1
|
Galvão GDF, Trefilio LM, Salvio AL, da Silva EV, Alves-Leon SV, Fontes-Dantas FL, de Souza JM. Comprehensive analysis of Novel mutations in CCM1/KRIT1 and CCM2/MGC4607 and their clinical implications in Cerebral Cavernous malformations. J Stroke Cerebrovasc Dis 2024; 33:107947. [PMID: 39181174 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Cerebral Cavernous Malformations (CCM) is a genetic disease characterized by vascular abnormalities in the brain and spinal cord, affecting 0.4-0.5 % of the population. We identified two novel pathogenic mutations, CCM1/KRIT1 c.811delT (p.Trp271GlyfsTer5) and CCM2/MGC4607 c.613_614insGG p.Glu205GlyfsTer31), which disrupt crucial protein domains and potentially alter disease progression. OBJECTIVE The study aims to comprehensively analyze a Brazilian cohort of CCM patients, integrating genetic, clinical, and structural aspects. Specifically, we sought to identify novel mutations within the CCM complex, and explore their potential impact on disease progression. METHODS We conducted a detailed examination of neuroradiological and clinical features in both symptomatic and asymptomatic CCM patients, performing genetic analyses through sequencing of the CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 genes In silico structural predictions were carried out using PolyPhen-2, SIFT, and Human Genomics Community tools. Protein-protein interactions and docking analyses were explored using the STRING database. RESULTS Genetic analysis identifies 6 pathogenic mutations, 4 likely pathogenic, 1 variants of uncertain significance, and 7 unclassified mutations, including the novel mutations in CCM1 c.811delT and CCM2 c.613_614insGG. In silico structural analysis revealed significant alterations in protein structure, supporting their pathogenicity. Protein-protein interaction analysis indicated nuanced impacts on cellular processes. Clinically, we observed a broad spectrum of symptoms, including seizures and focal neurological deficits. However, no statistically significant differences were found in lesion burden, age of first symptom onset, or sex between the identified CCM1/KRIT1 and CCM2/MGC4607 mutations among all patients studied. CONCLUSION This study enhances the understanding of CCM by linking clinical variability, genetic mutations, and structural effects. The identification of these novel mutations opens new avenues for research and potential therapeutic strategies.
Collapse
Affiliation(s)
- Gustavo da Fontoura Galvão
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurocirurgia, Rio de Janeiro RJ, Brasil
| | - Luisa Menezes Trefilio
- Universidade Estadual do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Farmacologia e Psicobiologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Estado do Rio de Janeiro, Instituto Biomédico, Rio de Janeiro RJ, Brasil
| | - Andreza Lemos Salvio
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Elielson Veloso da Silva
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Soniza Vieira Alves-Leon
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurologia, Rio de Janeiro RJ, Brasil
| | - Fabrícia Lima Fontes-Dantas
- Universidade Estadual do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Farmacologia e Psicobiologia, Rio de Janeiro RJ, Brasil.
| | - Jorge Marcondes de Souza
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurocirurgia, Rio de Janeiro RJ, Brasil
| |
Collapse
|
2
|
Yordanov TE, Keyser MS, Enriquez Martinez MA, Esposito T, Tefft JB, Morris EK, Labzin LI, Stehbens SJ, Rowan AE, Hogan BM, Chen CS, Lauko J, Lagendijk AK. Hyaluronic acid turnover controls the severity of cerebral cavernous malformations in bioengineered human micro-vessels. APL Bioeng 2024; 8:016108. [PMID: 38352162 PMCID: PMC10864035 DOI: 10.1063/5.0159330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor signaling, leading to pathological changes such as increased endothelial cell spreading and reduced junctional integrity. Concomitant to aberrant endothelial cell signaling, non-autonomous signals from the extracellular matrix (ECM) have also been implicated in CCM lesion growth and these factors might explain why CCM lesions mainly develop in the central nervous system. Here, we adapted a three-dimensional microfluidic system to examine CCM1 deficient human micro-vessels in distinctive extracellular matrices. We validate that pathological hallmarks are maintained in this model. We further show that key genes responsible for homeostasis of hyaluronic acid, a major extracellular matrix component of the central nervous system, are dysregulated in CCM. Supplementing the matrix in our model with distinct forms of hyaluronic acid inhibits pathological cell spreading and rescues barrier function. Hyaluronic acid acts by dampening cell-matrix adhesion signaling in CCM, either downstream or in parallel of KLF2/4. This study provides a proof-of-principle that ECM embedded 3D microfluidic models are ideally suited to identify how changes in ECM structure and signaling impact vascular malformations.
Collapse
Affiliation(s)
- Teodor E. Yordanov
- Centre for Cell Biology and Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mikaela S. Keyser
- Centre for Cell Biology and Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Marco A. Enriquez Martinez
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Juliann B. Tefft
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA
| | - Elysse K. Morris
- Centre for Cell Biology and Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
3
|
Ayata C, Kim H, Morrison L, Liao JK, Gutierrez J, Lopez-Toledano M, Carrazana E, Rabinowicz AL, Awad IA. Role of Rho-Associated Kinase in the Pathophysiology of Cerebral Cavernous Malformations. Neurol Genet 2024; 10:e200121. [PMID: 38179414 PMCID: PMC10766084 DOI: 10.1212/nxg.0000000000200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions characterized by a porous endothelium. The lack of a sufficient endothelial barrier can result in microbleeds and frank intracerebral hemorrhage. A primary mechanism for lesion development is a sequence variant in at least 1 of the 3 CCM genes (CCM1, CCM2, and CCM3), which influence various signaling pathways that lead to the CCM phenotype. A common downstream process associated with CCM gene loss of function involves overactivation of RhoA and its effector Rho-associated kinase (ROCK). In this study, we review RhoA/ROCK-related mechanisms involved in CCM pathophysiology as potential therapeutic targets. Literature searches were conducted in PubMed using combinations of search terms related to RhoA/ROCK and CCMs. In endothelial cells, CCM1, CCM2, and CCM3 proteins normally associate to form the CCM protein complex, which regulates the functions of a wide variety of protein targets (e.g., MAP3K3, SMURF1, SOK-1, and ICAP-1) that directly or indirectly increase RhoA/ROCK activity. Loss of CCM complex function and increased RhoA/ROCK activity can lead to the formation of stress fibers that contribute to endothelial junction instability. Other RhoA/ROCK-mediated pathophysiologic outcomes include a shift to a senescence-associated secretory phenotype (primarily mediated by ROCK2), which is characterized by endothelial cell migration, cell cycle arrest, extracellular matrix degradation, leukocyte chemotaxis, and inflammation. ROCK represents a potential therapeutic target, and direct (fasudil, NRL-1049) and indirect (statins) ROCK inhibitors have demonstrated various levels of efficacy in reducing lesion burden in preclinical models of CCM. Current (atorvastatin) and planned (NRL-1049) clinical studies will determine the efficacy of ROCK inhibitors for CCM in humans, for which no US Food and Drug Administration-approved or EU-approved pharmacologic treatment exists.
Collapse
Affiliation(s)
- Cenk Ayata
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Helen Kim
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Leslie Morrison
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - James K Liao
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Juan Gutierrez
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Miguel Lopez-Toledano
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Enrique Carrazana
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Adrian L Rabinowicz
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| | - Issam A Awad
- From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California, San Francisco; University of New Mexico Health Sciences Center (L.M.), Albuquerque; University of Arizona (J.K.L.), College of Medicine, Tucson; Neurelis, Inc. (J.G., M.L.-T., E.C., A.L.R.), San Diego, CA; University of Hawaii John A. Burns School of Medicine (E.C.), Honolulu, HI; and University of Chicago Medicine and Biological Sciences (I.A.A.), Chicago, IL
| |
Collapse
|
4
|
Benarroch E. What Is the Role of the Rho-ROCK Pathway in Neurologic Disorders? Neurology 2023; 101:536-543. [PMID: 37722862 PMCID: PMC10516277 DOI: 10.1212/wnl.0000000000207779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023] Open
|
5
|
Patel A, Valle D, Nguyen A, Molina E, Lucke-Wold B. Role of Genetics and Surgical Interventions for the Management of Cerebral Cavernous Malformations (CMM). CURRENT CHINESE SCIENCE 2023; 3:386-395. [PMID: 37981909 PMCID: PMC10657140 DOI: 10.2174/2210298103666230823094431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/21/2023] [Accepted: 07/14/2023] [Indexed: 11/21/2023]
Abstract
Cerebral cavernous malformations (CCMs) are comprised of tissue matter within the brain possessing anomalous vascular architecture. In totality, the dilated appearance of the cavernomatakes on a mulberry-like shape contributed by the shape and relation to vascular and capillary elements. Analyzing its pathophysiology along with its molecular and genetic pathways plays a vital role in whether or not a patient receives GKRS, medical management, or Surgery, the most invasive of procedures. To avoid neurological trauma, microsurgical resection of cavernomas canbe guided by the novel clinical application of a 3D Slicer with Sina/MosoCam. When cavernomas present in deep lesions with poor accessibility, gamma knife stereotactic radiosurgery (GKSR) is recommended. For asymptomatic and non-multilobal lesions, medical and symptom management is deemed standard, such as antiepileptic therapy. The two-hit hypothesis serves to explain the mutations in three key genes that are most pertinent to the progression of cavernomas: CCM1/KRIT1, CCM2/Malcavernin, and CCM3/PDCD10. Various exon deletions and frameshift mutations can cause dysfunction in vascular structure through loss and gain of function mutations. MEKK3 and KLF2/4 are involved in a protein kinase signaling cycle that promotes abnormal angiogenesis and cavernoma formation. In terms of potential treatments, RhoKinase inhibitors have shown to decrease endothelial to mesenchymal transition and CCM lesion development in mice models. All in all, understanding the research behind the molecular genetics in CCMs can foster personalized medicine and potentially create new neurosurgical and medicative treatments.
Collapse
Affiliation(s)
- Anjali Patel
- Department of Neurosurgery, College of Medicine, University of Florida, Florida 32013, United States
| | - Daisy Valle
- Department of Neurosurgery, College of Medicine, University of Florida, Florida 32013, United States
| | - Andrew Nguyen
- Department of Neurosurgery, College of Medicine, University of Florida, Florida 32013, United States
| | - Eduardo Molina
- Department of Neurosurgery, College of Medicine, University of Florida, Florida 32013, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Florida 32013, United States
| |
Collapse
|
6
|
Torzone SK, Park AY, Breen PC, Cohen NR, Dowen RH. Opposing action of the FLR-2 glycoprotein hormone and DRL-1/FLR-4 MAP kinases balance p38-mediated growth and lipid homeostasis in C. elegans. PLoS Biol 2023; 21:e3002320. [PMID: 37773960 PMCID: PMC10566725 DOI: 10.1371/journal.pbio.3002320] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/11/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023] Open
Abstract
Animals integrate developmental and nutritional signals before committing crucial resources to growth and reproduction; however, the pathways that perceive and respond to these inputs remain poorly understood. Here, we demonstrate that DRL-1 and FLR-4, which share similarity with mammalian mitogen-activated protein kinases, maintain lipid homeostasis in the C. elegans intestine. DRL-1 and FLR-4 function in a protein complex at the plasma membrane to promote development, as mutations in drl-1 or flr-4 confer slow growth, small body size, and impaired lipid homeostasis. To identify factors that oppose DRL-1/FLR-4, we performed a forward genetic screen for suppressors of the drl-1 mutant phenotypes and identified mutations in flr-2 and fshr-1, which encode the orthologues of follicle stimulating hormone and its putative G protein-coupled receptor, respectively. In the absence of DRL-1/FLR-4, neuronal FLR-2 acts through intestinal FSHR-1 and protein kinase A signaling to restrict growth. Furthermore, we show that opposing signaling through DRL-1 and FLR-2 coordinates TIR-1 oligomerization, which modulates downstream p38/PMK-1 activity, lipid homeostasis, and development. Finally, we identify a surprising noncanonical role for the developmental transcription factor PHA-4/FOXA in the intestine where it restricts growth in response to impaired DRL-1 signaling. Our work uncovers a complex multi-tissue signaling network that converges on p38 signaling to maintain homeostasis during development.
Collapse
Affiliation(s)
- Sarah K. Torzone
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aaron Y. Park
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Peter C. Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalie R. Cohen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
7
|
Qi C, Bujaroski RS, Baell J, Zheng X. Kinases in cerebral cavernous malformations: Pathogenesis and therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119488. [PMID: 37209718 DOI: 10.1016/j.bbamcr.2023.119488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Cerebral cavernous malformations (CCMs) are low-flow, hemorrhagic vascular lesions of the central nervous system of genetic origin, which can cause stroke-like symptoms and seizures. From the identification of CCM1, CCM2 and CCM3 as genes related to disease progression, molecular and cellular mechanisms for CCM pathogenesis have been established and the search for potential drugs to target CCM has begun. Broadly speaking, kinases are the major group signaling in CCM pathogenesis. These include the MEKK3/MEK5/ERK5 cascade, Rho/Rock signaling, CCM3/GCKIII signaling, PI3K/mTOR signaling, and others. Since the discovery of Rho/Rock in CCM pathogenesis, inhibitors for Rho signaling and subsequently other components in CCM signaling were discovered and applied in preclinical and clinical trials to ameliorate CCM progression. This review discusses the general aspects of CCM disease, kinase-mediated signaling in CCM pathogenesis and the current state of potential treatment options for CCM. It is suggested that kinase target drug development in the context of CCM might facilitate and meet the unmet requirement - a non-surgical option for CCM disease.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China
| | - Richard Sean Bujaroski
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria, Australia
| | - Jonathan Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China.
| |
Collapse
|
8
|
Chen Y, Dong X, Wang Y, Lv H, Chen N, Wang Z, Chen S, Chen P, Xiao S, Zhao J, Dong J. Molecular genetic features and clinical manifestations in Chinese familial cerebral cavernous malformation: from a novel KRIT1/CCM1 mutation (c.1119dupT) to an overall view. Front Neurosci 2023; 17:1184333. [PMID: 37214396 PMCID: PMC10192864 DOI: 10.3389/fnins.2023.1184333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are common vascular anomaly diseases in the central nervous system associated with seizures, cerebral microbleeds, or asymptomatic mostly. CCMs can be classified as sporadic or familial, with familial cerebral cavernous malformations (fCCMs) being the autosomal dominant manner with incomplete penetrance. Germline mutations of KRIT1, CCM2, and PDCD10 are associated with the pathogenesis of fCCMs. Till now, little is known about the fCCMs mutation spectrum in the Han Chinese population. In this study, we enrolled a large, aggregated family, 11/26 of the family members were diagnosed with CCMs by pathological or neuroradiological examination, with a high percentage (5/9) of focal spinal cord involvement. Genomic DNA sequencing verified a novel duplication mutation (c.1119dupT, p.L374Sfs*9) in exon 9 of the Krev interaction trapped 1 (KRIT1) gene. The mutation causes a frameshift and is predicted to generate a truncated KRIT1/CCM1 protein of 381 amino acids. All our findings confirm that c.1119dupT mutation of KRIT1 is associated with fCCMs, which enriched the CCM genes' mutational spectrum in the Chinese population and will be beneficial for deep insight into the pathogenesis of Chinese fCCMs. Additionally, with a retrospective study, we analyzed the molecular genetic features of Chinese fCCMs, most of the Chinese fCCMs variants are in the KRIT1 gene, and all these variants result in the functional deletion or insufficiency of the C-terminal FERM domain of the KRIT1 protein.
Collapse
Affiliation(s)
- Yanming Chen
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuchen Dong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ye Wang
- Health Management Center, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haijun Lv
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan Chen
- Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Zhongyong Wang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Si Chen
- Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Ping Chen
- Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Jizong Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jun Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Yang X, Wu ST, Gao R, Wang R, Wang Y, Dong Z, Wang L, Qi C, Wang X, Schmitz ML, Liu R, Han Z, Wang L, Zheng X. Release of STK24/25 suppression on MEKK3 signaling in endothelial cells confers cerebral cavernous malformation. JCI Insight 2023; 8:160372. [PMID: 36692953 PMCID: PMC10077477 DOI: 10.1172/jci.insight.160372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Loss-of-function mutations in cerebral cavernous malformation (CCM) genes and gain-of-function mutation in the MAP3K3 gene encoding MEKK3 cause CCM. Deficiency of CCM proteins leads to the activation of MEKK3-KLF2/4 signaling, but it is not clear how this occurs. Here, we demonstrate that deletion of the CCM3 interacting kinases STK24/25 in endothelial cells causes defects in vascular patterning during development as well as CCM lesion formation during postnatal life. While permanent deletion of STK24/25 in endothelial cells caused developmental defects of the vascular system, inducible postnatal deletion of STK24/25 impaired angiogenesis in the retina and brain. More importantly, deletion of STK24/25 in neonatal mice led to the development of severe CCM lesions. At the molecular level, a hybrid protein consisting of the STK kinase domain and the MEKK3 interacting domain of CCM2 rescued the vascular phenotype caused by the loss of ccm gene function in zebrafish. Our study suggests that CCM2/3 proteins act as adapters to allow recruitment of STK24/25 to limit the constitutive MEKK3 activity, thus contributing to vessel stability. Loss of STK24/25 causes MEKK3 activation, leading to CCM lesion formation.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Shi-Ting Wu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Rui Gao
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Rui Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Yixuan Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Zhenkun Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Chunxiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, and St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, and.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| |
Collapse
|
10
|
Genetics of brain arteriovenous malformations and cerebral cavernous malformations. J Hum Genet 2023; 68:157-167. [PMID: 35831630 DOI: 10.1038/s10038-022-01063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Abstract
Cerebrovascular malformations comprise abnormal development of cerebral vasculature. They can result in hemorrhagic stroke due to rupture of lesions as well as seizures and neurological defects. The most common forms of cerebrovascular malformations are brain arteriovenous malformations (bAVMs) and cerebral cavernous malformations (CCMs). They occur in both sporadic and inherited forms. Rapidly evolving molecular genetic methodologies have helped to identify causative or associated genes involved in genesis of bAVMs and CCMs. In this review, we highlight the current knowledge regarding the genetic basis of these malformations.
Collapse
|
11
|
The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life (Basel) 2023; 13:life13020420. [PMID: 36836777 PMCID: PMC9962890 DOI: 10.3390/life13020420] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.
Collapse
|
12
|
Nobiletti N, Liu J, Glading AJ. KRIT1-mediated regulation of neutrophil adhesion and motility. FEBS J 2023; 290:1078-1095. [PMID: 36107440 PMCID: PMC9957810 DOI: 10.1111/febs.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
Abstract
Loss of Krev interaction-trapped-1 (KRIT1) expression leads to the development of cerebral cavernous malformations (CCM), a disease in which abnormal blood vessel formation compromises the structure and function of the blood-brain barrier. The role of KRIT1 in regulating endothelial function is well-established. However, several studies have suggested that KRIT1 could also play a role in regulating nonendothelial cell types and, in particular, immune cells. In this study, we generated a mouse model with neutrophil-specific deletion of KRIT1 in order to investigate the effect of KRIT1 deficiency on neutrophil function. Neutrophils isolated from adult Ly6Gtm2621(cre)Arte Krit1flox/flox mice had a reduced ability to attach and spread on the extracellular matrix protein fibronectin and exhibited a subsequent increase in migration. However, adhesion to and migration on ICAM-1 was unchanged. In addition, we used a monomeric, fluorescently-labelled fragment of fibronectin to show that integrin activation is reduced in the absence of KRIT1 expression, though β1 integrin expression appears unchanged. Finally, neutrophil migration in response to lipopolysaccharide-induced inflammation in the lung was decreased, as shown by reduced cell number and myeloperoxidase activity in lavage samples from Krit1PMNKO mice. Altogether, we show that KRIT1 regulates neutrophil adhesion and migration, likely through regulation of integrin activation, which can lead to altered inflammatory responses in vivo.
Collapse
Affiliation(s)
- Nicholas Nobiletti
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
| | - Jing Liu
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, NY, USA
| | - Angela J. Glading
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
| |
Collapse
|
13
|
Phillips CM, Stamatovic SM, Keep RF, Andjelkovic AV. Cerebral Cavernous Malformation Pathogenesis: Investigating Lesion Formation and Progression with Animal Models. Int J Mol Sci 2022; 23:5000. [PMID: 35563390 PMCID: PMC9105545 DOI: 10.3390/ijms23095000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a cerebromicrovascular disease that affects up to 0.5% of the population. Vessel dilation, decreased endothelial cell-cell contact, and loss of junctional complexes lead to loss of brain endothelial barrier integrity and hemorrhagic lesion formation. Leakage of hemorrhagic lesions results in patient symptoms and complications, including seizures, epilepsy, focal headaches, and hemorrhagic stroke. CCMs are classified as sporadic (sCCM) or familial (fCCM), associated with loss-of-function mutations in KRIT1/CCM1, CCM2, and PDCD10/CCM3. Identifying the CCM proteins has thrust the field forward by (1) revealing cellular processes and signaling pathways underlying fCCM pathogenesis, and (2) facilitating the development of animal models to study CCM protein function. CCM animal models range from various murine models to zebrafish models, with each model providing unique insights into CCM lesion development and progression. Additionally, these animal models serve as preclinical models to study therapeutic options for CCM treatment. This review briefly summarizes CCM disease pathology and the molecular functions of the CCM proteins, followed by an in-depth discussion of animal models used to study CCM pathogenesis and developing therapeutics.
Collapse
Affiliation(s)
- Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| |
Collapse
|
14
|
Padarti A, Belkin O, Abou-Fadel J, Zhang J. In-silico analysis of nonsynonymous genomic variants within CCM2 gene reaffirm the existence of dual cores within typical PTB domain. Biochem Biophys Rep 2022; 29:101218. [PMID: 35128084 PMCID: PMC8808078 DOI: 10.1016/j.bbrep.2022.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose The objective of this study is to validate the existence of dual cores within the typical phosphotyrosine binding (PTB) domain and to identify potentially damaging and pathogenic nonsynonymous coding single nuclear polymorphisms (nsSNPs) in the canonical PTB domain of the CCM2 gene that causes cerebral cavernous malformations (CCMs). Methods The nsSNPs within the coding sequence for PTB domain of human CCM2 gene, retrieved from exclusive database searches, were analyzed for their functional and structural impact using a series of bioinformatic tools. The effects of mutations on the tertiary structure of the PTB domain in human CCM2 protein were predicted to examine the effect of nsSNPs on the tertiary structure of PTB Cores. Results Our mutation analysis, through alignment of protein structures between wildtype CCM2 and mutant, predicted that the structural impacts of pathogenic nsSNPs is biophysically limited to only the spatially adjacent substituted amino acid site with minimal structural influence on the adjacent core of the PTB domain, suggesting both cores are independently functional and essential for proper CCM2 PTB function. Conclusion Utilizing a combination of protein conservation and structure-based analysis, we analyzed the structural effects of inherited pathogenic mutations within the CCM2 PTB domain. Our results predicted that the pathogenic amino acid substitutions lead to only subtle changes locally, confined to the surrounding tertiary structure of the PTB core within which it resides, while no structural disturbance to the neighboring PTB core was observed, reaffirming the presence of independently functional dual cores in the CCM2 typical PTB domain. The pathogenic amino acid mutants lead to subtle structural changes in the PTB core. No structural disturbance to the neighboring PTB core was observed. Data reaffirm the presence of dual functional cores in the CCM2 PTB domain. More new genetic variants leading to CCM pathogenesis were suggested.
Collapse
|
15
|
Swamy H, Glading AJ. Is Location Everything? Regulation of the Endothelial CCM Signaling Complex. Front Cardiovasc Med 2022; 9:954780. [PMID: 35898265 PMCID: PMC9309484 DOI: 10.3389/fcvm.2022.954780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances have steadily increased the number of proteins and pathways known to be involved in the development of cerebral cavernous malformation (CCM). Our ability to synthesize this information into a cohesive and accurate signaling model is limited, however, by significant gaps in our knowledge of how the core CCM proteins, whose loss of function drives development of CCM, are regulated. Here, we review what is known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2, and CCM3, with an emphasis on binding interactions and subcellular location, which frequently control scaffolding protein function. We highlight recent work that challenges the current model of CCM complex signaling and provide recommendations for future studies needed to address the large number of outstanding questions.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
16
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Scimone C, Alibrandi S, Donato L, Alafaci C, Germanò A, Vinci SL, D'Angelo R, Sidoti A. Editome landscape of CCM-derived endothelial cells. RNA Biol 2022; 19:852-865. [PMID: 35771000 PMCID: PMC9248949 DOI: 10.1080/15476286.2022.2091306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
By regulating several phases of gene expression, RNA editing modifications contribute to maintaining physiological RNA expression levels. RNA editing dysregulation can affect RNA molecule half-life, coding/noncoding RNA interaction, alternative splicing, and circular RNA biogenesis. Impaired RNA editing has been observed in several pathological conditions, including cancer and Alzheimer's disease. No data has been published yet on the editome profile of endothelial cells (ECs) isolated from human cerebral cavernous malformation (CCM) lesions. Here, we describe a landscape of editome modifications in sporadic CCM-derived ECs (CCM-ECs) by comparing editing events with those observed in human brain microvascular endothelial cells (HBMECs). With a whole transcriptome-based variant calling pipeline, we identified differential edited genes in CCM-ECs that were enriched in pathways related to angiogenesis, apoptosis and cell survival, inflammation and, in particular, to thrombin signalling mediated by protease-activated receptors and non-canonical Wnt signalling. These pathways, not yet associated to CCM development, could be a novel field for further investigations on CCM molecular mechanisms. Moreover, enrichment analysis of differentially edited miRNAs suggested additional small noncoding transcripts to consider for development of targeted therapies.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Sergio L Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| |
Collapse
|
18
|
Swamy H, Glading AJ. Contribution of protein-protein interactions to the endothelial barrier-stabilizing function of KRIT1. J Cell Sci 2021; 135:274104. [PMID: 34918736 PMCID: PMC8917353 DOI: 10.1242/jcs.258816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Krev-interaction trapped 1 (KRIT1) is an endothelial scaffold protein that promotes adherens junction (AJ) stability. The precise mechanism by which KRIT1 promotes barrier stabilization is unclear. We tested the ability of a panel of KRIT1 constructs containing mutations that inhibit Rap1 binding, ICAP1 binding, disrupt KRIT1's protein tyrosine binding domain (PTB), or direct KRIT1 to the plasma membrane, either alone or in combination, to restore barrier function in KRIT1-deficient endothelial cells. We found that ablating the 192NPAY195 motif or disrupting the PTB domain was sufficient to restore AJ protein localization and barrier function to control levels, irrespective of the junctional localization of KRIT1 or Rap1 binding. The ability of our KRIT1 constructs to rescue AJ/barrier function in KRIT1 depleted endothelial cells correlated with decreased 1 integrin activity and maintenance of cortical actin fibers. Together, our findings indicate that Rap1 binding, ICAP1 binding, and junctional localization are not required for the ability of KRIT1 to stabilize endothelial contacts, and suggest that the ability of KRIT1 to limit integrin activity may be involved in barrier stabilization.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Valentino M, Dejana E, Malinverno M. The multifaceted PDCD10/CCM3 gene. Genes Dis 2021; 8:798-813. [PMID: 34522709 PMCID: PMC8427250 DOI: 10.1016/j.gendis.2020.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The programmed cell death 10 (PDCD10) gene was originally identified as an apoptosis-related gene, although it is now usually known as CCM3, as the third causative gene of cerebral cavernous malformation (CCM). CCM is a neurovascular disease that is characterized by vascular malformations and is associated with headaches, seizures, focal neurological deficits, and cerebral hemorrhage. The PDCD10/CCM3 protein has multiple subcellular localizations and interacts with several multi-protein complexes and signaling pathways. Thus PDCD10/CCM3 governs many cellular functions, which include cell-to-cell junctions and cytoskeleton organization, cell proliferation and apoptosis, and exocytosis and angiogenesis. Given its central role in the maintenance of homeostasis of the cell, dysregulation of PDCD10/CCM3 can result in a wide range of altered cell functions. This can lead to severe diseases, including CCM, cognitive disability, and several types of cancers. Here, we review the multifaceted roles of PDCD10/CCM3 in physiology and pathology, with a focus on its functions beyond CCM.
Collapse
Affiliation(s)
| | - Elisabetta Dejana
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, 7 20122, Italy.,Vascular Biology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 05, Sweden
| | - Matteo Malinverno
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy
| |
Collapse
|
20
|
CCM2-deficient endothelial cells undergo a ROCK-dependent reprogramming into senescence-associated secretory phenotype. Angiogenesis 2021; 24:843-860. [PMID: 34342749 DOI: 10.1007/s10456-021-09809-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Cerebral cavernous malformation (CCM) is a cerebrovascular disease in which stacks of dilated haemorrhagic capillaries form focally in the brain. Whether and how defective mechanotransduction, cellular mosaicism and inflammation interplay to sustain the progression of CCM disease is unknown. Here, we reveal that CCM1- and CCM2-silenced endothelial cells expanded in vitro enter into senescence-associated secretory phenotype (SASP) that they use to invade the extracellular matrix and attract surrounding wild-type endothelial and immune cells. Further, we demonstrate that this SASP is driven by the cytoskeletal, molecular and transcriptomic disorders provoked by ROCK dysfunctions. By this, we propose that CCM2 and ROCK could be parts of a scaffold controlling senescence, bringing new insights into the emerging field of the control of ageing by cellular mechanics. These in vitro findings reconcile the known dysregulated traits of CCM2-deficient endothelial cells into a unique endothelial fate. Based on these in vitro results, we propose that a SASP could link the increased ROCK-dependent cell contractility in CCM2-deficient endothelial cells with microenvironment remodelling and long-range chemo-attraction of endothelial and immune cells.
Collapse
|
21
|
Snellings DA, Hong CC, Ren AA, Lopez-Ramirez MA, Girard R, Srinath A, Marchuk DA, Ginsberg MH, Awad IA, Kahn ML. Cerebral Cavernous Malformation: From Mechanism to Therapy. Circ Res 2021; 129:195-215. [PMID: 34166073 PMCID: PMC8922476 DOI: 10.1161/circresaha.121.318174] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage. These novel insights are the integrated product of human clinical studies, human genetic studies, studies in mouse and zebrafish genetic models, and basic molecular and cellular studies. This review addresses the genetic and molecular underpinnings of cerebral cavernous malformation disease, the mechanisms that lead to lesion hemorrhage, and emerging biomarkers and therapies for clinical treatment of cerebral cavernous malformation disease. It may also serve as an example for how focused basic and clinical investigation and emerging technologies can rapidly unravel a complex disease mechanism.
Collapse
Affiliation(s)
- Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC (D.A.S., D.A.M.)
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| | - Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| | - Miguel A Lopez-Ramirez
- Department of Medicine (M.A.L.-R., M.H.G.), University of California, San Diego, La Jolla
- Department of Pharmacology (M.A.L.-R.), University of California, San Diego, La Jolla
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC (D.A.S., D.A.M.)
| | - Mark H Ginsberg
- Department of Medicine (M.A.L.-R., M.H.G.), University of California, San Diego, La Jolla
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| |
Collapse
|
22
|
Abstract
Vascular and lymphatic malformations represent a challenge for clinicians. The identification of inherited and somatic mutations in important signaling pathways, including the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin), RAS (rat sarcoma)/RAF (rapidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinases), HGF (hepatocyte growth factor)/c-Met (hepatocyte growth factor receptor), and VEGF (vascular endothelial growth factor) A/VEGFR (vascular endothelial growth factor receptor) 2 cascades has led to the evaluation of tailored strategies with preexisting cancer drugs that interfere with these signaling pathways. The era of theranostics has started for the treatment of vascular anomalies. Registration: URL: https://www.clinicaltrialsregister.eu; Unique identifier: 2015-001703-32.
Collapse
Affiliation(s)
- Angela Queisser
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.)
| | - Emmanuel Seront
- Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,University of Louvain, Brussels, Belgium (M.V.).,University of Louvain, Brussels, Belgium (M.V.).,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium (M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| |
Collapse
|
23
|
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis 2021; 24:213-236. [PMID: 33844116 PMCID: PMC8205897 DOI: 10.1007/s10456-021-09785-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
24
|
Riolo G, Ricci C, Battistini S. Molecular Genetic Features of Cerebral Cavernous Malformations (CCM) Patients: An Overall View from Genes to Endothelial Cells. Cells 2021; 10:704. [PMID: 33810005 PMCID: PMC8005105 DOI: 10.3390/cells10030704] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that affect predominantly microvasculature in the brain and spinal cord. CCM can occur either in sporadic or familial form, characterized by autosomal dominant inheritance and development of multiple lesions throughout the patient's life. Three genes associated with CCM are known: CCM1/KRIT1 (krev interaction trapped 1), CCM2/MGC4607 (encoding a protein named malcavernin), and CCM3/PDCD10 (programmed cell death 10). All the mutations identified in these genes cause a loss of function and compromise the protein functions needed for maintaining the vascular barrier integrity. Loss of function of CCM proteins causes molecular disorganization and dysfunction of endothelial adherens junctions. In this review, we provide an overall vision of the CCM pathology, starting with the genetic bases of the disease, describing the role of the proteins, until we reach the cellular level. Thus, we summarize the genetics of CCM, providing a description of CCM genes and mutation features, provided an updated knowledge of the CCM protein structure and function, and discuss the molecular mechanisms through which CCM proteins may act within endothelial cells, particularly in endothelial barrier maintenance/regulation and in cellular signaling.
Collapse
Affiliation(s)
| | | | - Stefania Battistini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (C.R.)
| |
Collapse
|
25
|
Park S, Lee HY, Kim J, Park H, Ju YS, Kim EG, Kim J. Cerebral Cavernous Malformation 1 Determines YAP/TAZ Signaling-Dependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers (Basel) 2021; 13:cancers13051125. [PMID: 33807895 PMCID: PMC7961486 DOI: 10.3390/cancers13051125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Enhanced Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling is correlated with the extraprostatic extension of prostate cancer. However, the mechanism by which YAP/TAZ signaling becomes hyperactive and drives prostate cancer progression is currently unclear. In this study, we revealed that higher expression of CCM1, which is uniquely found in advanced prostate cancer, is inversely correlated with metastasis-free and overall survival in patients with prostate cancer. We also demonstrated that CCM1 induces the metastasis of multiple types of prostate cancer cells by regulating YAP/TAZ signaling. Mechanistically, CCM1, a gene mutated in cerebral cavernous malformation, suppresses DDX5, which regulates the suppression of YAP/TAZ signaling, indicating that CCM1 and DDX5 are novel upstream regulators of YAP/TAZ signaling. Our findings highlight the importance of CCM1-DDX5-YAP/TAZ signaling in the metastasis of prostate cancer cells.
Collapse
Affiliation(s)
- Sangryong Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
| | - Ho-Young Lee
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
| | - Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery & Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Hansol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (H.P.); (Y.S.J.)
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (H.P.); (Y.S.J.)
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea;
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6441
| |
Collapse
|
26
|
Choi JP, Yang X, He S, Song R, Xu ZR, Foley M, Wong JJL, Xu CR, Zheng X. CCM2L (Cerebral Cavernous Malformation 2 Like) Deletion Aggravates Cerebral Cavernous Malformation Through Map3k3-KLF Signaling Pathway. Stroke 2021; 52:1428-1436. [PMID: 33657857 DOI: 10.1161/strokeaha.120.031523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jaesung P Choi
- Lab of Cardiovascular Signaling, Centenary Institute, Sydney Medical School (J.P.C., X.Z.), University of Sydney, NSW, Australia.,Centre for Inflammation, Centenary Institute, School of Life Sciences, University of Technology Sydney, NSW, Australia (J.P.C.)
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (X.Y., X.Z.)
| | - Shuang He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China (S.H., Z.-R.X., C.-R.X.)
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, Sydney Medical School (R.S., J.J.-L.W.), University of Sydney, NSW, Australia
| | - Zi-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China (S.H., Z.-R.X., C.-R.X.)
| | - Matthew Foley
- Australian Centre for Microscopy and Microanalysis (M.F.), University of Sydney, NSW, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, Sydney Medical School (R.S., J.J.-L.W.), University of Sydney, NSW, Australia
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China (S.H., Z.-R.X., C.-R.X.)
| | - Xiangjian Zheng
- Lab of Cardiovascular Signaling, Centenary Institute, Sydney Medical School (J.P.C., X.Z.), University of Sydney, NSW, Australia.,Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (X.Y., X.Z.)
| |
Collapse
|
27
|
De Luca E, Perrelli A, Swamy H, Nitti M, Passalacqua M, Furfaro AL, Salzano AM, Scaloni A, Glading AJ, Retta SF. Protein kinase Cα regulates the nucleocytoplasmic shuttling of KRIT1. J Cell Sci 2021; 134:jcs250217. [PMID: 33443102 PMCID: PMC7875496 DOI: 10.1242/jcs.250217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
KRIT1 is a scaffolding protein that regulates multiple molecular mechanisms, including cell-cell and cell-matrix adhesion, and redox homeostasis and signaling. However, rather little is known about how KRIT1 is itself regulated. KRIT1 is found in both the cytoplasm and the nucleus, yet the upstream signaling proteins and mechanisms that regulate KRIT1 nucleocytoplasmic shuttling are not well understood. Here, we identify a key role for protein kinase C (PKC) in this process. In particular, we found that PKC activation promotes the redox-dependent cytoplasmic localization of KRIT1, whereas inhibition of PKC or treatment with the antioxidant N-acetylcysteine leads to KRIT1 nuclear accumulation. Moreover, we demonstrated that the N-terminal region of KRIT1 is crucial for the ability of PKC to regulate KRIT1 nucleocytoplasmic shuttling, and may be a target for PKC-dependent regulatory phosphorylation events. Finally, we found that silencing of PKCα, but not PKCδ, inhibits phorbol 12-myristate 13-acetate (PMA)-induced cytoplasmic enrichment of KRIT1, suggesting a major role for PKCα in regulating KRIT1 nucleocytoplasmic shuttling. Overall, our findings identify PKCα as a novel regulator of KRIT1 subcellular compartmentalization, thus shedding new light on the physiopathological functions of this protein.
Collapse
Affiliation(s)
- Elisa De Luca
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Lecce, Italy
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
| | - Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - Anna Lisa Furfaro
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
| |
Collapse
|
28
|
Han G, Ma L, Qiao H, Han L, Wu Q, Li Q. A Novel CCM2 Missense Variant Caused Cerebral Cavernous Malformations in a Chinese Family. Front Neurosci 2021; 14:604350. [PMID: 33469417 PMCID: PMC7813800 DOI: 10.3389/fnins.2020.604350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are common vascular malformations in the central nervous system. Familial CCMs (FCCMs) are autosomal dominant inherited disease with incomplete penetrance and variable symptoms. Mutations in the KRIT1, CCM2, and PDCD10 genes cause the development of FCCM. Approximately 476 mutations of three CCM-related genes have been reported, most of which were case reports, and lack of data in stable inheritance. In addition, only a small number of causative missense mutations had been identified in patients. Here, we reported that 8/20 members of a Chinese family were diagnosed with CCMs. By direct DNA sequencing, we found a novel variant c.331G > C (p.A111P) in exon 4 of the CCM2 gene, which was a heterozygous exonic variant, in 7/20 family members. We consider this variant to be causative of disease due to a weaken the protein-protein interaction between KRIT1 and CCM2. In addition, we also found the exon 13 deletion in KRIT1 coexisting with the CCM2 mutation in patient IV-2, and this was inherited from her father (patient III-1H). This study of a Chinese family with a large number of patients with CCMs and stable inheritance of a CCM2 mutation contributes to better understanding the spectrum of gene mutations in CCMs.
Collapse
Affiliation(s)
- Guoqing Han
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Li Ma
- Department of Preventive Dentistry, School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lin Han
- Running Gene Inc., Beijing, China
| | - Qiaoli Wu
- Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Qingguo Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
29
|
Abstract
Cerebral cavernous malformations (CCMs) are neurovascular abnormalities characterized by thin, leaky blood vessels resulting in lesions that predispose to haemorrhages, stroke, epilepsy and focal neurological deficits. CCMs arise due to loss-of-function mutations in genes encoding one of three CCM complex proteins, KRIT1, CCM2 or CCM3. These widely expressed, multi-functional adaptor proteins can assemble into a CCM protein complex and (either alone or in complex) modulate signalling pathways that influence cell adhesion, cell contractility, cytoskeletal reorganization and gene expression. Recent advances, including analysis of the structures and interactions of CCM proteins, have allowed substantial progress towards understanding the molecular bases for CCM protein function and how their disruption leads to disease. Here, we review current knowledge of CCM protein signalling with a focus on three pathways which have generated the most interest—the RhoA–ROCK, MEKK3–MEK5–ERK5–KLF2/4 and cell junctional signalling pathways—but also consider ICAP1-β1 integrin and cdc42 signalling. We discuss emerging links between these pathways and the processes that drive disease pathology and highlight important open questions—key among them is the role of subcellular localization in the control of CCM protein activity.
Collapse
Affiliation(s)
- Valerie L Su
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Cell Biology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
30
|
da Fontoura Galvão G, Veloso da Silva E, Fontes-Dantas FL, Filho RC, Alves-Leon S, Marcondes de Souza J. First Report of Concomitant Pathogenic Mutations Within MGC4607/CCM2 and KRIT1/CCM1 in a Familial Cerebral Cavernous Malformation Patient. World Neurosurg 2020; 142:481-486.e1. [DOI: 10.1016/j.wneu.2020.06.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
|
31
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The identification of genes mutated in the different malformations provides insight into the etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. A few familial forms of vascular anomalies exist, but most cases occur sporadically. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The use of Next Generating Sequencing for high throughput and "deep" screening of both blood and lesional DNA and RNA has been instrumental in detecting such low frequency somatic changes. The number of novel causative mutations identified for many vascular anomalies has soared within a 10-year period. The discovery of such genes aided in unraveling a holistic overview of the pathogenic mechanisms, by which in vitro and in vivo models could be generated, and opening the doors to development of more effective treatments that do not address just symptoms. Moreover, as many mutations and the implicated signaling pathways are shared with cancers, current oncological therapies could potentially be repurposed for the treatment of vascular anomalies.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium; WELBIO (Walloon Excellence in Lifesciences and Biotechnology), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
32
|
Ercoli J, Finetti F, Woodby B, Belmonte G, Miracco C, Valacchi G, Trabalzini L. KRIT1 as a possible new player in melanoma aggressiveness. Arch Biochem Biophys 2020; 691:108483. [PMID: 32735866 DOI: 10.1016/j.abb.2020.108483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
Krev interaction trapped protein 1 (KRIT1) is a scaffold protein known to form functional complexes with distinct proteins, including Malcavernin, PDCD10, Rap1 and others. It appears involved in several cellular signaling pathways and exerts a protective role against inflammation and oxidative stress. KRIT1 has been studied as a regulator of endothelial cell functions and represents a determinant in the pathogenesis of Cerebral Cavernous Malformation (CCM), a cerebrovascular disease characterized by the formation of clusters of abnormally dilated and leaky blood capillaries, which predispose to seizures, neurological deficits and intracerebral hemorrhage. Although KRIT1 is ubiquitously expressed, few studies have described its involvement in pathologies other than CCM including cancer. Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic propensity. Despite the numerous efforts made to define the signaling pathways activated during melanoma progression, the molecular mechanisms at the basis of melanoma growth, phenotype plasticity and resistance to therapies are still under investigation.
Collapse
Affiliation(s)
- Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Brittany Woodby
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA
| | - Giuseppe Belmonte
- Unit of Pathological Anatomy, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Clelia Miracco
- Unit of Pathological Anatomy, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy.
| |
Collapse
|
33
|
Robertson RL, Palasis S, Rivkin MJ, Pruthi S, Bartel TB, Desai NK, Kadom N, Kulkarni AV, Lam HFS, Maheshwari M, Milla SS, Mirsky DM, Myseros JS, Partap S, Radhakrishnan R, Soares BP, Trout AT, Udayasankar UK, Whitehead MT, Karmazyn B. ACR Appropriateness Criteria® Cerebrovascular Disease-Child. J Am Coll Radiol 2020; 17:S36-S54. [PMID: 32370977 DOI: 10.1016/j.jacr.2020.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 10/24/2022]
Abstract
Stroke is an uncommon but an important and under-recognized cause of morbidity and mortality in children. Strokes may be due to either brain ischemia or intracranial hemorrhage. Common symptoms of pediatric acute stroke include headache, vomiting, focal weakness, numbness, visual disturbance, seizures, and altered consciousness. Most children presenting with an acute neurologic deficit do not have an acute stroke, but have symptoms due to stroke mimics which include complicated migraine, seizures with postictal paralysis, and Bell palsy. Because of frequency of stroke mimics, in children and the common lack of specificity in symptoms, the diagnosis of a true stroke may be delayed. There are a relatively large number of potential causes of stroke mimic and true stroke. Consequently, imaging plays a critical role in the assessment of children with possible stroke and especially in children who present with acute onset of stroke symptoms. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Susan Palasis
- Panel Chair, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael J Rivkin
- Boston Children's Hospital, Boston, Massachusetts; American Academy of Neurology
| | - Sumit Pruthi
- Panel Vice Chair, Vanderbilt Children's Hospital, Nashville, Tennessee
| | | | | | - Nadja Kadom
- Emory University and Children's of Atlanta (Egleston), Atlanta, Georgia
| | - Abhaya V Kulkarni
- Hospital for Sick Children, Toronto, Ontario, Canada; Neurosurgery expert
| | - H F Samuel Lam
- Sutter Medical Center, Sacramento, California; American College of Emergency Physicians
| | | | - Sarah S Milla
- Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | | | - John S Myseros
- Children's National Health System, Washington, District of Columbia; Neurosurgery expert
| | - Sonia Partap
- Stanford University, Stanford, California; American Academy of Pediatrics
| | | | - Bruno P Soares
- The University of Vermont Medical Center, Burlington, Vermont
| | - Andrew T Trout
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | - Boaz Karmazyn
- Specialty Chair, Riley Hospital for Children Indiana University, Indianapolis, Indiana
| |
Collapse
|
34
|
Yang L, Wu J, Zhang J. A Novel CCM2 Gene Mutation Associated With Cerebral Cavernous Malformation. Front Neurol 2020; 11:70. [PMID: 32117029 PMCID: PMC7020567 DOI: 10.3389/fneur.2020.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/20/2020] [Indexed: 01/01/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are the second most prevalent type of vascular malformation within the central nervous system. CCMs occur in two forms—sporadic and familial—the latter of which has an autosomal dominant mode of inheritance with incomplete penetrance and variable clinical expressivity. There are three genes considered to be associated with CCMs,—CCM1, which codes for KRIT1 protein; CCM2, which codes for MGC4607 protein; and CCM3, which codes for PDCD10 protein. To date, more than 74 gene mutations of CCM2 have been reported, and ~45% are deletion mutations. In this article, we disclose a novel CCM2 genetic variant (c.755delC, p.S252fs*40X) identified in a Chinese family to enrich the database of CCM2 genotypes.
Collapse
Affiliation(s)
- Lipeng Yang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jian Wu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
Su VL, Simon B, Draheim KM, Calderwood DA. Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation. J Biol Chem 2020; 295:3269-3284. [PMID: 32005669 DOI: 10.1074/jbc.ra119.009794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Nuclear accumulation of the small phosphoprotein integrin cytoplasmic domain-associated protein-1 (ICAP1) results in recruitment of its binding partner, Krev/Rap1 interaction trapped-1 (KRIT1), to the nucleus. KRIT1 loss is the most common cause of cerebral cavernous malformation, a neurovascular dysplasia resulting in dilated, thin-walled vessels that tend to rupture, increasing the risk for hemorrhagic stroke. KRIT1's nuclear roles are unknown, but it is known to function as a scaffolding or adaptor protein at cell-cell junctions and in the cytosol, supporting normal blood vessel integrity and development. As ICAP1 controls KRIT1 subcellular localization, presumably influencing KRIT1 function, in this work, we investigated the signals that regulate ICAP1 and, hence, KRIT1 nuclear localization. ICAP1 contains a nuclear localization signal within an unstructured, N-terminal region that is rich in serine and threonine residues, several of which are reportedly phosphorylated. Using quantitative microscopy, we revealed that phosphorylation-mimicking substitutions at Ser-10, or to a lesser extent at Ser-25, within this N-terminal region inhibit ICAP1 nuclear accumulation. Conversely, phosphorylation-blocking substitutions at these sites enhanced ICAP1 nuclear accumulation. We further demonstrate that p21-activated kinase 4 (PAK4) can phosphorylate ICAP1 at Ser-10 both in vitro and in cultured cells and that active PAK4 inhibits ICAP1 nuclear accumulation in a Ser-10-dependent manner. Finally, we show that ICAP1 phosphorylation controls nuclear localization of the ICAP1-KRIT1 complex. We conclude that serine phosphorylation within the ICAP1 N-terminal region can prevent nuclear ICAP1 accumulation, providing a mechanism that regulates KRIT1 localization and signaling, potentially influencing vascular development.
Collapse
Affiliation(s)
- Valerie L Su
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Bertrand Simon
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Kyle M Draheim
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
36
|
Cerebral Cavernous Malformation Proteins in Barrier Maintenance and Regulation. Int J Mol Sci 2020; 21:ijms21020675. [PMID: 31968585 PMCID: PMC7013531 DOI: 10.3390/ijms21020675] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a disease characterized by mulberry shaped clusters of dilated microvessels, primarily in the central nervous system. Such lesions can cause seizures, headaches, and stroke from brain bleeding. Loss-of-function germline and somatic mutations of a group of genes, called CCM genes, have been attributed to disease pathogenesis. In this review, we discuss the impact of CCM gene encoded proteins on cellular signaling, barrier function of endothelium and epithelium, and their contribution to CCM and potentially other diseases.
Collapse
|
37
|
Bergametti F, Viot G, Verny C, Brechard MP, Denier C, Labauge P, Petit P, Nouet A, Viallet F, Chaussenot A, Hervé D, Tournier-Lasserve E, Riant F. Novel CCM2 missense variants abrogating the CCM1-CCM2 interaction cause cerebral cavernous malformations. J Med Genet 2020; 57:400-404. [PMID: 31937560 DOI: 10.1136/jmedgenet-2019-106401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/20/2019] [Accepted: 12/21/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are vascular malformations mostly located within the central nervous system. Most deleterious variants are loss of function mutations in one of the three CCM genes. These genes code for proteins that form a ternary cytosolic complex with CCM2 as a hub. Very few CCM2 missense variants have been shown to be deleterious by modifying the ternary CCM complex stability. OBJECTIVES To investigate the causality of novel missense CCM2 variants detected in patients with CCM. METHODS The three CCM genes were screened in 984 patients referred for CCM molecular screening. Interaction between CCM1 and CCM2 proteins was tested using co-immunoprecipitation experiments for the CCM2 missense variants located in the phosphotyrosine binding (PTB) domain. RESULTS 11 distinct CCM2 rare missense variants were found. Six variants predicted to be damaging were located in the PTB domain, four of them were novel. When co-transfected with CCM1 in HEK293T cells, a loss of interaction between CCM1 and CCM2 was observed for all six variants. CONCLUSION We showed, using co-immunoprecipitation experiments, that CCM2 missense variants located in the PTB domain were actually damaging by preventing the normal interaction between CCM1 and CCM2. These data are important for diagnosis and genetic counselling, which are challenging in patients harbouring such variants.
Collapse
Affiliation(s)
| | - Geraldine Viot
- Unité de Génétique, Hopital Americain de Paris, Neuilly-sur-Seine, Île-de-France, France
| | - Christophe Verny
- Service de Neurologie, CHU Angers, Angers, Pays de la Loire, France
| | - Marie Pierre Brechard
- Service de Génétique Médicale, Hopital Saint Joseph, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Christian Denier
- Département de Neurologie, Hospital Bicetre, Le Kremlin-Bicetre, Île-de-France, France
| | - Pierre Labauge
- Service de Neurologie, CHRU de Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Paul Petit
- Cabinet de Neurologie - Cabestan, Cabestan, France
| | - Aurélien Nouet
- Service de Neurochirurgie, Hopital Universitaire Pitie Salpetriere, Paris, Île-de-France, France
| | - François Viallet
- Service de Neurologie, CH intercommunal Aix-Pertuis, Aix en Provence, France
| | - Annabelle Chaussenot
- Service de Génétique Médicale, Hopital de l'Archet, Nice, Provence-Alpes-Côte d'Azur, France
| | - Dominique Hervé
- Service de Neurologie, GH Saint Louis - Lariboisiere - Fernand Widal, Paris, Île-de-France, France.,Centre de Référence pour les Maladies Rares des Vaisseaux du Cerveau et de l'Oeil (CERVCO), GH Saint Louis - Lariboisiere - Fernand Widal, Paris, Île-de-France, France
| | - Elisabeth Tournier-Lasserve
- UMR-S1141, INSERM, Paris, Île-de-France, France.,Centre de Référence pour les Maladies Rares des Vaisseaux du Cerveau et de l'Oeil (CERVCO), GH Saint Louis - Lariboisiere - Fernand Widal, Paris, Île-de-France, France.,Service de Génétique Moléculaire Neurovasculaire, GH Saint Louis - Lariboisière - Fernand Widal, Paris, Île-de-France, France
| | - Florence Riant
- UMR-S1141, INSERM, Paris, Île-de-France, France .,Centre de Référence pour les Maladies Rares des Vaisseaux du Cerveau et de l'Oeil (CERVCO), GH Saint Louis - Lariboisiere - Fernand Widal, Paris, Île-de-France, France.,Service de Génétique Moléculaire Neurovasculaire, GH Saint Louis - Lariboisière - Fernand Widal, Paris, Île-de-France, France
| |
Collapse
|
38
|
Zafar A, Quadri SA, Farooqui M, Ikram A, Robinson M, Hart BL, Mabray MC, Vigil C, Tang AT, Kahn ML, Yonas H, Lawton MT, Kim H, Morrison L. Familial Cerebral Cavernous Malformations. Stroke 2020; 50:1294-1301. [PMID: 30909834 DOI: 10.1161/strokeaha.118.022314] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Atif Zafar
- From the Departments of Neurology (A.Z., M.F., A.I., M.R., L.M.), University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque
| | - Syed A Quadri
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (S.A.Q.)
| | - Mudassir Farooqui
- From the Departments of Neurology (A.Z., M.F., A.I., M.R., L.M.), University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque
| | - Asad Ikram
- From the Departments of Neurology (A.Z., M.F., A.I., M.R., L.M.), University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque
| | - Myranda Robinson
- From the Departments of Neurology (A.Z., M.F., A.I., M.R., L.M.), University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque
| | - Blaine L Hart
- Radiology (B.L.H., M.C.M.), University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque
| | - Marc C Mabray
- Radiology (B.L.H., M.C.M.), University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque
| | | | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia (A.T.T., M.L.K.)
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia (A.T.T., M.L.K.)
| | - Howard Yonas
- Neurosurgery (H.Y.), University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ (M.T.L.)
| | - Helen Kim
- Department of Anesthesia and Perioperative Care and Department of Epidemiology and Biostatistics, University of California San Francisco (H.K.)
| | - Leslie Morrison
- From the Departments of Neurology (A.Z., M.F., A.I., M.R., L.M.), University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque
| |
Collapse
|
39
|
Serebriiskii IG, Elmekawy M, Golemis EA. Identification of the KRIT1 Protein by LexA-Based Yeast Two-Hybrid System. Methods Mol Biol 2020; 2152:269-289. [PMID: 32524559 DOI: 10.1007/978-1-0716-0640-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerebral cavernous malformation (CCM) is a vascular malformation of the central nervous system that is associated with leaky capillaries, and a predisposition to serious clinical conditions including intracerebral hemorrhage and seizures. Germline or sporadic mutations in the CCM1/KRIT1 gene are responsible for the majority of cases of CCM. In this article, we describe the original characterization of the CCM1/KRIT1 gene. This cloning was done through the use of a variant of the yeast two-hybrid screen known as the interaction trap, using the RAS-family GTPase KREV1/RAP1A as a bait. The partial clone of KRIT1 (Krev1 Interaction Trapped) initially identified was extended through 5'RACE and computational analysis to obtain a full-length cDNA, then used in a sequential screen to define the integrin-associated ICAP1 protein as a KRIT1 partner protein. We discuss how these interactions are relevant to the current understanding of KRIT1/CCM1 biology, and provide a protocol for library screening with the Interaction Trap.
Collapse
Affiliation(s)
- Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.
| | - Mohamed Elmekawy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Moscow Institute of Physics and Technology, Moscow Region, Russia
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Tang AT, Sullivan KR, Hong CC, Goddard LM, Mahadevan A, Ren A, Pardo H, Peiper A, Griffin E, Tanes C, Mattei LM, Yang J, Li L, Mericko-Ishizuka P, Shen L, Hobson N, Girard R, Lightle R, Moore T, Shenkar R, Polster SP, Rödel CJ, Li N, Zhu Q, Whitehead KJ, Zheng X, Akers A, Morrison L, Kim H, Bittinger K, Lengner CJ, Schwaninger M, Velcich A, Augenlicht L, Abdelilah-Seyfried S, Min W, Marchuk DA, Awad IA, Kahn ML. Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Sci Transl Med 2019; 11:eaaw3521. [PMID: 31776290 PMCID: PMC6937779 DOI: 10.1126/scitranslmed.aaw3521] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/17/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Cerebral cavernous malformation (CCM) is a genetic, cerebrovascular disease. Familial CCM is caused by genetic mutations in KRIT1, CCM2, or PDCD10 Disease onset is earlier and more severe in individuals with PDCD10 mutations. Recent studies have shown that lesions arise from excess mitogen-activated protein kinase kinase kinase 3 (MEKK3) signaling downstream of Toll-like receptor 4 (TLR4) stimulation by lipopolysaccharide derived from the gut microbiome. These findings suggest a gut-brain CCM disease axis but fail to define it or explain the poor prognosis of patients with PDCD10 mutations. Here, we demonstrate that the gut barrier is a primary determinant of CCM disease course, independent of microbiome configuration, that explains the increased severity of CCM disease associated with PDCD10 deficiency. Chemical disruption of the gut barrier with dextran sulfate sodium augments CCM formation in a mouse model, as does genetic loss of Pdcd10, but not Krit1, in gut epithelial cells. Loss of gut epithelial Pdcd10 results in disruption of the colonic mucosal barrier. Accordingly, loss of Mucin-2 or exposure to dietary emulsifiers that reduce the mucus barrier increases CCM burden analogous to loss of Pdcd10 in the gut epithelium. Last, we show that treatment with dexamethasone potently inhibits CCM formation in mice because of the combined effect of action at both brain endothelial cells and gut epithelial cells. These studies define a gut-brain disease axis in an experimental model of CCM in which a single gene is required for two critical components: gut epithelial function and brain endothelial signaling.
Collapse
Affiliation(s)
- Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Katie R Sullivan
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Lauren M Goddard
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Aparna Mahadevan
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Aileen Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Heidy Pardo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amy Peiper
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Erin Griffin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lisa M Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Li Li
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Patricia Mericko-Ishizuka
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Le Shen
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Sean P Polster
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Claudia J Rödel
- Institute for Biochemistry and Biology, Department of Animal Physiology, Potsdam University, Karl-Liebknecht-Str. 24-25, Haus 26, 14476 Potsdam, Germany
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qin Zhu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin J Whitehead
- Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiangjian Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Centenary Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Amy Akers
- Angioma Alliance, Norfolk, VA 23517, USA
| | - Leslie Morrison
- Department of Neurology and Pediatrics, University of New Mexico, Albuquerque, NM 87106, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany
| | - Anna Velcich
- Department of Cell Biology, Albert Einstein College of Medicine/Albert Einstein Cancer Center, NY 10461, USA
| | - Leonard Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine/Albert Einstein Cancer Center, NY 10461, USA
| | - Salim Abdelilah-Seyfried
- Institute for Biochemistry and Biology, Department of Animal Physiology, Potsdam University, Karl-Liebknecht-Str. 24-25, Haus 26, 14476 Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Wang Min
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Chapman EM, Lant B, Ohashi Y, Yu B, Schertzberg M, Go C, Dogra D, Koskimäki J, Girard R, Li Y, Fraser AG, Awad IA, Abdelilah-Seyfried S, Gingras AC, Derry WB. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun 2019; 10:1791. [PMID: 30996251 PMCID: PMC6470173 DOI: 10.1038/s41467-019-09829-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Apoptotic death of cells damaged by genotoxic stress requires regulatory input from surrounding tissues. The C. elegans scaffold protein KRI-1, ortholog of mammalian KRIT1/CCM1, permits DNA damage-induced apoptosis of cells in the germline by an unknown cell non-autonomous mechanism. We reveal that KRI-1 exists in a complex with CCM-2 in the intestine to negatively regulate the ERK-5/MAPK pathway. This allows the KLF-3 transcription factor to facilitate expression of the SLC39 zinc transporter gene zipt-2.3, which functions to sequester zinc in the intestine. Ablation of KRI-1 results in reduced zinc sequestration in the intestine, inhibition of IR-induced MPK-1/ERK1 activation, and apoptosis in the germline. Zinc localization is also perturbed in the vasculature of krit1-/- zebrafish, and SLC39 zinc transporters are mis-expressed in Cerebral Cavernous Malformations (CCM) patient tissues. This study provides new insights into the regulation of apoptosis by cross-tissue communication, and suggests a link between zinc localization and CCM disease.
Collapse
Affiliation(s)
- Eric M Chapman
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Benjamin Lant
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Yota Ohashi
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Michael Schertzberg
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Christopher Go
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - Deepika Dogra
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, 14476, Germany
| | - Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Yan Li
- University of Chicago Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA
| | - Andrew G Fraser
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada.
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada.
| |
Collapse
|
42
|
Yu W, Jin H, You Q, Nan D, Huang Y. A novel PDCD10 gene mutation in cerebral cavernous malformations: a case report and review of the literature. J Pain Res 2019; 12:1127-1132. [PMID: 31114296 PMCID: PMC6497854 DOI: 10.2147/jpr.s190317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/14/2019] [Indexed: 12/24/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are one of the most common types of vascular malformation, which are featured enlarged and irregular small blood vessels. The cavernous cavities are merely composed of a single layer of endothelial cells and lack other support tissues, such as elastic fibers and smooth muscle, which make them elastic. CCMs may develop in sporadic or familial forms with autosomal dominant inheritance. Mutations have been identified in three genes: KRIT1, MGC4607, and PDCD10. Here, we report a typical case of CCMs in a 44-year-old woman associated with a novel mutation in PDCD10 gene. The patient, diagnosed with CCMs, has been suffering from headache for several months. Analyses of the Whole Exome Sequencing revealed a novel disease-associated mutation in the already known disease-associated PDCD10 gene. This mutation consists a nucleotide deletion (c.212delG) within the exon 4, resulting in premature protein termination (p.S71Tfs*18). This novel mutation significantly enriches the spectrum of mutations responsible for CCMs, providing a new evidence for further clarifying the genotype-phenotype correlations in CCMs patients.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Neurology, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Qian You
- Department of Neurology, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing 100034, People's Republic of China
| |
Collapse
|
43
|
Karschnia P, Nishimura S, Louvi A. Cerebrovascular disorders associated with genetic lesions. Cell Mol Life Sci 2019; 76:283-300. [PMID: 30327838 PMCID: PMC6450555 DOI: 10.1007/s00018-018-2934-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023]
Abstract
Cerebrovascular disorders are underlain by perturbations in cerebral blood flow and abnormalities in blood vessel structure. Here, we provide an overview of the current knowledge of select cerebrovascular disorders that are associated with genetic lesions and connect genomic findings with analyses aiming to elucidate the cellular and molecular mechanisms of disease pathogenesis. We argue that a mechanistic understanding of genetic (familial) forms of cerebrovascular disease is a prerequisite for the development of rational therapeutic approaches, and has wider implications for treatment of sporadic (non-familial) forms, which are usually more common.
Collapse
Affiliation(s)
- Philipp Karschnia
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA
| | - Sayoko Nishimura
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA
| | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
44
|
Scimone C, Donato L, Katsarou Z, Bostantjopoulou S, D'Angelo R, Sidoti A. Two Novel KRIT1 and CCM2 Mutations in Patients Affected by Cerebral Cavernous Malformations: New Information on CCM2 Penetrance. Front Neurol 2018; 9:953. [PMID: 30487773 PMCID: PMC6246743 DOI: 10.3389/fneur.2018.00953] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Wide comprehension of genetic features of cerebral cavernous malformations (CCM) represents the starting point to better manage patients and risk rating in relatives. The causative mutations spectrum is constantly growing. KRIT1, CCM2, and PDCD10 are the three loci to date linked to familial CCM development, although germline mutations have also been detected in patients affected by sporadic forms. In this context, the main challenge is to draw up criteria to formulate genotype-phenotype correlations. Clearly, genetic factors determining incomplete penetrance of CCM need to be identified. Here, we report two novel intronic variants probably affecting splicing. Molecular screening of CCM genes was performed on DNA purified by peripheral blood. Coding exons and intron-exon boundaries were sequenced by the Sanger method. The first was detected in a sporadic patient and involves KRIT1. The second affects CCM2 and it is harbored by a woman with familial CCM. Interestingly, molecular analysis extended to both healthy and ill relatives allowed to estimate, for the first time, a penetrance for CCM2 lower than 100%, as to date reported. Moreover, heterogeneity of clinical manifestations among those affected carrying the same genotype further confirms involvement of modifier factors in CCM development.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoe Katsarou
- Department of Neurology, Hippokration General Hospital, Thessaloniki, Greece
| | | | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| |
Collapse
|
45
|
Choi JP, Wang R, Yang X, Wang X, Wang L, Ting KK, Foley M, Cogger V, Yang Z, Liu F, Han Z, Liu R, Baell J, Zheng X. Ponatinib (AP24534) inhibits MEKK3-KLF signaling and prevents formation and progression of cerebral cavernous malformations. SCIENCE ADVANCES 2018; 4:eaau0731. [PMID: 30417093 PMCID: PMC6221540 DOI: 10.1126/sciadv.aau0731] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 05/13/2023]
Abstract
Cerebral cavernous malformation (CCM) is a common cerebrovascular disease that can occur sporadically or be inherited. They are major causes of stroke, cerebral hemorrhage, and neurological deficits in the younger population. Loss-of-function mutations in three genes, CCM1, CCM2, and CCM3, have been identified as the cause of human CCMs. Currently, no drug is available to treat CCM disease. Hyperactive mitogen-activated protein kinase kinase Kinase 3 (MEKK3) kinase signaling as a consequence of loss of CCM genes is an underlying cause of CCM lesion development. Using a U.S. Food and Drug Administration-approved kinase inhibitor library combined with virtual modeling and biochemical and cellular assays, we have identified a clinically approved small compound, ponatinib, that is capable of inhibiting MEKK3 activity and normalizing expression of downstream kruppel-like factor (KLF) target genes. Treatment with this compound in neonatal mouse models of CCM can prevent the formation of new CCM lesions and reduce the growth of already formed lesions. At the ultracellular level, ponatinib can normalize the flattening and disorganization of the endothelium caused by CCM deficiency. Collectively, our study demonstrates ponatinib as a novel compound that may prevent CCM initiation and progression in mouse models through inhibition of MEKK3-KLF signaling.
Collapse
Affiliation(s)
- Jaesung P. Choi
- Laboratory of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Rui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xian Wang
- Laboratory of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Lu Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ka Ka Ting
- Centre for the Endothelium, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Matthew Foley
- Australian Centre for Microscopy & Microanalysis, University of Sydney, Sydney, NSW 2006, Australia
| | - Victoria Cogger
- ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Zhuo Yang
- Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhiming Han
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Renjing Liu
- Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Jonathan Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Xiangjian Zheng
- Laboratory of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Corresponding author.
| |
Collapse
|
46
|
Goyal P, Mangla R, Gupta S, Malhotra A, Almast J, Sapire J, Kolar B. Pediatric Congenital Cerebrovascular Anomalies. J Neuroimaging 2018; 29:165-181. [DOI: 10.1111/jon.12575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Pradeep Goyal
- Department of Radiology; St. Vincent's Medical Center; Bridgeport CT
| | - Rajiv Mangla
- Department of Radiology; SUNY Upstate Medical University; Syracuse NY
| | - Sonali Gupta
- Department of Medicine; St. Vincent's Medical Center; Bridgeport CT
| | - Ajay Malhotra
- Department of Radiology and Biomedical Imaging; Yale School of Medicine; New Haven CT
| | - Jeevak Almast
- Department of Radiology; University of Rochester Medical Center; Rochester NY
| | - Joshua Sapire
- Department of Radiology; St. Vincent's Medical Center; Bridgeport CT
| | | |
Collapse
|
47
|
Nardella G, Visci G, Guarnieri V, Castellana S, Biagini T, Bisceglia L, Palumbo O, Trivisano M, Vaira C, Scerrati M, Debrasi D, D'Angelo V, Carella M, Merla G, Mazza T, Castori M, D'Agruma L, Fusco C. A single-center study on 140 patients with cerebral cavernous malformations: 28 new pathogenic variants and functional characterization of a PDCD10 large deletion. Hum Mutat 2018; 39:1885-1900. [PMID: 30161288 DOI: 10.1002/humu.23629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/12/2018] [Accepted: 07/22/2018] [Indexed: 12/12/2022]
Abstract
Cerebral cavernous malformation (CCM) is a capillary malformation arising in the central nervous system. CCM may occur sporadically or cluster in families with autosomal dominant transmission, incomplete penetrance, and variable expressivity. Three genes are associated with CCM KRIT1, CCM2, and PDCD10. This work is a retrospective single-center molecular study on samples from multiple Italian clinical providers. From a pool of 317 CCM index patients, we found germline variants in either of the three genes in 80 (25.2%) probands, for a total of 55 different variants. In available families, extended molecular analysis found segregation in 60 additional subjects, for a total of 140 mutated individuals. From the 55 variants, 39 occurred in KRIT1 (20 novel), 8 in CCM2 (4 novel), and 8 in PDCD10 (4 novel). Effects of the three novel KRIT1 missense variants were characterized in silico. We also investigated a novel PDCD10 deletion spanning exon 4-10, on patient's fibroblasts, which showed significant reduction of interactions between KRIT1 and CCM2 encoded proteins and impaired autophagy process. This is the largest study in Italian CCM patients and expands the known mutational spectrum of KRIT1, CCM2, and PDCD10. Our approach highlights the relevance of seeking supporting information to pathogenicity of new variants for the improvement of management of CCM.
Collapse
Affiliation(s)
- Grazia Nardella
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Grazia Visci
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vito Guarnieri
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Luigi Bisceglia
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marina Trivisano
- Department of Neuroscience, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Carmela Vaira
- Department of Neurosurgery, Università Politecnica delle Marche, Ancona, Italy
| | - Massimo Scerrati
- Department of Neurosurgery, Università Politecnica delle Marche, Ancona, Italy
| | - Davide Debrasi
- Department of Pediatrics, Università Federico II, Naples, Italy
| | | | - Massimo Carella
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Leonardo D'Agruma
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carmela Fusco
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
48
|
Abstract
Cerebral cavernous malformations (CCM) are manifested by microvascular lesions characterized by leaky endothelial cells with minimal intervening parenchyma predominantly in the central nervous system predisposed to hemorrhagic stroke, resulting in focal neurological defects. Till date, three proteins are implicated in this condition: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10). These multi-domain proteins form a protein complex via CCM2 that function as a docking site for the CCM signaling complex, which modulates many signaling pathways. Defects in the formation of this signaling complex have been shown to affect a wide range of cellular processes including cell-cell contact stability, vascular angiogenesis, oxidative damage protection and multiple biogenic events. In this review we provide an update on recent advances in structure and function of these CCM proteins, especially focusing on the signaling cascades involved in CCM pathogenesis and the resultant CCM cellular phenotypes in the past decade.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
49
|
Lin X, Meng G, Liu X, Yu T, Bai C, Fei X, Deng S, Zhao J, Ren S, Zhang J, Wu Z, Wang S, Zhang J, Zhang L. The Differentially Expressed Genes of Human Sporadic Cerebral Cavernous Malformations. World Neurosurg 2018; 113:e247-e270. [DOI: 10.1016/j.wneu.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
50
|
Vetter IR. Interface analysis of small GTP binding protein complexes suggests preferred membrane orientations. Biol Chem 2017; 398:637-651. [PMID: 28002022 DOI: 10.1515/hsz-2016-0287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/12/2016] [Indexed: 11/15/2022]
Abstract
Crystal structures of small GTP binding protein complexes with their effectors and regulators reveal that one particularly flat side of the G domain that contains helix α4 and the C-terminal helix α5 is practically devoid of contacts. Although this observation seems trivial as the main binding targets are the switch I and II regions opposite of this side, the fact that all interacting proteins, even the largest ones, seem to avoid occupying this area (except for Ran, that does not localize to membranes) is very striking. An orientation with this 'flat' side parallel to the membrane was proposed before and would allow simultaneous interaction of the lipidated C-terminus and positive charges in the α4 helix with the membrane while being bound to effector or regulator molecules. Furthermore, this 'flat' side might be involved in regulatory mechanisms: a Ras dimer that is found in different crystal forms interacts exactly at this side. Additional interface analysis of GTPase complexes nicely confirms the effect of different flexibilities of the GTP and GDP forms. Besides Ran proteins, guanine nucleotide exchange factors (GEFs) bury the largest surface areas to provide the binding energy to open up the switch regions for nucleotide exchange.
Collapse
Affiliation(s)
- Ingrid R Vetter
- Max Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Otto-Hahn-Str. 11, D-44227 Dortmund
| |
Collapse
|