1
|
Bush SJ, Goriely A. Can the male germline offer insight into mammalian brain size expansion? Andrology 2024. [PMID: 39291969 DOI: 10.1111/andr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Recent advances in single-cell transcriptomic data have greatly expanded our understanding of both spermatogenesis and the molecular mechanisms of male infertility. However, this growing wealth of data could also shed light on a seemingly unrelated biological problem: the genetic basis of mammalian brain size expansion throughout evolution. It is now increasingly recognized that the testis and brain share many cellular and molecular similarities including pivotal roles for the RAS/MAPK and PI3K/AKT/mTOR pathways, mutations in which are known to have a pronounced impact on cell proliferation. Most notably, in the stem cell lineages of both organs, new mutations have been shown to increase cellular output over time. These include 'selfish' mutations in spermatogonial stem cells, which disproportionately increase the proportion of mutant sperm, and-to draw a parallel-human-specific mutations in neural stem cells which, by increasing the number of neurons, have been implicated in neocortical expansion. Here we speculate that the origin for many 'expansion'-associated mutations is the male germline and that as such, a deeper understanding of the mechanisms controlling testicular turnover may yield fresh insight into the biology and evolution of the brain.
Collapse
Affiliation(s)
- Stephen J Bush
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
2
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
3
|
Chen J, Ying L, Zeng L, Li C, Jia Y, Yang H, Yang G. The novel compound heterozygous rare variants may impact positively selected regions of TUBGCP6, a microcephaly associated gene. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1059477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
IntroductionThe microcephaly is a rare and severe disease probably under purifying selection due to the reduction of human brain-size. In contrast, the brain-size enlargement is most probably driven by positive selection, in light of this critical phenotypical innovation during primates and human evolution. Thus, microcephaly-related genes were extensively studied for signals of positive selection. However, whether the pathogenic variants of microcephaly-related genes could affect the regions of positive selection is still unclear.MethodsHere, we conducted whole genome sequencing (WGS) and positive selection analysis.ResultsWe identified novel compound heterozygous variants, p.Y613* and p.E1368K in TUBGCP6, related to microcephaly in a Chinese family. The genotyping and the sanger sequencing revealed the maternal and the paternal origin for the first and second variant, respectively. The p.Y613* occurred before the second and third domain of TUBGCP6 protein, while p.E1368K located within the linker region of the second and third domain. Interestingly, using multiple positive selection analyses, we revealed the potential impacts of these variants on the regions of positive selection of TUBGCP6. The truncating variant p.Y613* could lead to the deletions of two positively selected domains DUF5401 and Spc97_Spc98, while p.E1368K could impose a rare mutation burden on the linker region between these two domains.DiscussionOur investigation expands the list of candidate pathogenic variants of TUBGCP6 that may cause microcephaly. Moreover, the study provides insights into the potential pathogenic effects of variants that truncate or distribute within the positively selected regions.
Collapse
|
4
|
Namba T, Nardelli J, Gressens P, Huttner WB. Metabolic Regulation of Neocortical Expansion in Development and Evolution. Neuron 2020; 109:408-419. [PMID: 33306962 DOI: 10.1016/j.neuron.2020.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
The neocortex, the seat of our higher cognitive abilities, has expanded in size during the evolution of certain mammals such as primates, including humans. This expansion occurs during development and is linked to the proliferative capacity of neural stem and progenitor cells (NPCs) in the neocortex. A number of cell-intrinsic and cell-extrinsic factors have been implicated in increasing NPC proliferative capacity. However, NPC metabolism has only recently emerged as major regulator of NPC proliferation. In this Perspective, we summarize recent insights into the role of NPC metabolism in neocortical development and neurodevelopmental disorders and its relevance for neocortex evolution. We discuss certain human-specific genes and microcephaly-implicated genes that operate in, or at, the mitochondria of NPCs and stimulate their proliferation by promoting glutaminolysis. We also discuss other metabolic pathways and develop a perspective on how metabolism mechanistically regulates NPC proliferation in neocortical development and how this contributed to neocortex evolution.
Collapse
Affiliation(s)
- Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
5
|
Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2020; 27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unravelling the complexity of the human brain is a challenging task. Nowadays, modern neurobiologists have developed 3D model systems called "brain organoids" to overcome the technical challenges in understanding human brain development and the limitations of animal models to study neurological diseases. Certainly like most model systems in neuroscience, brain organoids too have limitations, as these minuscule brains lack the complex neuronal circuitry required to begin the operational tasks of human brain. However, researchers are hopeful that future endeavors with these 3D brain tissues could provide mechanistic insights into the generation of circuit complexity as well as reproducible creation of different regions of the human brain. Herein, we have presented the contemporary state of brain organoids with special emphasis on their mode of generation and their utility in modelling neurological disorders, drug discovery, and clinical trials.
Collapse
Affiliation(s)
- Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Luo X, He Y, Zhang C, He X, Yan L, Li M, Hu T, Hu Y, Jiang J, Meng X, Ji W, Zhao X, Zheng P, Xu S, Su B. Trio deep-sequencing does not reveal unexpected off-target and on-target mutations in Cas9-edited rhesus monkeys. Nat Commun 2019; 10:5525. [PMID: 31797925 PMCID: PMC6892871 DOI: 10.1038/s41467-019-13481-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
CRISPR-Cas9 is a widely-used genome editing tool, but its off-target effect and on-target complex mutations remain a concern, especially in view of future clinical applications. Non-human primates (NHPs) share close genetic and physiological similarities with humans, making them an ideal preclinical model for developing Cas9-based therapies. However, to our knowledge no comprehensive in vivo off-target and on-target assessment has been conducted in NHPs. Here, we perform whole genome trio sequencing of Cas9-treated rhesus monkeys. We only find a small number of de novo mutations that can be explained by expected spontaneous mutations, and no unexpected off-target mutations (OTMs) were detected. Furthermore, the long-read sequencing data does not detect large structural variants in the target region.
Collapse
Affiliation(s)
- Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 100101, Beijing, China
- Kunming Primate Research Center, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 100101, Beijing, China
- Kunming Primate Research Center, Chinese Academy of Sciences, 650223, Kunming, China
| | - Chao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, 200031, Shanghai, China
| | - Xiechao He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming Primate Research Center, Chinese Academy of Sciences, 650223, Kunming, China
| | - Lanzhen Yan
- Kunming Primate Research Center, Chinese Academy of Sciences, 650223, Kunming, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, 650203, Kunming, China
| | - Min Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Ting Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Yan Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Jin Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaoyu Meng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500, Kunming, China
| | - Xudong Zhao
- Kunming Primate Research Center, Chinese Academy of Sciences, 650223, Kunming, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, 650203, Kunming, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, 200031, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
- Collaborative Innovation Centre of Genetics and Development, 200438, Shanghai, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- Kunming Primate Research Center, Chinese Academy of Sciences, 650223, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
| |
Collapse
|
7
|
Abstract
Why humans have large brains with higher cognitive abilities is a question long asked by scientists. However, much remains unknown, especially the underlying genetic mechanisms. With the use of a transgenic monkey model, we showed that human-specific sequence changes of a key brain development gene (primary microcephaly1, MCPH1) could result in detectable molecular and cognitive changes resembling human neoteny, a notable characteristic developed during human evolution.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| |
Collapse
|
8
|
Shi L, Luo X, Jiang J, Chen Y, Liu C, Hu T, Li M, Lin Q, Li Y, Huang J, Wang H, Niu Y, Shi Y, Styner M, Wang J, Lu Y, Sun X, Yu H, Ji W, Su B. Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development. Natl Sci Rev 2019; 6:480-493. [PMID: 34691896 PMCID: PMC8291473 DOI: 10.1093/nsr/nwz043] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/06/2019] [Accepted: 03/23/2019] [Indexed: 12/16/2022] Open
Abstract
Brain size and cognitive skills are the most dramatically changed traits in humans during evolution and yet the genetic mechanisms underlying these human-specific changes remain elusive. Here, we successfully generated 11 transgenic rhesus monkeys (8 first-generation and 3 second-generation) carrying human copies of MCPH1, an important gene for brain development and brain evolution. Brain-image and tissue-section analyses indicated an altered pattern of neural-cell differentiation, resulting in a delayed neuronal maturation and neural-fiber myelination of the transgenic monkeys, similar to the known evolutionary change of developmental delay (neoteny) in humans. Further brain-transcriptome and tissue-section analyses of major developmental stages showed a marked human-like expression delay of neuron differentiation and synaptic-signaling genes, providing a molecular explanation for the observed brain-developmental delay of the transgenic monkeys. More importantly, the transgenic monkeys exhibited better short-term memory and shorter reaction time compared with the wild-type controls in the delayed-matching-to-sample task. The presented data represent the first attempt to experimentally interrogate the genetic basis of human brain origin using a transgenic monkey model and it values the use of non-human primates in understanding unique human traits.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translation Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Cirong Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ting Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qiang Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yanjiao Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jun Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong Wang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translation Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translation Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yundi Shi
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| | - Jianhong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yi Lu
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xuejin Sun
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Hualin Yu
- Department of Minimally Invasive Neurosurgery, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translation Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
9
|
Abstract
During the course of evolution the human brain has increased in size and complexity, ultimately these differences are the result of changes at the genetic level. Identifying and characterizing molecular evolution requires an understanding of both the genetic underpinning of the system as well as the comparative genetic tools to identify signatures of selection. This chapter aims to describe our current understanding of the genetics of human brain evolution. Primarily this is the story of the evolution of the human brain since our last common ape ancestor, but where relevant we will also discuss changes that are unique to the primate brain (compared to other mammals) or various other lineages in the evolution of humans more generally. It will focus on genetic changes that both directly affected the development and function of the brain as well as those that have indirectly influenced brain evolution through both prenatal and postnatal environment. This review is not meant to be exhaustive, but rather to begin to construct a general framework for understanding the full array of data being generated.
Collapse
Affiliation(s)
- Eric J Vallender
- University of Mississippi Medical Center, Jackson, MS, United States; Tulane National Primate Research Center, Covington, LA, United States.
| |
Collapse
|
10
|
Evolution and genomics of the human brain. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2015.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Vertii A, Kaufman PD, Hehnly H, Doxsey S. New dimensions of asymmetric division in vertebrates. Cytoskeleton (Hoboken) 2018; 75:87-102. [DOI: 10.1002/cm.21434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Anastassiia Vertii
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Paul D. Kaufman
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Heidi Hehnly
- Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuse New York13210
| | - Stephen Doxsey
- Program in Molecular Medicine University of Massachusetts Medical SchoolWorcester Massachusetts
| |
Collapse
|
12
|
Cagan A, Theunert C, Laayouni H, Santpere G, Pybus M, Casals F, Prüfer K, Navarro A, Marques-Bonet T, Bertranpetit J, Andrés AM. Natural Selection in the Great Apes. Mol Biol Evol 2016; 33:3268-3283. [PMID: 27795229 PMCID: PMC5100057 DOI: 10.1093/molbev/msw215] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Natural selection is crucial for the adaptation of populations to their environments. Here, we present the first global study of natural selection in the Hominidae (humans and great apes) based on genome-wide information from population samples representing all extant species (including most subspecies). Combining several neutrality tests we create a multi-species map of signatures of natural selection covering all major types of natural selection. We find that the estimated efficiency of both purifying and positive selection varies between species and is significantly correlated with their long-term effective population size. Thus, even the modest differences in population size among the closely related Hominidae lineages have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments. Most signatures of balancing and positive selection are species-specific, with signatures of balancing selection more often being shared among species. We also identify loci with evidence of positive selection across several lineages. Notably, we detect signatures of positive selection in several genes related to brain function, anatomy, diet and immune processes. Our results contribute to a better understanding of human evolution by putting the evidence of natural selection in humans within its larger evolutionary context. The global map of natural selection in our closest living relatives is available as an interactive browser at http://tinyurl.com/nf8qmzh.
Collapse
Affiliation(s)
- Alexander Cagan
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christoph Theunert
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | - Hafid Laayouni
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Catalonia, Spain
| | - Gabriel Santpere
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Marc Pybus
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Arcadi Navarro
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Tomas Marques-Bonet
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Jaume Bertranpetit
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Department of Archaeology and Anthropology, Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge, United Kingdom
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
13
|
Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution. Hum Genet 2016; 136:193-204. [PMID: 27878434 DOI: 10.1007/s00439-016-1748-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/15/2016] [Indexed: 12/25/2022]
Abstract
Human evolution is marked by a continued enlargement of the brain. Previous studies on human brain evolution focused on identifying sequence divergences of brain size regulating genes between humans and nonhuman primates. However, the evolutionary pattern of the brain size regulating genes during recent human evolution is largely unknown. We conducted a comprehensive analysis of the brain size regulating gene CASC5 and found that in recent human evolution, CASC5 has accumulated many modern human specific amino acid changes, including two fixed changes and six polymorphic changes. Among human populations, 4 of the 6 amino acid polymorphic sites have high frequencies of derived alleles in East Asians, but are rare in Europeans and Africans. We proved that this between-population allelic divergence was caused by regional Darwinian positive selection in East Asians. Further analysis of brain image data of Han Chinese showed significant associations of the amino acid polymorphic sites with gray matter volume. Hence, CASC5 may contribute to the morphological and structural changes of the human brain during recent evolution. The observed between-population divergence of CASC5 variants was driven by natural selection that tends to favor a larger gray matter volume in East Asians.
Collapse
|
14
|
Ke Q, Li W, Lai X, Chen H, Huang L, Kang Z, Li K, Ren J, Lin X, Zheng H, Huang W, Ma Y, Xu D, Chen Z, Song X, Lin X, Zhuang M, Wang T, Zhuang F, Xi J, Mao FF, Xia H, Lahn BT, Zhou Q, Yang S, Xiang AP. TALEN-based generation of a cynomolgus monkey disease model for human microcephaly. Cell Res 2016; 26:1048-61. [PMID: 27502025 PMCID: PMC5034111 DOI: 10.1038/cr.2016.93] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022] Open
Abstract
Gene editing in non-human primates may lead to valuable models for exploring the etiologies and therapeutic strategies of genetically based neurological disorders in humans. However, a monkey model of neurological disorders that closely mimics pathological and behavioral deficits in humans has not yet been successfully generated. Microcephalin 1 (MCPH1) is implicated in the evolution of the human brain, and MCPH1 mutation causes microcephaly accompanied by mental retardation. Here we generated a cynomolgus monkey (Macaca fascicularis) carrying biallelic MCPH1 mutations using transcription activator-like effector nucleases. The monkey recapitulated most of the important clinical features observed in patients, including marked reductions in head circumference, premature chromosome condensation (PCC), hypoplasia of the corpus callosum and upper limb spasticity. Moreover, overexpression of MCPH1 in mutated dermal fibroblasts rescued the PCC syndrome. This monkey model may help us elucidate the role of MCPH1 in the pathogenesis of human microcephaly and better understand the function of this protein in the evolution of primate brain size.
Collapse
Affiliation(s)
- Qiong Ke
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510623, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Biology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou 510080, China.,Guangdong Key Laboratory of Reproductive Medicine, Guangzhou 510080, China
| | - Weiqiang Li
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510623, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Guangdong Key Laboratory of Reproductive Medicine, Guangzhou 510080, China.,Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lihua Huang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510623, China
| | - Zhuang Kang
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510632, China
| | - Kai Li
- Department of Ultrasound, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510632, China
| | - Jie Ren
- Department of Ultrasound, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510632, China
| | - Xiaofeng Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine Science, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510632, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yunhan Ma
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou 510642, China
| | - Dongdong Xu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinming Song
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinyi Lin
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou 510080, China
| | | | - Jianzhong Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, Yannan Yuan 60, Beijing 100871, China
| | - Frank Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huimin Xia
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510623, China
| | - Bruce T Lahn
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Qi Zhou
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shihua Yang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou 510642, China
| | - Andy Peng Xiang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510623, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Guangdong Key Laboratory of Reproductive Medicine, Guangzhou 510080, China.,Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Liu X, Zhou ZW, Wang ZQ. The DNA damage response molecule MCPH1 in brain development and beyond. Acta Biochim Biophys Sin (Shanghai) 2016; 48:678-85. [PMID: 27197793 DOI: 10.1093/abbs/gmw048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Microcephalin (MCPH1) is identified as being responsible for the neurodevelopmental disorder primary microcephaly type 1, which is characterized by a smaller-than-normal brain size and mental retardation. MCPH1 has originally been identified as an important regulator of telomere integrity and of cell cycle control. Genetic and cellular studies show that MCPH1 controls neurogenesis by coordinating the cell cycle and the centrosome cycle and thereby regulating the division mode of neuroprogenitors to prevent the exhaustion of the progenitor pool and thereby microcephaly. In addition to its role in neurogenesis, MCPH1 plays a role in gonad development. MCPH1 also functions as a tumor suppressor in several human cancers as well as in mouse models. Here, we review the role of MCPH1 in DNA damage response, cell cycle control, chromosome condensation and chromatin remodeling. We also summarize the studies on the biological functions of MCPH1 in brain size determination and in pathologies, including infertility and cancer.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhong-Wei Zhou
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany Faculty of Biology and Pharmacy, Friedrich-Schiller University of Jena, Jena, Germany
| |
Collapse
|
16
|
Pervaiz N, Abbasi AA. Molecular evolution of WDR62, a gene that regulates neocorticogenesis. Meta Gene 2016; 9:1-9. [PMID: 27114917 PMCID: PMC4833054 DOI: 10.1016/j.mgene.2016.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/23/2016] [Indexed: 02/02/2023] Open
Abstract
Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000–765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. We trace the evolutionary history of WDR62 and its putative paralogs. We identify accelerated sequence evolution in human WDR62. We pinpoint eight human specific amino acid sites that reside on the C-terminal. Out of eight, six sites are shared with archaic humans.
Collapse
Affiliation(s)
- Nashaiman Pervaiz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
17
|
Adaptive evolution of interleukin-3 (IL3), a gene associated with brain volume variation in general human populations. Hum Genet 2016; 135:377-392. [PMID: 26875095 DOI: 10.1007/s00439-016-1644-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Greatly expanded brain volume is one of the most characteristic traits that distinguish humans from other primates. Recent studies have revealed genes responsible for the dramatically enlarged human brain size (i.e., the microcephaly genes), and it has been well documented that many microcephaly genes have undergone accelerated evolution along the human lineage. In addition to being far larger than other primates, human brain volume is also highly variable in general populations. However, the genetic basis underlying human brain volume variation remains elusive and it is not known whether genes regulating human brain volume variation also have experienced positive selection. We have previously shown that genetic variants (near the IL3 gene) on 5q33 were significantly associated with brain volume in Chinese population. Here, we provide further evidence that support the significant association of genetic variants on 5q33 with brain volume. Bioinformatic analyses suggested that rs31480 is likely to be the causal variant among the studied SNPs. Molecular evolutionary analyses suggested that IL3 might have undergone positive selection in primates and humans. Neutrality tests further revealed signatures of positive selection of IL3 in Han Chinese and Europeans. Finally, extended haplotype homozygosity (EHH) and relative EHH analyses showed that the C allele of SNP rs31480 might have experienced recent positive selection in Han Chinese. Our results suggest that IL3 is an important genetic regulator for human brain volume variation and implied that IL3 might have experienced weak or modest positive selection in the evolutionary history of humans, which may be due to its contribution to human brain volume.
Collapse
|
18
|
Rosales-Reynoso MA, Juárez-Vázquez CI, Barros-Núñez P. Evolution and genomics of the human brain. Neurologia 2015; 33:254-265. [PMID: 26304653 DOI: 10.1016/j.nrl.2015.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/01/2015] [Indexed: 01/20/2023] Open
Abstract
Most living beings are able to perform actions that can be considered intelligent or, at the very least, the result of an appropriate reaction to changing circumstances in their environment. However, the intelligence or intellectual processes of humans are vastly superior to those achieved by all other species. The adult human brain is a highly complex organ weighing approximately 1500g, which accounts for only 2% of the total body weight but consumes an amount of energy equal to that required by all skeletal muscle at rest. Although the human brain displays a typical primate structure, it can be identified by its specific distinguishing features. The process of evolution and humanisation of the Homo sapiens brain resulted in a unique and distinct organ with the largest relative volume of any animal species. It also permitted structural reorganization of tissues and circuits in specific segments and regions. These steps explain the remarkable cognitive abilities of modern humans compared not only with other species in our genus, but also with older members of our own species. Brain evolution required the coexistence of two adaptation mechanisms. The first involves genetic changes that occur at the species level, and the second occurs at the individual level and involves changes in chromatin organisation or epigenetic changes. The genetic mechanisms include: a) genetic changes in coding regions that lead to changes in the sequence and activity of existing proteins; b) duplication and deletion of previously existing genes; c) changes in gene expression through changes in the regulatory sequences of different genes; and d) synthesis of non-coding RNAs. Lastly, this review describes some of the main documented chromosomal differences between humans and great apes. These differences have also contributed to the evolution and humanisation process of the H. sapiens brain.
Collapse
Affiliation(s)
- M A Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - C I Juárez-Vázquez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - P Barros-Núñez
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
| |
Collapse
|
19
|
Shi L, Lin Q, Su B. Estrogen regulation of microcephaly genes and evolution of brain sexual dimorphism in primates. BMC Evol Biol 2015; 15:127. [PMID: 26123139 PMCID: PMC4487212 DOI: 10.1186/s12862-015-0398-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/29/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Sexual dimorphism in brain size is common among primates, including humans, apes and some Old World monkeys. In these species, the brain size of males is generally larger than that of females. Curiously, this dimorphism has persisted over the course of primate evolution and human origin, but there is no explanation for the underlying genetic controls that have maintained this disparity in brain size. RESULTS In the present study, we tested the effect of the female hormone (estradiol) on seven genes known to be related to brain size in both humans and nonhuman primates, and we identified half estrogen responsive elements (half EREs) in the promoter regions of four genes (MCPH1, ASPM, CDK5RAP2 and WDR62). Likewise, at sequence level, it appears that these half EREs are generally conserved across primates. Later testing via a reporter gene assay and cell-based endogenous expression measurement revealed that estradiol could significantly suppress the expression of the four affected genes involved in brain size. More intriguingly, when the half EREs were deleted from the promoters, the suppression effect disappeared, suggesting that the half EREs mediate the regulation of estradiol on the brain size genes. We next replicated these experiments using promoter sequences from chimpanzees and rhesus macaques, and observed a similar suppressive effect of estradiol on gene expression, suggesting that this mechanism is conserved among primate species that exhibit brain size dimorphism. CONCLUSIONS Brain size dimorphism among certain primates, including humans, is likely regulated by estrogen through its sex-dependent suppression of brain size genes during development.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, 650223, Yunnan, PR China. .,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650000, China.
| | - Qiang Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, 650223, Yunnan, PR China. .,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650000, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, 650223, Yunnan, PR China. .,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650000, China.
| |
Collapse
|
20
|
Ashwell KWS. Quantitative analysis of somatosensory cortex development in eutherians, with a comparison with metatherians and monotremes. Somatosens Mot Res 2015; 32:137-52. [DOI: 10.3109/08990220.2015.1004046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Pulvers JN, Journiac N, Arai Y, Nardelli J. MCPH1: a window into brain development and evolution. Front Cell Neurosci 2015; 9:92. [PMID: 25870538 PMCID: PMC4376118 DOI: 10.3389/fncel.2015.00092] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/28/2015] [Indexed: 12/21/2022] Open
Abstract
The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.
Collapse
Affiliation(s)
| | - Nathalie Journiac
- U1141 Inserm Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141 Paris, France
| | - Yoko Arai
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité Paris, France
| | - Jeannette Nardelli
- U1141 Inserm Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141 Paris, France
| |
Collapse
|
22
|
Liu HQ, Li Y, Irwin DM, Zhang YP, Wu DD. Integrative analysis of young genes, positively selected genes and lncRNAs in the development of Drosophila melanogaster. BMC Evol Biol 2014; 14:241. [PMID: 25470998 PMCID: PMC4258281 DOI: 10.1186/s12862-014-0241-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/10/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Young genes and genes under positive selection commonly contribute to adaptive phenotypic evolution. Early developmental stages are very important for establishing phenotypes, which might be helpful for studying the evolutionary patterns of these rapidly evolving genes. RESULTS Here, we performed a weighted gene co-expression network analysis to identify modules of co-expressed genes at different stages of Drosophila melanogaster development. We found that young genes, including duplicated, orphan, and young lncRNA genes, are significantly enriched among modules associated with specific developmental stages. In addition, genes undergoing rapid amino acid sequence evolution driven by positive selection showed a similar proportion of essentiality with other genes, and enrichment in modules for specific developmental stages. CONCLUSIONS Our integrative analysis revealed important roles for the origin of new genes and rapid amino acid sequence evolution in development that may account for specific phenotype evolution in Drosophila melanogaster.
Collapse
Affiliation(s)
| | | | | | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | | |
Collapse
|
23
|
Hrvoj-Mihic B, Marchetto MCN, Gage FH, Semendeferi K, Muotri AR. Novel tools, classic techniques: evolutionary studies using primate pluripotent stem cells. Biol Psychiatry 2014; 75:929-35. [PMID: 24041506 DOI: 10.1016/j.biopsych.2013.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/25/2013] [Accepted: 08/06/2013] [Indexed: 11/25/2022]
Abstract
Recent applications of genomic tools on the analysis of alterations unique to our species coupled with a growing number of neuroanatomical studies across primates provide an unprecedented opportunity to compile different levels of human brain evolution into a complex whole. Applications of induced pluripotent stem cell (iPSC) technology, capable of reprogramming somatic tissue of different species and generating species-specific neuronal phenotypes, for the first time offer an opportunity to test specific evolutionary hypotheses in a field of inquiry that has been long plagued by the limited availability of research specimens. In this review, we will focus specifically on the experimental role of iPSC technology as applied to the analysis of neocortical pyramidal neurons. Pyramidal neurons emerge as particularly suitable for testing evolutionary scenarios, since they form the most common morphological class of neurons in the cortex, display morphological variations across different cortical areas and cortical layers that appear species-specific, and express unique molecular signatures. Human and nonhuman primate iPSC-derived neurons may represent a unique biological resource to elucidate the phenotypic differences between humans and other hominids. As the typical morphology of pyramidal neurons tends to be compromised in neurological disorders, application of iPSC technology to the analysis of pyramidal neurons could not only bring new insights into human adaptation but also offer opportunities to link biomedical research with studies of the origins of the human species.
Collapse
Affiliation(s)
- Branka Hrvoj-Mihic
- Department of Anthropology; School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, University of California San Diego
| | - Maria C N Marchetto
- Laboratory of Genetics (MCNM, FHG), The Salk Institute for Biological Studies
| | - Fred H Gage
- Laboratory of Genetics (MCNM, FHG), The Salk Institute for Biological Studies; Center for Academic Research and Training in Anthropogeny
| | - Katerina Semendeferi
- Department of Anthropology; Center for Academic Research and Training in Anthropogeny; Neuroscience Graduate Program, University of California San Diego, La Jolla, California
| | - Alysson R Muotri
- School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, University of California San Diego; Center for Academic Research and Training in Anthropogeny; Neuroscience Graduate Program, University of California San Diego, La Jolla, California.
| |
Collapse
|
24
|
Nitric oxide signaling in the development and evolution of language and cognitive circuits. Neurosci Res 2014; 86:77-87. [PMID: 24933499 DOI: 10.1016/j.neures.2014.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/02/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022]
Abstract
The neocortex underlies not only remarkable motor and sensory capabilities, but also some of our most distinctly human cognitive functions. The emergence of these higher functions during evolution was accompanied by structural changes in the neocortex, including the acquisition of areal specializations such as Broca's speech and language area. The study of these evolutionary mechanisms, which likely involve species-dependent gene expression and function, represents a substantial challenge. These species differences, however, may represent valuable opportunities to understand the molecular underpinnings of neocortical evolution. Here, we discuss nitric oxide signaling as a candidate mechanism in the assembly of neocortical circuits underlying language and higher cognitive functions. This hypothesis was based on the highly specific mid-fetal pattern of nitric oxide synthase 1 (NOS1, previously nNOS) expression in the pyramidal (projection) neurons of two human neocortical areas respectively involved in speech and language, and higher cognition; the frontal operculum (FOp) and the anterior cingulate cortex (ACC). This expression is transiently present during mid-gestation, suggesting that NOS1 may be involved in the development of these areas and the assembly of their neural circuits. As no other gene product is known to exhibit such exquisite spatiotemporal expression, NOS1 represents a remarkable candidate for these functions.
Collapse
|
25
|
Montgomery SH, Mundy NI. Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals. BMC Evol Biol 2014; 14:120. [PMID: 24898820 PMCID: PMC4055943 DOI: 10.1186/1471-2148-14-120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/23/2014] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Genes associated with the neurodevelopmental disorder microcephaly display a strong signature of adaptive evolution in primates. Comparative data suggest a link between selection on some of these loci and the evolution of primate brain size. Whether or not either positive selection or this phenotypic association are unique to primates is unclear, but recent studies in cetaceans suggest at least two microcephaly genes evolved adaptively in other large brained mammalian clades. RESULTS Here we analyse the evolution of seven microcephaly loci, including three recently identified loci, across 33 eutherian mammals. We find extensive evidence for positive selection having acted on the majority of these loci not just in primates but also across non-primate mammals. Furthermore, the patterns of selection in major mammalian clades are not significantly different. Using phylogenetically corrected comparative analyses, we find that the evolution of two microcephaly loci, ASPM and CDK5RAP2, are correlated with neonatal brain size in Glires and Euungulata, the two most densely sampled non-primate clades. CONCLUSIONS Together with previous results, this suggests that ASPM and CDK5RAP2 may have had a consistent role in the evolution of brain size in mammals. Nevertheless, several limitations of currently available data and gene-phenotype tests are discussed, including sparse sampling across large evolutionary distances, averaging gene-wide rates of evolution, potential phenotypic variation and evolutionary reversals. We discuss the implications of our results for studies of the genetic basis of brain evolution, and explicit tests of gene-phenotype hypotheses.
Collapse
Affiliation(s)
- Stephen H Montgomery
- Department Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
26
|
Ogawa LM, Vallender EJ. Evolutionary conservation in genes underlying human psychiatric disorders. Front Hum Neurosci 2014; 8:283. [PMID: 24834046 PMCID: PMC4018557 DOI: 10.3389/fnhum.2014.00283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/16/2014] [Indexed: 01/07/2023] Open
Abstract
Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of the protein-coding regions of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago) and 34 non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals, and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant) compared to their small-brained sister species. Evidence of differential selection in humans to the exclusion of non-human primates was absent, however elevated dN/dS was detected in catarrhines as a whole, as well as in cetaceans, possibly as part of a more general trend. Although this may suggest that protein changes associated with schizophrenia and autism are not a cost of the higher brain function found in humans, it may also point to insufficiencies in the study of these diseases including incomplete or inaccurate gene association lists and/or a greater role of regulatory changes or copy number variation. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.
Collapse
Affiliation(s)
- Lisa M Ogawa
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School Southborough, MA, USA
| | - Eric J Vallender
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School Southborough, MA, USA
| |
Collapse
|
27
|
Shi L, Lin Q, Su B. Human-specific hypomethylation of CENPJ, a key brain size regulator. Mol Biol Evol 2013; 31:594-604. [PMID: 24288161 DOI: 10.1093/molbev/mst231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Both the enlarged brain and concurrent highly developed cognitive skills are often seen as distinctive characteristics that set humans apart from other primates. Despite this obvious differentiation, the genetic mechanisms that underlie such human-specific traits are not clearly understood. In particular, whether epigenetic regulations may play a key role in human brain evolution remain elusive. In this study, we used bisulfite sequencing to compare the methylation patterns of four known genes that regulate brain size (ASPM, CDK5RAP2, CENPJ, and MCPH1) in the prefrontal cortex among several primate species spanning the major lineages of primates (i.e., humans, great apes, lesser apes, and Old World monkeys). The results showed a human-specific hypomethylation in the 5' UTR of CENPJ in the brain, where methylation levels among humans are only about one-third of those found among nonhuman primates. Similar methylation patterns were also detected in liver, kidney, and heart tissues, although the between-species differences were much less pronounced than those in the brain. Further in vitro methylation assays indicated that the methylation status of the CENPJ promoter could influence its expression. We also detected a large difference in CENPJ expression in the human and nonhuman primate brains of both adult individuals and throughout the major stages of fetal brain development. The hypomethylation and comparatively high expression of CENPJ in the central nervous system of humans suggest that a human-specific--and likely heritable--epigenetic modification likely occurred during human evolution, potentially leading to a much larger neural progenitor pool during human brain development, which may have eventually contributed to the dramatically enlarged brain and highly developed cognitive abilities associated with humans.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | |
Collapse
|
28
|
Sheth F, Andrieux J, Tewari S, Sheth H, Desai M, Kumari P, Nanavaty N, Sheth J. Chromosomal imbalance letter: Phenotypic consequences of combined deletion 8pter and duplication 15qter. Mol Cytogenet 2013; 6:24. [PMID: 23815819 PMCID: PMC3750467 DOI: 10.1186/1755-8166-6-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022] Open
Abstract
Exact breakpoint determination by oligonucleotide array-CGH has improved the analysis of genotype-phenotype correlations in cases with chromosome aberrations allowing a more accurate definition of relevant genes, particularly their isolated or combined impact on the phenotype in an unbalanced state. Chromosomal imbalances have been identified as one of the major causes of mental retardation and/or malformation syndromes and they are observed in ~2-5% of the cases. Here we report a female child born to non-consanguineous parents and having multiple congenital anomalies such as atrial septal defect and multiple ventricular septal defects, convergent strabismus, micropthalmia, seizures and mental retardation, with her head circumference and stature normal for her age. Cytogenetic study suggested 46,XX,add(8)(p23). Further analysis by array-CGH using 44K oligonucleotide probe confirmed deletion on 8p23.3p23.1 of 7.1 Mb and duplication involving 15q23q26.3 of 30 Mb size leading to 46,XX,der(8)t(8;15)(p23.3;q23)pat.arr 8p23.3p23.1(191,530-7,303,237)x1,15q23q26.3(72,338,961-102,35,195)x3. The unique phenotypic presentation in our case may have resulted from either loss or gain of a series of contiguous genes which may have resulted in a direct phenotypic effect and/or caused a genetic regulatory disturbance. Double segmental aberrations may have conferred phenotypic variability, as in our case, making it difficult to predict the characteristics that evolved as a result of the global gene imbalance, caused by the concomitant deletion and duplication.
Collapse
Affiliation(s)
- Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Joris Andrieux
- Laboratory of Medical Genetics, Jeanne de Flandre Hospital CHRU de Lille, Lille Cedex, France
| | - Stuti Tewari
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Harsh Sheth
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 4EP, UK
| | - Manisha Desai
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Pritti Kumari
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Nidhish Nanavaty
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| |
Collapse
|
29
|
Gilmore EC, Walsh CA. Genetic causes of microcephaly and lessons for neuronal development. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:461-78. [PMID: 24014418 PMCID: PMC3767923 DOI: 10.1002/wdev.89] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study of human developmental microcephaly is providing important insights into brain development. It has become clear that developmental microcephalies are associated with abnormalities in cellular production, and that the pathophysiology of microcephaly provides remarkable insights into how the brain generates the proper number of neurons that determine brain size. Most of the genetic causes of 'primary' developmental microcephaly (i.e., not associated with other syndromic features) are associated with centrosomal abnormalities. In addition to other functions, centrosomal proteins control the mitotic spindle, which is essential for normal cell proliferation during mitosis. However, the brain is often uniquely affected when microcephaly genes are mutated implying special centrosomal-related functions in neuronal production. Although models explaining how this could occur have some compelling data, they are not without controversy. Interestingly, some of the microcephaly genes show evidence that they were targets of evolutionary selection in primates and human ancestors, suggesting potential evolutionary roles in controlling neuronal number and brain volume across species. Mutations in DNA repair pathway genes also lead to microcephaly. Double-stranded DNA breaks appear to be a prominent type of damage that needs to be repaired during brain development, yet why defects in DNA repair affect the brain preferentially and if DNA repair relates to centrosome function, are not clearly understood.
Collapse
Affiliation(s)
- Edward C Gilmore
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
30
|
Shi L, Li M, Lin Q, Qi X, Su B. Functional divergence of the brain-size regulating gene MCPH1 during primate evolution and the origin of humans. BMC Biol 2013; 11:62. [PMID: 23697381 PMCID: PMC3674976 DOI: 10.1186/1741-7007-11-62] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/09/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND One of the key genes that regulate human brain size, MCPH1 has evolved under strong Darwinian positive selection during the evolution of primates. During this evolution, the divergence of MCPH1 protein sequences among primates may have caused functional changes that contribute to brain enlargement. RESULTS To test this hypothesis, we used co-immunoprecipitation and reporter gene assays to examine the activating and repressing effects of MCPH1 on a set of its down-stream genes and then compared the functional outcomes of a series of mutant MCPH1 proteins that carry mutations at the human- and great-ape-specific sites. The results demonstrate that the regulatory effects of human MCPH1 and rhesus macaque MCPH1 are different in three of eight down-stream genes tested (p73, cyclinE1 and p14ARF), suggesting a functional divergence of MCPH1 between human and non-human primates. Further analyses of the mutant MCPH1 proteins indicated that most of the human-specific mutations could change the regulatory effects on the down-stream genes. A similar result was also observed for one of the four great-ape-specific mutations. CONCLUSIONS Collectively, we propose that during primate evolution in general and human evolution in particular, the divergence of MCPH1 protein sequences under Darwinian positive selection led to functional modifications, providing a possible molecular mechanism of how MCPH1 contributed to brain enlargement during primate evolution and human origin.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, PR China
| | - Ming Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, PR China
- University of the Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Qiang Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, PR China
- University of the Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, PR China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, PR China
| |
Collapse
|
31
|
|
32
|
Vannucci RC, Barron TF, Holloway RL. Frontal Brain Expansion During Development Using MRI and Endocasts: Relation to Microcephaly andHomo floresiensis. Anat Rec (Hoboken) 2013; 296:630-7. [DOI: 10.1002/ar.22663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 06/11/2012] [Indexed: 11/11/2022]
|
33
|
Research proceedings on primate comparative genomics. Zool Res 2013; 33:108-18. [DOI: 10.3724/sp.j.1141.2012.01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Montgomery SH, Mundy NI. Microcephaly genes and the evolution of sexual dimorphism in primate brain size. J Evol Biol 2013; 26:906-11. [PMID: 23305468 DOI: 10.1111/jeb.12091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/24/2012] [Indexed: 12/29/2022]
Abstract
Microcephaly genes are amongst the most intensively studied genes with candidate roles in brain evolution. Early controversies surrounded the suggestion that they experienced differential selection pressures in different human populations, but several association studies failed to find any link between variation in microcephaly genes and brain size in humans. Recently, however, sex-dependent associations were found between variation in three microcephaly genes and human brain size, suggesting that these genes could contribute to the evolution of sexually dimorphic traits in the brain. Here, we test the hypothesis that microcephaly genes contribute to the evolution of sexual dimorphism in brain mass across anthropoid primates using a comparative approach. The results suggest a link between selection pressures acting on MCPH1 and CENPJ and different scores of sexual dimorphism.
Collapse
Affiliation(s)
- S H Montgomery
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
35
|
McGowen MR, Grossman LI, Wildman DE. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown. Proc Biol Sci 2012; 279:3643-51. [PMID: 22740643 DOI: 10.1098/rspb.2012.0869] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10,000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains.
Collapse
Affiliation(s)
- Michael R McGowen
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48210, USA
| | | | | |
Collapse
|
36
|
Shi L, Su B. Identification and functional characterization of a primate-specific E2F1 binding motif regulating MCPH1 expression. FEBS J 2012; 279:491-503. [DOI: 10.1111/j.1742-4658.2011.08441.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Shi L, Li M, Su B. MCPH1/BRIT1 represses transcription of the human telomerase reverse transcriptase gene. Gene 2012; 495:1-9. [PMID: 22240313 DOI: 10.1016/j.gene.2011.12.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 01/20/2023]
Abstract
MCPH1, a repressor of human telomerase reverse transcriptase (hTERT) function, is implicated in cellular immortalization. But little is known about how MCPH1 represses telomerase activity. In this study, to determine the mechanism by which MCPH1 regulates hTERT gene expression, we examined the role of MCPH1 in regulating the hTERT promoter in vitro. Co-transfection of the hTERT promoter with MCPH1 in Hela cells could inhibit the hTERT promoter activity. The EMSA assay demonstrated that MCPH1 could bind to the proximal hTERT promoter. Overexpression of MCPH1 could repress telomerase activity, and the repression was abolished by knocking down the MCPH1 expression using siRNA in U2OS cells. We propose that MCPH1 functions as a transcriptional repressor of hTERT in vitro. Since the activation of telomerase, widely observed in human tumor cell lines, is a critical step in tumorigenesis, our findings provide new insights into delineating the tumor-suppressing function of MCPH1 through its down-regulation of hTERT/telomerase expression.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | | | | |
Collapse
|
38
|
Abstract
The tremendous shifts in the size, structure, and function of the brain during primate evolution are ultimately caused by changes at the genetic level. Understanding what these changes are and how they effect the phenotypic changes observed lies at the heart of understanding evolutionary change. This chapter focuses on understanding the genetic basis of primate brain evolution, considering the substrates and mechanisms through which genetic change occurs. It also discusses the implications that our current understandings and tools have for what we have already discovered and where our studies will head in the future. While genetic and genomic studies have identified many regions undergoing positive selection during primate evolution, the findings are certainly not exhaustive and functional relevance remains to be confirmed. Nevertheless, a strong foundation has been built upon which future studies will emerge.
Collapse
Affiliation(s)
- Eric J Vallender
- New England Primate Research Center, Harvard Medical School, Southborough, MA, USA.
| |
Collapse
|
39
|
Abstract
Brain development in the early stages of life has been suggested to be one of the factors that may influence an individual's risk of Alzheimer disease (AD) later in life. Four microcephaly genes, which regulate brain development in utero and have been suggested to play a role in the evolution of the human brain, were selected as candidate genes that may modulate the risk of AD. We examined the association between single nucleotide polymorphisms tagging common sequence variations in these genes and risk of AD in two case-control samples. We found that the G allele of rs2442607 in microcephalin 1 was associated with an increased risk of AD (under an additive genetic model, P=0.01; odds ratio=3.41; confidence interval, 1.77-6.57). However, this association was not replicated using another case-control sample research participants from the Alzheimer Disease Neuroimaging Initiative. We conclude that the common variations we measured in the 4 microcephaly genes do not affect the risk of AD or that their effect size is small.
Collapse
|
40
|
|
41
|
MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol 2011; 13:1325-34. [PMID: 21947081 DOI: 10.1038/ncb2342] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/11/2011] [Indexed: 12/13/2022]
Abstract
Primary microcephaly 1 is a neurodevelopmental disorder caused by mutations in the MCPH1 gene, whose product MCPH1 (also known as microcephalin and BRIT1) regulates DNA-damage response. Here we show that Mcph1 disruption in mice results in primary microcephaly, mimicking human MCPH1 symptoms, owing to a premature switching of neuroprogenitors from symmetric to asymmetric division. MCPH1-deficiency abrogates the localization of Chk1 to centrosomes, causing premature Cdk1 activation and early mitotic entry, which uncouples mitosis and the centrosome cycle. This misorients the mitotic spindle alignment and shifts the division plane of neuroprogenitors, to bias neurogenic cell fate. Silencing Cdc25b, a centrosome substrate of Chk1, corrects MCPH1-deficiency-induced spindle misalignment and rescues the premature neurogenic production in Mcph1-knockout neocortex. Thus, MCPH1, through its function in the Chk1-Cdc25-Cdk1 pathway to couple the centrosome cycle with mitosis, is required for precise mitotic spindle orientation and thereby regulates the progenitor division mode to maintain brain size.
Collapse
|
42
|
Kraemer N, Issa L, Hauck SCR, Mani S, Ninnemann O, Kaindl AM. What's the hype about CDK5RAP2? Cell Mol Life Sci 2011; 68:1719-36. [PMID: 21327915 PMCID: PMC11115181 DOI: 10.1007/s00018-011-0635-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/18/2011] [Accepted: 02/01/2011] [Indexed: 12/11/2022]
Abstract
Cyclin dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) has gained attention in the last years following the discovery, in 2005, that recessive mutations cause primary autosomal recessive microcephaly. This disease is seen as an isolated developmental defect of the brain, particularly of the cerebral cortex, and was thus historically also referred to as microcephalia vera. Unraveling the pathomechanisms leading to this human disease is fascinating scientists because it can convey insight into basic mechanisms of physiologic brain development (particularly of cortex formation). It also finds itself in the spotlight because of its implication in trends in mammalian evolution with a massive increase in the size of the cerebral cortex in primates. Here, we provide a timely overview of the current knowledge on the function of CDK5RAP2 and mechanisms that might lead to disease in humans when the function of this protein is disturbed.
Collapse
Affiliation(s)
- Nadine Kraemer
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Lina Issa
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie C. R. Hauck
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Shyamala Mani
- Center for Neuroscience, Indian Institute of Science, Bangalore, 560 012 India
| | - Olaf Ninnemann
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology and Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
43
|
McGowen MR, Montgomery SH, Clark C, Gatesy J. Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1) in cetaceans. BMC Evol Biol 2011; 11:98. [PMID: 21492470 PMCID: PMC3101173 DOI: 10.1186/1471-2148-11-98] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 04/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Representatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans. RESULTS We sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1) in 38 cetacean species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1 were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous substitution) using site and branch models of molecular evolution. We also tested the hypothesis that selection on MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and in other subclades of Mammalia, however, there was not a significant positive association between ω and brain size within Cetacea. CONCLUSION In conjunction with a recent study of Primates, we find no evidence to support an association between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding of significant positive selection in MCPH1 may be linked to other functions of the gene.
Collapse
Affiliation(s)
- Michael R McGowen
- Department of Biology, University of California, Riverside, 92521, USA.
| | | | | | | |
Collapse
|
44
|
Gunbin KV, Suslov VV, Kolchanov NA. Molecular-genetic systems of development: Functional dynamics and molecular evolution. BIOCHEMISTRY (MOSCOW) 2011; 73:219-30. [DOI: 10.1134/s0006297908020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol Biol Evol 2010; 28:625-38. [PMID: 20961963 DOI: 10.1093/molbev/msq237] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cis-regulatory regions play a dominant role in phenotypic evolution.
Collapse
|
46
|
Yang R, Su B. Characterization and comparison of the tissue-related modules in human and mouse. PLoS One 2010; 5:e11730. [PMID: 20661448 PMCID: PMC2908688 DOI: 10.1371/journal.pone.0011730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/28/2010] [Indexed: 01/28/2023] Open
Abstract
Background Due to the advances of high throughput technology and data-collection approaches, we are now in an unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level. Modules, serving as the building blocks and operational units of biological systems, provide more information than individual genes. Hence, the comparative analysis between species at the module level would shed more light on the mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches. Results We systematically identified the tissue-related modules using the iterative signature algorithm (ISA), and we detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel quantity, “total constraint intensity,” a proxy of multiple constraints (of co-regulated genes and tissues where the co-regulation occurs) on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological processes, while their gene contents have diverged extensively between human and mouse. Conclusions Our results suggest that unlike the composition of module, which exhibits a great difference between human and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions.
Collapse
Affiliation(s)
- Ruolin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming Primate Research Center, Chinese Academy of Sciences, Kunming, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming Primate Research Center, Chinese Academy of Sciences, Kunming, China
- * E-mail:
| |
Collapse
|
47
|
The microcephalin ancestral allele in a Neanderthal individual. PLoS One 2010; 5:e10648. [PMID: 20498832 PMCID: PMC2871044 DOI: 10.1371/journal.pone.0010648] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/23/2010] [Indexed: 12/25/2022] Open
Abstract
Background The high frequency (around 0.70 worlwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. Methodology/Principal Findings Here we report the first PCR amplification and high- throughput sequencing of nuclear DNA at the microcephalin (MCPH1) locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy). We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. Conclusions/Significance The MCPH1 genotype of the Monti Lessini (MLS) Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.
Collapse
|
48
|
Colloquium paper: phylogenomic evidence of adaptive evolution in the ancestry of humans. Proc Natl Acad Sci U S A 2010; 107 Suppl 2:8918-23. [PMID: 20445097 DOI: 10.1073/pnas.0914626107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Charles Darwin's tree model for life's evolution, natural selection adaptively modifies newly arisen species as they branch apart from their common ancestor. In accord with this Darwinian concept, the phylogenomic approach to elucidating adaptive evolution in genes and genomes in the ancestry of modern humans requires a well supported and well sampled phylogeny that accurately places humans and other primates and mammals with respect to one another. For more than a century, first from the comparative immunological work of Nuttall on blood sera and now from comparative genomic studies, molecular findings have demonstrated the close kinship of humans to chimpanzees. The close genetic correspondence of chimpanzees to humans and the relative shortness of our evolutionary separation suggest that most distinctive features of the modern human phenotype had already evolved during our ancestry with chimpanzees. Thus, a phylogenomic assessment of being human should examine earlier stages of human ancestry as well as later stages. In addition, with the availability of a number of mammalian genomes, similarities in phenotype between distantly related taxa should be explored for evidence of convergent or parallel adaptive evolution. As an example, recent phylogenomic evidence has shown that adaptive evolution of aerobic energy metabolism genes may have helped shape such distinctive modern human features as long life spans and enlarged brains in the ancestries of both humans and elephants.
Collapse
|
49
|
Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol 2009; 90:363-83. [PMID: 19931588 DOI: 10.1016/j.pneurobio.2009.11.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/27/2009] [Accepted: 11/11/2009] [Indexed: 12/24/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH), historically referred to as Microcephalia vera, is a genetically and clinically heterogeneous disease. Patients with MCPH typically exhibit congenital microcephaly as well as mental retardation, but usually no further neurological findings or malformations. Their microcephaly with grossly preserved macroscopic organization of the brain is a consequence of a reduced brain volume, which is evident particularly within the cerebral cortex and thus results to a large part from a reduction of grey matter. Some patients with MCPH further provide evidence of neuronal heterotopias, polymicrogyria or cortical dysplasia suggesting an associated neuronal migration defect. Genetic causes of MCPH subtypes 1-7 include mutations in genes encoding microcephalin, cyclin-dependent kinase 5 regulatory associated protein 2 (CDK5RAP2), abnormal spindle-like, microcephaly associated protein (ASPM), centromeric protein J (CENPJ), and SCL/TAL1-interrupting locus (STIL) as well as linkage to the two loci 19q13.1-13.2 and 15q15-q21. Here, we provide a timely overview of current knowledge on mechanisms leading to microcephaly in humans with MCPH and abnormalities in cell division/cell survival in corresponding animal models. Understanding the pathomechanisms leading to MCPH is of high importance not only for our understanding of physiologic brain development (particularly of cortex formation), but also for that of trends in mammalian evolution with a massive increase in size of the cerebral cortex in primates, of microcephalies of other etiologies including environmentally induced microcephalies, and of cancer formation.
Collapse
|
50
|
Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries. Proc Natl Acad Sci U S A 2009; 106:20824-9. [PMID: 19926857 DOI: 10.1073/pnas.0911239106] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific sets of brain-expressed genes, such as aerobic energy metabolism genes, evolved adaptively in the ancestry of humans and may have evolved adaptively in the ancestry of other large-brained mammals. The recent addition of genomes from two afrotherians (elephant and tenrec) to the expanding set of publically available sequenced mammalian genomes provided an opportunity to test this hypothesis. Elephants resemble humans by having large brains and long life spans; tenrecs, in contrast, have small brains and short life spans. Thus, we investigated whether the phylogenomic patterns of adaptive evolution are more similar between elephant and human than between either elephant and tenrec lineages or human and mouse lineages, and whether aerobic energy metabolism genes are especially well represented in the elephant and human patterns. Our analyses encompassed approximately 6,000 genes in each of these lineages with each gene yielding extensive coding sequence matches in interordinal comparisons. Each gene's nonsynonymous and synonymous nucleotide substitution rates and dN/dS ratios were determined. Then, from gene ontology information on genes with the higher dN/dS ratios, we identified the more prevalent sets of genes that belong to specific functional categories and that evolved adaptively. Elephant and human lineages showed much slower nucleotide substitution rates than tenrec and mouse lineages but more adaptively evolved genes. In correlation with absolute brain size and brain oxygen consumption being largest in elephants and next largest in humans, adaptively evolved aerobic energy metabolism genes were most evident in the elephant lineage and next most evident in the human lineage.
Collapse
|