insights into an old problem: a review. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:119-35. [PMID: 12633678 DOI: 10.1016/s1388-1981(03)00003-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phytanic acid (3,7,10,14-tetramethylhexadecanoic acid) is a branched-chain fatty acid which is known to accumulate in a number of different genetic diseases including Refsum disease. Due to the presence of a methyl-group at the 3-position, phytanic acid and other 3-methyl fatty acids can not undergo beta-oxidation but are first subjected to fatty acid alpha-oxidation in which the terminal carboxyl-group is released as CO(2). The mechanism of alpha-oxidation has long remained obscure but has been resolved in recent years. Furthermore, peroxisomes have been found to play an indispensable role in fatty acid alpha-oxidation, and the complete alpha-oxidation machinery is probably localized in peroxisomes. This Review describes the current state of knowledge about fatty acid alpha-oxidation in mammals with particular emphasis on the mechanism involved and the enzymology of the pathway.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital and Clinical Chemistry, Academic Medical Centre, University Hospital Amsterdam, Room F0-224, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
| | | | | |
Collapse
|
39
|
van den Brink DM, Brites P, Haasjes J, Wierzbicki AS, Mitchell J, Lambert-Hamill M, de Belleroche J, Jansen GA, Waterham HR, Wanders RJA. Identification of PEX7 as the second gene involved in Refsum disease. Am J Hum Genet 2003; 72:471-7. [PMID: 12522768 PMCID: PMC379239 DOI: 10.1086/346093] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Accepted: 11/04/2002] [Indexed: 12/27/2022] Open
Abstract
Patients affected with Refsum disease (RD) have elevated levels of phytanic acid due to a deficiency of the peroxisomal enzyme phytanoyl-CoA hydroxylase (PhyH). In most patients with RD, disease-causing mutations in the PHYH gene have been identified, but, in a subset, no mutations could be found, indicating that the condition is genetically heterogeneous. Linkage analysis of a few patients diagnosed with RD, but without mutations in PHYH, suggested a second locus on chromosome 6q22-24. This region includes the PEX7 gene, which codes for the peroxin 7 receptor protein required for peroxisomal import of proteins containing a peroxisomal targeting signal type 2. Mutations in PEX7 normally cause rhizomelic chondrodysplasia punctata type 1, a severe peroxisomal disorder. Biochemical analyses of the patients with RD revealed defects not only in phytanic acid alpha-oxidation but also in plasmalogen synthesis and peroxisomal thiolase. Furthermore, we identified mutations in the PEX7 gene. Our data show that mutations in the PEX7 gene may result in a broad clinical spectrum ranging from severe rhizomelic chondrodysplasia punctata to relatively mild RD and that clinical diagnosis of conditions involving retinitis pigmentosa, ataxia, and polyneuropathy may require a full screen of peroxisomal functions.
Collapse
Affiliation(s)
- Daan M. van den Brink
- Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; Department of Chemical Pathology, King’s College London, St. Thomas' Hospital Campus, Refsum’s Disease Clinic, Chelsea & Westminster Hospital, and Department of Neuromuscular Disease, Faculty of Medicine, Imperial College Medical School, Charing Cross Hospital Campus, London
| | - Pedro Brites
- Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; Department of Chemical Pathology, King’s College London, St. Thomas' Hospital Campus, Refsum’s Disease Clinic, Chelsea & Westminster Hospital, and Department of Neuromuscular Disease, Faculty of Medicine, Imperial College Medical School, Charing Cross Hospital Campus, London
| | - Janet Haasjes
- Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; Department of Chemical Pathology, King’s College London, St. Thomas' Hospital Campus, Refsum’s Disease Clinic, Chelsea & Westminster Hospital, and Department of Neuromuscular Disease, Faculty of Medicine, Imperial College Medical School, Charing Cross Hospital Campus, London
| | - Anthony S. Wierzbicki
- Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; Department of Chemical Pathology, King’s College London, St. Thomas' Hospital Campus, Refsum’s Disease Clinic, Chelsea & Westminster Hospital, and Department of Neuromuscular Disease, Faculty of Medicine, Imperial College Medical School, Charing Cross Hospital Campus, London
| | - John Mitchell
- Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; Department of Chemical Pathology, King’s College London, St. Thomas' Hospital Campus, Refsum’s Disease Clinic, Chelsea & Westminster Hospital, and Department of Neuromuscular Disease, Faculty of Medicine, Imperial College Medical School, Charing Cross Hospital Campus, London
| | - Michelle Lambert-Hamill
- Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; Department of Chemical Pathology, King’s College London, St. Thomas' Hospital Campus, Refsum’s Disease Clinic, Chelsea & Westminster Hospital, and Department of Neuromuscular Disease, Faculty of Medicine, Imperial College Medical School, Charing Cross Hospital Campus, London
| | - Jacqueline de Belleroche
- Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; Department of Chemical Pathology, King’s College London, St. Thomas' Hospital Campus, Refsum’s Disease Clinic, Chelsea & Westminster Hospital, and Department of Neuromuscular Disease, Faculty of Medicine, Imperial College Medical School, Charing Cross Hospital Campus, London
| | - Gerbert A. Jansen
- Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; Department of Chemical Pathology, King’s College London, St. Thomas' Hospital Campus, Refsum’s Disease Clinic, Chelsea & Westminster Hospital, and Department of Neuromuscular Disease, Faculty of Medicine, Imperial College Medical School, Charing Cross Hospital Campus, London
| | - Hans R. Waterham
- Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; Department of Chemical Pathology, King’s College London, St. Thomas' Hospital Campus, Refsum’s Disease Clinic, Chelsea & Westminster Hospital, and Department of Neuromuscular Disease, Faculty of Medicine, Imperial College Medical School, Charing Cross Hospital Campus, London
| | - Ronald J. A. Wanders
- Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; Department of Chemical Pathology, King’s College London, St. Thomas' Hospital Campus, Refsum’s Disease Clinic, Chelsea & Westminster Hospital, and Department of Neuromuscular Disease, Faculty of Medicine, Imperial College Medical School, Charing Cross Hospital Campus, London
| |
Collapse
|
40
|
Dunning Hotopp JC, Auchtung TA, Hogan DA, Hausinger RP. Intrinsic tryptophan fluorescence as a probe of metal and alpha-ketoglutarate binding to TfdA, a mononuclear non-heme iron dioxygenase. J Inorg Biochem 2003; 93:66-70. [PMID: 12538054 DOI: 10.1016/s0162-0134(02)00436-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D)/alpha-ketoglutarate (alphaKG) dioxygenase, TfdA, couples the oxidative decarboxylation of alphaKG to the oxidation of the herbicide 2,4-D using a mononuclear non-heme Fe(II) active site. The intrinsic tryptophan fluorescence associated with the four Trp residues in TfdA allows for the use of fluorescence spectroscopy to monitor the binding of iron and alphaKG to the enzyme. The fluorescence spectrum of TfdA is quenched by 50-85% upon addition of Fe(II) or alphaKG, allowing determination of their binding affinities (K(d)=7.45+/-0.61 and 3.35+/-0.35 microM, respectively). Cu, Zn, Mn, Co, Mg, and Ca dictations also quench the TfdA fluorescence with affinities similar to that of Fe(II), whereas monovalent cations such as Na, K, and Li do not. H114A and D116A mutant forms of TfdA, lacking either a histidine or aspartate metallocenter ligand, exhibit weaker affinity for both Fe(II) and alphaKG based on the fluorescence changes. Trp256 is predicted to lie within 5 A of the metal and alphaKG binding sites; however, its substitution by Phe or Leu has negligible effects on the Fe(II)- and alphaKG-dependent fluorescence quenching. Because Trp195 is predicted to be quite distant ( approximately 15 A) from the active site, we conclude that some combination of Trp113 and Trp248 serves as the reporter that senses metal and cofactor binding to TfdA.
Collapse
Affiliation(s)
- Julie C Dunning Hotopp
- Department of Microbiology and Molecular Genetics, 160 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
41
|
Kniazeva M, Sieber M, McCauley S, Zhang K, Watts JL, Han M. Suppression of the ELO-2 FA elongation activity results in alterations of the fatty acid composition and multiple physiological defects, including abnormal ultradian rhythms, in Caenorhabditis elegans. Genetics 2003; 163:159-69. [PMID: 12586704 PMCID: PMC1462428 DOI: 10.1093/genetics/163.1.159] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the general steps of fatty acid (FA) biosynthesis are well understood, the individual enzymes involved in the elongation of long chain saturated and polyunsaturated FA (PUFA) are largely unknown. Recent research indicates that these enzymes might be of considerable physiological importance for human health. We use Caenorhabditis elegans to study FA elongation activities and associated abnormal phenotypes. In this article we report that the predicted C. elegans F11E6.5/ELO-2 is a functional enzyme with the FA elongation activity. It is responsible for the elongation of palmitic acid and is involved in PUFA biosynthesis. RNAi-mediated suppression of ELO-2 causes an accumulation of palmitate and an associated decrease in the PUFA fraction in triacylglycerides and phospholipid classes. This imbalance in the FA composition results in multiple phenotypic defects such as slow growth, small body size, reproductive defects, and changes in rhythmic behavior. ELO-2 cooperates with the previously reported ELO-1 in 20-carbon PUFA production, and at least one of the enzymes must function to provide normal growth and development in C. elegans. The presented data indicate that suppression of a single enzyme of the FA elongation machinery is enough to affect various organs and systems in worms. This effect resembles syndromic disorders in humans.
Collapse
Affiliation(s)
- Marina Kniazeva
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Wanders RJA, van Roermund CWT, Visser WF, Ferdinandusse S, Jansen GA, van den Brink DM, Gloerich J, Waterham HR. Peroxisomal fatty acid alpha- and beta-oxidation in health and disease: new insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:293-302. [PMID: 14713243 DOI: 10.1007/978-1-4419-9072-3_37] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Ronald J A Wanders
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry, Emma Children 's Hospital (Laboratory for Genetic and Metabolic Disease), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Van den Brink DM, Brites P, Haasjes J, Wierzbicki AS, Mitchell J, Lambert-Hamill M, de Belleroche J, Jansen GA, Waterham HR, Wanders RJA. Identification of PEX7 as the Second Gene Involved in Refsum Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:69-70. [PMID: 14713215 DOI: 10.1007/978-1-4419-9072-3_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Daan M Van den Brink
- Department of Clinical Chemistry, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kalinin AE, Kajava AV, Steinert PM. Epithelial barrier function: assembly and structural features of the cornified cell envelope. Bioessays 2002; 24:789-800. [PMID: 12210515 DOI: 10.1002/bies.10144] [Citation(s) in RCA: 354] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Terminally differentiating stratified squamous epithelial cells assemble a specialized protective barrier structure on their periphery termed the cornified cell envelope (CE). It is composed of numerous structural proteins that become cross-linked by several transglutaminase enzymes into an insoluble macromolecular assembly. Several proteins are involved in the initial stages of CE assembly, but only certain proteins from a choice of more than 20 different proteins are used in the final stages of CE reinforcement, apparently to meet tissue-specific requirements. In addition, a variable selection of proteins may be upregulated in response to genetic defects of one of the CE proteins or tissue injury, in an effort to maintain an effective barrier. Additionally, in the epidermis and hair fiber cuticle, a layer of lipids is covalently attached to the proteins, which provides essential water barrier properties. Here we describe our current understanding of CE structure, a possible mechanism of its assembly, and various disorders that cause a defective barrier.
Collapse
Affiliation(s)
- Andrey E Kalinin
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
45
|
Mukherji M, Kershaw NJ, Schofield CJ, Wierzbicki AS, Lloyd MD. Utilization of sterol carrier protein-2 by phytanoyl-CoA 2-hydroxylase in the peroxisomal alpha oxidation of phytanic acid. CHEMISTRY & BIOLOGY 2002; 9:597-605. [PMID: 12031666 DOI: 10.1016/s1074-5521(02)00139-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since it possesses a 3-methyl group, phytanic acid is degraded by a peroxisomal alpha-oxidation pathway, the first step of which is catalyzed by phytanoyl-CoA 2-hydroxylase (PAHX). Mutations in human PAHX cause phytanic acid accumulations leading to Adult Refsum's Disease (ARD), which is also observed in a sterol carrier protein 2 (SCP-2)-deficient mouse model. Phytanoyl-CoA is efficiently 2-hydroxylated by PAHX in vitro in the presence of mature SCP-2. Other straight-chain fatty acyl-CoA esters were also 2-hydroxylated and the products isolated and characterized. Use of SCP-2 increases discrimination between straight-chain (e.g., hexadecanoyl-CoA) and branched-chain (e.g., phytanoyl-CoA) substrates by PAHX. The results explain the phytanic acid accumulation in the SCP-2-deficient mouse model and suggest that some of the common symptoms of ARD and other peroxisomal diseases may arise in part due to defects in SCP-2 function caused by increased phytanic acid levels.
Collapse
Affiliation(s)
- Mridul Mukherji
- The Oxford Centre for Molecular Science, The Dyson Perrins Laboratory, South Parks Road, OX1 3QY, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Wanders RJ, Jansen GA, Skjeldal OH. Refsum disease, peroxisomes and phytanic acid oxidation: a review. J Neuropathol Exp Neurol 2001; 60:1021-31. [PMID: 11706932 DOI: 10.1093/jnen/60.11.1021] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Refsum disease was first recognized as a distinct disease entity by Sigvald Refsum in the 1940s. The discovery of markedly elevated levels of the branched-chain fatty acid phytanic acid in certain patients marked Refsum disease as a disorder of lipid metabolism. Although it was immediately recognized that the accumulation of phytanic acid is due to its deficient breakdown in Refsum disease patients, the true enzymatic defect remained mysterious until recently. A major breakthrough in this respect was the resolution of the mechanism of phytanic acid alpha-oxidation in humans. In this review we describe the many aspects of Refsum disease from the clinical signs and symptoms to the enzyme and molecular defect plus the recent identification of genetic heterogeneity in Refsum disease.
Collapse
Affiliation(s)
- R J Wanders
- Academic Medical Centre, University of Amsterdam, Department of Pediatrics, The Netherlands
| | | | | |
Collapse
|
47
|
Vaz FM, Ofman R, Westinga K, Back JW, Wanders RJ. Molecular and Biochemical Characterization of Rat epsilon -N-Trimethyllysine Hydroxylase, the First Enzyme of Carnitine Biosynthesis. J Biol Chem 2001; 276:33512-7. [PMID: 11431483 DOI: 10.1074/jbc.m105929200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
epsilon-N-Trimethyllysine hydroxylase (EC ) is the first enzyme in the biosynthetic pathway of l-carnitine and catalyzes the formation of beta-hydroxy-N-epsilon-trimethyllysine from epsilon-N-trimethyllysine, a reaction dependent on alpha-ketoglutarate, Fe(2+), and oxygen. We purified the enzyme from rat kidney and sequenced two internal peptides by quadrupole-time-of-flight mass spectroscopy. The peptide sequences were used to search the Expressed Sequence Tag data base, which led to the identification of a rat cDNA of 1218 base pairs encoding a polypeptide of 405 amino acids with a calculated molecular mass of 47.5 kDa. Using the rat sequence we also identified the homologous cDNAs from human and mouse. Heterologous expression of both the rat and human cDNAs in COS cells confirmed that they encode epsilon-N-trimethyllysine hydroxylase. Subcellular fractionation studies revealed that the rat enzyme is localized exclusively in mitochondria. Expression studies in yeast indicated that the rat enzyme is synthesized as a 47.5-kDa precursor and subsequently processed to a mature protein of 43 kDa, presumably upon import in mitochondria. The Michaelis-Menten constants of the purified rat enzyme for trimethyllysine, alpha-ketoglutarate, and Fe(2+) were 1.1 mm, 109 microm, and 54 microm, respectively. Both gel filtration and blue native polyacrylamide gel electrophoresis analysis showed that the native enzyme has a mass of approximately 87 kDa, indicating that in rat epsilon-N-trimethyllysine hydroxylase is a homodimer.
Collapse
Affiliation(s)
- F M Vaz
- Laboratory for Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, P. O. Box 22700, Amsterdam 1100 DE, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Bauer JW, Rouan F, Kofler B, Rezniczek GA, Kornacker I, Muss W, Hametner R, Klausegger A, Huber A, Pohla-Gubo G, Wiche G, Uitto J, Hintner H. A compound heterozygous one amino-acid insertion/nonsense mutation in the plectin gene causes epidermolysis bullosa simplex with plectin deficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:617-25. [PMID: 11159198 PMCID: PMC1850321 DOI: 10.1016/s0002-9440(10)64003-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plectin is a cytoskeleton linker protein expressed in a variety of tissues including skin, muscle, and nerves. Mutations in its gene are associated with epidermolysis bullosa simplex with late-onset muscular dystrophy. Whereas in most of these patients the pathogenic events are mediated by nonsense-mediated mRNA decay, the consequences of an in-frame mutation are less clear. We analyzed a patient with compound heterozygosity for a 3-bp insertion at position 1287 leading to the insertion of leucine as well as the missense mutation Q1518X leading to a stop codon. The presence of plectin mRNA was demonstrated by a RNase protection assay. However, a marked reduction of plectin protein was found using immunofluorescence microscopy of the patient's skin and Western blot analysis of the patient's cultured keratinocytes. The loss of plectin protein was associated with morphological alterations in plectin-containing structures of the dermo-epidermal junction, in skeletal muscle, and in nerves as detected by electron microscopy. In an in vitro overlay assay using recombinant plectin peptides spanning exons 2 to 15 the insertion of leucine resulted in markedly increased self-aggregation of plectin peptides. These results describe for the first time the functional consequences of an in-frame insertion mutation in humans.
Collapse
Affiliation(s)
- J W Bauer
- Department of Dermatology, Children's Hospital Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|