1
|
Annear DJ, Kooy RF. Unravelling the link between neurodevelopmental disorders and short tandem CGG-repeat expansions. Emerg Top Life Sci 2023; 7:265-275. [PMID: 37768318 PMCID: PMC10754333 DOI: 10.1042/etls20230021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Neurodevelopmental disorders (NDDs) encompass a diverse group of disorders characterised by impaired cognitive abilities and developmental challenges. Short tandem repeats (STRs), repetitive DNA sequences found throughout the human genome, have emerged as potential contributors to NDDs. Specifically, the CGG trinucleotide repeat has been implicated in a wide range of NDDs, including Fragile X Syndrome (FXS), the most common inherited form of intellectual disability and autism. This review focuses on CGG STR expansions associated with NDDs and their impact on gene expression through repeat expansion-mediated epigenetic silencing. We explore the molecular mechanisms underlying CGG-repeat expansion and the resulting epigenetic modifications, such as DNA hypermethylation and gene silencing. Additionally, we discuss the involvement of other CGG STRs in neurodevelopmental diseases. Several examples, including FMR1, AFF2, AFF3, XYLT1, FRA10AC1, CBL, and DIP2B, highlight the complex relationship between CGG STR expansions and NDDs. Furthermore, recent advancements in this field are highlighted, shedding light on potential future research directions. Understanding the role of STRs, particularly CGG-repeats, in NDDs has the potential to uncover novel diagnostic and therapeutic strategies for these challenging disorders.
Collapse
Affiliation(s)
- Dale J Annear
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Chen S, Wang R, Zhang X, Li L, Jiang Y, Liu R, Zhang H. Ultrasonographic findings and prenatal diagnosis of Jacobsen syndrome: A case report and review of the literature. Medicine (Baltimore) 2020; 99:e18695. [PMID: 31895838 PMCID: PMC6946260 DOI: 10.1097/md.0000000000018695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Jacobsen syndrome (JBS) is a rare chromosomal disorder with variable phenotypic expressivity, which is usually diagnosed in infancy and childhood based on clinical examination and hematological and cytogenetic findings. Prenatal diagnosis and fetal ultrasonographic findings of JBS are rare. PATIENT CONCERNS A 38-year-old, gravida 3, para 1, pregnant woman underwent clinical ultrasound examination at 22 weeks of gestation. DIAGNOSES Ultrasonographic findings indicated an interventricular septal defect, the presence of septal blood flow, dilation of the left renal pelvis, and a single umbilical artery. Amniocentesis was performed to evaluate possible genetic causes of this diagnosis by cytogenetic and single nucleotide polymorphism (SNP) array analysis. INTERVENTIONS After genetic counseling and informed consent, the couple elected to terminate the pregnancy. OUTCOMES Karyotype analysis showed that the fetal karyotype was 46,XX,del(11)(q23). The SNP array revealed a 6.118 Mb duplication of 11q23.2q23.3 and a 15.03 Mb deletion of 11q23.3q25. LESSONS Ultrasonographic findings of fetal JBS, including an interventricular septal defect, dilation of the left renal pelvis, and a single umbilical artery, may be associated with a 15.03 Mb deletion of 11q23.3q25. Further cases correlating phenotype and genotype are required to predict the postnatal phenotype.
Collapse
|
3
|
Pladevall-Morera D, Munk S, Ingham A, Garribba L, Albers E, Liu Y, Olsen JV, Lopez-Contreras AJ. Proteomic characterization of chromosomal common fragile site (CFS)-associated proteins uncovers ATRX as a regulator of CFS stability. Nucleic Acids Res 2019; 47:8004-8018. [PMID: 31180492 PMCID: PMC6735892 DOI: 10.1093/nar/gkz510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/31/2023] Open
Abstract
Common fragile sites (CFSs) are conserved genomic regions prone to break under conditions of replication stress (RS). Thus, CFSs are hotspots for rearrangements in cancer and contribute to its chromosomal instability. Here, we have performed a global analysis of proteins that recruit to CFSs upon mild RS to identify novel players in CFS stability. To this end, we performed Chromatin Immunoprecipitation (ChIP) of FANCD2, a protein that localizes specifically to CFSs in G2/M, coupled to mass spectrometry to acquire a CFS interactome. Our strategy was validated by the enrichment of many known regulators of CFS maintenance, including Fanconi Anemia, DNA repair and replication proteins. Among the proteins identified with unknown functions at CFSs was the chromatin remodeler ATRX. Here we demonstrate that ATRX forms foci at a fraction of CFSs upon RS, and that ATRX depletion increases the occurrence of chromosomal breaks, a phenotype further exacerbated under mild RS conditions. Accordingly, ATRX depletion increases the number of 53BP1 bodies and micronuclei, overall indicating that ATRX is required for CFS stability. Overall, our study provides the first proteomic characterization of CFSs as a valuable resource for the identification of novel regulators of CFS stability.
Collapse
Affiliation(s)
- David Pladevall-Morera
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Stephanie Munk
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark.,Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Ingham
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lorenza Garribba
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Eliene Albers
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ying Liu
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andres J Lopez-Contreras
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
4
|
Blazina Š, Ihan A, Lovrečić L, Hovnik T. 11q terminal deletion and combined immunodeficiency (Jacobsen syndrome): Case report and literature review on immunodeficiency in Jacobsen syndrome. Am J Med Genet A 2016; 170:3237-3240. [PMID: 27605496 DOI: 10.1002/ajmg.a.37859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/01/2016] [Indexed: 11/08/2022]
Abstract
Antibody deficiency is common finding in patients with Jacobsen syndrome (JS). In addition, there have been few reports of T-cell defects in this condition, possibly because most of the reported patients have not been specifically evaluated for T-cell function. In this article, we present a child with an 11q deletion and combined immunodeficiency and we perform a literature overview on immunodeficiency in JS. Our patient presented with recurrent bacterial and prolonged viral infections involving the respiratory system, as well as other classic features of the syndrome. In addition to low IgM, IgG4, and B-cells, also low recent thymic emigrants, helper and naïve T-cells were found. We propose that patients with Jacobsen syndrome need thorough immunological evaluations as T-cell dysfunction might be more prevalent than previously reported. Patients with infections consistent with T-cell defects should be classified as having combined immunodeficiency. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Štefan Blazina
- Department of Allergy, Rheumatology and Clinical Immunology, Children's Hospital Ljubljana, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luca Lovrečić
- Division of Obstetrics and Gynecology, Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tinka Hovnik
- Unit of Special Laboratory Diagnostics, Children's Hospital Ljubljana, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
6
|
Yelavarthi K, Cabral H, Wilson GN, Rohena L, Risheg H, Penton A, Schleede J, Burnside RD. Partial monosomy of 11q22.2q22.3 including the SDHD gene in individuals with developmental delay. Am J Med Genet A 2015; 167A:695-700. [PMID: 25735893 DOI: 10.1002/ajmg.a.36956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 12/21/2014] [Indexed: 11/11/2022]
Abstract
Deletions in the middle portion of 11q are not as well described in the literature as terminal 11q deletions that result in Jacobsen syndrome. One confounding factor in the older literature is that the G-banding pattern of 11q13q21 is very similar to 11q21q23. The advent of fluorescence in situ hybridization and later microarray technologies have allowed for a better resolution of many of these deletions, but genotype-phenotype correlations are still difficult since these deletions are rare events. We present five individuals who presented with developmental delays with de novo 11q22.2q23.3 deletions. Deletions were observed by standard G-banded chromosome analysis with clarification of breakpoints and gene content by SNP microarray analysis. Of note, all individuals had identical distal breakpoints. All deletions include SDHD, which is implicated in hereditary paraganglioma/pheochromocytoma, for which the patients will need to be monitored in adulthood. In spite of the large deletions of 8.6 Mb (Patients 1 and 3), 13.98 Mb (Patient 2), and 12.6 Mb (Patients 4 and 5) all patients show somewhat mild intellectual disability and dysmorphism.
Collapse
Affiliation(s)
- Krishna Yelavarthi
- Indiana University School of Medicine-Northwest, Genetics Center, Gary, Indiana
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tabolacci E, Chiurazzi P. Epigenetics, fragile X syndrome and transcriptional therapy. Am J Med Genet A 2013; 161A:2797-808. [PMID: 24123753 DOI: 10.1002/ajmg.a.36264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/06/2013] [Indexed: 12/13/2022]
Abstract
Epigenetics refers to the study of heritable changes in gene expression that occur without a change in DNA sequence. Epigenetic mechanisms therefore include all transcriptional controls that determine how genes are expressed during development and differentiation, but also in individual cells responding to environmental stimuli. The purpose of this review is to examine the basic principles of epigenetic mechanisms and their contribution to human disorders with a particular focus on fragile X syndrome (FXS), the most common monogenic form of developmental cognitive impairment. FXS represents a prototype of the so-called repeat expansion disorders due to "dynamic" mutations, namely the expansion (known as "full mutation") of a CGG repeat in the 5'UTR of the FMR1 gene. This genetic anomaly is accompanied by epigenetic modifications (mainly DNA methylation and histone deacetylation), resulting in the inactivation of the FMR1 gene. The presence of an intact FMR1 coding sequence allowed pharmacological reactivation of gene transcription, particularly through the use of the DNA demethylating agent 5'-aza-2'-deoxycytydine and/or inhibitors of histone deacetylases. These treatments suggested that DNA methylation is dominant over histone acetylation in silencing the FMR1 gene. The importance of DNA methylation in repressing FMR1 transcription is confirmed by the existence of rare unaffected males carrying unmethylated full mutations. Finally, we address the potential use of epigenetic approaches to targeted treatment of other genetic conditions.
Collapse
|
8
|
Johnson J, Haag M, Beischel L, McCann C, Phillips S, Tunby M, Hansen J, Schwanke C, Reynolds J. ‘Deletion rescue’ by mitotic 11q uniparental disomy in a family with recurrence of 11q deletion Jacobsen syndrome. Clin Genet 2013; 85:376-80. [DOI: 10.1111/cge.12164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- J.P. Johnson
- Department of Medical Genetics; Shodair Children's Hospital; Helena MT USA
| | | | | | | | - S. Phillips
- Department of Medical Genetics; Shodair Children's Hospital; Helena MT USA
| | - M. Tunby
- Department of Medical Genetics; Shodair Children's Hospital; Helena MT USA
| | - J. Hansen
- Department of Pediatrics; Bozeman Deaconness Hospital; Bozeman MT USA
| | - C. Schwanke
- Department of Medical Genetics; Shodair Children's Hospital; Helena MT USA
| | - J.F. Reynolds
- Department of Medical Genetics; Shodair Children's Hospital; Helena MT USA
| |
Collapse
|
9
|
Putoux A, Labalme A, André JM, Till M, Schluth-Bolard C, Berard J, Bertrand Y, Edery P, Putet G, Sanlaville D. Jacobsen and Beckwith-Wiedemann syndromes in a child with mosaicism for partial 11pter trisomy and partial 11qter monosomy. Am J Med Genet A 2013; 161A:331-7. [DOI: 10.1002/ajmg.a.35708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/13/2012] [Indexed: 12/24/2022]
|
10
|
Takahashi I, Takahashi T, Sawada K, Shimojima K, Yamamoto T. Jacobsen syndrome due to an unbalanced translocation between 11q23 and 22q11.2 identified at age 40 years. Am J Med Genet A 2011; 158A:220-3. [DOI: 10.1002/ajmg.a.34382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/17/2011] [Indexed: 11/08/2022]
|
11
|
Basinko A, Audebert-Bellanger S, Douet-Guilbert N, Le Franc J, Parent P, Quemener S, La Selve P, Bovo C, Morel F, Le Bris MJ, De Braekeleer M. Subtelomeric monosomy 11q and trisomy 16q in siblings and an unrelated child: Molecular characterization of two der(11)t(11;16). Am J Med Genet A 2011; 155A:2281-7. [DOI: 10.1002/ajmg.a.34162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 05/19/2011] [Indexed: 11/11/2022]
|
12
|
Kozlowski P, Sobczak K, Krzyzosiak WJ. Trinucleotide repeats: triggers for genomic disorders? Genome Med 2010; 2:29. [PMID: 20441603 PMCID: PMC2873807 DOI: 10.1186/gm150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Among the various sequence repeats that shape the human genome, trinucleotide repeats have attracted special interest as a result of their involvement in a class of human genetic disorders known as triplet repeat expansion diseases. Recently, long TGG repeat tracts were shown to be implicated in a genomic disorder resulting from chromosome 14q32.2 deletion. Various different mechanisms might trigger this deletion, and looking at the problem from a structural biology perspective may help. Deeper insight into repeated sequences and their features may shed light on the mechanisms involved in this microdeletion and similar genomic rearrangements.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | |
Collapse
|
13
|
Bertini V, Battini R, Cioni G, Simi P, Valetto A. Molecular cytogenetic characterization of a new case of partial trisomy 13 (13q11q13.2). Am J Med Genet A 2010; 152A:490-4. [PMID: 20101678 DOI: 10.1002/ajmg.a.33233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Veronica Bertini
- Cytogenetics and Molecular Genetics Unit, Children Department, AOU Pisana, Ospedale S. Chiara, Pisa, Italy.
| | | | | | | | | |
Collapse
|
14
|
Shuib S, McMullan D, Rattenberry E, Barber RM, Rahman F, Zatyka M, Chapman C, Macdonald F, Latif F, Davison V, Maher ER. Microarray based analysis of 3p25-p26 deletions (3p- syndrome). Am J Med Genet A 2009; 149A:2099-105. [PMID: 19760623 DOI: 10.1002/ajmg.a.32824] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Distal deletion of chromosome 3p25-pter (3p- syndrome) produces a distinct clinical syndrome characterized by low birth weight, mental retardation, telecanthus, ptosis, and micrognathia. Congenital heart disease (CHD), typically atrioventricular septal defect (AVSD) occurs in about a third of patients. Previously we reported on an association between the presence of CHD and the proximal extent of the deletion such that a CHD susceptibility gene was mapped between D3S1263 and D3S3594. In addition, we and others have suggested several candidate genes for the psychomotor retardation usually seen with constitutional 3p25 deletions. In order to further investigate genotype-phenotype correlations in 3p- syndrome we analyzed 14 patients with cytogenetically detectable deletions of 3p25 (including one patient with a normal phenotype) using Affymetrix 250K SNP microarrays. Deletion size varied from approximately 6 to 12 Mb. Assuming complete penetrance, a candidate critical region for a CHD susceptibility gene was refined to approximately 200 kb and a candidate critical region for mental retardation was mapped to an approximately 1 Mb interval containing SRGAP3 but other 3p neurodevelopmental genes including CHL1, CNTN4, LRRN1, and ITPR1 mapped outside the candidate critical interval. We suggest that current evidence suggests that SRGAP3 is the major determinant of mental retardation in distal 3p deletions.
Collapse
Affiliation(s)
- Salwati Shuib
- Department of Medical and Molecular Genetics, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Van Zutven LJCM, van Bever Y, Van Nieuwland CCM, Huijbregts GCM, Van Opstal D, von Bergh ARM, Corel LJA, Tibboel D, Wouters CH, Poddighe PJ. Interstitial 11q deletion derived from a maternal ins(4;11)(p14;q24.2q25): a patient report and review. Am J Med Genet A 2009; 149A:1468-75. [PMID: 19449434 DOI: 10.1002/ajmg.a.32714] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present a family with multiple cytogenetic abnormalities, identified through a girl with several dysmorphic features and cardiac problems, suspected for Jacobsen syndrome. Cytogenetic analysis showed a 46,XX,del(11)(qter) karyotype, which was confirmed by fluorescence in situ hybridization (FISH). Cytogenetic investigation of the parents showed a chromosome aberration in both: the father had a t(11;12)(p13;q22) translocation and the mother was carrier of an ins(4;11)(p14;q24q25). FISH analysis with an 11q-subtelomeric probe from the second-generation telomere clone set and BACs from 11q24-q25 suggested a complex maternal rearrangement. However, subsequent array analysis showed a single interstitial deletion in the proband, derived from the maternal insertion. The aberrant karyotypes in both parents implicated an increased risk of unbalanced fetal chromosome composition, thus high risk for a child with multiple congenital abnormalities. Therefore, during the next pregnancy, the couple opted for prenatal diagnosis by means of amniocentesis. An interphase FISH strategy for uncultured amniotic fluid cells predicted two possible unbalanced fetal chromosome constitutions. Karyotyping of cultured amniotic cells confirmed one of the predicted unbalanced cytogenetic options, demonstrating the value of a fast interphase strategy for parents who both are carriers of a chromosomal abnormality. In addition, we present an overview of patients with Jacobsen syndrome and an interstitial 11q deletion reported thus far in literature.
Collapse
|
16
|
Mattina T, Perrotta CS, Grossfeld P. Jacobsen syndrome. Orphanet J Rare Dis 2009; 4:9. [PMID: 19267933 PMCID: PMC2670819 DOI: 10.1186/1750-1172-4-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 03/07/2009] [Indexed: 11/10/2022] Open
Abstract
Jacobsen syndrome is a MCA/MR contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. To date, over 200 cases have been reported. The prevalence has been estimated at 1/100,000 births, with a female/male ratio 2:1. The most common clinical features include pre- and postnatal physical growth retardation, psychomotor retardation, and characteristic facial dysmorphism (skull deformities, hypertelorism, ptosis, coloboma, downslanting palpebral fissures, epicanthal folds, broad nasal bridge, short nose, v-shaped mouth, small ears, low set posteriorly rotated ears). Abnormal platelet function, thrombocytopenia or pancytopenia are usually present at birth. Patients commonly have malformations of the heart, kidney, gastrointestinal tract, genitalia, central nervous system and skeleton. Ocular, hearing, immunological and hormonal problems may be also present. The deletion size ranges from approximately 7 to 20 Mb, with the proximal breakpoint within or telomeric to subband 11q23.3 and the deletion extending usually to the telomere. The deletion is de novo in 85% of reported cases, and in 15% of cases it results from an unbalanced segregation of a familial balanced translocation or from other chromosome rearrangements. In a minority of cases the breakpoint is at the FRA11B fragile site. Diagnosis is based on clinical findings (intellectual deficit, facial dysmorphic features and thrombocytopenia) and confirmed by cytogenetics analysis. Differential diagnoses include Turner and Noonan syndromes, and acquired thrombocytopenia due to sepsis. Prenatal diagnosis of 11q deletion is possible by amniocentesis or chorionic villus sampling and cytogenetic analysis. Management is multi-disciplinary and requires evaluation by general pediatrician, pediatric cardiologist, neurologist, ophthalmologist. Auditory tests, blood tests, endocrine and immunological assessment and follow-up should be offered to all patients. Cardiac malformations can be very severe and require heart surgery in the neonatal period. Newborns with Jacobsen syndrome may have difficulties in feeding and tube feeding may be necessary. Special attention should be devoted due to hematological problems. About 20% of children die during the first two years of life, most commonly related to complications from congenital heart disease, and less commonly from bleeding. For patients who survive the neonatal period and infancy, the life expectancy remains unknown.
Collapse
Affiliation(s)
- Teresa Mattina
- Genetica Medica, Department of Pediatrics, University of Catania, Catania, Italy.
| | | | | |
Collapse
|
17
|
Kamath BM, Thiel BD, Gai X, Conlin LK, Munoz PS, Glessner J, Clark D, Warthen DM, Shaikh TH, Mihci E, Piccoli DA, Grant SF, Hakonarson H, Krantz ID, Spinner NB. SNP array mapping of chromosome 20p deletions: genotypes, phenotypes, and copy number variation. Hum Mutat 2009; 30:371-8. [PMID: 19058200 PMCID: PMC2650004 DOI: 10.1002/humu.20863] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of array technology to define chromosome deletions and duplications is bringing us closer to establishing a genotype/phenotype map of genomic copy number alterations. We studied 21 patients and five relatives with deletions of the short arm of chromosome 20 using the Illumina HumanHap550 SNP array to: 1) more accurately determine the deletion sizes; 2) identify and compare breakpoints; 3) establish genotype/phenotype correlations; and 4) investigate the use of the HumanHap550 platform for analysis of chromosome deletions. Deletions ranged from 95 kb to 14.62 Mb, and all of the breakpoints were unique. Eleven patients had deletions between 95 kb and 4 Mb and these individuals had normal development, with no anomalies outside of those associated with Alagille syndrome (AGS). The proximal and distal boundaries of these 11 deletions constitute a 5.4-Mb region, and we propose that haploinsufficiency for only 1 of the 12 genes in this region causes phenotypic abnormalities. This defines the JAG1-associated critical region, in which deletions do not confer findings other than those associated with AGS. The other 10 patients had deletions between 3.28 Mb and 14.62 Mb, which extended outside the critical region, and, notably, all of these patients had developmental delay. This group had other findings such as autism, scoliosis, and bifid uvula. We identified 47 additional polymorphic genome-wide copy number variants (>20 SNPs), with 0 to 5 variants called per patient. Deletions of the short arm of chromosome 20 are associated with relatively mild and limited clinical anomalies. The use of SNP arrays provides accurate high-resolution definition of genomic abnormalities.
Collapse
Affiliation(s)
- Binita M. Kamath
- Division of Gastroenterology and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Brian D. Thiel
- Division of Human Genetics and Molecular Biology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Xiaowu Gai
- Bioinformatics Core, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Laura K. Conlin
- Division of Human Genetics and Molecular Biology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Pedro S. Munoz
- Division of Gastroenterology and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph Glessner
- Center for Applied Genomics, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Dinah Clark
- Division of Human Genetics and Molecular Biology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Daniel M. Warthen
- Division of Human Genetics and Molecular Biology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Tamim H. Shaikh
- Division of Human Genetics and Molecular Biology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Ercan Mihci
- Division of Clinical Genetics, Department of Pediatrics, Akdeniz University School of Medicine, Turkey
| | - David A. Piccoli
- Division of Gastroenterology and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Struan F.A. Grant
- Center for Applied Genomics, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Ian D. Krantz
- Division of Human Genetics and Molecular Biology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Nancy B. Spinner
- Division of Human Genetics and Molecular Biology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
18
|
Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727. [PMID: 19052325 PMCID: PMC2593564 DOI: 10.1128/mmbr.00011-08] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie, UFR927, 25 rue du Dr. Roux, F-75015, Paris, France.
| | | | | |
Collapse
|
19
|
Tyson C, Qiao Y, Harvard C, Liu X, Bernier FP, McGillivray B, Farrell SA, Arbour L, Chudley AE, Clarke L, Gibson W, Dyack S, McLeod R, Costa T, Vanallen MI, Yong SL, Graham GE, Macleod P, Patel MS, Hurlburt J, Holden JJ, Lewis SM, Rajcan-Separovic E. Submicroscopic deletions of 11q24-25 in individuals without Jacobsen syndrome: re-examination of the critical region by high-resolution array-CGH. Mol Cytogenet 2008; 1:23. [PMID: 19000322 PMCID: PMC2648978 DOI: 10.1186/1755-8166-1-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 11/11/2008] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Jacobsen syndrome is a rare contiguous gene disorder that results from a terminal deletion of the long arm of chromosome 11. It is typically characterized by intellectual disability, a variety of physical anomalies and a distinctive facial appearance. The 11q deletion has traditionally been identified by routine chromosome analysis. Array-based comparative genomic hybridization (array-CGH) has offered new opportunities to identify and refine chromosomal abnormalities in regions known to be associated with clinical syndromes. RESULTS Using the 1 Mb BAC array (Spectral Genomics), we screened 70 chromosomally normal children with idiopathic intellectual disability (ID) and congenital abnormalities, and identified five cases with submicroscopic abnormalities believed to contribute to their phenotypes. Here, we provide detailed molecular cytogenetic descriptions and clinical presentation of two unrelated subjects with de novo submicroscopic deletions within chromosome bands 11q24-25. In subject 1 the chromosome rearrangement consisted of a 6.18 Mb deletion (from 128.25-134.43 Mb) and an adjacent 5.04 Mb duplication (from 123.15-128.19 Mb), while in subject 2, a 4.74 Mb interstitial deletion was found (from 124.29-129.03 Mb). Higher resolution array analysis (385 K Nimblegen) was used to refine all breakpoints. Deletions of the 11q24-25 region are known to be associated with Jacobsen syndrome (JBS: OMIM 147791). However, neither of the subjects had the typical features of JBS (trigonocephaly, platelet disorder, heart abnormalities). Both subjects had ID, dysmorphic features and additional phenotypic abnormalities: subject 1 had a kidney abnormality, bilateral preauricular pits, pectus excavatum, mild to moderate conductive hearing loss and behavioral concerns; subject 2 had macrocephaly, an abnormal MRI with delayed myelination, fifth finger shortening and squaring of all fingertips, and sensorineural hearing loss. CONCLUSION Two individuals with ID who did not have the typical clinical features of Jacobsen syndrome were found to have deletions within the JBS region at 11q24-25. Their rearrangements facilitate the refinement of the JBS critical region and suggest that a) deletion of at least 3 of the 4 platelet function critical genes (ETS-1, FLI-1 and NFRKB and JAM3) is necessary for thrombocytopenia; b) one of the critical regions for heart abnormalities (conotruncal heart defects) may lie within 129.03 - 130.6 Mb; c) deletions of KCNJ1 and ADAMTS15 may contribute to the renal anomalies in Jacobsen Syndrome; d) the critical region for MRI abnormalities involves a region from 124.6 - 129.03 Mb. Our results reiterate the benefits of array-CGH for description of new phenotype/genotype associations and refinement of previously established ones.
Collapse
Affiliation(s)
- Christine Tyson
- Department of Pathology and Laboratory Medicine and Child and Family Research Institute (CFRI), UBC, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Usdin K. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 2008; 18:1011-9. [PMID: 18593815 DOI: 10.1101/gr.070409.107] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tandem repeats are common features of both prokaryote and eukaryote genomes, where they can be found not only in intergenic regions but also in both the noncoding and coding regions of a variety of different genes. The repeat expansion diseases are a group of human genetic disorders caused by long and highly polymorphic tandem repeats. These disorders provide many examples of the effects that such repeats can have on many biological processes. While repeats in the coding sequence can result in the generation of toxic or malfunctioning proteins, noncoding repeats can also have significant effects including the generation of chromosome fragility, the silencing of the genes in which they are located, the modulation of transcription and translation, and the sequestering of proteins involved in processes such as splicing and cell architecture.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| |
Collapse
|
21
|
Courtens W, Wauters J, Wojciechowski M, Reyniers E, Scheers S, van Luijk R, Rooms L, Kooy F, Wuyts W. A de novo subtelomeric monosomy 11q (11q24.2-qter) and trisomy 20q (20q13.3-qter) in a girl with findings compatible with Jacobsen syndrome: case report and review. Clin Dysmorphol 2007; 16:231-9. [PMID: 17786114 DOI: 10.1097/mcd.0b013e3282742303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report on a 2-year-old dysmorphic girl with prenatal and postnatal growth deficiency, cardiopathy, left-sided hydronephrosis due to pyelourethral junction stenosis, frequent respiratory infections and psychomotor retardation, in whom a de novo unbalanced submicroscopic translocation (11q;20q) was detected by subtelomeric multiplex ligation-dependent probe amplification and fluorescence in situ hybridization analyses. Additional fluorescence in situ hybridization studies with locus-specific BAC probes and analyses with microsatellite markers revealed that this translocation resulted in a paternal chromosome 11q terminal deletion of approximately 8.9 Mb and a subtelomeric 20q duplication of approximately 3.7 Mb. A subtelomeric 20q trisomy has only been reported in four cases so far. A subtelomeric 11q deletion has been clinically reported in 18 patients. We review the clinical phenotype of these patients. We suggest that patients with a subterminal (11q24.2/25-qter) deletion may present with features of the well-known phenotype of terminal 11q deletion or Jacobsen syndrome.
Collapse
Affiliation(s)
- Winnie Courtens
- Department of Human Genetics, University Hospital St-Luc UCL, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gadzicki D, Baumer A, Wey E, Happel CM, Rudolph C, Tönnies H, Neitzel H, Steinemann D, Welte K, Klein C, Schlegelberger B. Jacobsen syndrome and Beckwith-Wiedemann syndrome caused by a parental pericentric inversion inv(11)(p15q24). Ann Hum Genet 2006; 70:958-64. [PMID: 17044870 DOI: 10.1111/j.1469-1809.2006.00271.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report on a male infant presenting the typical pattern of Jacobsen syndrome including trigonocephaly, thrombocytopenia, congenital heart defect, urethral stenosis, and partial agenesis of the corpus callosum. Conventional karyotyping, FISH, SKY and CGH analyses showed that the region distal to the MLL locus on 11q23 was lost and replaced by the distal region of 11p, leading to a partial trisomy of 11p and a partial monosomy of 11q. According to ISCN (1995) the karyotype can be described as 46,XY,add(11)(q2?3). ish 11ptel(D11S2071x3),11qtel(VIJyRM2072x1). Array-CGH analysis allowed us to narrow down the breakpoints to 11p15.1 and 11q24.1. Methylation analyses of genes located on 11p showed an increased level of the non-methylated paternal allele of the KCNQ1OT1 gene, confirming the concomitant presence of Beckwith-Wiedemann syndrome (BWS). The phenotype resulting from the 11q deletion seems to dominate the phenotype due to the distal 11p trisomy. Investigation of the parents revealed that this chromosomal rearrangement was caused by a paternal pericentric inversion inv(11)(p15q24). Since chromosomal aberrations like the one described here can easily be overlooked during routine chromosome analysis, combined FISH analysis using subtelomeric and possibly additional probes should be applied if there is any doubt about the integrity of telomeric regions.
Collapse
Affiliation(s)
- D Gadzicki
- Institute of Cell and Molecular Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wenger SL, Grossfeld PD, Siu BL, Coad JE, Keller FG, Hummel M. Molecular characterization of an 11q interstitial deletion in a patient with the clinical features of Jacobsen syndrome. Am J Med Genet A 2006; 140:704-8. [PMID: 16502431 DOI: 10.1002/ajmg.a.31146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 11q terminal deletion disorder or Jacobsen syndrome is a contiguous gene disorder. It is characterized by psychomotor retardation, cardiac defects, blood dyscrasias (Paris-Trousseau syndrome) and craniofacial anomalies. We report on a female patient with an approximately 10 Mb interstitial deletion with many of the features of Jacobsen syndrome: A congenital heart defect, dysmorphic features, developmental delay, and Paris-Trousseau syndrome. The karyotype of the patient is 46,XX,del(11)(q24.1q24.3). The interstitial deletion was confirmed using FISH probes for distal 11q, and the breakpoints were characterized by microarray analysis. This is the first molecularly characterized interstitial deletion in a patient with the clinical features of Jacobsen syndrome. The deletion includes FLI-1, but not JAM-3, which will help to determine the critical genes involved in this syndrome.
Collapse
Affiliation(s)
- Sharon L Wenger
- Department of Pathology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9203, USA
| | | | | | | | | | | |
Collapse
|
24
|
Bertini V, De Vito G, Costa R, Simi P, Valetto A. Isolated 6q terminal deletions: an emerging new syndrome. Am J Med Genet A 2006; 140:74-81. [PMID: 16329114 DOI: 10.1002/ajmg.a.31020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Deletions of the distal part of the 6q chromosome have not been associated with a clearly distinctive and recognizable phenotype. In order to determine if a "6q terminal deletion syndrome" could be delineated, we compared the phenotype of two new cases with those patients reported in literature presenting with a similar deletion. Cases with more complex karyotypes were excluded. The deletion in our patients was accurately analyzed by loss of heterozygosity (LOH) and fluorescence in situ hybridization (FISH) with a panel of probes located around the putative breakpoint. Interestingly, the breakpoints were located in 6q26 in both our patients, distally to clone RP11-150P20 and proximally to clone RP11-152P19, with a deletion size of approximately 8 Mb. The breakpoints fall within the fragile site FRA6E. From a careful evaluation of the selected patients, a common phenotype emerged, including psychomotor retardation, hypotonia, seizures, short neck, and typical facial anomalies, along with nonspecific anomalies. While these features are shared by other chromosome syndromes and are not sufficient on their own for a clinical diagnosis, when considered together, the pattern can allow the identification of the "6q terminal deletion syndrome." Moreover, the potential role of FRA6E in generating these deletions is suggested.
Collapse
Affiliation(s)
- Veronica Bertini
- Molecular Genetic Unit, A.O.U. Pisana, Ospedale S. Chiara, via Roma 57, 56100 Pisa, Italy.
| | | | | | | | | |
Collapse
|
25
|
Böhm D, Hoffmann K, Laccone F, Wilken B, Dechent P, Frahm J, Bartels I, Bohlander SK. Association of Jacobsen syndrome and bipolar affective disorder in a patient with a de novo 11q terminal deletion. Am J Med Genet A 2006; 140:378-82. [PMID: 16419136 DOI: 10.1002/ajmg.a.31088] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report on a young woman with Jacobsen syndrome (JBS) who was admitted to our psychiatric department because of a bipolar affective disorder (BPAD). Chromosome analysis was performed due to the fact that she had mental retardation, short stature, and subtle facial anomalies. A deletion of the distal long arm of chromosome 11 was found. A detailed mapping of the deletion breakpoint by quantitative real time PCR revealed a true terminal 11q deletion of approximately 8 Mb corresponding to the karyotype 46,XX,del(11)(q24.2). Polymorphic DNA marker analysis showed that the deletion is located on the paternal chromosome. Additionally, laboratory investigations revealed a low platelet count and magnetic resonance imaging of the brain showed white matter T2 hyperintensities in frontotemporal regions, which are unlikely to result from a demyelinating process as indicated by localized proton magnetic resonance spectroscopy. To our knowledge, this is the first report describing a BPAD in a case with JBS.
Collapse
Affiliation(s)
- D Böhm
- Institute of Human Genetics, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Blaine Easley R, Sanders D, McElrath-Schwartz J, Martin J, Mark Redmond J. Anesthetic implications of Jacobsen syndrome. Paediatr Anaesth 2006; 16:66-71. [PMID: 16409533 DOI: 10.1111/j.1460-9592.2005.01597.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Jacobsen syndrome (JS), also known as 11q-syndrome, is a congenital disorder associated with a deletion of the long arm of chromosome 11. Patients with JS characteristically exhibit multiple dysmorphic features, developmental delay, cardiac anomalies, and platelet abnormalities. Anesthetic issues related to the care of patients with JS concern airway management secondary to short neck, abnormal mouth shape and micrognathia/retrognathia, a high incidence of cardiac anomalies, and platelet dysfunction. Importantly, platelet abnormalities affect 95% of reported JS patients and involve platelet number, size and function. Two children with JS who required open heart surgery are presented and anesthetic management issues discussed. These patients represent the first reports regarding the perioperative issues in caring for patients with JS.
Collapse
Affiliation(s)
- R Blaine Easley
- Department of Anesthesiology and Critical Care, Johns Hopkins Medical Institute, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
27
|
Tümer Z, Henriksen AM, Bache I, Brixen K, Kalscheuer V, Illum N, Rasmussen K, Larsen LA, Tommerup N. Eponymous Jacobsen syndrome: mapping the breakpoints of the original family suggests an association between the distal 1.1 Mb of chromosome 21 and osteoporosis in Down syndrome. Am J Med Genet A 2005; 135:339-41. [PMID: 15887263 DOI: 10.1002/ajmg.a.30735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Abstract
Chromosomal instability is a common feature of human tumors, including oral cancer. Although a tumor karyotype may remain quite stable over time, chromosomal instability can lead to 'variations on a theme' of a clonal cell population, often with each cell within a tumor possessing a different karyotype. Thus, chromosomal instability appears to be an important acquired feature of tumor cells, since propagation of such a diverse cell population may facilitate evasion of standard therapies. There are several sources of chromosomal instability, although the primary causes appear to be defects in chromosomal segregation, telomere stability, cell-cycle checkpoint regulation, and the repair of DNA damage. Our understanding of the biological basis of chromosomal instability in cancer cells is increasing rapidly, and we are finding that the seemingly unrelated origins of this phenomenon may actually be related through the complex network of cellular signaling pathways. Here, we review the general causes of chromosomal instability in human tumors. Specifically, we address the state of our knowledge regarding chromosomal instability in oral cancer, and discuss various mechanisms that enhance the ability of cancer cells within a tumor to express heterogeneous karyotypes. In addition, we discuss the clinical relevance of factors associated with chromosomal instability as they relate to tumor prognosis and therapy.
Collapse
Affiliation(s)
- S C Reshmi
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto Street, Room A300, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
29
|
Haghi M, Dewan A, Jones KL, Reitz R, Jones C, Grossfeld P. Endocrine abnormalities in patients with Jacobsen (11q-) syndrome. Am J Med Genet A 2005; 129A:62-3. [PMID: 15266617 DOI: 10.1002/ajmg.a.30248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Jacobsen syndrome (JS), a rare disorder with multiple dysmorphic features, is caused by the terminal deletion of chromosome 11q. Short stature has been reported in this syndrome, however very few of these patients have undergone endocrine evaluation. Serum insulin-like growth factor-1 (IGF-1) levels are an indirect indicator of growth hormone activity and are a useful initial screening tool in the assessment of an individual's growth hormone axis. We studied nine children with JS, eight of whom had short stature. Four out of eight children with short stature (50%) had low IGF-1 values, with three low for age and one low for Tanner stage. Four out of six males (67%) had cryptorchidism, a potential sign of hypogonadism. We conclude that low IGF-1 is common in patients with JS and short stature, and that growth hormone status and possibly hypothalamic-pituitary function should be evaluated in this patient population.
Collapse
Affiliation(s)
- Marjan Haghi
- University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
30
|
Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, Jones C. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A 2005; 129A:51-61. [PMID: 15266616 DOI: 10.1002/ajmg.a.30090] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We performed a prospective study of 110 patients (75 not previously published) with the 11q terminal deletion disorder (previously called Jacobsen syndrome), diagnosed by karyotype. All the patients have multiple dysmorphic features. Nearly all the patients (94%) have Paris-Trousseau syndrome characterized by thrombocytopenia and platelet dysfunction. In total, 56% of the patients have serious congenital heart defects. Cognitive function ranged from normal intelligence to moderate mental retardation. Nearly half of the patients have mild mental retardation with a characteristic neuropsychiatric profile demonstrating near normal receptive language ability, but mild to moderate impairment in expressive language. Ophthalmologic, gastrointestinal, and genitourinary problems were common, as were gross and fine motor delays. Infections of the upper respiratory system were common, but no life-threatening infections were reported. We include a molecular analysis of the deletion breakpoints in 65 patients, from which genetic "critical regions" for 14 clinical phenotypes are defined, as well as for the neuropsychiatric profiles. Based on these findings, we provide a comprehensive set of recommendations for the clinical management of patients with the 11q terminal deletion disorder.
Collapse
Affiliation(s)
- Paul D Grossfeld
- Division of Pediatric Cardiology, Department of Pediatrics University of California, San Diego, CA 92123, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Klinkov AA, Nikitin EA, Maiorova OV, Ivanov MA, Strelnikov VV, Babenko OV, Zemlyakova VV, Kuznetsova EB, Zaletayev DV. TNR/11q#1 Trinucleotide (GCC)n Repeat Alleles and Predisposition to Acute and Chronic Leukemia. Ann Hum Genet 2004; 68:362-6. [PMID: 15225161 DOI: 10.1046/j.1529-8817.2004.00101.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TNR/11q#1 is a polymorphic trinucleotide (GCC)n repeat located within the minimal region of the 11q deletion in chronic lymphocytic leukemia (CLL). It was recently shown that certain alleles of this repeat are associated with a worse prognosis in CLL patients. To investigate the role of TNR/11q#1 variants as risk-modifying factors in leukemogenesis, we conducted a case-control study on 113 acute lymphotic leukemia (ALL) patients, 82 CLL patients and 146 healthy controls of Russian origin. Comparison of allele and genotype distributions in the control, ALL and CLL groups, performed by Fisher's exact test with two-sized P-value, showed significant decrease in the presence of the GCC(6) allele in the ALL and CLL groups compared to controls. Moreover, 'rare' alleles GCC(7-8) and GCC(13-14) were significantly overrepresented in the ALL group versus controls. We found that CLL risk genotypes were those with both alleles containing more than 6 GCC repeats (P = 0,0212, odds ratio = 1,68 (95% CI, 1,121...2,531)). ALL risk genotypes include three allele combination variants: 1) both alleles containing more than 6 GCC repeats (P = 0,0019, odds ratio = 1,756 (95% CI 1,223...2,502)); 2) one of the alleles containing 7 or 8 repeats (P = 0,0155, odds ratio = 18,22 (95% CI 1,93...136.37)); 3) one of the alleles containing more than 12 repeats (P = 0,0209, Odds ratio = 2,599 (95% CI 1,161...5,815)). Association of certain alleles and genotypes of the TNR/11q#1 repeat with both acute and chronic lymphocytic leukemia suggests the presence of a cancer related gene, involved in a wide spectrum of neoplasia, in the vicinity of this repeat.
Collapse
Affiliation(s)
- A A Klinkov
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478, Moskvorechie St.1, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sarafidou T, Kahl C, Martinez-Garay I, Mangelsdorf M, Gesk S, Baker E, Kokkinaki M, Talley P, Maltby EL, French L, Harder L, Hinzmann B, Nobile C, Richkind K, Finnis M, Deloukas P, Sutherland GR, Kutsche K, Moschonas NK, Siebert R, Gécz J. Folate-sensitive fragile site FRA10A is due to an expansion of a CGG repeat in a novel gene, FRA10AC1, encoding a nuclear protein. Genomics 2004; 84:69-81. [PMID: 15203205 DOI: 10.1016/j.ygeno.2003.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 12/31/2003] [Indexed: 11/21/2022]
Abstract
Fragile sites appear visually as nonstaining gaps on chromosomes that are inducible by specific cell culture conditions. Expansion of CGG/CCG repeats has been shown to be the molecular basis of all five folate-sensitive fragile sites characterized molecularly so far, i.e., FRAXA, FRAXE, FRAXF, FRA11B, and FRA16A. In the present study we have refined the localization of the FRA10A folate-sensitive fragile site by fluorescence in situ hybridization. Sequence analysis of a BAC clone spanning FRA10A identified a single, imperfect, but polymorphic CGG repeat that is part of a CpG island in the 5'UTR of a novel gene named FRA10AC1. The number of CGG repeats varied in the population from 8 to 13. Expansions exceeding 200 repeat units were methylated in all FRA10A fragile site carriers tested. The FRA10AC1 gene consists of 19 exons and is transcribed in the centromeric direction from the FRA10A repeat. The major transcript of approximately 1450 nt is ubiquitously expressed and codes for a highly conserved protein, FRA10AC1, of unknown function. Several splice variants leading to alternative 3' ends were identified (particularly in testis). These give rise to FRA10AC1 proteins with altered COOH-termini. Immunofluorescence analysis of full-length, recombinant EGFP-tagged FRA10AC1 protein showed that it was present exclusively in the nucleoplasm. We show that the expression of FRA10A, in parallel to the other cloned folate-sensitive fragile sites, is caused by an expansion and subsequent methylation of an unstable CGG trinucleotide repeat. Taking advantage of three cSNPs within the FRA10AC1 gene we demonstrate that one allele of the gene is not transcribed in a FRA10A carrier. Our data also suggest that in the heterozygous state FRA10A is likely a benign folate-sensitive fragile site.
Collapse
Affiliation(s)
- Theologia Sarafidou
- Department of Biology, University of Crete, and Institute of Molecular Biology and Biotechnology(IMBB), Foundation of Research and Technology (FORTH-GR), P.O. Box 2208, 714 09 Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE To discuss the ophthalmic findings and their clinical significance in 10 new cases of Jacobsen syndrome (mental retardation, craniofacial anomalies, congenital heart defects, and blood dyscrasias) and to review the ophthalmic findings in all previously reported cases in the literature. METHODS Ten new cases of Jacobsen syndrome were collected and studied prospectively for detection of abnormal ophthalmologic examination findings. A total of 63 previously reported cases were identified from Medline and analyzed for ophthalmologic abnormalities. RESULTS The most common ophthalmologic findings in the new cases of Jacobsen syndrome included strabismus (90.0%), refractive error (90.0%), and ptosis (70.0%). Facial dysmorphism was also common and included hypertelorism, epicanthal folds, and down-slanting palpebral fissures. Uncommon ophthalmic findings included 5 patients with retinal vascular tortuosity, 1 with glaucoma, and 3 with amblyopia. In 63 cases reviewed, 36 reported ophthalmologic abnormalities. The most common findings included facial anomalies and ptosis. Only 5 of the 63 patients had evidence of strabismus, and none were reported to have retinal vascular tortuosity. CONCLUSIONS To prevent unnecessary vision loss in children with Jacobsen syndrome, proper screening for amblyogenic factors is imperative. We recommend a baseline complete ophthalmologic examination with subsequent follow-up examinations depending on the particular findings noted during the initial screening visit.
Collapse
Affiliation(s)
- William B Lee
- Department of Ophthalmology, University of California-Davis Medical Center, Sacramento, CA, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bertoni F, Conconi A, Cogliatti SB, Schmitz SFH, Ghielmini M, Cerny T, Fey M, Pichert G, Bertolini F, Ponzoni M, Baldini L, Jones C, Auer R, Zucca E, Cavalli F, Cotter FE. Immunoglobulin heavy chain genes somatic hypermutations and chromosome 11q22-23 deletion in classic mantle cell lymphoma: a study of the Swiss Group for Clinical Cancer Research. Br J Haematol 2004; 124:289-98. [PMID: 14717775 DOI: 10.1046/j.1365-2141.2003.04763.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mantle cell lymphoma (MCL) shares immunophenotypic and karyotypic features with chronic lymphocytic leukaemia. The latter comprises two distinct entities with prognosis dependent upon immunoglobulin heavy chain (IgH) gene mutational status and the presence of 11q deletion. We evaluated the relevance of IgH gene mutational status, IgV gene family usage and presence of 11q deletion in a series of 42 histologically reviewed classical MCL cases to determine the prognostic impact. VH3 was the most common VH family, with VH3-21 being the most frequent individual VH gene. Approximately 30% of the cases had a IgH somatic mutation rate higher than 2%, but was only higher than 4% in <10% of cases. Half of the cases had deletion of chromosome 11q21-telomere (11q21->ter), with two minimal deleted regions, at 11q22.2 and 11q23.2. There was no association between 11q loss and IgH gene somatic mutation rate; the use of VH3-21 gene could be associated with a better prognosis.
Collapse
Affiliation(s)
- Francesco Bertoni
- Experimental Oncology, Oncology Institute of Southern Switzerland, Via Vincenzo Vela 6, Stabile IRB, 6500 Bellinzona, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abeysinghe SS, Chuzhanova N, Krawczak M, Ball EV, Cooper DN. Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. Hum Mutat 2003; 22:229-44. [PMID: 12938088 DOI: 10.1002/humu.10254] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Translocations and gross deletions are important causes of both cancer and inherited disease. Such gene rearrangements are nonrandomly distributed in the human genome as a consequence of selection for growth advantage and/or the inherent potential of some DNA sequences to be frequently involved in breakage and recombination. Using the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] (containing 397 germ-line and somatic DNA breakpoint junction sequences derived from 219 different rearrangements underlying human inherited disease and cancer), we have analyzed the sequence context of translocation and deletion breakpoints in a search for general characteristics that might have rendered these sequences prone to rearrangement. The oligonucleotide composition of breakpoint junctions and a set of reference sequences, matched for length and genomic location, were compared with respect to their nucleotide composition. Deletion breakpoints were found to be AT-rich whereas by comparison, translocation breakpoints were GC-rich. Alternating purine-pyrimidine sequences were found to be significantly over-represented in the vicinity of deletion breakpoints while polypyrimidine tracts were over-represented at translocation breakpoints. A number of recombination-associated motifs were found to be over-represented at translocation breakpoints (including DNA polymerase pause sites/frameshift hotspots, immunoglobulin heavy chain class switch sites, heptamer/nonamer V(D)J recombination signal sequences, translin binding sites, and the chi element) but, with the exception of the translin-binding site and immunoglobulin heavy chain class switch sites, none of these motifs were over-represented at deletion breakpoints. Alu sequences were found to span both breakpoints in seven cases of gross deletion that may thus be inferred to have arisen by homologous recombination. Our results are therefore consistent with a role for homologous unequal recombination in deletion mutagenesis and a role for nonhomologous recombination in the generation of translocations.
Collapse
Affiliation(s)
- Shaun S Abeysinghe
- Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | |
Collapse
|
36
|
Desmaze C, Soria JC, Freulet-Marrière MA, Mathieu N, Sabatier L. Telomere-driven genomic instability in cancer cells. Cancer Lett 2003; 194:173-82. [PMID: 12757975 DOI: 10.1016/s0304-3835(02)00704-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Telomeres, the ends of linear chromosomes, play a major role in the maintenance of genome integrity. Telomerase or alternative lengthening of telomeres (ALT) mechanisms exist in most cancer cells in order to stabilize telomere length by the addition of telomeric repeats. Telomere loss can be dramatically mutagenic. Chromosomes lacking one telomere remain unstable until they are capped, generating chromosomal instability, gene amplification via breakage/fusion/bridge (B/F/B) cycles and resulting in chromosome imbalances. The chronology of the occurrence of gene amplification and chromosome imbalances detected in human tumors is still unknown. All of the aberrations that occur prior to, during or after activation of a telomere maintenance mechanism promote the development of cancer.
Collapse
Affiliation(s)
- Chantal Desmaze
- CEA-DSV/DRR/LRO, 18 Route du Panorama, 92265 Cedex, Fontenay aux Roses, France
| | | | | | | | | |
Collapse
|
37
|
Chandler SP, Kansagra P, Hirst MC. Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: evidence for a chromatin mediated effect. BMC Mol Biol 2003; 4:3. [PMID: 12659659 PMCID: PMC153536 DOI: 10.1186/1471-2199-4-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Accepted: 03/21/2003] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Expansion of an unstable (CGG)n repeat to over 200 triplets within the promoter region of the human FMR1 gene leads to extensive local methylation and transcription silencing, resulting in the loss of FMRP protein and the development of the clinical features of fragile X syndrome. The causative link between (CGG)n expansion, methylation and gene silencing is unknown, although gene silencing is associated with extensive changes to local chromatin architecture. RESULTS In order to determine the direct effects of increased repeat length on gene transcription in a chromatin context, we have examined the influence of FMR1 (CGG)n repeats upon transcription from the HSV thymidine kinase promoter in the Xenopus laevis oocyte. We observe a reduction in mRNA production directly associated with increasing repeat length, with a 90% reduction in mRNA production from arrays over 100 repeats in length. Using a kinetic approach, we show that this transcriptional repression is concomitant with chromatin maturation and, using in vitro transcription, we show that chromatin formation is a fundamental part of the repressive pathway mediated by (CGG)n repeats. Using Trichostatin A, a histone deacetylase inhibitor, we show reactivation of the silenced promoter. CONCLUSIONS Thus, isolated fragile X associated (CGG)n repeat arrays can exert a modifying and transcriptionally repressive influence over adjacent promoters and this repressive phenomenon is, in part, mediated by histone deacetylation.
Collapse
Affiliation(s)
- Simon P Chandler
- Sangamo BioSciences, 501 Canal Blvd. Ste A100, Point Richmond Tech Center II, Richmond, CA 94804, USA
- formerly at Lab. Epigenetics & Chromatin, Institute of Biomolecular & Biomedical Sciences, St. Michaels Bldg, University of Portsmouth, Southsea, Hampshire, PO1 2DT, UK
| | - Pushpa Kansagra
- Genome Instability Group, Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Mark C Hirst
- Genome Instability Group, Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| |
Collapse
|
38
|
Phillips HM, Renforth GL, Spalluto C, Hearn T, Curtis ARJ, Craven L, Havarani B, Clement-Jones M, English C, Stumper O, Salmon T, Hutchinson S, Jackson MS, Wilson DI. Narrowing the critical region within 11q24-qter for hypoplastic left heart and identification of a candidate gene, JAM3, expressed during cardiogenesis. Genomics 2002; 79:475-8. [PMID: 11944976 DOI: 10.1006/geno.2002.6742] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoplastic left heart is a severe human congenital heart defect characterized by left ventricular hypoplasiawith aortic and mitral valve atresia. A genetic etiology is indicated by an association of the hypoplastic left heart phenotype with terminal 11q deletions that span approximately 20 Mb (distal to FRA11B in 11q23). Here we define the breakpoints in four patients with heart defects in association with distal 11q monosomy and refine the critical region to an approximately 9-Mb region distal to D11S1351. Within this critical region we have identified JAM3, a member of the junction adhesion molecule family, as a strong candidate gene for the cardiac phenotype on the basis that it is expressed during human cardiogenesis in the structures principally affected in hypoplastic left heart.
Collapse
Affiliation(s)
- Helen M Phillips
- Institute of Human Genetics, University of Newcastle Upon Tyne, NE1 382, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Deleción terminal del 11q (síndrome de jacobsen) asociada a atresia duodenal con páncreas anular. An Pediatr (Barc) 2002. [DOI: 10.1016/s1695-4033(02)77913-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Schaub RL, Reveles XT, Baillargeon J, Leach RJ, Cody JD. Molecular characterization of 18p deletions: evidence for a breakpoint cluster. Genet Med 2002; 4:15-9. [PMID: 11839953 DOI: 10.1097/00125817-200201000-00003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To determine the size and parental origin of the deletion in individuals with 18p- syndrome. METHODS Molecular and fluorescence in situ hybridization analyses of the pericentromeric region of chromosome 18 were performed on genomic DNA and chromosomes from study participants. RESULTS The majority of the breakpoints were located between markers D18S852 on 18p and D18S1149 on 18q, a distance of approximately 4 Mb. The parental origin of these deletions appears to be equally distributed, half maternally derived and half paternally derived. CONCLUSION The distributions of both the size and parental origin of the 18p deletions support the presence of a breakpoint cluster in the 18p- syndrome.
Collapse
Affiliation(s)
- Rebecca L Schaub
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, Texas 78229-7809, USA
| | | | | | | | | |
Collapse
|
41
|
Gilbert F. Disease genes and chromosomes: disease maps of the human genome. GENETIC TESTING 2001; 4:409-26. [PMID: 11216668 DOI: 10.1089/109065700750065180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- F Gilbert
- Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
42
|
Chen CP, Chern SR, Tzen CY, Lee MS, Pan CW, Chang TY, Wang W. Prenatal diagnosis of de novo distal 11q deletion associated with sonographic findings of unilateral duplex renal system, pyelectasis and orofacial clefts. Prenat Diagn 2001; 21:317-20. [PMID: 11288126 DOI: 10.1002/pd.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In utero diagnosis of de novo distal 11q deletion associated with renal and orofacial malformations has not been previously described. We present a 35-year-old pregnant woman with prenatal sonographic findings of a unilateral duplex renal system, pyelectasis and orofacial clefts at 20 weeks' gestation. Both genetic amniocentesis and postnatal cytogenetic analysis revealed de novo 46,XX,del(11)(q23). After birth, the fetus manifested a dysmorphic phenotype correlated with del(11q) syndrome. Genetic marker analysis showed a paternally derived distal deletion of chromosome 11q and a breakpoint centromeric to D11S1341. The present case represents the earliest prenatal diagnosis of a duplex renal system, pyelectasis and an additional feature of orofacial clefts associated with distal 11q deletion. Prenatal sonographic detection of a duplex renal system, pyelectasis and orofacial clefts should warrant a careful assessment of fetal anatomy and prompt cytogenetic analysis looking for chromosomal aberrations.
Collapse
Affiliation(s)
- C P Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Wilson MD, Riemer C, Martindale DW, Schnupf P, Boright AP, Cheung TL, Hardy DM, Schwartz S, Scherer SW, Tsui LC, Miller W, Koop BF. Comparative analysis of the gene-dense ACHE/TFR2 region on human chromosome 7q22 with the orthologous region on mouse chromosome 5. Nucleic Acids Res 2001; 29:1352-65. [PMID: 11239002 PMCID: PMC29746 DOI: 10.1093/nar/29.6.1352] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chromosome 7q22 has been the focus of many cytogenetic and molecular studies aimed at delineating regions commonly deleted in myeloid leukemias and myelodysplastic syndromes. We have compared a gene-dense, GC-rich sub-region of 7q22 with the orthologous region on mouse chromosome 5. A physical map of 640 kb of genomic DNA from mouse chromosome 5 was derived from a series of overlapping bacterial artificial chromosomes. A 296 kb segment from the physical map, spanning ACHE: to Tfr2, was compared with 267 kb of human sequence. We identified a conserved linkage of 12 genes including an open reading frame flanked by ACHE: and Asr2, a novel cation-chloride cotransporter interacting protein Cip1, Ephb4, Zan and Perq1. While some of these genes have been previously described, in each case we present new data derived from our comparative sequence analysis. Adjacent unfinished sequence data from the mouse contains an orthologous block of 10 additional genes including three novel cDNA sequences that we subsequently mapped to human 7q22. Methods for displaying comparative genomic information, including unfinished sequence data, are becoming increasingly important. We supplement our printed comparative analysis with a new, Web-based program called Laj (local alignments with java). Laj provides interactive access to archived pairwise sequence alignments via the WWW. It displays synchronized views of a dot-plot, a percent identity plot, a nucleotide-level local alignment and a variety of relevant annotations. Our mouse-human comparison can be viewed at http://web.uvic.ca/~bioweb/laj.html. Laj is available at http://bio.cse.psu.edu/, along with online documentation and additional examples of annotated genomic regions.
Collapse
Affiliation(s)
- M D Wilson
- Department of Biology, Centre for Environmental Health, PO Box 3020, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Cytogenetic imbalance in the newborn is a frequent cause of mental retardation and birth defects. Although aneuploidy accounts for the majority of imbalance, structural aberrations contribute to a significant fraction of recognized chromosomal anomalies. This review describes the major classes of constitutional, structural cytogenetic abnormalities and recent studies that explore the molecular mechanisms that bring about their de novo occurrence. Genomic features flanking the sites of recombination may result in susceptibility to chromosomal rearrangement. One such substrate for recombination is low-copy region-specific repeats. The identification of genome architectural features conferring susceptibility to rearrangements has been accomplished using methods that enable investigation of regions of the genome that are too small to be visualized by traditional cytogenetics and too large to be resolved by conventional gel electrophoresis. These investigations resulted in the identification of previously unrecognized structural cytogenetic anomalies, which are associated with genetic syndromes and allowed for the molecular basis of some chromosomal rearrangements to be delineated.
Collapse
Affiliation(s)
- L G Shaffer
- Department of Molecular and Human Genetics, Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Texas 77030, USA.
| | | |
Collapse
|
45
|
Auer RL, Jones C, Mullenbach RA, Syndercombe-Court D, Milligan DW, Fegan CD, Cotter FE. Role for CCG-trinucleotide repeats in the pathogenesis of chronic lymphocytic leukemia. Blood 2001; 97:509-15. [PMID: 11154230 DOI: 10.1182/blood.v97.2.509] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosome 11q deletions are frequently observed in chronic lymphocytic leukemia (CLL) in association with progressive disease and a poor prognosis. A minimal region of deletion has been assigned to 11q22-q23. Trinucleotide repeats have been associated with anticipation in disease, and evidence of anticipation has been observed in various malignancies including CLL. Loss of heterozygosity at 11q22-23 is common in a wide range of cancers, suggesting this is an unstable area prone to chromosome breakage. The location of 8 CCG-trinucleotide repeats on 11q was determined by Southern blot analysis of a 40-Mb YAC and PAC contig spanning 11q22-qter. Deletion breakpoints in CLL are found to co-localize at specific sites on 11q where CCG repeats are located. In addition, a CCG repeat has been identified within the minimal region of deletion. Specific alleles of this repeat are associated with worse prognosis. Folate-sensitive fragile sites are regions of late replication and are characterized by CCG repeats. The mechanism for chromosome deletion at 11q could be explained by a delay in replication. Described here is an association between CCG repeats and chromosome loss suggesting that in vivo "fragile sites" exist on 11q and that the instability of CCG repeats may play an important role in the pathogenesis of CLL.
Collapse
MESH Headings
- B-Lymphocytes/ultrastructure
- Chromosome Deletion
- Chromosomes, Human, Pair 11/genetics
- Contig Mapping
- Cytogenetics
- Genes, Tumor Suppressor
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Lymphoma, Non-Hodgkin/genetics
- Trinucleotide Repeats/genetics
- Trinucleotide Repeats/physiology
Collapse
Affiliation(s)
- R L Auer
- Department of Experimental Haematology, St Bartholomew's, and The Royal London School of Medicine and Dentistry, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
46
|
Lehmann OJ, Ebenezer ND, Jordan T, Fox M, Ocaka L, Payne A, Leroy BP, Clark BJ, Hitchings RA, Povey S, Khaw PT, Bhattacharya SS. Chromosomal Duplication Involving the Forkhead Transcription Factor GeneFOXC1Causes Iris Hypoplasia and Glaucoma. Am J Hum Genet 2000. [DOI: 10.1086/321194] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
47
|
Lehmann OJ, Ebenezer ND, Jordan T, Fox M, Ocaka L, Payne A, Leroy BP, Clark BJ, Hitchings RA, Povey S, Khaw PT, Bhattacharya SS. Chromosomal duplication involving the forkhead transcription factor gene FOXC1 causes iris hypoplasia and glaucoma. Am J Hum Genet 2000; 67:1129-35. [PMID: 11007653 PMCID: PMC1288555 DOI: 10.1016/s0002-9297(07)62943-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2000] [Accepted: 08/30/2000] [Indexed: 11/12/2022] Open
Abstract
The forkhead transcription factor gene FOXC1 (formerly FKHL7) is responsible for a number of glaucoma phenotypes in families in which the disease maps to 6p25, although mutations have not been found in all families in which the disease maps to this region. In a large pedigree with iris hypoplasia and glaucoma mapping to 6p25 (peak LOD score 6.20 [recombination fraction 0] at D6S967), no FOXC1 mutations were detected by direct sequencing. However, genotyping with microsatellite repeat markers suggested the presence of a chromosomal duplication that segregated with the disease phenotype. The duplication was confirmed in affected individuals by FISH with markers encompassing FOXC1. These results provide evidence of gene duplication causing developmental disease in humans, with increased gene dosage of either FOXC1 or other, as yet unknown genes within the duplicated segment being the probable mechanism responsible for the phenotype.
Collapse
Affiliation(s)
- O J Lehmann
- Department of Molecular Genetics, Institute of Ophthalmology, London, England EC1V 9EL.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, Favier R, Bernstein A. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 2000; 13:167-77. [PMID: 10981960 DOI: 10.1016/s1074-7613(00)00017-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ETS gene Fli-1 is involved in the induction of erythroleukemia in mice by Friend murine leukemia virus and Ewings sarcoma in children. Mice with a targeted null mutation in the Fli-1 locus die at day 11.5 of embryogenesis with loss of vascular integrity leading to bleeding within the vascular plexus of the cerebral meninges and specific downregulation of Tek/Tie-2, the receptor for angiopoietin-1. We also show that dysmegakaryopoiesis in Fli-1 null embryos resembles that frequently seen in patients with terminal deletions of 11q (Jacobsen or Paris-Trousseau Syndrome). We map the megakaryocytic defects in 14 Jacobsen patients to a minimal region on 11q that includes the Fli-1 gene and suggest that dysmegakaryopoiesis in these patients may be caused by hemizygous loss of Fli-1.
Collapse
Affiliation(s)
- A Hart
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|