1
|
Liu C, Lele SM, Goodenberger MH, Reiser GM, Christiansen AJ, Padussis JC. Malignant tumors in tuberous sclerosis complex: a case report and review of the literature. BMC Med Genomics 2024; 17:144. [PMID: 38802873 PMCID: PMC11129476 DOI: 10.1186/s12920-024-01913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare, autosomal dominant genetic disease that arises from TSC1 or TSC2 genetic mutations. These genetic mutations can induce the development of benign tumors in any organ system with significant clinical implications in morbidity and mortality. In rare instances, patients with TSC can have malignant tumors, including renal cell carcinoma (RCC) and pancreatic neuroendocrine tumor (PNET). It is considered a hereditary renal cancer syndrome despite the low incidence of RCC in TSC patients. TSC is typically diagnosed in prenatal and pediatric patients and frequently associated with neurocognitive disorders and seizures, which are often experienced early in life. However, penetrance and expressivity of TSC mutations are highly variable. Herein, we present a case report, with associated literature, to highlight that there exist undiagnosed adult patients with less penetrant features, whose clinical presentation may contain non-classical signs and symptoms, who have pathogenic TSC mutations. CASE PRESENTATION A 31-year-old female with past medical history of leiomyomas status post myomectomy presented to the emergency department for a hemorrhagic adnexal cyst. Imaging incidentally identified a renal mass suspicious for RCC. Out of concern for hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome, the mass was surgically removed and confirmed as RCC. Discussion with medical genetics ascertained a family history of kidney cancer and nephrectomy procedures and a patient history of ungual fibromas on the toes. Genetic testing for hereditary kidney cancer revealed a 5'UTR deletion in the TSC1 gene, leading to a diagnosis of TSC. Following the diagnosis, dermatology found benign skin findings consistent with TSC. About six months after the incidental finding of RCC, a PNET in the pancreatic body/tail was incidentally found on chest CT imaging, which was removed and determined to be a well-differentiated PNET. Later, a brain MRI revealed two small cortical tubers, one in each frontal lobe, that were asymptomatic; the patient's history and family history did not contain seizures or learning delays. The patient presently shows no evidence of recurrence or metastatic disease, and no additional malignant tumors have been identified. CONCLUSIONS To our knowledge, this is the first report in the literature of a TSC patient without a history of neurocognitive disorders with RCC and PNET, both independently rare occurrences in TSC. The patient had a strong family history of renal disease, including RCC, and had several other clinical manifestations of TSC, including skin and brain findings. The incidental finding and surgical removal of RCC prompted the genetic evaluation and diagnosis of TSC, leading to a comparably late diagnosis for this patient. Reporting the broad spectrum of disease for TSC, including more malignant phenotypes such as the one seen in our patient, can help healthcare providers better identify patients who need genetic evaluation and additional medical care.
Collapse
Affiliation(s)
- Cassie Liu
- Disivion of Surgical Oncology, Department of Surgery, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subodh M Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Gwendolyn M Reiser
- Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew J Christiansen
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - James C Padussis
- Disivion of Surgical Oncology, Department of Surgery, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Wu H, He D, Biswas S, Shafiquzzaman M, Zhou X, Charron J, Wang Y, Nayak BK, Habib SL, Liu H, Li B. mTOR Activation Initiates Renal Cell Carcinoma Development by Coordinating ERK and p38MAPK. Cancer Res 2021; 81:3174-3186. [PMID: 33863779 DOI: 10.1158/0008-5472.can-20-3979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) mainly originates from renal proximal tubules. Intriguingly, disruption of genes frequently mutated in human RCC samples thus far has only generated RCC originated from other renal tubule parts in mouse models. This hampers our understanding of the pathogenesis of RCC. Here we show that mTOR signaling, often activated in RCC samples, initiates RCC development from renal proximal tubules. Ablation of Tsc1, encoding an mTOR suppressor, in proximal tubule cells led to multiple precancerous renal cysts. mTOR activation increased MEK1 expression and ERK activation, and Mek1 ablation or inhibition diminished cyst formation in Tsc1-deficient mice. mTOR activation also increased MKK6 expression and p38MAPK activation, and ablation of the p38α-encoding gene further enhanced cyst formation and led to RCC with clear cell RCC features. Mechanistically, Tsc1 deletion induced p53 and p16 expression in a p38MAPK-dependent manner, and deleting Tsc1 and Trp53 or Cdkn2a (encoding p16) enhanced renal cell carcinogenesis. Thus, mTOR activation in combination with inactivation of the p38MAPK-p53/p16 pathway drives RCC development from renal proximal tubules. Moreover, this study uncovers previously unidentified mechanisms by which mTOR controls cell proliferation and suggests the MEK-ERK axis to be a potential target for treatment of RCC. SIGNIFICANCE: Mouse modeling studies show that mTOR activation in combination with inactivation of the p38MAPK-p53/p16 axis initiates renal cell carcinoma that mimics human disease, identifying potential therapeutic targets for RCC treatment.
Collapse
Affiliation(s)
- Hongguang Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dan He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Soma Biswas
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Md Shafiquzzaman
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zhou
- Institute of Traditional Chinese Medicine and Stem Cell Research, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jean Charron
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Bijaya K Nayak
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Samy L Habib
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China. .,Institute of Traditional Chinese Medicine and Stem Cell Research, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Oncogenes and Related Genes, Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Birkisdóttir MB, Jaarsma D, Brandt RMC, Barnhoorn S, Vliet N, Imholz S, Oostrom CT, Nagarajah B, Portilla Fernández E, Roks AJM, Elgersma Y, Steeg H, Ferreira JA, Pennings JLA, Hoeijmakers JHJ, Vermeij WP, Dollé MET. Unlike dietary restriction, rapamycin fails to extend lifespan and reduce transcription stress in progeroid DNA repair-deficient mice. Aging Cell 2021; 20:e13302. [PMID: 33484480 PMCID: PMC7884048 DOI: 10.1111/acel.13302] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Dietary restriction (DR) and rapamycin extend healthspan and life span across multiple species. We have recently shown that DR in progeroid DNA repair‐deficient mice dramatically extended healthspan and trippled life span. Here, we show that rapamycin, while significantly lowering mTOR signaling, failed to improve life span nor healthspan of DNA repair‐deficient Ercc1∆/− mice, contrary to DR tested in parallel. Rapamycin interventions focusing on dosage, gender, and timing all were unable to alter life span. Even genetically modifying mTOR signaling failed to increase life span of DNA repair‐deficient mice. The absence of effects by rapamycin on P53 in brain and transcription stress in liver is in sharp contrast with results obtained by DR, and appoints reducing DNA damage and transcription stress as an important mode of action of DR, lacking by rapamycin. Together, this indicates that mTOR inhibition does not mediate the beneficial effects of DR in progeroid mice, revealing that DR and rapamycin strongly differ in their modes of action.
Collapse
Affiliation(s)
- María B. Birkisdóttir
- Princess Máxima Center for Pediatric Oncology, Genome Instability and Nutrition ONCODE Institute Utrecht The Netherlands
| | - Dick Jaarsma
- Department of Neuroscience Erasmus MC Rotterdam The Netherlands
| | | | - Sander Barnhoorn
- Department of Molecular Genetics Erasmus MC Rotterdam The Netherlands
| | - Nicole Vliet
- Department of Molecular Genetics Erasmus MC Rotterdam The Netherlands
| | - Sandra Imholz
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Conny T. Oostrom
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Bhawani Nagarajah
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Eliana Portilla Fernández
- Division of Vascular Medicine and Pharmacology Department of Internal Medicine Erasmus MC Rotterdam The Netherlands
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology Department of Internal Medicine Erasmus MC Rotterdam The Netherlands
| | - Ype Elgersma
- Department of Neuroscience Erasmus MC Rotterdam The Netherlands
| | - Harry Steeg
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - José A. Ferreira
- Department of Statistics, Informatics and Modelling National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Jeroen L. A. Pennings
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Genome Instability and Nutrition ONCODE Institute Utrecht The Netherlands
- Department of Molecular Genetics Erasmus MC Rotterdam The Netherlands
- CECAD Forschungszentrum Köln Germany
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Genome Instability and Nutrition ONCODE Institute Utrecht The Netherlands
| | - Martijn E. T. Dollé
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| |
Collapse
|
4
|
Allosteric and ATP-Competitive Inhibitors of mTOR Effectively Suppress Tumor Progression-Associated Epithelial-Mesenchymal Transition in the Kidneys of Tsc2 +/- Mice. Neoplasia 2019; 21:731-739. [PMID: 31207499 PMCID: PMC6580094 DOI: 10.1016/j.neo.2019.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
In tuberous sclerosis (TSC)–associated tumors, mutations in the TSC genes lead to aberrant activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. mTORC1 signaling impacts many biological processes including the epithelial-mesenchymal transition (EMT), which is suggested to promote tumor progression and metastasis in various types of cancer. In this study, we report hybrid cells with epithelial and mesenchymal features in angiomyolipomas and partial EMT in carcinomas from TSC patients and describe a new model of EMT activation during tumor progression from cyst to papillary adenoma to solid carcinoma in the kidneys of Tsc2+/− mice. Features of EMT occurred infrequently in TSC-associated cysts but increased as the lesions progressed through papillary adenoma to solid carcinoma where epithelial-mesenchymal hybrid cells were abundant, indicating partial EMT. We also compared the effects of the novel ATP-competitive mTOR inhibitor AZD2014 with the allosteric mTOR inhibitor rapamycin on EMT and tumor burden. Both AZD2014 and rapamycin potently suppressed EMT of renal tumors and effectively blocked tumor progression in Tsc2+/− mice. These results suggest that partial EMT is a shared feature of TSC-associated renal tumors in humans and mice and occurs during TSC-associated tumor progression. EMT-related signaling pathways may represent therapeutic targets for tumors associated with mutations in the TSC genes.
Collapse
|
5
|
Drusian L, Nigro EA, Mannella V, Pagliarini R, Pema M, Costa ASH, Benigni F, Larcher A, Chiaravalli M, Gaude E, Montorsi F, Capitanio U, Musco G, Frezza C, Boletta A. mTORC1 Upregulation Leads to Accumulation of the Oncometabolite Fumarate in a Mouse Model of Renal Cell Carcinoma. Cell Rep 2018; 24:1093-1104.e6. [PMID: 30067967 DOI: 10.1016/j.celrep.2018.06.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/04/2018] [Accepted: 06/27/2018] [Indexed: 12/30/2022] Open
Abstract
Renal cell carcinomas (RCCs) are common cancers diagnosed in more than 350,000 people each year worldwide. Several pathways are de-regulated in RCCs, including mTORC1. However, how mTOR drives tumorigenesis in this context is unknown. The lack of faithful animal models has limited progress in understanding and targeting RCCs. Here, we generated a mouse model harboring the kidney-specific inactivation of Tsc1. These animals develop cysts that evolve into papillae, cystadenomas, and papillary carcinomas. Global profiling confirmed several metabolic derangements previously attributed to mTORC1. Notably, Tsc1 inactivation results in the accumulation of fumarate and in mTOR-dependent downregulation of the TCA cycle enzyme fumarate hydratase (FH). The re-expression of FH in cellular systems lacking Tsc1 partially rescued renal epithelial transformation. Importantly, the mTORC1-FH axis is likely conserved in human RCC specimens. We reveal a role of mTORC1 in renal tumorigenesis, which depends on the oncometabolite fumarate.
Collapse
Affiliation(s)
- Luca Drusian
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; PhD Program in Biology and Biotherapy of Cancer, Università Vita-Salute San Raffaele, Milan, Italy
| | - Elisa Agnese Nigro
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Mannella
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monika Pema
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ana S H Costa
- MRC, Cancer Unit Cambridge, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Fabio Benigni
- Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Larcher
- Department of Urology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Chiaravalli
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gaude
- MRC, Cancer Unit Cambridge, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Francesco Montorsi
- Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Urology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Capitanio
- Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Urology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Frezza
- MRC, Cancer Unit Cambridge, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Notch transactivates Rheb to maintain the multipotency of TSC-null cells. Nat Commun 2017; 8:1848. [PMID: 29184052 PMCID: PMC5705704 DOI: 10.1038/s41467-017-01845-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Differentiation abnormalities are a hallmark of tuberous sclerosis complex (TSC) manifestations; however, the genesis of these abnormalities remains unclear. Here we report on mechanisms controlling the multi-lineage, early neuronal progenitor and neural stem-like cell characteristics of lymphangioleiomyomatosis (LAM) and angiomyolipoma cells. These mechanisms include the activation of a previously unreported Rheb-Notch-Rheb regulatory loop, in which the cyclic binding of Notch1 to the Notch-responsive elements (NREs) on the Rheb promoter is a key event. This binding induces the transactivation of Rheb. The identified NRE2 and NRE3 on the Rheb promoter are important to Notch-dependent promoter activity. Notch cooperates with Rheb to block cell differentiation via similar mechanisms in mouse models of TSC. Cell-specific loss of Tsc1 within nestin-expressing cells in adult mice leads to the formation of kidney cysts, renal intraepithelial neoplasia, and invasive papillary renal carcinoma. Tuberous sclerosis complex (TSC) is a rare genetic condition causing tumours with differentiation abnormalities; however the molecular mechanisms causing these defects are unclear. Here the authors show that Notch cooperates with Rheb to block cell differentiation forming a regulatory loop that could underlie TSC tumorigenesis.
Collapse
|
7
|
Assessment of Response of Kidney Tumors to Rapamycin and Atorvastatin in Tsc1 +/- Mice. Transl Oncol 2017; 10:793-799. [PMID: 28844017 PMCID: PMC5570581 DOI: 10.1016/j.tranon.2017.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022] Open
Abstract
Atorvastatin is widely used to lower blood cholesterol and to reduce risk of cardiovascular disease–associated complications. Epidemiological investigations and preclinical studies suggest that statins such as atorvastatin have antitumor activity for various types of cancer. Tuberous sclerosis (TSC) is a tumor syndrome caused by TSC1 or TSC2 mutations that lead to aberrant activation of mTOR and tumor formation in multiple organs. Previous studies have demonstrated that atorvastatin selectively suppressed growth and proliferation of mouse Tsc2 null embryonic fibroblasts through inhibition of mTOR. However, atorvastatin alone did not reduce tumor burden in the liver and kidneys of Tsc2+/− mice as assessed by histological analysis, and no combination therapy of rapamycin and atorvastatin has been tried. In this study, we used T2-weighted magnetic resonance imaging to track changes in tumor number and size in the kidneys of a Tsc1+/− mouse model and to assess the efficacy of rapamycin and atorvastatin alone and as a combination therapy. We found that rapamycin alone or rapamycin combined with atorvastatin significantly reduced tumor burden, while atorvastatin alone did not. Combined therapy with rapamycin and atorvastatin appeared to be more effective for treating renal tumors than rapamycin alone, but the difference was not statistically significant. We conclude that combined therapy with rapamycin and atorvastatin is unlikely to provide additional benefit over rapamycin as a single agent in the treatment of Tsc-associated renal tumors.
Collapse
|
8
|
Wesseling H, Elgersma Y, Bahn S. A brain proteomic investigation of rapamycin effects in the Tsc1+/- mouse model. Mol Autism 2017; 8:41. [PMID: 28775826 PMCID: PMC5540199 DOI: 10.1186/s13229-017-0151-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/14/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare monogenic disorder characterized by benign tumors in multiple organs as well as a high prevalence of epilepsy, intellectual disability and autism. TSC is caused by inactivating mutations in the TSC1 or TSC2 genes. Heterozygocity induces hyperactivation of mTOR which can be inhibited by mTOR inhibitors, such as rapamycin, which have proven efficacy in the treatment of TSC-associated symptoms. The aim of the present study was (1) to identify molecular changes associated with social and cognitive deficits in the brain tissue of Tsc1+/- mice and (2) to investigate the molecular effects of rapamycin treatment, which has been shown to ameliorate genotype-related behavioural deficits. METHODS Molecular alterations in the frontal cortex and hippocampus of Tsc1+/- and control mice, with or without rapamycin treatment, were investigated. A quantitative mass spectrometry-based shotgun proteomic approach (LC-MSE) was employed as an unbiased method to detect changes in protein levels. Changes identified in the initial profiling stage were validated using selected reaction monitoring (SRM). Protein Set Enrichment Analysis was employed to identify dysregulated pathways. RESULTS LC-MSE analysis of Tsc1+/- mice and controls (n = 30) identified 51 proteins changed in frontal cortex and 108 in the hippocampus. Bioinformatic analysis combined with targeted proteomic validation revealed several dysregulated molecular pathways. Using targeted assays, proteomic alterations in the hippocampus validated the pathways "myelination", "dendrite," and "oxidative stress", an upregulation of ribosomal proteins and the mTOR kinase. LC-MSE analysis was also employed on Tsc1+/- and wildtype mice (n = 34) treated with rapamycin or vehicle. Rapamycin treatment exerted a stronger proteomic effect in Tsc1+/- mice with significant changes (mainly decreased expression) in 231 and 106 proteins, respectively. The cellular pathways "oxidative stress" and "apoptosis" were found to be affected in Tsc1+/- mice and the cellular compartments "myelin sheet" and "neurofilaments" were affected by rapamycin treatment. Thirty-three proteins which were altered in Tsc1+/- mice were normalized following rapamycin treatment, amongst them oxidative stress related proteins, myelin-specific and ribosomal proteins. CONCLUSIONS Molecular changes in the Tsc1+/- mouse brain were more prominent in the hippocampus compared to the frontal cortex. Pathways linked to myelination and oxidative stress response were prominently affected and, at least in part, normalized following rapamycin treatment. The results could aid in the identification of novel drug targets for the treatment of cognitive, social and psychiatric symptoms in autism spectrum disorders. Similar pathways have also been implicated in other psychiatric and neurodegenerative disorders and could imply similar disease processes. Thus, the potential efficacy of mTOR inhibitors warrants further investigation not only for autism spectrum disorders but also for other neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Hendrik Wesseling
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT UK
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, 3000 CA The Netherlands
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT UK
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, 3000 CA The Netherlands
| |
Collapse
|
9
|
Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change. PLoS One 2017; 12:e0180412. [PMID: 28683078 PMCID: PMC5500326 DOI: 10.1371/journal.pone.0180412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/15/2017] [Indexed: 11/19/2022] Open
Abstract
Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.
Collapse
|
10
|
Gu YF, Cohn S, Christie A, McKenzie T, Wolff N, Do QN, Madhuranthakam AJ, Pedrosa I, Wang T, Dey A, Busslinger M, Xie XJ, Hammer RE, McKay RM, Kapur P, Brugarolas J. Modeling Renal Cell Carcinoma in Mice: Bap1 and Pbrm1 Inactivation Drive Tumor Grade. Cancer Discov 2017; 7:900-917. [PMID: 28473526 DOI: 10.1158/2159-8290.cd-17-0292] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by BAP1 and PBRM1 mutations, which are associated with tumors of different grade and prognosis. However, whether BAP1 and PBRM1 loss causes ccRCC and determines tumor grade is unclear. We conditionally targeted Bap1 and Pbrm1 (with Vhl) in the mouse using several Cre drivers. Sglt2 and Villin proximal convoluted tubule drivers failed to cause tumorigenesis, challenging the conventional notion of ccRCC origins. In contrast, targeting with PAX8, a transcription factor frequently overexpressed in ccRCC, led to ccRCC of different grades. Bap1-deficient tumors were of high grade and showed greater mTORC1 activation than Pbrm1-deficient tumors, which exhibited longer latency. Disrupting one allele of the mTORC1 negative regulator, Tsc1, in Pbrm1-deficient kidneys triggered higher grade ccRCC. This study establishes Bap1 and Pbrm1 as lineage-specific drivers of ccRCC and histologic grade, implicates mTORC1 as a tumor grade rheostat, and suggests that ccRCCs arise from Bowman capsule cells.Significance: Determinants of tumor grade and aggressiveness across cancer types are poorly understood. Using ccRCC as a model, we show that Bap1 and Pbrm1 loss drives tumor grade. Furthermore, we show that the conversion from low grade to high grade can be promoted by activation of mTORC1. Cancer Discov; 7(8); 900-17. ©2017 AACR.See related commentary by Leung and Kim, p. 802This article is highlighted in the In This Issue feature, p. 783.
Collapse
Affiliation(s)
- Yi-Feng Gu
- Department of Internal Medicine, Hematology-Oncology Division, The University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shannon Cohn
- Department of Internal Medicine, Hematology-Oncology Division, The University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tiffani McKenzie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicholas Wolff
- Department of Internal Medicine, Hematology-Oncology Division, The University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Quyen N Do
- Department of Radiology and the Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ananth J Madhuranthakam
- Department of Radiology and the Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology and the Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Quantitative Biomedical Research Center, Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Anwesha Dey
- Department of Molecular Oncology, Genentech, South San Francisco, California
| | | | - Xian-Jin Xie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert E Hammer
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Renée M McKay
- Department of Internal Medicine, Hematology-Oncology Division, The University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Department of Internal Medicine, Hematology-Oncology Division, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Yang J, Samsel PA, Narov K, Jones A, Gallacher D, Gallacher J, Sampson JR, Shen MH. Combination of Everolimus with Sorafenib for Solid Renal Tumors in Tsc2 +/- Mice Is Superior to Everolimus Alone. Neoplasia 2017; 19:112-120. [PMID: 28092822 PMCID: PMC5238457 DOI: 10.1016/j.neo.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022] Open
Abstract
Tuberous sclerosis (TSC) is an inherited tumor syndrome caused by mutations in TSC1 or TSC2 that lead to aberrant activation of mTOR and development of tumors in multiple organs including the kidneys. The mTOR inhibitors rapamycin and everolimus (rapalogs) have demonstrated clinical efficacy in treating TSC-associated tumors including renal angiomyolipomas. However, tumor responses are usually only partial, and regrowth occurs after drug withdrawal. TSC-associated tumors are highly vascular, and TSC patients with renal angiomyolipomas have elevated levels of circulating vascular endothelial growth factor (VEGF) A and VEGFD. Sorafenib inhibits multiple kinases including VEGF receptors and has been used to treat metastatic epithelioid angiomyolipoma in one case, but formal trials have not been undertaken. In this study, we investigated tumor angiogenesis and the therapeutic efficacy of everolimus in combination with sorafenib for renal tumors in Tsc2+/− mice. We found that these tumors exhibited remarkably variable angiogenesis despite consistent aberrant activation of mTOR and increased expression of HIF1α and VEGFA. Treatment of 11-month-old Tsc2+/− mice for 2 months with a combination of everolimus and sorafenib significantly reduced the number and size of solid renal tumors, whereas everolimus or sorafenib alone did not. These results suggest that inhibition of mTOR and multiple kinases including VEGF receptors using combination therapy could hold promise for the treatment of TSC-associated tumors that have responded inadequately to a rapalog alone.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Paulina A Samsel
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Kalin Narov
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Ashley Jones
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Daniel Gallacher
- Warwick CTU, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - John Gallacher
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Ming Hong Shen
- Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
12
|
Hakim S, Dyson JM, Feeney SJ, Davies EM, Sriratana A, Koenig MN, Plotnikova OV, Smyth IM, Ricardo SD, Hobbs RM, Mitchell CA. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet 2016; 25:2295-2313. [PMID: 27056978 DOI: 10.1093/hmg/ddw097] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common cause of renal failure with few effective treatments. INPP5E is an inositol polyphosphate 5-phosphatase that dephosphorylates phosphoinositide 3-kinase (PI3K)-generated PI(3,4,5)P3 and is mutated in ciliopathy syndromes. Germline Inpp5e deletion is embryonically lethal, attributed to cilia stability defects, and is associated with polycystic kidneys. However, the molecular mechanisms responsible for PKD development upon Inpp5e loss remain unknown. Here, we show conditional inactivation of Inpp5e in mouse kidney epithelium results in severe PKD and renal failure, associated with a partial reduction in cilia number and hyperactivation of PI3K/Akt and downstream mammalian target of rapamycin complex 1 (mTORC1) signaling. Treatment with an mTORC1 inhibitor improved kidney morphology and function, but did not affect cilia number or length. Therefore, we identify Inpp5e as an essential inhibitor of the PI3K/Akt/mTORC1 signaling axis in renal epithelial cells, and demonstrate a critical role for Inpp5e-dependent mTORC1 regulation in PKD suppression.
Collapse
Affiliation(s)
- Sandra Hakim
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer M Dyson
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sandra J Feeney
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Elizabeth M Davies
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Absorn Sriratana
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Monica N Koenig
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Olga V Plotnikova
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ian M Smyth
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Robin M Hobbs
- Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
13
|
Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links. Neuroscience 2015; 321:3-23. [PMID: 26733386 DOI: 10.1016/j.neuroscience.2015.12.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 01/16/2023]
Abstract
Autism spectrum disorders (ASDs) present unique challenges in the fields of genetics and neurobiology because of the clinical and molecular heterogeneity underlying these disorders. Genetic mutations found in ASD patients provide opportunities to dissect the molecular and circuit mechanisms underlying autistic behaviors using animal models. Ongoing studies of genetically modified models have offered critical insight into possible common mechanisms arising from different mutations, but links between molecular abnormalities and behavioral phenotypes remain elusive. The challenges encountered in modeling autism in mice demand a new analytic paradigm that integrates behavioral assessment with circuit-level analysis in genetically modified models with strong construct validity.
Collapse
|
14
|
Ali SM, Stephens PJ, Miller VA, Ross JS, Pal SK. Selective Response to Mammalian Target of Rapamycin Inhibition in a Patient with Metastatic Renal Cell Carcinoma Bearing TSC1 Mutation. Eur Urol 2015; 68:341-3. [DOI: 10.1016/j.eururo.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
|
15
|
A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules. Sci Rep 2015; 5:11061. [PMID: 26046460 PMCID: PMC4457145 DOI: 10.1038/srep11061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/11/2015] [Indexed: 11/08/2022] Open
Abstract
The accelerated discovery of disease-related genes emerging from genomic studies has strained the capacity of traditional genetically engineered mouse models (GEMMs) to provide in-vivo validation. Direct, somatic, genetic engineering approaches allow for accelerated and flexible genetic manipulation and represent an attractive alternative to GEMMs. In this study we investigated the feasibility, safety and efficiency of a minimally invasive, lentiviral based approach for the sustained in-vivo modification of renal tubular epithelial cells. Using ultrasound guidance, reporter vectors were directly injected into the mouse renal parenchyma. We observed transgene expression confined to the renal cortex (specifically proximal and distal tubules) and sustained beyond 2 months post injection. Furthermore, we demonstrate the ability of this methodology to induce long-term, in-vivo knockdown of candidate genes either through somatic recombination of floxed alleles or by direct delivery of specific shRNA sequences. This study demonstrates that ultrasound-guided injection of lentiviral vectors provides a safe and efficient method for the genetic manipulation of renal tubules, representing a quick and versatile alternative to GEMMs for the functional characterisation of disease-related genes.
Collapse
|
16
|
Xu K, Liu P, Wei W. mTOR signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1846:638-54. [PMID: 25450580 DOI: 10.1016/j.bbcan.2014.10.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 12/25/2022]
Abstract
mTOR (the mechanistic target of rapamycin) is an atypical serine/threonine kinase involved in regulating major cellular functions including growth and proliferation. Deregulation of the mTOR signaling pathway is one of the most commonly observed pathological alterations in human cancers. To this end, oncogenic activation of the mTOR signaling pathway contributes to cancer cell growth, proliferation and survival, highlighting the potential for targeting the oncogenic mTOR pathway members as an effective anti-cancer strategy. In order to do so, a thorough understanding of the physiological roles of key mTOR signaling pathway components and upstream regulators would guide future targeted therapies. Thus, in this review, we summarize available genetic mouse models for mTORC1 and mTORC2 components, as well as characterized mTOR upstream regulators and downstream targets, and assign a potential oncogenic or tumor suppressive role for each evaluated molecule. Together, our work will not only facilitate the current understanding of mTOR biology and possible future research directions, but more importantly, provide a molecular basis for targeted therapies aiming at key oncogenic members along the mTOR signaling pathway.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pengda Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
17
|
Renal tumours in a Tsc2+/− mouse model do not show feedback inhibition of Akt and are effectively prevented by rapamycin. Oncogene 2014; 34:922-31. [DOI: 10.1038/onc.2014.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 12/18/2022]
|
18
|
Yang OC, Maxwell PH, Pollard PJ. Renal cell carcinoma: translational aspects of metabolism and therapeutic consequences. Kidney Int 2013; 84:667-81. [DOI: 10.1038/ki.2013.245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 02/08/2023]
|
19
|
Won H, Mah W, Kim E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 2013; 6:19. [PMID: 23935565 PMCID: PMC3733014 DOI: 10.3389/fnmol.2013.00019] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/16/2013] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of developmental disabilities characterized by impairments in social interaction and communication and restricted and repetitive interests/behaviors. Advances in human genomics have identified a large number of genetic variations associated with ASD. These associations are being rapidly verified by a growing number of studies using a variety of approaches, including mouse genetics. These studies have also identified key mechanisms underlying the pathogenesis of ASD, many of which involve synaptic dysfunctions, and have investigated novel, mechanism-based therapeutic strategies. This review will try to integrate these three key aspects of ASD research: human genetics, animal models, and potential treatments. Continued efforts in this direction should ultimately reveal core mechanisms that account for a larger fraction of ASD cases and identify neural mechanisms associated with specific ASD symptoms, providing important clues to efficient ASD treatment.
Collapse
Affiliation(s)
- Hyejung Won
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| | - Won Mah
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| |
Collapse
|
20
|
Gilbert ER, Eby JM, Hammer AM, Klarquist J, Christensen DG, Barfuss AJ, Boissy RE, Picken MM, Love RB, Dilling DF, Le Poole IC. Positioning ganglioside D3 as an immunotherapeutic target in lymphangioleiomyomatosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:226-34. [PMID: 23665200 DOI: 10.1016/j.ajpath.2013.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/19/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
Tumors that develop in lymphangioleiomyomatosis (LAM) as a consequence of biallelic loss of TSC1 or TSC2 gene function express melanoma differentiation antigens. However, the percentage of LAM cells expressing these melanosomal antigens is limited. Here, we report the overexpression of ganglioside D3 (GD3) in LAM. GD3 is a tumor-associated antigen otherwise found in melanoma and neuroendocrine tumors; normal expression is largely restricted to neuronal cells in the brain. We also observed markedly reduced serum antibody titers to GD3, which may allow for a population of GD3-expressing LAM cells to expand within patients. This is supported by the demonstrated sensitivity of cultured LAM cells to complement mediated cytotoxicity via GD3 antibodies. GD3 can serve as a natural killer T (NKT) cell antigen when presented on CD1d molecules expressed on professional antigen-presenting cells. Although CD1d-expressing monocyte derivatives were present in situ, enhanced NKT-cell recruitment to LAM lung was not observed. Cultured LAM cells retained surface expression of GD3 over several passages and also expressed CD1d, implying that infiltrating NKT cells can be directly cytotoxic toward LAM lung lesions. Immunization with antibodies to GD3 may thus be therapeutic in LAM, and enhancement of existing NKT-cell infiltration may be effective to further improve antitumor responses. Overall, we hereby establish GD3 as a suitable target for immunotherapy of LAM.
Collapse
Affiliation(s)
- Emily R Gilbert
- Department of Medicine, Loyola University Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Basten SG, Giles RH. Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2013; 2:6. [PMID: 23628112 PMCID: PMC3662159 DOI: 10.1186/2046-2530-2-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/25/2013] [Indexed: 01/09/2023] Open
Abstract
Dysfunctional cilia underlie a broad range of cellular and tissue phenotypes and can eventually result in the development of ciliopathies: pathologically diverse diseases that range from clinically mild to highly complex and severe multi-organ failure syndromes incompatible with neonatal life. Given that virtually all cells of the human body have the capacity to generate cilia, it is likely that clinical manifestations attributed to ciliary dysfunction will increase in the years to come. Disputed but nevertheless enigmatic is the notion that at least a subset of tumor phenotypes fit within the ciliopathy disease spectrum and that cilia loss may be required for tumor progression. Contending for the centrosome renders ciliation and cell division mutually exclusive; a regulated tipping of balance promotes either process. The mechanisms involved, however, are complex. If the hypothesis that tumorigenesis results from dysfunctional cilia is true, then why do the classic ciliopathies only show limited hyperplasia at best? Although disassembly of the cilium is a prerequisite for cell proliferation, it does not intrinsically drive tumorigenesis per se. Alternatively, we will explore the emerging evidence suggesting that some tumors depend on ciliary signaling. After reviewing the structure, genesis and signaling of cilia, the various ciliopathy syndromes and their genetics, we discuss the current debate of tumorigenesis as a ciliopathy spectrum defect, and describe recent advances in this fascinating field.
Collapse
Affiliation(s)
- Sander G Basten
- Department of Medical Oncology, UMC Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, F03.223, 3584 CX, The Netherlands
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, F03.223, 3584 CX, The Netherlands
| |
Collapse
|
22
|
Basten SG, Willekers S, Vermaat JS, Slaats GG, Voest EE, van Diest PJ, Giles RH. Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue. Cilia 2013; 2:2. [PMID: 23369289 PMCID: PMC3564780 DOI: 10.1186/2046-2530-2-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/08/2013] [Indexed: 01/08/2023] Open
Abstract
Background Cilia are essential organelles in multiple organ systems, including the kidney where they serve as important regulators of renal homeostasis. Renal nephron cilia emanate from the apical membrane of epithelia, extending into the lumen where they function in flow-sensing and ligand-dependent signaling cascades. Ciliary dysfunction underlies renal cyst formation that is in part caused by deregulation of planar cell polarity and canonical Wnt signaling. Renal cancer pathologies occur sporadically or in heritable syndromes caused by germline mutations in tumor suppressor genes including VHL. Importantly, Von Hippel-Lindau (VHL) patients frequently develop complex renal cysts that can be considered a premalignant stage. One of the well-characterized molecular functions of VHL is its requirement for the maintenance of cilia. In this study, tissue from 110 renal cancer patients who underwent nephrectomy was analyzed to determine if lower ciliary frequency is a common hallmark of renal tumorigenesis by comparing cilia frequencies in both tumor and adjacent parenchymal tissue biopsies from the same kidney. Methods We stained sections of human renal material using markers for cilia. Preliminary staining was performed using an immunofluorescent approach and a combination of acetylated-α-tubulin and pericentrin antibodies and DAPI. After validation of an alternative, higher throughput approach using acetylated-α-tubulin immunohistochemistry, we continued to manually quantify cilia in all tissues. Nuclei were separately counted in an automated fashion in order to determine ciliary frequencies. Similar staining and scoring for Ki67 positive cells was performed to exclude that proliferation obscures cilia formation potential. Results Samples from renal cell carcinoma patients deposited in our hospital tissue bank were previously used to compose a tissue microarray containing three cores of both tumor and parenchymal tissue per patient. Cilia frequencies in a total of eighty-nine clear cell, eight papillary, five chromophobe renal cell carcinomas, two sarcomatoid renal tumors and six oncocytomas were determined. A marked decrease of primary cilia across renal cell carcinoma subtypes was observed compared to adjacent nontumorigenic tissue. Conclusions Our study shows that cilia are predominantly lost in renal cell carcinomas compared to tissue of the tumor parenchyma. These results suggest that ciliary loss is common in renal tumorigenesis, possibly participating in the sequence of cellular events leading to malignant tumor development. Future therapies aimed at restoring or circumventing cilia signaling might therefore aid in current treatment efficacy.
Collapse
Affiliation(s)
- Sander G Basten
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
23
|
Yang J, Kalogerou M, Gallacher J, Sampson JR, Shen MH. Renal tumours in a Tsc1+/- mouse model show epigenetic suppression of organic cation transporters Slc22a1, Slc22a2 and Slc22a3, and do not respond to metformin. Eur J Cancer 2012; 49:1479-90. [PMID: 23228442 DOI: 10.1016/j.ejca.2012.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022]
Abstract
Metformin, a substrate of several poly-specific organic cation transporters, is a widely used biguanide for the treatment of type II diabetes. Recent studies suggest that metformin attenuates mTORC1 signalling by the activation of 5' adenosine monophosphate-activated protein kinase (AMPK) in the presence or absence of a functional hamartin/tuberin (TSC1/TSC2) complex. Metformin has also been reported to inhibit mTORC1 independent of AMPK through p53-dependent regulated in development and DNA damage responses 1 (REDD1) or by inhibiting Rag GTPases. These observations suggest that metformin could have therapeutic potential for tuberous sclerosis, an inherited disorder characterised by the aberrant activation of mTORC1 and the development of tumours in many organs, including the kidneys. In this study, we investigated the effect of metformin on renal lesions in a Tsc1(+/-) mouse model of tuberous sclerosis. Continuous treatment of metformin for 9 months at doses of up to 600 mg/kg/day had no significant effect on renal lesions in nine treated mice compared to 10 controls. Metformin treatment appeared to attenuate mTORC1 signalling in Tsc1(+/-) kidney tissues but not in renal tumours. Surprisingly, the expression of the organic cation transporters Slc22a1, Slc22a2 and Slc22a3 essential for the cellular uptake of metformin was highly suppressed in renal tumours. Treatment of cultured cells derived from a Tsc1-associated renal tumour with 5-aza-2-deoxycytidine or trichostatin A greatly increased the expression of these genes. These data suggest that the epigenetic suppression of the organic cation transporters in Tsc-associated mouse renal tumours may contribute to the lack of response to metformin treatment.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | | | |
Collapse
|
24
|
Xiang X, Yuan F, Zhao J, Li Z, Wang X, Guan Y, Tang C, Sun G, Li Y, Zhang W. Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4-Cre-mediated knockout of the tuberous sclerosis complex 1 gene. Exp Physiol 2012; 98:830-41. [PMID: 23143994 PMCID: PMC3593000 DOI: 10.1113/expphysiol.2012.069674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
New findings Tuberous sclerosis complex 1 (TSC1) forms a heterodimmer with tuberous sclerosis complex 2, to inhibit signalling by the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). The mTORC1 stimulates cell growth by promoting anabolic cellular processes, such as gene transcription and protein translation, in response to growth factors and nutrient signals. Originally designed to test the role of TSC1 in adipocyte function, mice in which the gene for TSC1 was specifically deleted by the fatty acid binding protein 4 (FABP4)-Cre (Fabp4-Tsc1cKO mice) died prematurely within 48 h after birth. The Fabp4-Tsc1cKO mouse revealed a much smaller phenotype relative to the wild-type littermates. Maternal administration of rapamycin, a classical mTOR inhibitor, significantly increased the survival time of Fabp4-Tsc1cKO mice for up to 23 days. Both macroscopic and microscopic haemorrhages were observed in the lungs of Fabp4-Tsc1cKO mice, while other tissues showed no significant changes. Levels of surfactant proteins A and B demonstrated a significant decrease in the Fabp4-Tsc1cKO mice, which was rescued by maternal injection of rapamycin. Co-localization of FABP4 or TSC1 with surfactant protein B was also detected in neonatal pulmonary tissues. Our study suggests that TSC1–mTORC1 may be critical for the synthesis of surfactant proteins A and B.
Collapse
Affiliation(s)
- Xinxin Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Krymskaya VP. Treatment option(s) for pulmonary lymphangioleiomyomatosis: progress and current challenges. Am J Respir Cell Mol Biol 2012; 46:563-5. [PMID: 22550272 DOI: 10.1165/rcmb.2011-0381ed] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Impaired social interactions and motor learning skills in tuberous sclerosis complex model mice expressing a dominant/negative form of tuberin. Neurobiol Dis 2011; 45:156-64. [PMID: 21827857 DOI: 10.1016/j.nbd.2011.07.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/23/2011] [Accepted: 07/23/2011] [Indexed: 11/20/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder characterized by the development of hamartomas in multiple organs. Neurological manifestation includes cortical dysplasia, epilepsy, and cognitive deficits such as mental impairment and autism. We measured the impact of TSC2-GAP mutations on cognitive processes and behavior in, ΔRG transgenic mice that express a dominant/negative TSC2 that binds to TSC1, but has mutations affecting its GAP domain and its rabaptin-5 binding motif, resulting in inactivation of the TSC1/2 complex. We performed a behavioral characterization of the ΔRG transgenic mice and found that they display mild, but significant impairments in social behavior and rotarod motor learning. These findings suggest that the ΔRG transgenic mice recapitulate some behavioral abnormalities observed in human TSC patients.
Collapse
|
27
|
Kalogerou M, Zhang Y, Yang J, Garrahan N, Paisey S, Tokarczuk P, Stewart A, Gallacher J, Sampson JR, Shen MH. T2 weighted MRI for assessing renal lesions in transgenic mouse models of tuberous sclerosis. Eur J Radiol 2011; 81:2069-74. [PMID: 21802234 DOI: 10.1016/j.ejrad.2011.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Transgenic mouse models of tuberous sclerosis (TSC) develop renal cysts, cystadenomas, solid adenomas and carcinomas. Identification and characterisation of these lesions in vivo may help in TSC pre-clinical trials. This study was to evaluate T2 weighted MRI for assessment of renal lesions in two Tsc mouse models. MATERIALS AND METHODS Tsc1(+/-), Tsc2(+/-) and wild type mice were subjected to a first MRI scan at 12 months of age and a second scan 2 months later. One Tsc2(+/-) mouse was treated with rapamycin for two months after the initial scan. Immediately following the second scan, mice were sacrificed and MRI images were compared to renal histological findings. RESULTS MRI identified all types of Tsc-associated renal lesions in both Tsc1(+/-) and Tsc2(+/-) mice. The smallest detectable lesions were <0.1 mm(3). Eighty three percent of all renal lesions detected in the first scan were re-identified in the second scan. By MRI, these lesions demonstrated significant growth in the 9 untreated Tsc1(+/-) and Tsc2(+/-) mice but shrinkage in the rapamycin treated Tsc2(+/-) mouse. Between the two scans, MRI also revealed significant increase in both the total number and volume of lesions in untreated mice and decrease in the rapamycin treated mouse, respectively. In comparison to histological analysis MRI detected most cysts and cystadenomas (66%) but only a minority of solid tumours (29%). CONCLUSION These results suggest that T2 weighted MRI may be a useful tool for assessing some renal lesions in pre-clinical studies using Tsc mouse models. However, improved sensitivity for T2 weighted MRI is required, particularly for solid renal lesions.
Collapse
Affiliation(s)
- Maria Kalogerou
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Targeting the dysregulated mammalian target of rapamycin pathway in organ transplantation: killing 2 birds with 1 stone. Transplant Rev (Orlando) 2011; 25:145-53. [PMID: 21419611 DOI: 10.1016/j.trre.2010.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/26/2010] [Indexed: 01/09/2023]
Abstract
Dysregulation and hyperactivation of the mammalian target of rapamycin (mTOR) pathway define the molecular basis of the hamartoma syndromes, including Cowden syndrome, tuberous sclerosis complex (TSC)/lymphangioleiomyomatosis, and Peutz-Jeghers syndrome. Loss of the tumor suppressors phosphatase and tensin homolog (PTEN), TSC1, TSC2, and LKB1 results in uncontrolled growth of usually benign tumors in various organs that, however, frequently lead to organ failure. Therefore, organ transplantation is a common therapeutic option in distinct patients with hamartoma syndromes, especially those with TSC/lymphangioleiomyomatosis. mTOR inhibitors are currently used in allogeneic transplantation as immunosuppressants and for the treatment of a growing number of cancers with dysregulated mTOR/phosphoinositide 3-kinase pathway. This dual targeting provides the unique opportunity for mTOR inhibitors to affect hamartoma syndromes at the molecular level along with potent immunosuppression in transplanted individuals. Here, we review the molecular mechanisms of hamartoma syndromes and discuss the recent clinical progress in transplant patients with hamartomas. Combining the identification of novel molecular targets of the phosphoinositide 3-kinase/mTOR pathway with insights into the clinical effectiveness of current therapeutic strategies sets the stage for a broader translational potential essential for further progress both in the treatment of cancer and for transplantation.
Collapse
|
29
|
Bernardi R, Papa A, Egia A, Coltella N, Teruya-Feldstein J, Signoretti S, Pandolfi PP. Pml represses tumour progression through inhibition of mTOR. EMBO Mol Med 2011; 3:249-57. [PMID: 21387562 PMCID: PMC3123467 DOI: 10.1002/emmm.201100130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 02/08/2011] [Accepted: 02/10/2011] [Indexed: 11/08/2022] Open
Abstract
The promyelocytic leukaemia gene PML is a pleiotropic tumour suppressor. We have recently demonstrated that PML opposes mTOR-HIF1α-VEGF signalling in hypoxia. To determine the relevance of PML-mTOR antagonism in tumourigenesis, we have intercrossed Pml null mice with Tsc2 heterozygous mice, which develop kidney cysts and carcinomas exhibiting mTOR upregulation. We find that combined inactivation of Pml and Tsc2 results in aberrant TORC1 activity both in pre-tumoural kidneys as well as in kidney lesions. Such increase correlates with a marked acceleration in tumour progression, impacting on both the biology and histology of kidney carcinomas. Also, Pml inactivation decreases the rate of loss of heterozygosity (LOH) for the wt Tsc2 allele. Interestingly, however, aberrant TORC1 activity does not accelerate renal cystogenesis in Tsc2/Pml mutants. Our data demonstrate that activation of mTOR is critical for tumour progression, but not for tumour initiation in the kidney.
Collapse
Affiliation(s)
- Rosa Bernardi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Division of Genetics, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Ras homolog enriched in brain (Rheb) couples growth factor signaling to activation of the target of rapamycin complex 1 (TORC1). To study its role in mammals, we generated a Rheb knockout mouse. In contrast to mTOR or regulatory-associated protein of mTOR (Raptor) mutants, the inner cell mass of Rheb(-/-) embryos differentiated normally. Nevertheless, Rheb(-/-) embryos died around midgestation, most likely due to impaired development of the cardiovascular system. Rheb(-/-) embryonic fibroblasts showed decreased TORC1 activity, were smaller, and showed impaired proliferation. Rheb heterozygosity extended the life span of tuberous sclerosis complex 1-deficient (Tsc1(-/-)) embryos, indicating that there is a genetic interaction between the Tsc1 and Rheb genes in mouse.
Collapse
|
31
|
Scott CL, Walker DJ, Cwiklinski E, Tait C, Tee AR, Land SC. Control of HIF-1{alpha} and vascular signaling in fetal lung involves cross talk between mTORC1 and the FGF-10/FGFR2b/Spry2 airway branching periodicity clock. Am J Physiol Lung Cell Mol Physiol 2010; 299:L455-71. [PMID: 20622121 PMCID: PMC2957420 DOI: 10.1152/ajplung.00348.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung development requires coordinated signaling between airway and vascular growth, but the link between these processes remains unclear. Mammalian target of rapamycin complex-1 (mTORC1) can amplify hypoxia-inducible factor-1α (HIF-1α) vasculogenic activity through an NH(2)-terminal mTOR binding (TOS) motif. We hypothesized that this mechanism coordinates vasculogenesis with the fibroblast growth factor (FGF)-10/FGF-receptor2b/Spry2 regulator of airway branching. First, we tested if the HIF-1α TOS motif participated in epithelial-mesenchymal vascular signaling. mTORC1 activation by insulin significantly amplified HIF-1α activity at fetal Po(2) (23 mmHg) in human bronchial epithelium (16HBE14o-) and induced vascular traits (Flk1, sprouting) in cocultured human embryonic lung mesenchyme (HEL-12469). This enhanced activation of HIF-1α by mTORC1 was abolished on expression of a HIF-1α (F99A) TOS-mutant and also suppressed vascular differentiation of HEL-12469 cocultures. Next, we determined if vasculogenesis in fetal lung involved regulation of mTORC1 by the FGF-10/FGFR2b/Spry2 pathway. Fetal airway epithelium displayed distinct mTORC1 activity in situ, and its hyperactivation by TSC1(-/-) knockout induced widespread VEGF expression and disaggregation of Tie2-positive vascular bundles. FGF-10-coated beads grafted into fetal lung explants from Tie2-LacZ transgenic mice induced localized vascular differentiation in the peripheral mesenchyme. In rat fetal distal lung epithelial (FDLE) cells cultured at fetal Po(2), FGF-10 induced mTORC1 and amplified HIF-1α activity and VEGF secretion without induction of ERK1/2. This was accompanied by the formation of a complex between Spry2, the cCBL ubiquitin ligase, and the mTOR repressor, TSC2, which abolished GTPase activity directed against Rheb, the G protein inducer of mTORC1. Thus, mTORC1 links HIF-1α-driven vasculogenesis with the FGF-10/FGFR2b/Spry2 airway branching periodicity regulator.
Collapse
Affiliation(s)
- C L Scott
- Centre for Cardiovascular and Lung Biology, Ninewells Hospital, Univ. of Dundee, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Kwiatkowski DJ. Animal models of lymphangioleiomyomatosis (LAM) and tuberous sclerosis complex (TSC). Lymphat Res Biol 2010; 8:51-7. [PMID: 20235887 DOI: 10.1089/lrb.2009.0013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal models of lymphangioleiomyomatosis (LAM) and tuberous sclerosis complex (TSC) are highly desired to enable detailed investigation of the pathogenesis of these diseases. Multiple rats and mice have been generated in which a mutation similar to that occurring in TSC patients is present in an allele of Tsc1 or Tsc2. Unfortunately, these mice do not develop pathologic lesions that match those seen in LAM or TSC. However, these Tsc rodent models have been useful in confirming the two-hit model of tumor development in TSC, and in providing systems in which therapeutic trials (e.g., rapamycin) can be performed. In addition, conditional alleles of both Tsc1 and Tsc2 have provided the opportunity to target loss of these genes to specific tissues and organs, to probe the in vivo function of these genes, and attempt to generate better models. Efforts to generate an authentic LAM model are impeded by a lack of understanding of the cell of origin of this process. However, ongoing studies provide hope that such a model will be generated in the coming years.
Collapse
Affiliation(s)
- David J Kwiatkowski
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
33
|
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that results from mutations in the TSC1 or TSC2 genes and is associated with hamartoma formation in multiple organ systems. The neurological manifestations of TSC are particularly challenging and include infantile spasms, intractable epilepsy, cognitive disabilities, and autism. Progress over the past 15 years has demonstrated that the TSC1 or TSC2 encoded proteins modulate cell function via the mTOR signaling cascade and serve as keystones in regulating cell growth and proliferation. The mTOR pathway provides an intersection for an intricate network of protein cascades that respond to cellular nutrition, energy levels, and growth-factor stimulation. In the brain, TSC1 and TSC2 have been implicated in cell body size, dendritic arborization, axonal outgrowth and targeting, neuronal migration, cortical lamination, and spine formation. Antagonism of the mTOR pathway with rapamycin and related compounds may provide new therapeutic options for TSC patients.
Collapse
Affiliation(s)
- Ksenia A Orlova
- Departments of Neurology and Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
34
|
Abstract
Cystic kidney diseases are characterized by dilated or cystic kidney tubular segments. Changes in planar cell polarity, flow sensing, and/or proliferation have been proposed to explain these disorders. Over the last few years, several groups have suggested that ciliary dysfunction is a central component of cyst formation. We review evidence for and against each of these models, stressing some of the inconsistencies that should be resolved if an accurate understanding of cyst formation is to be achieved. We also comment on data supporting a model in which ciliary function could play different roles at different developmental stages and on the relevance of dissecting potential differences between pathways required for tubule formation and/or maintenance.
Collapse
Affiliation(s)
- Luis F Menezes
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
35
|
Zhou J, Brugarolas J, Parada LF. Loss of Tsc1, but not Pten, in renal tubular cells causes polycystic kidney disease by activating mTORC1. Hum Mol Genet 2009; 18:4428-41. [PMID: 19692352 DOI: 10.1093/hmg/ddp398] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder linked to mutations of either the TSC1 or TSC2 gene, which encode proteins that form a complex to negatively regulate mammalian target of rapamycin complex 1 (mTORC1). Clinically, a small percentage of TSC patients develop severe infantile polycystic kidney disease (PKD), which is believed to be caused by deletion of the contiguous TSC2 and PKD1 genes on human chromosome 16. Recent studies have implicated the TSC/mTORC1 signaling pathway in PKD, but how dysfunction of the TSC/mTORC1 pathway induces PKD is not clear. We report a PKD mouse model created by knocking out Tsc1 in a subset of renal tubular cells. Extensive renal cyst formation in these mice is accompanied by broadly elevated mTORC1 activity in both cell autonomous and non-cell autonomous compartments. Furthermore, cyst development requires mTORC1 activation, as low dosage of rapamycin administration effectively blocks cyst formation. Interestingly, disruption of Pten, an upstream regulator of TSC1/TSC2, in the same cells, does not lead to PKD seemingly due to limited activation of mTORC1, suggesting that PTEN may not be a major upstream regulator of TSC/mTORC1 during early postnatal kidney development.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | | | | |
Collapse
|
36
|
Schreiner A, Daneshmand S, Bayne A, Countryman G, Corless CL, Troxell ML. Distinctive morphology of renal cell carcinomas in tuberous sclerosis. Int J Surg Pathol 2009; 18:409-18. [PMID: 19403547 DOI: 10.1177/1066896909333510] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tuberous sclerosis complex results from mutations in 1 of 2 interacting gene products, hamartin or tuberin. The syndrome is characterized by hamartomas and neoplastic lesions, including angiomyolipomas of the kidney and other organs. Renal cell carcinoma (RCC) in tuberous sclerosis remains relatively poorly characterized because historical studies were confounded by the inclusion of epithelioid angiomyolipomas. The authors present a patient with tuberous sclerosis and bilateral renal lesions, including multiple minute angiomyolipomas, cortical cysts, and 4 separate RCCs of unclassified type. The carcinomas shared distinctive morphological features, including sheet-like, glandular, trabecular, or cystic architecture and abundant granular eosinophilic cytoplasm. By definition, the carcinomas were keratin positive and negative for HMB-45 and Melan-A. Detailed immunohistochemical analysis revealed heterogeneity among the cortical cysts and carcinomas. The histopathological features of these carcinomas illustrate characteristics of renal carcinoma that are probably related to genetic alterations of tuberous sclerosis.
Collapse
Affiliation(s)
- Andrew Schreiner
- Department of Pathology, Division of Urology & Renal Transplantation, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
37
|
Pollizzi K, Malinowska-Kolodziej I, Doughty C, Betz C, Ma J, Goto J, Kwiatkowski DJ. A hypomorphic allele of Tsc2 highlights the role of TSC1/TSC2 in signaling to AKT and models mild human TSC2 alleles. Hum Mol Genet 2009; 18:2378-87. [PMID: 19357198 DOI: 10.1093/hmg/ddp176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome in which hamartomas develop in multiple organ systems. Knockout and conditional alleles of Tsc1 and Tsc2 have been previously reported. Here, we describe the generation of a novel hypomorphic allele of Tsc2 (del3), in which exon 3, encoding 37 amino acids near the N terminus of tuberin, is deleted. Embryos homozygous for the del3 allele survive until E13.5, 2 days longer than Tsc2 null embryos. Embryos die from underdevelopment of the liver, deficient hematopoiesis, aberrant vascular development and hemorrhage. Mice that are heterozygous for the del3 allele have a markedly reduced kidney tumor burden in comparison with conventional Tsc2(+/-) mice. Murine embryo fibroblast (MEF) cultures that are homozygous for the del3 allele express mutant tuberin at low levels, and show enhanced activation of mTORC1, similar to Tsc2 null MEFs. Furthermore, the mutant cells show prominent reduction in the activation of AKT. Similar findings were made in the analysis of homozygous del3 embryo lysates. Tsc2-del3 demonstrates GTPase activating protein activity comparable to that of wild-type Tsc2 in a functional assay. These findings indicate that the del3 allele is a hypomorphic allele of Tsc2 with partial function due to reduced expression, and highlight the consistency of AKT downregulation when Tsc1/Tsc2 function is reduced. Tsc2-del3 mice also serve as a model for hypomorphic TSC2 missense mutations reported in TSC patients.
Collapse
Affiliation(s)
- Kristen Pollizzi
- Translational Medicine Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Bonnet CS, Aldred M, von Ruhland C, Harris R, Sandford R, Cheadle JP. Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum Mol Genet 2009; 18:2166-76. [PMID: 19321600 DOI: 10.1093/hmg/ddp149] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical trials are underway for the treatment of tuberous sclerosis (TSC)-associated tumours using mTOR inhibitors. Here, we show that many of the earliest renal lesions from Tsc1+/- and Tsc2+/- mice do not exhibit mTOR activation, suggesting that pharmacological targeting of an alternative pathway may be necessary to prevent tumour formation. Patients with TSC often develop renal cysts and those with inherited co-deletions of the autosomal dominant polycystic kidney disease (ADPKD) 1 gene (PKD1) develop severe, early onset, polycystic kidneys. Using mouse models, we showed a genetic interaction between Tsc1 and Tsc2 with Pkd1 and confirmed an mTOR-independent pathway of renal cystogenesis. We observed that the Tsc and Pkd1 gene products helped regulate primary cilia length and, consistent with the function of this organelle in modulating cell polarity, found that many dividing pre-cystic renal tubule and hepatic bile duct cells from Tsc1, Tsc2 and Pkd1 heterozygous mice were highly misoriented. We therefore propose that defects in cell polarity underlie TSC and ADPKD-associated cystic disease and targeting of this pathway may be of key therapeutic benefit.
Collapse
Affiliation(s)
- Cleo S Bonnet
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Failure in the regulation of mTOR (mammalian target of rapamycin) appears to be critical to the pathogenesis of the inherited disorder tuberous sclerosis and the related lung disease LAM (lymphangioleiomyomatosis). Both diseases are caused by mutations of TSC1 or TSC2 (TSC is tuberous sclerosis complex) that impair GAP (GTPase-activating protein) activity of the TSC1–TSC2 complex for Rheb, leading to inappropriate activity of signalling downstream of mTORC1 (mTOR complex 1). mTOR inhibitors are already used in a variety of clinical settings including as immunosuppressants, anticancer agents and antiproliferative agents in drug-eluting coronary artery stents. They also represent candidate therapies directed to the underlying molecular pathology in tuberous sclerosis and LAM. Phase I/II clinical trials of the mTORC1 inhibitor rapamycin have demonstrated reduction in size of tuberous-sclerosis- and LAM-associated renal tumours (angiomyolipomas) and some evidence for reversible improvement in lung function in patients with LAM. A case series of tuberous-sclerosis-associated brain tumours were also reported to shrink during rapamycin therapy. An important, although variable, feature of the tuberous sclerosis phenotype is learning difficulty. Recent studies in mouse models carrying heterozygous Tsc2 mutations demonstrated improvement in memory and learning deficits following treatment with rapamycin. These promising pre-clinical and early human trials are being followed by larger-scale randomized control trials of mTOR inhibitors for treatment of renal, lung and brain manifestations of TSC1- and TSC2-associated disease.
Collapse
|
40
|
Way SW, McKenna J, Mietzsch U, Reith RM, Wu HCJ, Gambello MJ. Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet 2009; 18:1252-65. [PMID: 19150975 PMCID: PMC2655769 DOI: 10.1093/hmg/ddp025] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant, tumor predisposition disorder characterized by significant neurodevelopmental brain lesions, such as tubers and subependymal nodules. The neuropathology of TSC is often associated with seizures and intellectual disability. To learn about the developmental perturbations that lead to these brain lesions, we created a mouse model that selectively deletes the Tsc2 gene from radial glial progenitor cells in the developing cerebral cortex and hippocampus. These Tsc2 mutant mice were severely runted, developed post-natal megalencephaly and died between 3 and 4 weeks of age. Analysis of brain pathology demonstrated cortical and hippocampal lamination defects, hippocampal heterotopias, enlarged dysplastic neurons and glia, abnormal myelination and an astrocytosis. These histologic abnormalities were accompanied by activation of the mTORC1 pathway as assessed by increased phosphorylated S6 in brain lysates and tissue sections. Developmental analysis demonstrated that loss of Tsc2 increased the subventricular Tbr2-positive basal cell progenitor pool at the expense of early born Tbr1-positive post-mitotic neurons. These results establish the novel concept that loss of function of Tsc2 in radial glial progenitors is one initiating event in the development of TSC brain lesions as well as underscore the importance of Tsc2 in the regulation of neural progenitor pools. Given the similarities between the mouse and the human TSC lesions, this model will be useful in further understanding TSC brain pathophysiology, testing potential therapies and identifying other genetic pathways that are altered in TSC.
Collapse
Affiliation(s)
- Sharon W Way
- Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
41
|
Goorden SMI, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y. Cognitive deficits in Tsc1+/- mice in the absence of cerebral lesions and seizures. Ann Neurol 2008; 62:648-55. [PMID: 18067135 DOI: 10.1002/ana.21317] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is characterized by brain lesions, epilepsy, increased incidence of mental retardation and autism. The causal link between lesion load and epilepsy on cognitive disabilities has been debated, and these factors explain only part of the intelligence quotient variability. A Tsc2 rat model of the disease provided evidence that the TSC genes are directly involved in neuronal function. However, these lesion- and epilepsy-free animals did not show learning deficits, leaving open the possibility that the presence of brain lesions or epilepsy is a prerequisite for the cognitive deficits to fully develop. Here, we reinvestigated the relation among cerebral lesions, epilepsy, and cognitive function using Tsc1+/- mice. METHODS We used immunocytochemistry and high-resolution magnetic resonance imaging to study the presence of neuronal pathology in Tsc1+/- mice. We used the Morris water maze, fear conditioning, social interaction, and nest building test to study the presence of cognitive and social deficits. RESULTS We observed no spontaneous seizures or cerebral lesions in the brains of Tsc1+/- mice. In addition, giant dysmorphic cells were absent, and spine number and dendritic branching appeared to be normal. Nevertheless, Tsc1+/- mice showed impaired learning in the hippocampus-sensitive versions of the learning tasks and impaired social behavior. INTERPRETATION Tsc1+/- mice show social and cognitive deficits in the absence of apparent cerebral pathology and spontaneous seizures. These findings support a model in which haploinsufficiency for the TSC genes leads to aberrations in neuronal functioning resulting in impaired learning and social behavior.
Collapse
Affiliation(s)
- Susanna M I Goorden
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Wilson C, Bonnet C, Guy C, Idziaszczyk S, Colley J, Humphreys V, Maynard J, Sampson JR, Cheadle JP. Tsc1 haploinsufficiency without mammalian target of rapamycin activation is sufficient for renal cyst formation in Tsc1+/- mice. Cancer Res 2007; 66:7934-8. [PMID: 16912167 DOI: 10.1158/0008-5472.can-06-1740] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in either the TSC1 or TSC2 gene. Both genes are generally considered to act as tumor suppressors that fulfill Knudson's "two-hit hypothesis" and that function within the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin (mTOR) pathway. We previously generated Tsc1(+/-) mice that are predisposed to renal cysts, which develop into cystadenomas and renal cell carcinomas. Here, we identified somatic Tsc1 mutations (second hits) in approximately 80% of cystadenomas and renal cell carcinomas, but only 31.6% of cysts from Tsc1(+/-) mice (P < 0.0003), raising the possibility that haploinsufficiency for Tsc1 plays a role in cyst formation. Consistent with this proposal, many cysts showed little or no staining for phosphorylated mTOR (53%) and phosphorylated S6 ribosomal protein (37%), whereas >90% of cystadenomas and renal cell carcinomas showed strong staining for both markers (P < 0.0005). We also sought somatic mutations in renal lesions from Tsc1(+/-) Blm(-/-) mice that have a high frequency of somatic loss of heterozygosity, thereby facilitating the detection of second hits. We also found significantly less somatic mutations in cysts as compared with cystadenomas and renal cell carcinomas from these mice (P = 0.017). Our data indicate that although activation of the mTOR pathway is an important step in Tsc-associated renal tumorigenesis, it may not be the key initiating event in this process.
Collapse
Affiliation(s)
- Catherine Wilson
- Department of Medical Genetics, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Harris MJ, Juriloff DM. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. ACTA ACUST UNITED AC 2007; 79:187-210. [PMID: 17177317 DOI: 10.1002/bdra.20333] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
44
|
Hernandez O, Way S, McKenna J, Gambello MJ. Generation of a conditional disruption of the Tsc2 gene. Genesis 2007; 45:101-6. [PMID: 17245776 DOI: 10.1002/dvg.20271] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in the TSC1 or TSC2 gene. Patients afflicted with TSC develop tumors in various organ systems, but cerebral pathology is particularly severe. Conventional gene disruption of the Tsc1 or Tsc2 gene in mice cause limited central nervous system pathology. Homozygous deletion of either gene causes midgestation lethality. To circumvent the homozygous lethality of the conventional Tsc2 knockout we have generated a conditional allele of the Tsc2 gene by homologous recombination in mouse ES cells. The homozygous Tsc2(flox/flox) mice are identical to wildtype in many organs typically affected by TSC, especially the brain. Using this Tsc2(flox) allele we have generated a null allele using Cre recombination. This allele will be useful in investigating TSC pathology with appropriate cell and organ specific Cre-transgenic mice.
Collapse
Affiliation(s)
- Omar Hernandez
- Department of Pediatrics, Division of Medical Genetics, University of Texas Health Science Center, Houston 77030, USA
| | | | | | | |
Collapse
|
45
|
Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, Qi Z, Ponniah S, Hong W, Hunziker W. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A 2007; 104:1631-6. [PMID: 17251353 PMCID: PMC1785239 DOI: 10.1073/pnas.0605266104] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Wwtr1 is a widely expressed 14-3-3-binding protein that regulates the activity of several transcription factors involved in development and disease. To elucidate the physiological role of Wwtr1, we generated Wwtr1-/- mice by homologous recombination. Surprisingly, although Wwtr1 is known to regulate the activity of Cbfa1, a transcription factor important for bone development, Wwtr1-/- mice show only minor skeletal defects. However, Wwtr1-/- animals present with renal cysts that lead to end-stage renal disease. Cysts predominantly originate from the dilation of Bowman's spaces and atrophy of glomerular tufts, reminiscent of glomerulocystic kidney disease in humans. A smaller fraction of cysts is derived from tubules, in particular the collecting duct (CD). The corticomedullary accumulation of cysts also shows similarities with nephronophthisis. Cells lining the cysts carry fewer and shorter cilia and the expression of several genes associated with glomerulocystic kidney disease (Ofd1 and Tsc1) or encoding proteins involved in cilia structure and/or function (Tg737, Kif3a, and Dctn5) is decreased in Wwtr1-/- kidneys. The loss of cilia integrity and the down-regulation of Dctn5, Kif3a, Pkhd1 and Ofd1 mRNA expression can be recapitulated in a renal CD epithelial cell line, mIMCD3, by reducing Wwtr1 protein levels using siRNA. Thus, Wwtr1 is critical for the integrity of renal cilia and its absence in mice leads to the development of renal cysts, indicating that Wwtr1 may represent a candidate gene for polycystic kidney disease in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Guo
- Histology Unit, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Republic of Singapore 138673
| | - Zeng Qi
- Histology Unit, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Republic of Singapore 138673
| | | | | | - Walter Hunziker
- *Epithelial Cell Biology Laboratory
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Moy SS, Nadler JJ, Magnuson TR, Crawley JN. Mouse models of autism spectrum disorders: The challenge for behavioral genetics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 142C:40-51. [PMID: 16419099 DOI: 10.1002/ajmg.c.30081] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autism is a severe neurodevelopmental disorder, which typically emerges early in childhood. The core symptoms of autism include deficits in social interaction, impaired communication, and aberrant repetitive behavior, including self-injury. Despite the strong genetic component for the disease, most cases of autism have not been linked to mutations in a specific gene, and the etiology of the disorder has yet to be established. At the present time, there is no generally accepted therapeutic strategy to treat the core symptoms of autism, and there remains a critical need for appropriate animal models and relevant behavioral assays to promote the understanding and treatment of the clinical syndrome. Challenges for the development of valid mouse models include complex genetic interactions underlying the high heritability of the disease in humans, diagnosis based on deficits in social interaction and communication, and the lack of confirmatory neuropathological markers to provide validation for genetic models of the disorder. Research focusing on genes that mediate social behavior in mice may help identify neural circuitry essential for normal social interaction, and lead to novel genetic animal models of the autism behavioral phenotype.
Collapse
Affiliation(s)
- Sheryl S Moy
- Neurodevelopmental Disorders Research Center, CB #7146, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
47
|
Wilson C, Idziaszczyk S, Colley J, Humphreys V, Guy C, Maynard J, Sampson JR, Cheadle JP. Induction of renal tumorigenesis with elevated levels of somatic loss of heterozygosity in Tsc1+/- mice on a Blm-deficient background. Cancer Res 2006; 65:10179-82. [PMID: 16288003 DOI: 10.1158/0008-5472.can-05-2688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A Bloom's deficient mouse model (Blm(m3/m3)) has been shown to induce colorectal tumorigenesis when crossed with Apc+/Min mice. Here, we investigated whether the Blm(m3/m3) genotype could induce tumorigenesis in extracolonic tissues in tuberous sclerosis 1-deficient (Tsc1+/-) mice that are predisposed to renal cystadenomas and carcinomas. Genotyping of offspring from Tsc1+/- Blm+/m3 intercrosses showed that a approximately 24% excess of Tsc1+/- over Tsc1+/+ mice died before weaning (P = 0.016), although Blm deficiency had no cumulative effect on Tsc1+/- survival. Tsc1+/- Blm(m3/m3) mice had significantly more macroscopic and microscopic renal lesions at 3 to 6 months compared with Tsc1+/- Blm+/m3 mice (P =0.0003 and 0.0203, respectively), and their tumors showed significantly increased levels of somatic loss of heterozygosity (LOH) of the wild-type Tsc1 (Tsc1wt) allele compared with those from Tsc1+/- Blm+/+ mice (P < 0.0001). Tsc1+/- Blm+/m3 mice did not show significantly more renal lesions compared with Tsc1+/- Blm+/+ animals; however, their lesions still showed significantly increased levels of somatic LOH of the Tsc1wt allele (P = 0.03). Ninety-five percent (19 of 20) of lesions from Tsc1+/- Blm+/m3 mice retained the wild-type Blm (Blm(wt)) allele, indicating that the increased somatic LOH at Tsc1 was mediated by Blm haploinsufficiency. Renal lesions from a Blm-deficient background stained positively with anti-phospho-S6 ribosomal protein (Ser240/244), suggesting that these lesions develop through the normal pathway of Tsc-associated tumorigenesis. This work shows the use of the Blm(m3/m3) mice for inducing renal tumorigenesis, and the high levels (approximately 87%) of LOH in the resultant tumors will help facilitate mapping of loci involved in tumor progression.
Collapse
Affiliation(s)
- Catherine Wilson
- Department of Medical Genetics, Cardiff University, Heath Park, Cardiff, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Goncharova EA, Goncharov DA, Lim PN, Noonan D, Krymskaya VP. Modulation of cell migration and invasiveness by tumor suppressor TSC2 in lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2005; 34:473-80. [PMID: 16388022 PMCID: PMC2644208 DOI: 10.1165/rcmb.2005-0374oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The loss of TSC2 function is associated with the pathobiology of lymphangioleiomyomatosis (LAM), which is characterized by the abnormal proliferation, migration, and differentiation of smooth muscle-like cells within the lungs. Although the etiology of LAM remains unknown, clinical and genetic evidence provides support for the neoplastic nature of LAM. The goal of this study was to determine the role of tumor suppressor TSC2 in the neoplastic potential of LAM cells. We show that primary cultures of human LAM cells exhibit increased migratory activity and invasiveness, which is abolished by TSC2 re-expression. We found that TSC2 also inhibits cell migration through its N-terminus, independent of its GTPase-activating protein activity. LAM cells show increased stress fiber and focal adhesion formation, which is attenuated by TSC2 re-expression. The small GTPase RhoA is activated in LAM cells compared with normal human mesenchymal cells. Pharmacologic inhibition of Rho activity abrogates LAM cell migration; RhoA activity was also abolished by TSC2 re-expression or TSC1 knockdown with specific siRNA. These data demonstrate that TSC2 controls cell migration through its N-terminus by associating with TSC1 and regulating RhoA activity, suggesting that TSC2 may play a critical role in modulating cell migration and invasiveness, which contributes to the pathobiology of LAM.
Collapse
Affiliation(s)
- Elena A Goncharova
- Department of Medicine, University of Pennsylvania, BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|