1
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 PMCID: PMC11640421 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
2
|
Parfenenko MA, Dantsev IS, Bochenkov SV, Kuramagomedova RG, Vinogradova NV, Afanaseva MP, Groznova OS, Voinova VI. Expansion of phenotypic and genotypic data in autism spectrum disorders due to variants in the CHD8 gene. Neurogenetics 2024; 26:4. [PMID: 39576488 DOI: 10.1007/s10048-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Autism spectrum disorders are a group of the most common disorders of neuropsychiatric development, characterized by difficulties in social interaction and adherence to stereotypic behavioral patterns. This group of conditions frequently co-occurs with intellectual disability, epilepsy, attention-deficit hyperactivity disorder, connective tissue disorders and others. Among the most common molecular-genetic causes of autism spectrum disorders are pathogenic variants in the CHD8 gene. CHD8 codes for chromodomain-helicase-DNA-binding protein 8 - a chromatin remodeler that regulates cellular proliferation and brain development in embryogenesis. 6 children and 1 adult (mother of 1 of the children) and were found to have clinically significant variants in CHD8 on whole genome sequencing (3 children and 1 adult had likely pathogenic variants, 3 children- variants of unknown significance). Their phenotype consisted of autism spectrum disorders, developmental delay, ataxia, overgrowth and other signs typically observed in patients with pathogenic variants in CHD8, as well as common comorbidities of autism spectrum disorders, such as attention-deficit hyperactivity disorder and connective tissue disorders. Additionally, 4 patients had hepatomegaly and 2- hyperbilirubinemia (1 had both) - clinical features have not been previously associated with pathogenic variants in CHD8. 2 patients also presented with cardiovascular abnormalities, primarily arrythmias and, in 1 case, cardiomyopathy- also uncharacteristic of patients with pathogenic variants in CHD8. Further research is required to determine the mechanisms underlying the abovementioned clinical features, which are likely carried out through complex interactions between CHD8 and other regulatory proteins.
Collapse
Affiliation(s)
- Mariia A Parfenenko
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Ilya S Dantsev
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergei V Bochenkov
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Rabiat G Kuramagomedova
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia V Vinogradova
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mariia P Afanaseva
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga S Groznova
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victoria Iu Voinova
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Shiraishi T, Katayama Y, Nishiyama M, Shoji H, Miyakawa T, Mizoo T, Matsumoto A, Hijikata A, Shirai T, Mayanagi K, Nakayama KI. The complex etiology of autism spectrum disorder due to missense mutations of CHD8. Mol Psychiatry 2024; 29:2145-2160. [PMID: 38438524 DOI: 10.1038/s41380-024-02491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.
Collapse
Affiliation(s)
- Taichi Shiraishi
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yuta Katayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Taisuke Mizoo
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Akinobu Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga, 526-0829, Japan
| | - Kouta Mayanagi
- Department of Drug Discovery Structural Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan.
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
4
|
Basson MA. Neurodevelopmental functions of CHD8: new insights and questions. Biochem Soc Trans 2024; 52:15-27. [PMID: 38288845 PMCID: PMC10903457 DOI: 10.1042/bst20220926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Heterozygous, de novo, loss-of-function variants of the CHD8 gene are associated with a high penetrance of autism and other neurodevelopmental phenotypes. Identifying the neurodevelopmental functions of high-confidence autism risk genes like CHD8 may improve our understanding of the neurodevelopmental mechanisms that underlie autism spectrum disorders. Over the last decade, a complex picture of pleiotropic CHD8 functions and mechanisms of action has emerged. Multiple brain and non-brain cell types and progenitors appear to be affected by CHD8 haploinsufficiency. Behavioural, cellular and synaptic phenotypes are dependent on the nature of the gene mutation and are modified by sex and genetic background. Here, I review some of the CHD8-interacting proteins and molecular mechanisms identified to date, as well as the impacts of CHD8 deficiency on cellular processes relevant to neurodevelopment. I endeavour to highlight some of the critical questions that still require careful and concerted attention over the next decade to bring us closer to the goal of understanding the salient mechanisms whereby CHD8 deficiency causes neurodevelopmental disorders.
Collapse
Affiliation(s)
- M. Albert Basson
- Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, U.K
- Centre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 9RT, U.K
| |
Collapse
|
5
|
Vacharasin JM, Ward JA, McCord MM, Cox K, Imitola J, Lizarraga SB. Neuroimmune mechanisms in autism etiology - untangling a complex problem using human cellular models. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae003. [PMID: 38665176 PMCID: PMC11044813 DOI: 10.1093/oons/kvae003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 04/28/2024]
Abstract
Autism spectrum disorder (ASD) affects 1 in 36 people and is more often diagnosed in males than in females. Core features of ASD are impaired social interactions, repetitive behaviors and deficits in verbal communication. ASD is a highly heterogeneous and heritable disorder, yet its underlying genetic causes account only for up to 80% of the cases. Hence, a subset of ASD cases could be influenced by environmental risk factors. Maternal immune activation (MIA) is a response to inflammation during pregnancy, which can lead to increased inflammatory signals to the fetus. Inflammatory signals can cross the placenta and blood brain barriers affecting fetal brain development. Epidemiological and animal studies suggest that MIA could contribute to ASD etiology. However, human mechanistic studies have been hindered by a lack of experimental systems that could replicate the impact of MIA during fetal development. Therefore, mechanisms altered by inflammation during human pre-natal brain development, and that could underlie ASD pathogenesis have been largely understudied. The advent of human cellular models with induced pluripotent stem cell (iPSC) and organoid technology is closing this gap in knowledge by providing both access to molecular manipulations and culturing capability of tissue that would be otherwise inaccessible. We present an overview of multiple levels of evidence from clinical, epidemiological, and cellular studies that provide a potential link between higher ASD risk and inflammation. More importantly, we discuss how stem cell-derived models may constitute an ideal experimental system to mechanistically interrogate the effect of inflammation during the early stages of brain development.
Collapse
Affiliation(s)
- Janay M Vacharasin
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
- Department of Biological Sciences, Francis Marion University, 4822 East Palmetto Street, Florence, S.C. 29506, USA
| | - Joseph A Ward
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Mikayla M McCord
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Kaitlin Cox
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, UConn Health, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-5357, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| |
Collapse
|
6
|
Usui N. Possible roles of deep cortical neurons and oligodendrocytes in the neural basis of human sociality. Anat Sci Int 2024; 99:34-47. [PMID: 38010534 PMCID: PMC10771383 DOI: 10.1007/s12565-023-00747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Sociality is an instinctive property of organisms that live in relation to others and is a complex characteristic of higher order brain functions. However, the evolution of the human brain to acquire higher order brain functions, such as sociality, and the neural basis for executing these functions and their control mechanisms are largely unknown. Several studies have attempted to evaluate how human sociality was acquired during the course of evolution and the mechanisms controlling sociality from a neurodevelopment viewpoint. This review discusses these findings in the context of human brain evolution and the pathophysiology of autism spectrum disorder (ASD). Comparative genomic studies of postmortem primate brains have demonstrated human-specific regulatory mechanisms underlying higher order brain functions, providing evidence for the contribution of oligodendrocytes to human brain function. Functional analyses of the causative genes of ASD in animal models have demonstrated that the neural basis of social behavior is associated with layer 6 (L6) of the neocortex and oligodendrocytes. These findings demonstrate that both neurons and oligodendrocytes contribute to the neural basis and molecular mechanisms underlying human brain evolution and social functioning. This review provides novel insights into sociability and the corresponding neural bases of brain disorders and evolution.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| |
Collapse
|
7
|
Cho CH, Deyneko IV, Cordova-Martinez D, Vazquez J, Maguire AS, Diaz JR, Carbonell AU, Tindi JO, Cui MH, Fleysher R, Molholm S, Lipton ML, Branch CA, Hodgson L, Jordan BA. ANKS1B encoded AIDA-1 regulates social behaviors by controlling oligodendrocyte function. Nat Commun 2023; 14:8499. [PMID: 38129387 PMCID: PMC10739966 DOI: 10.1038/s41467-023-43438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Heterozygous deletions in the ANKS1B gene cause ANKS1B neurodevelopmental syndrome (ANDS), a rare genetic disease characterized by autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and speech and motor deficits. The ANKS1B gene encodes for AIDA-1, a protein that is enriched at neuronal synapses and regulates synaptic plasticity. Here we report an unexpected role for oligodendroglial deficits in ANDS pathophysiology. We show that Anks1b-deficient mouse models display deficits in oligodendrocyte maturation, myelination, and Rac1 function, and recapitulate white matter abnormalities observed in ANDS patients. Selective loss of Anks1b from the oligodendrocyte lineage, but not from neuronal populations, leads to deficits in social preference and sensory reactivity previously observed in a brain-wide Anks1b haploinsufficiency model. Furthermore, we find that clemastine, an antihistamine shown to increase oligodendrocyte precursor cell maturation and central nervous system myelination, rescues deficits in social preference in 7-month-old Anks1b-deficient mice. Our work shows that deficits in social behaviors present in ANDS may originate from abnormal Rac1 activity within oligodendrocytes.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Human Pathobiology and OMNI Reverse Translation, Genentech, Inc., San Francisco, CA, USA
| | - Ilana Vasilisa Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dylann Cordova-Martinez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne S Maguire
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenny R Diaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roman Fleysher
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael L Lipton
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
8
|
Cao G, Sun C, Shen H, Qu D, Shen C, Lu H. Conditional Deletion of Foxg1 Delayed Myelination during Early Postnatal Brain Development. Int J Mol Sci 2023; 24:13921. [PMID: 37762220 PMCID: PMC10530892 DOI: 10.3390/ijms241813921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
FOXG1 (forkhead box G1) syndrome is a neurodevelopmental disorder caused by variants in the Foxg1 gene that affect brain structure and function. Individuals affected by FOXG1 syndrome frequently exhibit delayed myelination in neuroimaging studies, which may impair the rapid conduction of nerve impulses. To date, the specific effects of FOXG1 on oligodendrocyte lineage progression and myelination during early postnatal development remain unclear. Here, we investigated the effects of Foxg1 deficiency on myelin development in the mouse brain by conditional deletion of Foxg1 in neural progenitors using NestinCreER;Foxg1fl/fl mice and tamoxifen induction at postnatal day 0 (P0). We found that Foxg1 deficiency resulted in a transient delay in myelination, evidenced by decreased myelin formation within the first two weeks after birth, but ultimately recovered to the control levels by P30. We also found that Foxg1 deletion prevented the timely attenuation of platelet-derived growth factor receptor alpha (PDGFRα) signaling and reduced the cell cycle exit of oligodendrocyte precursor cells (OPCs), leading to their excessive proliferation and delayed maturation. Additionally, Foxg1 deletion increased the expression of Hes5, a myelin formation inhibitor, as well as Olig2 and Sox10, two promoters of OPC differentiation. Our results reveal the important role of Foxg1 in myelin development and provide new clues for further exploring the pathological mechanisms of FOXG1 syndrome.
Collapse
Affiliation(s)
- Guangliang Cao
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Congli Sun
- Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Hualin Shen
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Dewei Qu
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Chuanlu Shen
- Department of Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haiqin Lu
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| |
Collapse
|
9
|
Bohlen JF, Cleary CM, Das D, Sripathy SR, Sadowski N, Shim G, Kenney RF, Buchler IP, Banerji T, Scanlan TS, Mulkey DK, Maher BJ. Promyelinating drugs promote functional recovery in an autism spectrum disorder mouse model of Pitt-Hopkins syndrome. Brain 2023; 146:3331-3346. [PMID: 37068912 PMCID: PMC10393406 DOI: 10.1093/brain/awad057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 04/19/2023] Open
Abstract
Pitt-Hopkins syndrome is an autism spectrum disorder caused by autosomal dominant mutations in the human transcription factor 4 gene (TCF4). One pathobiological process caused by murine Tcf4 mutation is a cell autonomous reduction in oligodendrocytes and myelination. In this study, we show that the promyelinating compounds, clemastine, sobetirome and Sob-AM2 are effective at restoring myelination defects in a Pitt-Hopkins syndrome mouse model. In vitro, clemastine treatment reduced excess oligodendrocyte precursor cells and normalized oligodendrocyte density. In vivo, 2-week intraperitoneal administration of clemastine also normalized oligodendrocyte precursor cell and oligodendrocyte density in the cortex of Tcf4 mutant mice and appeared to increase the number of axons undergoing myelination, as EM imaging of the corpus callosum showed a significant increase in the proportion of uncompacted myelin and an overall reduction in the g-ratio. Importantly, this treatment paradigm resulted in functional rescue by improving electrophysiology and behaviour. To confirm behavioural rescue was achieved via enhancing myelination, we show that treatment with the thyroid hormone receptor agonist sobetirome or its brain penetrating prodrug Sob-AM2, was also effective at normalizing oligodendrocyte precursor cell and oligodendrocyte densities and behaviour in the Pitt-Hopkins syndrome mouse model. Together, these results provide preclinical evidence that promyelinating therapies may be beneficial in Pitt-Hopkins syndrome and potentially other neurodevelopmental disorders characterized by dysmyelination.
Collapse
Affiliation(s)
- Joseph F Bohlen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Colin M Cleary
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Debamitra Das
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Srinidhi Rao Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Norah Sadowski
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Rakaia F Kenney
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Ingrid P Buchler
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Tapasree Banerji
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas S Scanlan
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Kawamura A, Nishiyama M. Deletion of the autism-related gene Chd8 alters activity-dependent transcriptional responses in mouse postmitotic neurons. Commun Biol 2023; 6:593. [PMID: 37268684 DOI: 10.1038/s42003-023-04968-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
CHD8 encodes chromodomain helicase DNA-binding protein 8 and its mutation is a highly penetrant risk factor for autism spectrum disorder (ASD). CHD8 serves as a key transcriptional regulator on the basis of its chromatin-remodeling activity and thereby controls the proliferation and differentiation of neural progenitor cells. However, the function of CHD8 in postmitotic neurons and the adult brain has remained unclear. Here we show that Chd8 homozygous deletion in mouse postmitotic neurons results in downregulation of the expression of neuronal genes as well as alters the expression of activity-dependent genes induced by KCl-mediated neuronal depolarization. Furthermore, homozygous ablation of CHD8 in adult mice was associated with attenuation of activity-dependent transcriptional responses in the hippocampus to kainic acid-induced seizures. Our findings implicate CHD8 in transcriptional regulation in postmitotic neurons and the adult brain, and they suggest that disruption of this function might contribute to ASD pathogenesis associated with CHD8 haploinsufficiency.
Collapse
Affiliation(s)
- Atsuki Kawamura
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Masaaki Nishiyama
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
11
|
Boulasiki P, Tan XW, Spinelli M, Riccio A. The NuRD Complex in Neurodevelopment and Disease: A Case of Sliding Doors. Cells 2023; 12:cells12081179. [PMID: 37190088 DOI: 10.3390/cells12081179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The Nucleosome Remodelling and Deacetylase (NuRD) complex represents one of the major chromatin remodelling complexes in mammalian cells, uniquely coupling the ability to "open" the chromatin by inducing nucleosome sliding with histone deacetylase activity. At the core of the NuRD complex are a family of ATPases named CHDs that utilise the energy produced by the hydrolysis of the ATP to induce chromatin structural changes. Recent studies have highlighted the prominent role played by the NuRD in regulating gene expression during brain development and in maintaining neuronal circuitry in the adult cerebellum. Importantly, components of the NuRD complex have been found to carry mutations that profoundly affect neurological and cognitive development in humans. Here, we discuss recent literature concerning the molecular structure of NuRD complexes and how the subunit composition and numerous permutations greatly determine their functions in the nervous system. We will also discuss the role of the CHD family members in an array of neurodevelopmental disorders. Special emphasis will be given to the mechanisms that regulate the NuRD complex composition and assembly in the cortex and how subtle mutations may result in profound defects of brain development and the adult nervous system.
Collapse
Affiliation(s)
- Paraskevi Boulasiki
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Xiao Wei Tan
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Matteo Spinelli
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Neuroscience Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Li B, Zhao H, Tu Z, Yang W, Han R, Wang L, Luo X, Pan M, Chen X, Zhang J, Xu H, Guo X, Yan S, Yin P, Zhao Z, Liu J, Luo Y, Li Y, Yang Z, Zhang B, Tan Z, Xu H, Jiang T, Jiang YH, Li S, Zhang YQ, Li XJ. CHD8 mutations increase gliogenesis to enlarge brain size in the nonhuman primate. Cell Discov 2023; 9:27. [PMID: 36878905 PMCID: PMC9988832 DOI: 10.1038/s41421-023-00525-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that affects social interaction and behavior. Mutations in the gene encoding chromodomain helicase DNA-binding protein 8 (CHD8) lead to autism symptoms and macrocephaly by a haploinsufficiency mechanism. However, studies of small animal models showed inconsistent findings about the mechanisms for CHD8 deficiency-mediated autism symptoms and macrocephaly. Using the nonhuman primate as a model system, we found that CRISPR/Cas9-mediated CHD8 mutations in the embryos of cynomolgus monkeys led to increased gliogenesis to cause macrocephaly in cynomolgus monkeys. Disrupting CHD8 in the fetal monkey brain prior to gliogenesis increased the number of glial cells in newborn monkeys. Moreover, knocking down CHD8 via CRISPR/Cas9 in organotypic monkey brain slices from newborn monkeys also enhanced the proliferation of glial cells. Our findings suggest that gliogenesis is critical for brain size in primates and that abnormal gliogenesis may contribute to ASD.
Collapse
Grants
- UL1 TR001863 NCATS NIH HHS
- This work was supported by Department of Science and Technology of Guangdong Province (2021ZT09Y007; 2020B121201006, 2018B030337001, X.J. Li), Guangzhou Key Research Program on Brain Science (202007030008, X.J. Li)the National Science Foundation of China to X.J. Li (81830032, 31872779).
- the Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund (2019018, B. Li), the Postdoctoral Science Foundation of China (2019M653275, B. Li)
- the National Science Foundation of China to H. Zhao (32100783)
- the Fundamental Research Funds for the Central Universities (21619104, L. Wang)
- the Strategic Priority Research Program B of the Chinese Academy of Sciences (XDBS1020100 to Y.Q. Zhang), the National Key Research and Development Program (2019YFA0707100 and 2021ZD0203901 to Y.Q. Zhang),the National Science Foundation of China to Y.Q. Zhang (31830036 and 31921002).
Collapse
Affiliation(s)
- Bang Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Hui Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhuchi Tu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Weili Yang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Rui Han
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, Guangdong, China
| | - Xiaopeng Luo
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Mingtian Pan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Xiusheng Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Jiawei Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Huijuan Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Guo
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Peng Yin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianrong Liu
- Yuanxi Biotech Inc., Guangzhou, Guangdong, China
| | - Yafeng Luo
- Yuanxi Biotech Inc., Guangzhou, Guangdong, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou, Guangdong, China
| | - Zhengyi Yang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Baogui Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Tan
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, Guangdong, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, Guangdong, China
| | - Tianzi Jiang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Shihua Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Xiao-Jiang Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Bhalla S, Mehan S. 4-hydroxyisoleucine mediated IGF-1/GLP-1 signalling activation prevents propionic acid-induced autism-like behavioural phenotypes and neurochemical defects in experimental rats. Neuropeptides 2022; 96:102296. [PMID: 36307249 DOI: 10.1016/j.npep.2022.102296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Autism is a neuropsychiatric disorder characterized by a neurotransmitter imbalance that impairs neurodevelopment processes. Autism development is marked by communication difficulties, poor socio-emotional health, and cognitive impairment. Insulin-like growth factor-1 (IGF-1) and glucagon-like growth factor-1 (GLP-1) are responsible for regular neuronal growth and homeostasis. Autism progression has been linked to dysregulation of IGF-1/GLP-1 signalling. 4-hydroxyisoleucine (HI), a pharmacologically active amino acid produced from Trigonella foenum graecum, works as an insulin mimic and has neuroprotective properties. The GLP-1 analogue liraglutide (LRG) was employed in our investigation to compare the efficacy of 4-HI in autism prevention. The current study explores the protective effects of 4-HI 50 and 100 mg/kg orally on IGF-1/GLP-1 signalling activation in a PPA-induced experimental model of autism. Propionic acid (PPA) injections to rats by intracerebroventricular (ICV) route for the first 11 days of the experiment resulted in autism-like neurobehavioral, neurochemical, gross morphological, and histopathological abnormalities. In addition, we investigated the dose-dependent neuroprotective effects of 4-HI on the levels of several neurotransmitters and neuroinflammatory cytokines in rat brain homogenate and blood plasma. Neuronal apoptotic and anti-oxidant cellular markers were also studied in blood plasma and brain homogenate samples. Furthermore, the luxol fast blue (LFB) staining results demonstrated significant demyelination in the brains of PPA-induced rats reversed by 4-HI treatment. Rats were assessed for spontaneous locomotor impairments, neuromuscular coordination, stress-like behaviour, learning, and memory to assess neurobehavioral abnormalities. The administration of 4-HI and LRG significantly reversed the behavioural, gross and histological abnormalities in the PPA-treated rat brains. After treatment with 4-HI and LRG, LFB-stained photomicrographs of PPA-treated rats' brains demonstrated the recovery of white matter loss. Our findings indicate that 4-HI protects neurons in rats with autism by enhancing the IGF-1 and GLP-1 protein levels.
Collapse
Affiliation(s)
- Sonalika Bhalla
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
14
|
Pijuan I, Balducci E, Soto-Sánchez C, Fernández E, Barallobre MJ, Arbonés ML. Impaired macroglial development and axonal conductivity contributes to the neuropathology of DYRK1A-related intellectual disability syndrome. Sci Rep 2022; 12:19912. [PMID: 36402907 PMCID: PMC9675854 DOI: 10.1038/s41598-022-24284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The correct development and activity of neurons and glial cells is necessary to establish proper brain connectivity. DYRK1A encodes a protein kinase involved in the neuropathology associated with Down syndrome that influences neurogenesis and the morphological differentiation of neurons. DYRK1A loss-of-function mutations in heterozygosity cause a well-recognizable syndrome of intellectual disability and autism spectrum disorder. In this study, we analysed the developmental trajectories of macroglial cells and the properties of the corpus callosum, the major white matter tract of the brain, in Dyrk1a+/- mice, a mouse model that recapitulates the main neurological features of DYRK1A syndrome. We found that Dyrk1a+/- haploinsufficient mutants present an increase in astrogliogenesis in the neocortex and a delay in the production of cortical oligodendrocyte progenitor cells and their progression along the oligodendroglial lineage. There were fewer myelinated axons in the corpus callosum of Dyrk1a+/- mice, axons that are thinner and with abnormal nodes of Ranvier. Moreover, action potential propagation along myelinated and unmyelinated callosal axons was slower in Dyrk1a+/- mutants. All these alterations are likely to affect neuronal circuit development and alter network synchronicity, influencing higher brain functions. These alterations highlight the relevance of glial cell abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Isabel Pijuan
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Elisa Balducci
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Cristina Soto-Sánchez
- grid.26811.3c0000 0001 0586 4893Instituto de Bioingeniería, Miguel Hernández University, 03202 Elche, Spain ,grid.429738.30000 0004 1763 291XCentro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 03202 Elche, Spain
| | - Eduardo Fernández
- grid.26811.3c0000 0001 0586 4893Instituto de Bioingeniería, Miguel Hernández University, 03202 Elche, Spain ,grid.429738.30000 0004 1763 291XCentro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 03202 Elche, Spain
| | - María José Barallobre
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Maria L. Arbonés
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| |
Collapse
|
15
|
Deng J, Wang Y, Hu M, Lin J, Li Q, Liu C, Xu X. Deleterious Variation in BR Serine/Threonine Kinase 2 Classified a Subtype of Autism. Front Mol Neurosci 2022; 15:904935. [PMID: 35754711 PMCID: PMC9231588 DOI: 10.3389/fnmol.2022.904935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, deleterious variants in the BR serine/threonine kinase 2 (BRSK2) gene have been reported in patients with autism spectrum disorder (ASD), suggesting that BRSK2 is a new high-confidence ASD risk gene, which presents an opportunity to understand the underlying neuropathological mechanisms of ASD. In this study, we performed clinical and neurobehavioral evaluations of a proband with a de novo non-sense variant in BRSK2 (p.R222X) with other reported BRSK2 mutant patients. To validate BRSK2 as an ASD risk gene, we generated a novel brsk2b-deficient zebrafish line through CRISPR/Cas9 and characterized its morphological and neurobehavioral features as well as performed molecular analysis of neurogenesis-related markers. The proband displayed typical ASD behaviors and language and motor delay, which were similar to other published BRSK2 mutant patients. Morphologically, brsk2b–/– larvae exhibited a higher embryonic mortality and rate of pericardium edema, severe developmental delay, and depigmentation as well as growth retardation in the early developmental stage. Behaviorally, brsk2b–/– zebrafish displayed significantly decreased activity in open field tests and enhanced anxiety levels in light/dark tests and thigmotaxis analysis. Specifically, brsk2b–/– zebrafish showed a prominent reduction of social interaction with peers and disrupted social cohesion among homogeneous groups. Molecularly, the mRNA expression levels of homer1b (a postsynaptic density scaffolding protein), and mbpa, mpz, and plp1b (molecular markers of oligodendrocytes and myelination) were increased in the brain tissues of adult brsk2b–/– zebrafish, while the expression level of isl1a, a marker of motor neurons, was decreased. Taken together, for the first time, we established a novel brsk2b-deficient zebrafish model that showed prominent ASD-like behaviors. In addition, the disturbed mRNA expression levels of neurogenesis-related markers implied that the processes of postsynaptic signaling as well as oligodendrocytes and myelination may be involved. This discovery may suggest a path for further research to identify the underlying neuropathological mechanisms between BRSK2 and ASD.
Collapse
Affiliation(s)
- Jingxin Deng
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Meixin Hu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Lin
- Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Translational Medical Center for Development and Disease, National Children's Medical Center, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Translational Medical Center for Development and Disease, National Children's Medical Center, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Chunxue Liu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
16
|
Katayama Y. [Deciphering pathogenesis of autism spectrum disorder with mice model]. Nihon Yakurigaku Zasshi 2022; 157:187-190. [PMID: 35491116 DOI: 10.1254/fpj.21121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by communication disorders and behavioral limitations, and its high prevalence has attracted increasing social attention in recent years. However, the pathogenesis of ASD is still not fully understood because of its diversity and the suspected involvement of many causative genes and environmental factors. Therefore, analyses using animal models that can isolate and simplify the causes of ASD are thought to be helpful in understanding the disease. In this article, we will introduce the pathogenic mechanism of ASD revealed by the analysis using a mouse model reproducing the mutation of CHD8, which is a reliable candidate gene for the cause of ASD, and discuss the possibility of therapeutic targets predicted from this analysis.
Collapse
Affiliation(s)
- Yuta Katayama
- Medical Institute of Bioregulation, Kyushu University
| |
Collapse
|
17
|
Jiménez JA, Simon JM, Hu W, Moy SS, Harper KM, Liu CW, Lu K, Zylka MJ. Developmental pyrethroid exposure and age influence phenotypes in a Chd8 haploinsufficient autism mouse model. Sci Rep 2022; 12:5555. [PMID: 35365720 PMCID: PMC8975859 DOI: 10.1038/s41598-022-09533-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Hundreds of genes have been associated with autism spectrum disorder (ASD), including loss-of-function mutations in chromodomain helicase DNA binding protein 8 (Chd8). Environmental factors also are implicated in autism risk and have the potential to exacerbate phenotypes in genetically sensitized backgrounds. Here we investigate transcriptional and behavioral phenotypes in a Chd8 haploinsufficient (Chd8V986*/+) mouse line exposed to the pesticide deltamethrin (DM) from conception to postnatal day 22. Vehicle-exposed Chd8V986*/+ mice displayed ASD-associated phenotypes, including anxiety-like behavior and altered sociability, replicating a previous study with this mouse line. A core set of genes was altered in Chd8V986*/+ mice at multiple ages, including Usp11, Wars2, Crlf2, and Eglf6, and proximity ligation data indicated direct binding of CHD8 to the 5' region of these genes. Moreover, oligodendrocyte and neurodegenerative transcriptional phenotypes were apparent in 12 and 18 month old Chd8V986*/+ mice. Following DM exposure, the mutant mice displayed an exacerbated phenotype in the elevated plus maze, and genes associated with vascular endothelial cells were downregulated in the cerebral cortex of older Chd8V986*/+ animals. Our study reveals a gene x environment interaction with a Chd8 haploinsufficient mouse line and points to the importance of investigating phenotypes in ASD animal models across the lifespan.
Collapse
Affiliation(s)
- Jessica A Jiménez
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wenxin Hu
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kathryn M Harper
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Hiramoto T, Sumiyoshi A, Yamauchi T, Tanigaki K, Shi Q, Kang G, Ryoke R, Nonaka H, Enomoto S, Izumi T, Bhat MA, Kawashima R, Hiroi N. Tbx1, a gene encoded in 22q11.2 copy number variant, is a link between alterations in fimbria myelination and cognitive speed in mice. Mol Psychiatry 2022; 27:929-938. [PMID: 34737458 PMCID: PMC9054676 DOI: 10.1038/s41380-021-01318-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Copy number variants (CNVs) have provided a reliable entry point to identify the structural correlates of atypical cognitive development. Hemizygous deletion of human chromosome 22q11.2 is associated with impaired cognitive function; however, the mechanisms by which the CNVs contribute to cognitive deficits via diverse structural alterations in the brain remain unclear. This study aimed to determine the cellular basis of the link between alterations in brain structure and cognitive functions in mice with a heterozygous deletion of Tbx1, one of the 22q11.2-encoded genes. Ex vivo whole-brain diffusion-tensor imaging (DTI)-magnetic resonance imaging (MRI) in Tbx1 heterozygous mice indicated that the fimbria was the only region with significant myelin alteration. Electron microscopic and histological analyses showed that Tbx1 heterozygous mice exhibited an apparent absence of large myelinated axons and thicker myelin in medium axons in the fimbria, resulting in an overall decrease in myelin. The fimbria of Tbx1 heterozygous mice showed reduced mRNA levels of Ng2, a gene required to produce oligodendrocyte precursor cells. Moreover, postnatal progenitor cells derived from the subventricular zone, a source of oligodendrocytes in the fimbria, produced fewer oligodendrocytes in vitro. Behavioral analyses of these mice showed selectively slower acquisition of spatial memory and cognitive flexibility with no effects on their accuracy or sensory or motor capacities. Our findings provide a genetic and cellular basis for the compromised cognitive speed in patients with 22q11.2 hemizygous deletion.
Collapse
Affiliation(s)
- Takeshi Hiramoto
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kenji Tanigaki
- Research Institute, Shiga Medical Center, 5-4-30 Moriyama, Moriyama-shi, Shiga, Japan
| | - Qian Shi
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Rie Ryoke
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Shingo Enomoto
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Takeshi Izumi
- Department of Pharmacology, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ryuta Kawashima
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
19
|
Khera R, Mehan S, Bhalla S, Kumar S, Alshammari A, Alharbi M, Sadhu SS. Guggulsterone Mediated JAK/STAT and PPAR-Gamma Modulation Prevents Neurobehavioral and Neurochemical Abnormalities in Propionic Acid-Induced Experimental Model of Autism. Molecules 2022; 27:889. [PMID: 35164154 PMCID: PMC8839522 DOI: 10.3390/molecules27030889] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disorder marked by repetitive behaviour, challenges in verbal and non-verbal communication, poor socio-emotional health, and cognitive impairment. An increased level of signal transducer and activator of transcription 3 (STAT3) and a decreased level of peroxisome proliferator-activated receptor (PPAR) gamma have been linked to autism pathogenesis. Guggulsterone (GST) has a neuroprotective effect on autistic conditions by modulating these signalling pathways. Consequently, the primary objective of this study was to examine potential neuroprotective properties of GST by modulating JAK/STAT and PPAR-gamma levels in intracerebroventricular propionic acid (ICV PPA) induced experimental model of autism in adult rats. In this study, the first 11 days of ICV-PPA injections in rats resulted in autism-like behavioural, neurochemical, morphological, and histopathological changes. The above modifications were also observed in various biological samples, including brain homogenate, CSF, and blood plasma. GST was also observed to improve autism-like behavioural impairments in autistic rats treated with PPA, including locomotion, neuromuscular coordination, depression-like behaviour, spatial memory, cognition, and body weight. Prolonged GST treatment also restored neurochemical deficits in a dose-dependent manner. Chronic PPA administration increased STAT3 and decreased PPAR gamma in autistic rat brain, CSF, and blood plasma samples, which were reversed by GST. GST also restored the gross and histopathological alterations in PPA-treated rat brains. Our results indicate the neuroprotective effects of GST in preventing autism-related behavioural and neurochemical alterations.
Collapse
Affiliation(s)
- Rishabh Khera
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.K.); (S.B.); (S.K.)
| | - Sidharth Mehan
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.K.); (S.B.); (S.K.)
| | - Sonalika Bhalla
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.K.); (S.B.); (S.K.)
| | - Sumit Kumar
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.K.); (S.B.); (S.K.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.)
| | - Satya Sai Sadhu
- Chemistry Department, Northern Michigan University, 1401, Presque, Isle, Marquette, MI 49855, USA;
| |
Collapse
|
20
|
Caracci MO, Avila ME, Espinoza-Cavieres FA, López HR, Ugarte GD, De Ferrari GV. Wnt/β-Catenin-Dependent Transcription in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:764756. [PMID: 34858139 PMCID: PMC8632544 DOI: 10.3389/fnmol.2021.764756] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by synaptic dysfunction and defects in dendritic spine morphology. In the past decade, an extensive list of genes associated with ASD has been identified by genome-wide sequencing initiatives. Several of these genes functionally converge in the regulation of the Wnt/β-catenin signaling pathway, a conserved cascade essential for stem cell pluripotency and cell fate decisions during development. Here, we review current information regarding the transcriptional program of Wnt/β-catenin signaling in ASD. First, we discuss that Wnt/β-catenin gain and loss of function studies recapitulate brain developmental abnormalities associated with ASD. Second, transcriptomic approaches using patient-derived induced pluripotent stem cells (iPSC) cells, featuring mutations in high confidence ASD genes, reveal a significant dysregulation in the expression of Wnt signaling components. Finally, we focus on the activity of chromatin-remodeling proteins and transcription factors considered high confidence ASD genes, including CHD8, ARID1B, ADNP, and TBR1, that regulate Wnt/β-catenin-dependent transcriptional activity in multiple cell types, including pyramidal neurons, interneurons and oligodendrocytes, cells which are becoming increasingly relevant in the study of ASD. We conclude that the level of Wnt/β-catenin signaling activation could explain the high phenotypical heterogeneity of ASD and be instrumental in the development of new diagnostics tools and therapies.
Collapse
Affiliation(s)
- Mario O. Caracci
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Miguel E. Avila
- Faculty of Veterinary Medicine and Agronomy, Nucleus of Applied Research in Veterinary and Agronomic Sciences (NIAVA), Institute of Natural Sciences, Universidad de Las Américas, Santiago, Chile
| | - Francisca A. Espinoza-Cavieres
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Héctor R. López
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giorgia D. Ugarte
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giancarlo V. De Ferrari
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
21
|
Takanezawa Y, Tanabe S, Kato D, Ozeki R, Komoda M, Suzuki T, Baba H, Muramatsu R. Microglial ASD-related genes are involved in oligodendrocyte differentiation. Sci Rep 2021; 11:17825. [PMID: 34497307 PMCID: PMC8426463 DOI: 10.1038/s41598-021-97257-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorders (ASD) are associated with mutations of chromodomain-helicase DNA-binding protein 8 (Chd8) and tuberous sclerosis complex 2 (Tsc2). Although these ASD-related genes are detected in glial cells such as microglia, the effect of Chd8 or Tsc2 deficiency on microglial functions and microglia-mediated brain development remains unclear. In this study, we investigated the role of microglial Chd8 and Tsc2 in cytokine expression, phagocytosis activity, and neuro/gliogenesis from neural stem cells (NSCs) in vitro. Chd8 or Tsc2 knockdown in microglia reduced insulin-like growth factor-1(Igf1) expression under lipopolysaccharide (LPS) stimulation. In addition, phagocytosis activity was inhibited by Tsc2 deficiency, microglia-mediated oligodendrocyte development was inhibited, in particular, the differentiation of oligodendrocyte precursor cells to oligodendrocytes was prevented by Chd8 or Tsc2 deficiency. These results suggest that ASD-related gene expression in microglia is involved in oligodendrocyte differentiation, which may contribute to the white matter pathology relating to ASD.
Collapse
Affiliation(s)
- Yuta Takanezawa
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
| | - Daiki Kato
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
- Department of Medical and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Rie Ozeki
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Masayo Komoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Tatsunori Suzuki
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
22
|
Weissberg O, Elliott E. The Mechanisms of CHD8 in Neurodevelopment and Autism Spectrum Disorders. Genes (Basel) 2021; 12:genes12081133. [PMID: 34440307 PMCID: PMC8393912 DOI: 10.3390/genes12081133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Chromodomain-helicase-DNA-binding protein 8 (CHD8) has been identified as one of the genes with the strongest association with autism. The CHD8 protein is a transcriptional regulator that is expressed in nearly all cell types and has been implicated in multiple cellular processes, including cell cycle, cell adhesion, neuronal development, myelination, and synaptogenesis. Considering the central role of CHD8 in the genetics of autism, a deeper understanding of the physiological functions of CHD8 is important to understand the development of the autism phenotype and potential therapeutic targets. Different CHD8 mutant mouse models were developed to determine autism-like phenotypes and to fully understand their mechanisms. Here, we review the current knowledge on CHD8, with an emphasis on mechanistic lessons gained from animal models that have been studied.
Collapse
|
23
|
Lee S, Kang H, Jung H, Kim E, Lee E. Gene Dosage- and Age-Dependent Differential Transcriptomic Changes in the Prefrontal Cortex of Shank2-Mutant Mice. Front Mol Neurosci 2021; 14:683196. [PMID: 34177464 PMCID: PMC8226033 DOI: 10.3389/fnmol.2021.683196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
Shank2 is an abundant postsynaptic scaffolding protein that is known to regulate excitatory synapse assembly and synaptic transmission and has been implicated in various neurodevelopmental disorders, including autism spectrum disorders (ASD). Previous studies on Shank2-mutant mice provided mechanistic insights into their autistic-like phenotypes, but it remains unclear how transcriptomic patterns are changed in brain regions of the mutant mice in age- and gene dosage-dependent manners. To this end, we performed RNA-Seq analyses of the transcripts from the prefrontal cortex (PFC) of heterozygous and homozygous Shank2-mutant mice lacking exons 6 and 7 at juvenile (week 3) and adult (week 12) stages. Juvenile heterozygous Shank2-mutant mice showed upregulation of glutamate synapse-related genes, downregulation of ribosomal and mitochondrial genes, and transcriptomic changes that are opposite to those observed in ASD (anti-ASD) such as upregulation of ASD_down (downregulated in ASD), GABA neuron-related, and oligodendrocyte-related genes. Juvenile homozygous Shank2 mice showed upregulation of chromatin-related genes and transcriptomic changes that are in line with those occurring in ASD (pro-ASD) such as downregulation of ASD_down, GABA neuron-related, and oligodendrocyte-related genes. Adult heterozygous and homozygous Shank2-mutant mice both exhibited downregulation of ribosomal and mitochondrial genes and pro-ASD transcriptomic changes. Therefore, the gene dosage- and age-dependent effects of Shank2 deletions in mice include differential transcriptomic changes across distinct functional contexts, including synapses, chromatin, ribosomes, mitochondria, GABA neurons, and oligodendrocytes.
Collapse
Affiliation(s)
- Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea.,Department of Anatomy, School of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
24
|
Oxytocin ameliorates impaired social behavior in a Chd8 haploinsufficiency mouse model of autism. BMC Neurosci 2021; 22:32. [PMID: 33933000 PMCID: PMC8088024 DOI: 10.1186/s12868-021-00631-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is characterized by the core symptoms of impaired social interactions. Increasing evidence suggests that ASD has a strong genetic link with mutations in chromodomain helicase DNA binding protein 8 (CHD8), a gene encoding a chromatin remodeler. It has previously been shown that Chd8 haplodeficient male mice manifest ASD-like behavioral characteristics such as anxiety and altered social behavior. Along with that, oxytocin (OT) is one of the main neuropeptides involved in social behavior. Administration of OT has shown improvement of social behavior in genetic animal models of ASD. The present study was undertaken to further explore behavioral abnormalities of Chd8 haplodeficient mice of both sexes, their link with OT, and possible effects of OT administration. First, we performed a battery of behavioral tests on wild-type and Chd8+/∆SL female and male mice. Next, we measured plasma OT levels and finally studied the effects of intraperitoneal OT injection on observed behavioral deficits. Results We showed general anxiety phenotype in Chd8+/∆SL mice regardless of sex, the depressive phenotype in Chd8+/∆SL female mice only and bidirectional social deficit in female and male mice. We observed decreased level of OT in Chd+/∆SL mice, possibly driven by males. Mice injected by OT demonstrated recovery of social behavior, while reduced anxiety was observed only in male mice. Conclusions Here, we demonstrated that abnormal social behaviors were observed in both male and female Chd8+/∆SL mice. The ability of peripheral OT administration to affect such behaviors along with altered plasma OT levels indicated a possible link between Chd8 + /∆SL and OT in the pathogenesis of ASD as well as the possible usefulness of OT as a therapeutic tool for ASD patients with CHD8 mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00631-6.
Collapse
|
25
|
Kawamura A, Katayama Y, Kakegawa W, Ino D, Nishiyama M, Yuzaki M, Nakayama KI. The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Rep 2021; 35:108932. [PMID: 33826902 DOI: 10.1016/j.celrep.2021.108932] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in the gene encoding the chromatin remodeler chromodomain helicase DNA-binding protein 8 (CHD8) are a highly penetrant risk factor for autism spectrum disorder (ASD). Although cerebellar abnormalities have long been thought to be related to ASD pathogenesis, it has remained largely unknown whether dysfunction of CHD8 in the cerebellum contributes to ASD phenotypes. We here show that cerebellar granule neuron progenitor (GNP)-specific deletion of Chd8 in mice impairs the proliferation and differentiation of these cells as well as gives rise to cerebellar hypoplasia and a motor coordination defect, but not to ASD-like behavioral abnormalities. CHD8 is found to regulate the expression of neuronal genes in GNPs. It also binds preferentially to promoter regions and modulates local chromatin accessibility of transcriptionally active genes in these cells. Our results have thus uncovered a key role for CHD8 in cerebellar development, with important implications for understanding the contribution of this brain region to ASD pathogenesis.
Collapse
Affiliation(s)
- Atsuki Kawamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daisuke Ino
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
26
|
Nishiyama A, Shimizu T, Sherafat A, Richardson WD. Life-long oligodendrocyte development and plasticity. Semin Cell Dev Biol 2021; 116:25-37. [PMID: 33741250 PMCID: PMC8292179 DOI: 10.1016/j.semcdb.2021.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) originate in localized germinal zones in the embryonic neural tube, then migrate and proliferate to populate the entire central nervous system, both white and gray matter. They divide and generate myelinating oligodendrocytes (OLs) throughout postnatal and adult life. OPCs express NG2 and platelet-derived growth factor receptor alpha subunit (PDGFRα), two functionally important cell surface proteins, which are also widely used as markers for OPCs. The proliferation of OPCs, their terminal differentiation into OLs, survival of new OLs, and myelin synthesis are orchestrated by signals in the local microenvironment. We discuss advances in our mechanistic understanding of paracrine effects, including those mediated through PDGFRα and neuronal activity-dependent signals such as those mediated through AMPA receptors in OL survival and myelination. Finally, we review recent studies supporting the role of new OL production and “adaptive myelination” in specific behaviours and cognitive processes contributing to learning and long-term memory formation. Our article is not intended to be comprehensive but reflects the authors’ past and present interests.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA.
| | - Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
27
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
28
|
Hurley S, Mohan C, Suetterlin P, Ellingford R, Riegman KLH, Ellegood J, Caruso A, Michetti C, Brock O, Evans R, Rudari F, Delogu A, Scattoni ML, Lerch JP, Fernandes C, Basson MA. Distinct, dosage-sensitive requirements for the autism-associated factor CHD8 during cortical development. Mol Autism 2021; 12:16. [PMID: 33627187 PMCID: PMC7905672 DOI: 10.1186/s13229-020-00409-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND CHD8 haploinsufficiency causes autism and macrocephaly with high penetrance in the human population. Chd8 heterozygous mice exhibit relatively subtle brain overgrowth and little gene expression changes in the embryonic neocortex. The purpose of this study was to generate new, sub-haploinsufficient Chd8 mouse models to allow us to identify and study the functions of CHD8 during embryonic cortical development. METHODS To examine the possibility that certain phenotypes may only appear at sub-heterozygous Chd8 levels in the mouse, we created an allelic series of Chd8-deficient mice to reduce CHD8 protein levels to approximately 35% (mild hypomorph), 10% (severe hypomorph) and 0% (neural-specific conditional knockout) of wildtype levels. We used RNA sequencing to compare transcriptional dysregulation, structural MRI and brain weight to investigate effects on brain size, and cell proliferation, differentiation and apoptosis markers in immunostaining assays to quantify changes in neural progenitor fate. RESULTS Mild Chd8 hypomorphs displayed significant postnatal lethality, with surviving animals exhibiting more pronounced brain hyperplasia than heterozygotes. Over 2000 genes were dysregulated in mild hypomorphs, including autism-associated neurodevelopmental and cell cycle genes. We identify increased proliferation of non-ventricular zone TBR2+ intermediate progenitors as one potential cause of brain hyperplasia in these mutants. Severe Chd8 hypomorphs displayed even greater transcriptional dysregulation, including evidence for p53 pathway upregulation. In contrast to mild hypomorphs, these mice displayed reduced brain size and increased apoptosis in the embryonic neocortex. Homozygous, conditional deletion of Chd8 in early neuronal progenitors resulted in pronounced brain hypoplasia, partly caused by p53 target gene derepression and apoptosis in the embryonic neocortex. Limitations Our findings identify an important role for the autism-associated factor CHD8 in controlling the proliferation of intermediate progenitors in the mouse neocortex. We propose that CHD8 has a similar function in human brain development, but studies on human cells are required to confirm this. Because many of our mouse mutants with reduced CHD8 function die shortly after birth, it is not possible to fully determine to what extent reduced CHD8 function results in autism-associated behaviours in mice. CONCLUSIONS Together, these findings identify important, dosage-sensitive functions for CHD8 in p53 pathway repression, neurodevelopmental gene expression and neural progenitor fate in the embryonic neocortex. We conclude that brain development is acutely sensitive to reduced CHD8 expression and that the varying sensitivities of different progenitor populations and cellular processes to CHD8 dosage result in non-linear effects on gene transcription and brain growth. Shaun Hurley, Conor Mohan and Philipp Suetterlin have contributed equally to this work.
Collapse
Affiliation(s)
- Shaun Hurley
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Conor Mohan
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Philipp Suetterlin
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Robert Ellingford
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | | | - Jacob Ellegood
- Department of Medical Biophysics, Mouse Imaging Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Angela Caruso
- Department of Cell Biology and Neuroscience, Neurotoxicology and Neuroendocrinology Section, Istituto Superiore Di Sanità, Rome, Italy
- Department of Psychology, School of Behavioural Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Caterina Michetti
- Department of Cell Biology and Neuroscience, Neurotoxicology and Neuroendocrinology Section, Istituto Superiore Di Sanità, Rome, Italy
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Genova, Italy
| | - Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Romy Evans
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Fabrizio Rudari
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maria Luisa Scattoni
- Department of Cell Biology and Neuroscience, Neurotoxicology and Neuroendocrinology Section, Istituto Superiore Di Sanità, Rome, Italy
| | - Jason P Lerch
- Department of Medical Biophysics, Mouse Imaging Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Cathy Fernandes
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
29
|
Kweon H, Jung WB, Im GH, Ryoo J, Lee JH, Do H, Choi Y, Song YH, Jung H, Park H, Qiu LR, Ellegood J, Shim HJ, Yang E, Kim H, Lerch JP, Lee SH, Chung WS, Kim D, Kim SG, Kim E. Excitatory neuronal CHD8 in the regulation of neocortical development and sensory-motor behaviors. Cell Rep 2021; 34:108780. [PMID: 33626347 DOI: 10.1016/j.celrep.2021.108780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
CHD8 (chromodomain helicase DNA-binding protein 8) is a chromatin remodeler associated with autism spectrum disorders. Homozygous Chd8 deletion in mice leads to embryonic lethality, making it difficult to assess whether CHD8 regulates brain development and whether CHD8 haploinsufficiency-related macrocephaly reflects normal CHD8 functions. Here, we report that homozygous conditional knockout of Chd8 restricted to neocortical glutamatergic neurons causes apoptosis-dependent near-complete elimination of neocortical structures. These mice, however, display normal survival and hyperactivity, anxiolytic-like behavior, and increased social interaction. They also show largely normal auditory function and moderately impaired visual and motor functions but enhanced whisker-related somatosensory function. These changes accompany thalamic hyperactivity, revealed by 15.2-Tesla fMRI, and increased intrinsic excitability and decreased inhibitory synaptic transmission in thalamic ventral posterior medial (VPM) neurons involved in somatosensation. These results suggest that excitatory neuronal CHD8 critically regulates neocortical development through anti-apoptotic mechanisms, neocortical elimination distinctly affects cognitive behaviors and sensory-motor functions in mice, and Chd8 haploinsufficiency-related macrocephaly might represent compensatory responses.
Collapse
Affiliation(s)
- Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Jia Ryoo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Joon-Hyuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hogyeong Do
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yeonsoo Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - You-Hyang Song
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Haram Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Lily R Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Hyun-Ji Shim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea.
| |
Collapse
|
30
|
Salcedo-Arellano MJ, Cabal-Herrera AM, Punatar RH, Clark CJ, Romney CA, Hagerman RJ. Overlapping Molecular Pathways Leading to Autism Spectrum Disorders, Fragile X Syndrome, and Targeted Treatments. Neurotherapeutics 2021; 18:265-283. [PMID: 33215285 PMCID: PMC8116395 DOI: 10.1007/s13311-020-00968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are subdivided into idiopathic (unknown) etiology and secondary, based on known etiology. There are hundreds of causes of ASD and most of them are genetic in origin or related to the interplay of genetic etiology and environmental toxicology. Approximately 30 to 50% of the etiologies can be identified when using a combination of available genetic testing. Many of these gene mutations are either core components of the Wnt signaling pathway or their modulators. The full mutation of the fragile X mental retardation 1 (FMR1) gene leads to fragile X syndrome (FXS), the most common cause of monogenic origin of ASD, accounting for ~ 2% of the cases. There is an overlap of molecular mechanisms in those with idiopathic ASD and those with FXS, an interaction between various signaling pathways is suggested during the development of the autistic brain. This review summarizes the cross talk between neurobiological pathways found in ASD and FXS. These signaling pathways are currently under evaluation to target specific treatments in search of the reversal of the molecular abnormalities found in both idiopathic ASD and FXS.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| | - Ana Maria Cabal-Herrera
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Cali, 00000, Colombia
| | - Ruchi Harendra Punatar
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Courtney Jessica Clark
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Christopher Allen Romney
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| |
Collapse
|
31
|
Kawamura A, Abe Y, Seki F, Katayama Y, Nishiyama M, Takata N, Tanaka KF, Okano H, Nakayama KI. Chd8 mutation in oligodendrocytes alters microstructure and functional connectivity in the mouse brain. Mol Brain 2020; 13:160. [PMID: 33228730 PMCID: PMC7686671 DOI: 10.1186/s13041-020-00699-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
CHD8 encodes a chromatin-remodeling factor and is one of the most recurrently mutated genes in individuals with autism spectrum disorder (ASD). Although we have recently shown that mice heterozygous for Chd8 mutation manifest myelination defects and ASD-like behaviors, the detailed mechanisms underlying ASD pathogenesis have remained unclear. Here we performed diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rsfMRI) in oligodendrocyte lineage-specific Chd8 heterozygous mutant mice. DTI revealed that ablation of Chd8 specifically in oligodendrocytes of mice was associated with microstructural changes of specific brain regions including the cortex and striatum. The extent of these changes in white matter including the corpus callosum and fornix was correlated with total contact time in the reciprocal social interaction test. Analysis with rsfMRI revealed changes in functional brain connectivity in the mutant mice, and the extent of such changes in the cortex, hippocampus, and amygdala was also correlated with the change in social interaction. Our results thus suggest that changes in brain microstructure and functional connectivity induced by oligodendrocyte dysfunction might underlie altered social interaction in mice with oligodendrocyte-specific CHD8 haploinsufficiency.
Collapse
Affiliation(s)
- Atsuki Kawamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yoshifumi Abe
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Fumiko Seki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|