1
|
Nair PP, Keskar MP, Borghare PT, Dzoagbe HY, Kumar T. The New Era of Therapeutic Strategies for the Management of Retinitis Pigmentosa: A Narrative Review of the Pathomolecular Mechanism for Gene Therapies. Cureus 2024; 16:e66814. [PMID: 39280562 PMCID: PMC11393205 DOI: 10.7759/cureus.66814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 09/18/2024] Open
Abstract
Retinitis pigmentosa, or RP, is a group of inherited retinal degenerations involving progressive loss of photoreceptor cells- rods and cones- ultimately causing severe vision loss and blindness. RP, although a very common ailment, continues to be an incurable disease with little to be done medically. However, with the breakthroughs in gene therapy and stem cell transplantation in recent years, a new door has been opened to the treatment of RP. This narrative review summarizes the pathomolecular mechanisms of RP, focusing on the genetic and molecular abnormalities that lead to the process of retinal degeneration. In this section, we talk about the current theories of how RP develops, gene mutations, oxidative stress, and inflammation. We also delve into new therapeutic approaches such as gene therapy, stem cell transplantation and genome surgery, which are designed to either replace or repair the damaged photoreceptors to restore vision and ultimately enhance the life of the RP patient. Another topic covered is the obstacles and research frontiers of these revolutionary treatments. This article is intended to give a complete overview of the molecular processes of RP and the promising treatment strategies that could change the way this devastating disease is treated.
Collapse
Affiliation(s)
- Praveena P Nair
- Otolaryngology, Mandsaur Institute of Ayurved Education and Research, Bhunyakhedi, IND
- Otolaryngology, Parul Institute of Ayurved, Parul University, Limda, IND
| | - Manjiri P Keskar
- Otolaryngology, Parul institute of Ayurved, Parul University, Limda, IND
| | - Pramod T Borghare
- Otolaryngology, Mahatma Gandhi Ayurved College Hospital and Research, Wardha, IND
| | - Hellen Y Dzoagbe
- Anatomy, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanish Kumar
- Medicine, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Aguilar C, Williams D, Kurapati R, Bains RS, Mburu P, Parker A, Williams J, Concas D, Tateossian H, Haynes AR, Banks G, Vikhe P, Heise I, Hutchison M, Atkins G, Gillard S, Starbuck B, Oliveri S, Blake A, Sethi S, Kumar S, Bardhan T, Jeng JY, Johnson SL, Corns LF, Marcotti W, Simon M, Wells S, Potter PK, Lad HV. Pleiotropic brain function of whirlin identified by a novel mutation. iScience 2024; 27:110170. [PMID: 38974964 PMCID: PMC11225360 DOI: 10.1016/j.isci.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Despite some evidence indicating diverse roles of whirlin in neurons, the functional corollary of whirlin gene function and behavior has not been investigated or broadly characterized. A single nucleotide variant was identified from our recessive ENU-mutagenesis screen at a donor-splice site in whirlin, a protein critical for proper sensorineural hearing function. The mutation (head-bob, hb) led to partial intron-retention causing a frameshift and introducing a premature termination codon. Mutant mice had a head-bobbing phenotype and significant hyperactivity across several phenotyping tests. Lack of complementation of head-bob with whirler mutant mice confirmed the head-bob mutation as functionally distinct with compound mutants having a mild-moderate hearing defect. Utilizing transgenics, we demonstrate rescue of the hyperactive phenotype and combined with the expression profiling data conclude whirlin plays an essential role in activity-related behaviors. These results highlight a pleiotropic role of whirlin within the brain and implicate alternative, central mediated pathways in its function.
Collapse
Affiliation(s)
- Carlos Aguilar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Debbie Williams
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Ramakrishna Kurapati
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Rasneer S. Bains
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Philomena Mburu
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andy Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Jackie Williams
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Danilo Concas
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Hilda Tateossian
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andrew R. Haynes
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Gareth Banks
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Pratik Vikhe
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Ines Heise
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Marie Hutchison
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Gemma Atkins
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Simon Gillard
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Becky Starbuck
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Simona Oliveri
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andrew Blake
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Siddharth Sethi
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Saumya Kumar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Tanaya Bardhan
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Lara F. Corns
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Michelle Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Sara Wells
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Paul K. Potter
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Heena V. Lad
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| |
Collapse
|
3
|
Ramzan M, Bozan N, Seyhan S, Zafeer MF, Ayral A, Duman D, Bademci G, Tekin M. Novel GPR156 variants confirm its role in moderate sensorineural hearing loss. Sci Rep 2023; 13:17010. [PMID: 37814107 PMCID: PMC10562426 DOI: 10.1038/s41598-023-44259-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Hereditary hearing loss (HL) is a genetically heterogeneous disorder affecting people worldwide. The implementation of advanced sequencing technologies has significantly contributed to the identification of novel genes involved in HL. In this study, probands of two Turkish families with non-syndromic moderate HL were subjected to exome sequencing. The data analysis identified the c.600G > A (p.Thr200Thr) and c.1863dupG (p.His622fs) variants in GPR156, which co-segregated with the phenotype as an autosomal recessive trait in the respective families. The in silico predictions and a minigene assay showed that the c.600G > A variant disrupts mRNA splicing. This gene belongs to the family of G protein-coupled receptors whose function is not well established in the inner ear. GPR156 variants have very recently been reported to cause HL in three families. Our study from a different ethnic background confirms GPR156 as a bona fide gene involved in HL in humans. Further investigation towards the understanding of the role of GPCRs in the inner ear is warranted.
Collapse
Affiliation(s)
- Memoona Ramzan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10Th Avenue, BRB-610 (M860), Miami, FL, 33136, USA
| | - Nazim Bozan
- Department of Otolaryngology, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Serhat Seyhan
- Department of Medical Genetics, Faculty of Medicine, Uskudar University, Istanbul, Turkey
| | - Mohammad Faraz Zafeer
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10Th Avenue, BRB-610 (M860), Miami, FL, 33136, USA
| | - Aburrahman Ayral
- Department of Otolaryngology, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Duygu Duman
- Department of Audiology, Ankara University Faculty of Health Sciences, Ankara, Turkey
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10Th Avenue, BRB-610 (M860), Miami, FL, 33136, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
4
|
Crane R, Tebbe L, Mwoyosvi ML, Al-Ubaidi MR, Naash MI. Expression of the human usherin c.2299delG mutation leads to early-onset auditory loss and stereocilia disorganization. Commun Biol 2023; 6:933. [PMID: 37700068 PMCID: PMC10497539 DOI: 10.1038/s42003-023-05296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of combined deafness and blindness, with USH2A being the most prevalent form. The mechanisms responsible for this debilitating sensory impairment remain unclear. This study focuses on characterizing the auditory phenotype in a mouse model expressing the c.2290delG mutation in usherin equivalent to human frameshift mutation c.2299delG. Previously we described how this model reproduces patient's retinal phenotypes. Here, we present the cochlear phenotype, showing that the mutant usherin, is expressed during early postnatal stages. The c.2290delG mutation results in a truncated protein that is mislocalized within the cell body of the hair cells. The knock-in model also exhibits congenital hearing loss that remains consistent throughout the animal's lifespan. Structurally, the stereocilia bundles, particularly in regions associated with functional hearing loss, are disorganized. Our findings shed light on the role of usherin in maintaining structural support, specifically in longer inner hair cell stereocilia, during development, which is crucial for proper bundle organization and hair cell function. Overall, we present a genetic mouse model with cochlear defects associated with the c.2290delG mutation, providing insights into the etiology of hearing loss and offering potential avenues for the development of effective therapeutic treatments for USH2A patients.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Maggie L Mwoyosvi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
5
|
Linnert J, Knapp B, Güler BE, Boldt K, Ueffing M, Wolfrum U. Usher syndrome proteins ADGRV1 (USH2C) and CIB2 (USH1J) interact and share a common interactome containing TRiC/CCT-BBS chaperonins. Front Cell Dev Biol 2023; 11:1199069. [PMID: 37427378 PMCID: PMC10323441 DOI: 10.3389/fcell.2023.1199069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
The human Usher syndrome (USH) is the most common form of a sensory hereditary ciliopathy characterized by progressive vision and hearing loss. Mutations in the genes ADGRV1 and CIB2 have been associated with two distinct sub-types of USH, namely, USH2C and USH1J. The proteins encoded by the two genes belong to very distinct protein families: the adhesion G protein-coupled receptor ADGRV1 also known as the very large G protein-coupled receptor 1 (VLGR1) and the Ca2+- and integrin-binding protein 2 (CIB2), respectively. In the absence of tangible knowledge of the molecular function of ADGRV1 and CIB2, pathomechanisms underlying USH2C and USH1J are still unknown. Here, we aimed to enlighten the cellular functions of CIB2 and ADGRV1 by the identification of interacting proteins, a knowledge that is commonly indicative of cellular functions. Applying affinity proteomics by tandem affinity purification in combination with mass spectrometry, we identified novel potential binding partners of the CIB2 protein and compared these with the data set we previously obtained for ADGRV1. Surprisingly, the interactomes of both USH proteins showed a high degree of overlap indicating their integration in common networks, cellular pathways and functional modules which we confirmed by GO term analysis. Validation of protein interactions revealed that ADGRV1 and CIB2 mutually interact. In addition, we showed that the USH proteins also interact with the TRiC/CCT chaperonin complex and the Bardet Biedl syndrome (BBS) chaperonin-like proteins. Immunohistochemistry on retinal sections demonstrated the co-localization of the interacting partners at the photoreceptor cilia, supporting the role of USH proteins ADGRV1 and CIB2 in primary cilia function. The interconnection of protein networks involved in the pathogenesis of both syndromic retinal dystrophies BBS and USH suggest shared pathomechanisms for both syndromes on the molecular level.
Collapse
Affiliation(s)
- Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Knapp
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Baran E. Güler
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karls University of Tuebingen, Tubingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karls University of Tuebingen, Tubingen, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Schellens RT, Broekman S, Peters T, Graave P, Malinar L, Venselaar H, Kremer H, De Vrieze E, Van Wijk E. A protein domain-oriented approach to expand the opportunities of therapeutic exon skipping for USH2A-associated retinitis pigmentosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:980-994. [PMID: 37313440 PMCID: PMC10258241 DOI: 10.1016/j.omtn.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Loss-of-function mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). We previously presented skipping of USH2A exon 13 as a promising treatment paradigm for USH2A-associated RP. However, RP-associated mutations are often private, and evenly distributed along the USH2A gene. In order to broaden the group of patients that could benefit from therapeutic exon skipping strategies, we expanded our approach to other USH2A exons in which unique loss-of-function mutations have been reported by implementing a protein domain-oriented dual exon skipping strategy. We first generated zebrafish mutants carrying a genomic deletion of the orthologous exons of the frequently mutated human USH2A exons 30-31 or 39-40 using CRISPR-Cas9. Excision of these in-frame combinations of exons restored usherin expression in the zebrafish retina and rescued the photopigment mislocalization typically observed in ush2a mutants. To translate these findings into a future treatment in humans, we employed in vitro assays to identify and validate antisense oligonucleotides (ASOs) with a high potency for sequence-specific dual exon skipping. Together, the in vitro and in vivo data demonstrate protein domain-oriented ASO-induced dual exon skipping to be a highly promising treatment option for RP caused by mutations in USH2A.
Collapse
Affiliation(s)
- Renske T.W. Schellens
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 GL Nijmegen, the Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Theo Peters
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Pam Graave
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Lucija Malinar
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 GL Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erik De Vrieze
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 GL Nijmegen, the Netherlands
| | - Erwin Van Wijk
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
7
|
Wang H, Du H, Ren R, Du T, Lin L, Feng Z, Zhao D, Wei X, Zhai X, Wang H, Dong T, Sun JP, Wu H, Xu Z, Lu Q. Temporal and spatial assembly of inner ear hair cell ankle link condensate through phase separation. Nat Commun 2023; 14:1657. [PMID: 36964137 PMCID: PMC10039067 DOI: 10.1038/s41467-023-37267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Stereocilia are actin-based cell protrusions of inner ear hair cells and are indispensable for mechanotransduction. Ankle links connect the ankle region of developing stereocilia, playing an essential role in stereocilia development. WHRN, PDZD7, ADGRV1 and USH2A have been identified to form the so-called ankle link complex (ALC); however, the detailed mechanism underlying the temporal emergence and degeneration of ankle links remains elusive. Here we show that WHRN and PDZD7 orchestrate ADGRV1 and USH2A to assemble the ALC through liquid-liquid phase separation (LLPS). Disruption of the ALC multivalency for LLPS largely abolishes the distribution of WHRN at the ankle region of stereocilia. Interestingly, high concentration of ADGRV1 inhibits LLPS, providing a potential mechanism for ALC disassembly. Moreover, certain deafness mutations of ALC genes weaken the multivalent interactions of ALC and impair LLPS. In conclusion, our study demonstrates that LLPS mediates ALC formation, providing essential clues for understanding the pathogenesis of deafness.
Collapse
Affiliation(s)
- Huang Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Air Force Medical Center, PLA, Beijing, 100074, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Tingting Du
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lin Lin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhe Feng
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Dange Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoxi Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Department of Audiology and Vestibular Medicine, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Tingting Dong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China.
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
- Bio-X-Renji Hospital Research Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Tebbe L, Mwoyosvi ML, Crane R, Makia MS, Kakakhel M, Cosgrove D, Al-Ubaidi MR, Naash MI. The usherin mutation c.2299delG leads to its mislocalization and disrupts interactions with whirlin and VLGR1. Nat Commun 2023; 14:972. [PMID: 36810733 PMCID: PMC9944904 DOI: 10.1038/s41467-023-36431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of combined deafness-blindness with type 2 A (USH2A) being the most common form. Knockout models of USH proteins, like the Ush2a-/- model that develops a late-onset retinal phenotype, failed to mimic the retinal phenotype observed in patients. Since patient's mutations result in the expression of a mutant protein and to determine the mechanism of USH2A, we generated and evaluated an usherin (USH2A) knock-in mouse expressing the common human disease-mutation, c.2299delG. This mouse exhibits retinal degeneration and expresses a truncated, glycosylated protein which is mislocalized to the photoreceptor inner segment. The degeneration is associated with a decline in retinal function, structural abnormalities in connecting cilium and outer segment and mislocaliztion of the usherin interactors very long G-protein receptor 1 and whirlin. The onset of symptoms is significantly earlier compared to Ush2a-/-, proving expression of mutated protein is required to recapitulate the patients' retinal phenotype.
Collapse
Affiliation(s)
- Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Maggie L Mwoyosvi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | | | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
9
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
10
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
11
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Zhang Z, Chai R. Hear the sounds: The role of G Protein-Coupled Receptors in the cochlea. Am J Physiol Cell Physiol 2022; 323:C1088-C1099. [PMID: 35938679 DOI: 10.1152/ajpcell.00453.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sound is converted by hair cells in the cochlea into electrical signals, which are transmitted by spiral ganglion neurons (SGNs) and heard by the auditory cortex. G protein-coupled receptors (GPCRs) are crucial receptors that regulate a wide range of physiological functions in different organ and tissues. The research of GPCRs in the cochlea is essential for the understanding of the cochlea development, hearing disorders, and the treatment for hearing loss. Recently, several GPCRs have been found to play important roles in the cochlea. Frizzleds and Lgrs are dominant GPCRs that regulate stem cell self-renew abilities. Moreover, Frizzleds and Celsrs have been demonstrated to play core roles in the modulation of cochlear planar cell polarity (PCP). In addition, hearing loss can be caused by mutations of certain GPCRs, such as Vlgr1, Gpr156, S1P2 and Gpr126. And A1, A2A and CB2 activation by agonists have protective functions on noise- or drug-induced hearing loss. Here, we review the key findings of GPCR in the cochlea, and discuss the role of GPCR in the cochlea, such as stem cell fate, PCP, hearing loss, and hearing protection.
Collapse
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Schellens RTW, Slijkerman RWN, Hetterschijt L, Peters T, Broekman S, Clemént A, Westerfield M, Phillips JB, Boldt K, Kremer H, De Vrieze E, Van Wijk E. Affinity purification of in vivo assembled whirlin-associated protein complexes from the zebrafish retina. J Proteomics 2022; 266:104666. [PMID: 35788411 DOI: 10.1016/j.jprot.2022.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Mutations in WHRN lead to Usher syndrome type 2d or to non-syndromic hearing impairment. The WHRN-encoded gene product whirlin directly interacts with the intracellular regions of the other two Usher syndrome type 2-associated proteins, usherin and ADGRV1. In photoreceptor cells, this protein complex constitutes fibrous links between the periciliary membrane and the connecting cilium. However, the molecular mechanism(s) of retinal degeneration due to compromised formation and function of the USH2-associated protein complex remains elusive. To unravel this pathogenic mechanism, we isolated and characterized whirlin-associated protein complexes from zebrafish photoreceptor cells. We generated transgenic zebrafish that express Strep/FLAG-tagged Whrna, a zebrafish ortholog of human whirlin, under the control of a photoreceptor-specific promoter. Affinity purification of Strep/FLAG-tagged Whrna and associated proteins from adult transgenic zebrafish retinas followed by mass spectrometry identified 19 novel candidate associated proteins. Pull down experiments and dedicated yeast two-hybrid assays confirmed the association of Whrna with 7 of the co-purified proteins. Several of the co-purified proteins are part of the synaptic proteome, which indicates a role for whirlin in the photoreceptor synapse. Future studies will elucidate which of the newly identified protein-protein interactions contribute to the development of the retinal phenotype observed in USH2d patients. SIGNIFICANCE: Since protein-protein interactions identified using targeted in vitro studies do not always recapitulate interactions that are functionally relevant in vivo, we established a transgenic zebrafish line that stably expresses a Strep/FLAG-tagged ortholog of human whirlin (SF-Whrna) in photoreceptor cells. Affinity purification of in vivo-assembled SF-Whrna-associated protein complexes from retinal lysates followed by mass spectrometry, identified 19 novel candidate interaction partners, many of which are enriched in the synaptic proteome. Two human orthologs of the identified candidate interaction partners, FRMPD4 and Kir2.3, were validated as direct interaction partners of human whirlin using a yeast two-hybrid assay. The strong connection of whirlin with postsynaptic density proteins was not identified in previous in vitro protein-protein interaction assays, presumably due to the absence of a biologically relevant context. Isolation and identification of in vivo-assembled whirlin-associated protein complexes from the tissue of interest is therefore a powerful methodology to obtain novel insight into tissue specific protein-protein interactions and has the potential to improve significantly our understanding of the function of whirlin and the molecular pathogenesis underlying Usher syndrome type 2.
Collapse
Affiliation(s)
- R T W Schellens
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, 6500GL Nijmegen, the Netherlands.
| | - R W N Slijkerman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, the Netherlands
| | - L Hetterschijt
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - T Peters
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands.
| | - S Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands.
| | - A Clemént
- University of Oregon, OR 97403, Eugene, Oregon, United States of America
| | - M Westerfield
- University of Oregon, OR 97403, Eugene, Oregon, United States of America.
| | - J B Phillips
- University of Oregon, OR 97403, Eugene, Oregon, United States of America.
| | - K Boldt
- Institute for Ophthalmic Research, University of Tübingen, D-72076 Tübingen, Germany.
| | - H Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, 6500GL Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands.
| | - E De Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, 6500GL Nijmegen, the Netherlands.
| | - E Van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, 6500GL Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Zaw K, Carvalho LS, Aung-Htut MT, Fletcher S, Wilton SD, Chen FK, McLenachan S. Pathogenesis and Treatment of Usher Syndrome Type IIA. Asia Pac J Ophthalmol (Phila) 2022; 11:369-379. [PMID: 36041150 DOI: 10.1097/apo.0000000000000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Usher syndrome (USH) is the most common form of deaf-blindness, with an estimated prevalence of 4.4 to 16.6 per 100,000 people worldwide. The most common form of USH is type IIA (USH2A), which is caused by homozygous or compound heterozygous mutations in the USH2A gene and accounts for around half of all USH cases. USH2A patients show moderate to severe hearing loss from birth, with diagnosis of retinitis pigmentosa in the second decade of life and variable vestibular involvement. Although hearing aids or cochlear implants can provide some mitigation of hearing deficits, there are currently no treatments aimed at preventing or restoring vision loss in USH2A patients. In this review, we first provide an overview of the molecular biology of the USH2A gene and its protein isoforms, which include a transmembrane protein (TM usherin) and an extracellular protein (EC usherin). The role of these proteins in the inner ear and retina and their impact on the pathogenesis of USH2A is discussed. We review animal cell-derived and patient cell-derived models currently used in USH2A research and conclude with an overview of potential treatment strategies currently in preclinical development and clinical trials.
Collapse
Affiliation(s)
- Khine Zaw
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Livia S Carvalho
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
15
|
Knapp B, Roedig J, Roedig H, Krzysko J, Horn N, Güler BE, Kusuluri DK, Yildirim A, Boldt K, Ueffing M, Liebscher I, Wolfrum U. Affinity Proteomics Identifies Interaction Partners and Defines Novel Insights into the Function of the Adhesion GPCR VLGR1/ADGRV1. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103108. [PMID: 35630584 PMCID: PMC9146371 DOI: 10.3390/molecules27103108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/20/2022]
Abstract
The very large G-protein-coupled receptor 1 (VLGR1/ADGRV1) is the largest member of the adhesion G-protein-coupled receptor (ADGR) family. Mutations in VLGR1/ADGRV1 cause human Usher syndrome (USH), a form of hereditary deaf-blindness, and have been additionally linked to epilepsy. In the absence of tangible knowledge of the molecular function and signaling of VLGR1, the pathomechanisms underlying the development of these diseases are still unknown. Our study aimed to identify novel, previously unknown protein networks associated with VLGR1 in order to describe new functional cellular modules of this receptor. Using affinity proteomics, we have identified numerous new potential binding partners and ligands of VLGR1. Tandem affinity purification hits were functionally grouped based on their Gene Ontology terms and associated with functional cellular modules indicative of functions of VLGR1 in transcriptional regulation, splicing, cell cycle regulation, ciliogenesis, cell adhesion, neuronal development, and retinal maintenance. In addition, we validated the identified protein interactions and pathways in vitro and in situ. Our data provided new insights into possible functions of VLGR1, related to the development of USH and epilepsy, and also suggest a possible role in the development of other neuronal diseases such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Barbara Knapp
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Jens Roedig
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Heiko Roedig
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Jacek Krzysko
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Nicola Horn
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Baran E. Güler
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Adem Yildirim
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Karsten Boldt
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Marius Ueffing
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Uwe Wolfrum
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
- Correspondence:
| |
Collapse
|
16
|
Sethna S, Zein WM, Riaz S, Giese AP, Schultz JM, Duncan T, Hufnagel RB, Brewer CC, Griffith AJ, Redmond TM, Riazuddin S, Friedman TB, Ahmed ZM. Proposed therapy, developed in a Pcdh15-deficient mouse, for progressive loss of vision in human Usher syndrome. eLife 2021; 10:67361. [PMID: 34751129 PMCID: PMC8577840 DOI: 10.7554/elife.67361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Usher syndrome type I (USH1) is characterized by deafness, vestibular areflexia, and progressive retinal degeneration. The protein-truncating p.Arg245* founder variant of PCDH15 (USH1F) has an ~2% carrier frequency amongst Ashkenazi Jews accounts for ~60% of their USH1 cases. Here, longitudinal phenotyping in 13 USH1F individuals revealed progressive retinal degeneration, leading to severe vision loss with macular atrophy by the sixth decade. Half of the affected individuals were legally blind by their mid-50s. The mouse Pcdh15R250X variant is equivalent to human p.Arg245*. Homozygous Pcdh15R250X mice also have visual deficits and aberrant light-dependent translocation of the phototransduction cascade proteins, arrestin, and transducin. Retinal pigment epithelium (RPE)-specific retinoid cycle proteins, RPE65 and CRALBP, were also reduced in Pcdh15R250X mice, indicating a dual role for protocadherin-15 in photoreceptors and RPE. Exogenous 9-cis retinal improved ERG amplitudes in Pcdh15R250X mice, suggesting a basis for a clinical trial of FDA-approved retinoids to preserve vision in USH1F patients.
Collapse
Affiliation(s)
- Saumil Sethna
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Sehar Riaz
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States.,National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Arnaud Pj Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States
| | - Julie M Schultz
- Laboratory of Molecular Genetics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, Bethesda, United States
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, Bethesda, United States
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States.,Departments of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, United States.,Departments of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
17
|
Toms M, Dubis AM, de Vrieze E, Tracey-White D, Mitsios A, Hayes M, Broekman S, Baxendale S, Utoomprurkporn N, Bamiou D, Bitner-Glindzicz M, Webster AR, Van Wijk E, Moosajee M. Clinical and preclinical therapeutic outcome metrics for USH2A-related disease. Hum Mol Genet 2021; 29:1882-1899. [PMID: 31998945 PMCID: PMC7372554 DOI: 10.1093/hmg/ddaa004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
USH2A variants are the most common cause of Usher syndrome type 2, characterized by congenital sensorineural hearing loss and retinitis pigmentosa (RP), and also contribute to autosomal recessive non-syndromic RP. Several treatment strategies are under development; however, sensitive clinical trial endpoint metrics to determine therapeutic efficacy have not been identified. In the present study, we have performed longitudinal retrospective examination of the retinal and auditory symptoms in (i) 56 biallelic molecularly confirmed USH2A patients and (ii) ush2a mutant zebrafish to identify metrics for the evaluation of future clinical trials and rapid preclinical screening studies. The patient cohort showed a statistically significant correlation between age and both rate of constriction for the ellipsoid zone length and hyperautofluorescent outer retinal ring area. Visual acuity and pure tone audiograms are not suitable outcome measures. Retinal examination of the novel ush2au507 zebrafish mutant revealed a slowly progressive degeneration of predominantly rods, accompanied by rhodopsin and blue cone opsin mislocalization from 6 to 12 months of age with lysosome-like structures observed in the photoreceptors. This was further evaluated in the ush2armc zebrafish model, which revealed similar changes in photopigment mislocalization with elevated autophagy levels at 6 days post fertilization, indicating a more severe genotype-phenotype correlation and providing evidence of new insights into the pathophysiology underlying USH2A-retinal disease.
Collapse
Affiliation(s)
- Maria Toms
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Adam M Dubis
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.,Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 HR, The Netherlands
| | - Dhani Tracey-White
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Andreas Mitsios
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.,Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Matthew Hayes
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Sanne Broekman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 HR, The Netherlands
| | - Sarah Baxendale
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Nattawan Utoomprurkporn
- UCL Ear Institute, University College London, London WC1X 8EE, UK.,Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Doris Bamiou
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.,Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Erwin Van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 HR, The Netherlands
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.,Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.,UCL Ear Institute, University College London, London WC1X 8EE, UK
| |
Collapse
|
18
|
Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. Hum Genet 2021; 141:737-758. [PMID: 34331125 DOI: 10.1007/s00439-021-02324-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022]
Abstract
Usher syndrome (USH) is a rare, autosomal recessively inherited disorder resulting in a combination of sensorineural hearing loss and a progressive loss of vision resulting from retinitis pigmentosa (RP), occasionally accompanied by an altered vestibular function. More and more evidence is building up indicating that also sleep deprivation, olfactory dysfunction, deficits in tactile perception and reduced sperm motility are part of the disease etiology. USH can be clinically classified into three different types, of which Usher syndrome type 2 (USH2) is the most prevalent. In this review, we, therefore, assess the genetic and clinical aspects, available models and therapeutic developments for USH2. Mutations in USH2A, ADGRV1 and WHRN have been described to be responsible for USH2, with USH2A being the most frequently mutated USH-associated gene, explaining 50% of all cases. The proteins encoded by the USH2 genes together function in a dynamic protein complex that, among others, is found at the photoreceptor periciliary membrane and at the base of the hair bundles of inner ear hair cells. To unravel the pathogenic mechanisms underlying USH2, patient-derived cellular models and animal models including mouse, zebrafish and drosophila, have been generated that all in part mimic the USH phenotype. Multiple cellular and genetic therapeutic approaches are currently under development for USH2, mainly focused on preserving or partially restoring the visual function of which one is already in the clinical phase. These developments are opening a new gate towards a possible treatment for USH2 patients.
Collapse
|
19
|
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. Int J Mol Sci 2021; 22:6723. [PMID: 34201633 PMCID: PMC8268283 DOI: 10.3390/ijms22136723] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.
Collapse
Affiliation(s)
- Carla Fuster-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
20
|
Meng X, Liu X, Li Y, Guo T, Yang L. Correlation between Genotype and Phenotype in 69 Chinese Patients with USH2A Mutations: A comparative study of the patients with Usher Syndrome and Nonsyndromic Retinitis Pigmentosa. Acta Ophthalmol 2021; 99:e447-e460. [PMID: 33124170 DOI: 10.1111/aos.14626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The aim of this study was to analyse 69 Chinese patients with USH2A mutations and to assess the genotype-phenotype correlation. METHODS All 36 Usher syndrome type IIA patients and 33 nonsyndromic RP (retinitis pigmentosa) patients underwent clinical examinations. Eye examinations included best-corrected visual acuity, slit-lamp biomicroscopy, fundus examination with dilated pupils, fundus fluorescent angiography, visual field test, full-field electroretinography and optic coherence tomography; audiological assessment included pure tone audiometry and hearing thresholds. The molecular diagnosis of genotype combined the single-gene Sanger sequencing and next-generation sequencing. This study is a retrospective study. RESULTS The mean age of first symptoms with Usher syndrome type IIa and nonsyndromic RP patients was 13.7 versus 29.8 years (ocular phenotypes, p < 0.001); 17.7 versus 29.9 years (nyctalopia, p < 0.001); 44.7 versus 54.8 years (low vision based on VF, p < 0.001); 41.7 versus 54.7 years (low vision based on VA, p < 0.001); and 46.0 versus 56.7 years (legal blindness based on VF, p < 0.001). There was significant difference in variants in the two groups (p < 0.05). Among patients with mutation c.2802T > G (p.Cys934Trp), more (66.7%) presented with normal hearing. All patients (3/3, 100%) with the variant c.8232G > C (p.Trp2744Cys) had hearing loss. Furthermore, we identified 23 novel variants in USH2A. CONCLUSIONS Patients with Usher syndrome type IIa had an earlier onset of the disease, inferior visual function and presented with more truncating variants, compared with the nonsyndromic RP patients.
Collapse
Affiliation(s)
- Xiang Meng
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - XiaoZhen Liu
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - YingYing Li
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - Tong Guo
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - Liping Yang
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| |
Collapse
|
21
|
Lin L, Wang H, Ren D, Xia Y, He G, Lu Q. Structure and Membrane Targeting of the PDZD7 Harmonin Homology Domain (HHD) Associated With Hearing Loss. Front Cell Dev Biol 2021; 9:642666. [PMID: 33937240 PMCID: PMC8083959 DOI: 10.3389/fcell.2021.642666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Usher syndrome (USH) is the leading cause of hereditary hearing–vision loss in humans. PDZ domain-containing 7 (PDZD7) has been reported to be a modifier of and contributor to USH. PDZD7 co-localizes with USH2 proteins in the inner ear hair cells and is essential for ankle-link formation and stereocilia development. PDZD7 contains three PDZ domains and a low-complexity region between the last two PDZ domains, which has been overlooked in the previous studies. Here we characterized a well-folded harmonin homology domain (HHD) from the middle region and solved the PDZD7 HHD structure at the resolution of 1.49 Å. PDZD7 HHD adopts the same five-helix fold as other HHDs found in Harmonin and Whirlin; however, in PDZD7 HHD, a unique α1N helix occupies the canonical binding pocket, suggesting a distinct binding mode. Moreover, we found that the PDZD7 HHD domain can bind lipid and mediate the localization of PDZD7 to the plasma membrane in HEK293T cells. Intriguingly, a hearing-loss mutation at the N-terminal extension region of the HHD can disrupt the lipid-binding ability of PDZD7 HHD, suggesting that HHD-mediated membrane targeting is required for the hearing process. This structural and biochemical characterization of the PDZD7 HHD region provides mechanistic explanations for human deafness-causing mutations in PDZD7. Furthermore, this structure will also facilitate biochemical and functional studies of other HHDs.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Huang Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Ren
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Yitian Xia
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Bio-X-Renji Hospital Research Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
de Joya EM, Colbert BM, Tang PC, Lam BL, Yang J, Blanton SH, Dykxhoorn DM, Liu X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int J Mol Sci 2021; 22:3910. [PMID: 33920085 PMCID: PMC8068832 DOI: 10.3390/ijms22083910] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.
Collapse
Affiliation(s)
- Evan M. de Joya
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Brett M. Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pei-Ciao Tang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Jun Yang
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA;
| | - Susan H. Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
23
|
Lin L, Shi Y, Wang M, Wang C, Lu Q, Zhu J, Zhang R. Phase separation-mediated condensation of Whirlin-Myo15-Eps8 stereocilia tip complex. Cell Rep 2021; 34:108770. [PMID: 33626355 DOI: 10.1016/j.celrep.2021.108770] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 01/05/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Stereocilia, the mechanosensory organelles on the apical surface of hair cells, are necessary to detect sound and carry out mechano-electrical transduction. An electron-dense matrix is located at the distal tips of stereocilia and plays crucial roles in the regulation of stereocilia morphology. Mutations of the components in this tip complex density (TCD) have been associated with profound deafness. However, the mechanism underlying the formation of the TCD is largely unknown. Here, we discover that the specific multivalent interactions among the Whirlin-myosin 15 (Myo15)-Eps8 complex lead to the formation of the TCD-like condensates through liquid-liquid phase separation. The reconstituted TCD-like condensates effectively promote actin bundling. A deafness-associated mutation of Myo15 interferes with the condensates formation and consequently impairs actin bundling. Therefore, our study not only suggests that the TCD in hair cell stereocilia may form via phase separation but it also provides important clues for the possible mechanism underlying hearing loss.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingdong Shi
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mengli Wang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chao Wang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwei Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Rongguang Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
24
|
Toualbi L, Toms M, Moosajee M. USH2A-retinopathy: From genetics to therapeutics. Exp Eye Res 2020; 201:108330. [PMID: 33121974 PMCID: PMC8417766 DOI: 10.1016/j.exer.2020.108330] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023]
Abstract
Bilallelic variants in the USH2A gene can cause Usher syndrome type 2 and non-syndromic retinitis pigmentosa. In both disorders, the retinal phenotype involves progressive rod photoreceptor loss resulting in nyctalopia and a constricted visual field, followed by subsequent cone degeneration, leading to the loss of central vision and severe visual impairment. The USH2A gene raises many challenges for researchers and clinicians due to a broad spectrum of mutations, a large gene size hampering gene therapy development and limited knowledge on its pathogenicity. Patients with Usher type 2 may benefit from hearing aids or cochlear implants to correct their hearing defects, but there are currently no approved treatments available for the USH2A-retinopathy. Several treatment strategies, including antisense oligonucleotides and translational readthrough inducing drugs, have shown therapeutic promise in preclinical studies. Further understanding of the pathogenesis and natural history of USH2A-related disorders is required to develop innovative treatments and design clinical trials based on reliable outcome measures. The present review will discuss the current knowledge about USH2A, the emerging therapeutics and existing challenges.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK; Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.
| |
Collapse
|
25
|
Zhu Y, Delhommel F, Cordier F, Lüchow S, Mechaly A, Colcombet-Cazenave B, Girault V, Pepermans E, Bahloul A, Gautier C, Brûlé S, Raynal B, Hoos S, Haouz A, Caillet-Saguy C, Ivarsson Y, Wolff N. Deciphering the Unexpected Binding Capacity of the Third PDZ Domain of Whirlin to Various Cochlear Hair Cell Partners. J Mol Biol 2020; 432:5920-5937. [PMID: 32971111 DOI: 10.1016/j.jmb.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Hearing is a mechanical and neurochemical process, which occurs in the hair cells of inner ear that converts the sound vibrations into electrical signals transmitted to the brain. The multi-PDZ scaffolding protein whirlin plays a critical role in the formation and function of stereocilia exposed at the surface of hair cells. In this article, we reported seven stereociliary proteins that encode PDZ binding motifs (PBM) and interact with whirlin PDZ3, where four of them are first reported. We solved the atomic resolution structures of complexes between whirlin PDZ3 and the PBMs of myosin 15a, CASK, harmonin a1 and taperin. Interestingly, the PBM of CASK and taperin are rare non-canonical PBM, which are not localized at the extreme C terminus. This large capacity to accommodate various partners could be related to the distinct functions of whirlin at different stages of the hair cell development.
Collapse
Affiliation(s)
- Yanlei Zhu
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France; Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | - Florent Delhommel
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France; Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | | | | | - Ariel Mechaly
- Plateforme de Cristallographie, Institut Pasteur, Paris, France
| | - Baptiste Colcombet-Cazenave
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France; Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | | | - Elise Pepermans
- Complexité du Vivant, Sorbonne Université, 75005 Paris, France; Unité de génétique et physiologie de l'audition, Institut Pasteur, 75015 Paris, France
| | - Amel Bahloul
- Unité de génétique et physiologie de l'audition, Institut Pasteur, 75015 Paris, France
| | - Candice Gautier
- Istituto Pasteur - Fondazione C. Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Sébastien Brûlé
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Bertrand Raynal
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Sylviane Hoos
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Ahmed Haouz
- Plateforme de Cristallographie, Institut Pasteur, Paris, France
| | | | - Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Sweden
| | - Nicolas Wolff
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
26
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
27
|
Yu D, Zou J, Chen Q, Zhu T, Sui R, Yang J. Structural modeling, mutation analysis, and in vitro expression of usherin, a major protein in inherited retinal degeneration and hearing loss. Comput Struct Biotechnol J 2020; 18:1363-1382. [PMID: 32637036 PMCID: PMC7317166 DOI: 10.1016/j.csbj.2020.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/15/2022] Open
Abstract
Usherin is the most common causative protein associated with autosomal recessive retinitis pigmentosa (RP) and Usher syndrome (USH), which are characterized by retinal degeneration alone and in combination with hearing loss, respectively. Usherin is essential for photoreceptor survival and hair cell bundle integrity. However, the molecular mechanism underlying usherin function in normal and disease conditions is unclear. In this study, we investigated structural models of usherin domains and localization of usherin pathogenic small in-frame mutations, mainly homozygous missense mutations. We found that usherin fibronectin III (FN3) domains and most laminin-related domains have a β-sandwich structure. Some FN3 domains are predicted to interact with each other and with laminin-related domains. The usherin protein may bend at some FN3 linker regions. RP- and USH-associated small in-frame mutations are differentially located in usherin domains. Most of them are located at the periphery of β-sandwiches, with some at the interface between interacting domains. The usherin laminin epidermal growth factor repeats adopt a rod-shaped structure, which is maintained by disulfide bonds. Most missense mutations and deletion of exon 13 in this region disrupt the disulfide bonds and may affect local protein folding. Despite low expression of the recombinant entire protein and protein fragments in mammalian cell culture, usherin FN3 fragments are more robustly expressed and secreted than its laminin-related fragments. Our findings provide new insights into the usherin structure and the disease mechanisms caused by pathogenic small in-frame mutations, which will help inform future experimental research on diagnosis, disease mechanisms, and therapeutic approaches.
Collapse
Key Words
- Cell adhesion
- DCC, deleted in colorectal cancer
- FN3, fibronectin III
- GMQE, global quality estimation score
- HGMD, Human Gene Mutation Database
- Hair cell
- I-TASSER, Iterative Threading ASSEmbly Refinement
- LE, laminin EGF
- LG, laminin globular
- LGL, laminin globular-like
- LN, laminin N-terminal
- Membrane protein
- NCBI, National Center for Biotechnology Information
- Photoreceptor
- Protein folding
- QMEAN, qualitative model energy analysis score
- QSQE, Quaternary Structure Quality Estimation
- RMSD, root mean square deviation
- RP, retinitis pigmentosa
- Recombinant protein expression
- Retinitis pigmentosa
- SMTL, SWISS-MODEL template library
- Structural model
- TM-score, template modeling score
- USH, Usher syndrome
- Usher syndrome
- hFc, human Fc fragment
- mFc, mouse Fc fragment
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Qian Chen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
28
|
Fetal gene therapy and pharmacotherapy to treat congenital hearing loss and vestibular dysfunction. Hear Res 2020; 394:107931. [PMID: 32173115 DOI: 10.1016/j.heares.2020.107931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022]
Abstract
Disabling hearing loss is expected to affect over 900 million people worldwide by 2050. The World Health Organization estimates that the annual economic impact of hearing loss globally is US$ 750 billion. The inability to hear may complicate effective interpersonal communication and negatively impact personal and professional relationships. Recent advances in the genetic diagnosis of inner ear disease have keenly focused attention on strategies to restore hearing and balance in individuals with defined gene mutations. Mouse models of human hearing loss serve as the primary approach to test gene therapies and pharmacotherapies. The goal of this review is to articulate the rationale for fetal gene therapy and pharmacotherapy to treat congenital hearing loss and vestibular dysfunction. The differential onset of hearing in mice and humans suggests that a prenatal window of therapeutic efficacy in humans may be optimal to restore sensory function. Mouse studies demonstrating the utility of early fetal intervention in the inner ear show promise. We focus on the modulation of gene expression through two strategies that have successfully treated deafness in animal models and have had clinical success for other conditions in humans: gene replacement and antisense oligonucleotide-mediated modulation of gene expression. The recent establishment of effective therapies targeting the juvenile and adult mouse provide informative counterexamples where intervention in the maturing and fully functional mouse inner ear may be effective. Distillation of the current literature leads to the conclusion that novel therapeutic strategies to treat genetic deafness and imbalance will soon translate to clinical trials.
Collapse
|
29
|
Ataluren for the Treatment of Usher Syndrome 2A Caused by Nonsense Mutations. Int J Mol Sci 2019; 20:ijms20246274. [PMID: 31842393 PMCID: PMC6940777 DOI: 10.3390/ijms20246274] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
The identification of genetic defects that underlie inherited retinal diseases (IRDs) paves the way for the development of therapeutic strategies. Nonsense mutations caused approximately 12% of all IRD cases, resulting in a premature termination codon (PTC). Therefore, an approach that targets nonsense mutations could be a promising pharmacogenetic strategy for the treatment of IRDs. Small molecules (translational read-through inducing drugs; TRIDs) have the potential to mediate the read-through of nonsense mutations by inducing expression of the full-length protein. We provide novel data on the read-through efficacy of Ataluren on a nonsense mutation in the Usher syndrome gene USH2A that causes deaf-blindness in humans. We demonstrate Ataluren´s efficacy in both transiently USH2AG3142*-transfected HEK293T cells and patient-derived fibroblasts by restoring USH2A protein expression. Furthermore, we observed enhanced ciliogenesis in patient-derived fibroblasts after treatment with TRIDs, thereby restoring a phenotype that is similar to that found in healthy donors. In light of recent findings, we validated Ataluren´s efficacy to induce read-through on a nonsense mutation in USH2A-related IRD. In line with published data, our findings support the use of patient-derived fibroblasts as a platform for the validation of preclinical therapies. The excellent biocompatibility combined with sustained read-through efficacy makes Ataluren an ideal TRID for treating nonsense mutations based IRDs.
Collapse
|
30
|
Richardson GP, Petit C. Hair-Bundle Links: Genetics as the Gateway to Function. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033142. [PMID: 30617060 DOI: 10.1101/cshperspect.a033142] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to five distinct cell-surface specializations interconnect the stereocilia and the kinocilium of the mature hair bundle in some species: kinocilial links, tip links, top connectors, shaft connectors, and ankle links. In developing hair bundles, transient lateral links are prominent. Mutations in genes encoding proteins associated with these links cause Usher deafness/blindness syndrome or nonsyndromic (isolated) forms of human hereditary deafness, and mice with constitutive or conditional alleles of these genes have provided considerable insight into the molecular composition and function of the different links. We describe the structure of these links and review evidence showing CDH23 and PCDH15 are components of the tip, kinocilial, and transient-lateral links, that stereocilin (STRC) and protein tyrosine phosphatase (PTPRQ) are associated with top and shaft connectors, respectively, and that USH2A and ADGRV1 are associated with the ankle links. Whereas tip links are required for mechanoelectrical transduction, all link proteins play key roles in the normal development and/or the maintenance of hair bundle structure and function. Recent crystallographic and single-particle analyses of PCDH15 and CDH23 provide insight as to how the structure of tip link may contribute to the elastic element predicted to lie in series with the hair cell's mechanoelectrical transducer channel.
Collapse
Affiliation(s)
- Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Christine Petit
- Institut Pasteur, 75724 Paris Cedex 15, France.,Collège de France, 75231 Paris Cedex 05, France
| |
Collapse
|
31
|
Du H, Zou L, Ren R, Li N, Li J, Wang Y, Sun J, Yang J, Xiong W, Xu Z. Lack of PDZD7 long isoform disrupts ankle-link complex and causes hearing loss in mice. FASEB J 2019; 34:1136-1149. [PMID: 31914662 DOI: 10.1096/fj.201901657rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Usher syndrome (USH) is the most frequent form of combined hereditary deafness-blindness, characterized by hearing loss and retinitis pigmentosa, with or without vestibular dysfunction. PDZD7 is a PDZ domain-containing scaffold protein that was suggested to be a USH modifier and a contributor to digenic USH. In the inner ear hair cells, PDZD7 localizes at the ankle region of the stereocilia and constitutes the so-called ankle-link complex together with three other USH proteins Usherin, WHRN, and ADGRV1. PDZD7 gene is subjected to alternative splicing, which gives rise to two types of PDZD7 isoforms, namely the long and short isoforms. At present, little is known which specific isoform is involved in ankle-link formation and stereocilia development. In this work, we showed that PDZD7 long isoform, but not short isoforms, localizes at the ankle region of the stereocilia. Moreover, we established Pdzd7 mutant mice by introducing deletions into exon 14 of the Pdzd7 gene, which causes potential premature translational stop in the long isoform but leaves short isoforms unaffected. We found that lack of PDZD7 long isoform affects the localization of other ankle-link complex components in the stereocilia. Consequently, Pdzd7 mutant mice showed stereocilia development deficits and hearing loss as well as reduced mechanotransduction (MET) currents, suggesting that PDZD7 long isoform is indispensable for hair cells. Furthermore, by performing yeast two-hybrid screening, we identified a PDZD7 long isoform-specific binding partner PIP5K1C, which has been shown to play important roles in hearing and might participate in the function and/or transportation of PDZD7.
Collapse
Affiliation(s)
- Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Linzhi Zou
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jie Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
32
|
Lee SY, Joo K, Oh J, Han JH, Park HR, Lee S, Oh DY, Woo SJ, Choi BY. Severe or Profound Sensorineural Hearing Loss Caused by Novel USH2A Variants in Korea: Potential Genotype-Phenotype Correlation. Clin Exp Otorhinolaryngol 2019; 13:113-122. [PMID: 31674169 PMCID: PMC7248602 DOI: 10.21053/ceo.2019.00990] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022] Open
Abstract
Objectives We, herein, report two novel USH2A variants from two unrelated Korean families and their clinical phenotypes, with attention to severe or more than severe sensorineural hearing loss (SNHL). Methods Two postlingually deafened subjects (SB237-461, M/46 and SB354-692, F/34) with more than severe SNHL and also with suspicion of Usher syndrome type II (USH2) were enrolled. A comprehensive audiological and ophthalmological assessments were evaluated. We conducted the whole exome sequencing and subsequent pathogenicity prediction analysis. Results We identified the following variants of USH2A from the two probands manifesting more than severe SNHL and retinitis pigmentosa (RP): compound heterozygosity for a nonsense (c.8176C>T: p.R2723X) and a missense variant (c.1823G>A: p.C608Y) in SB237, and compound heterozygosity for two frameshift variants (c.14835delT: p.S4945fs & c.13112_13115delAAAT: p.G4371fs) in SB354. Based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines, two novel variants, c.1823G>A: p.C608Y and c.14835delT: p.Ser4945fs, can be classified as “uncertain significance” and “pathogenic,” respectively. The audiogram exhibited more than severe SNHL and a down-sloping configuration, necessitating cochlear implantation. The ophthalmic examinations revealed typical features of RP. Interestingly, one proband (SB 354-692) carrying two truncating compound heterozygous variants exhibited more severe hearing loss than the other proband (SB 237-461), carrying one truncation with one missense variant. Conclusion Our results provide insight on the expansion of audiological spectrum encompassing more than severe SNHL in Korean subjects harboring USH2A variants, suggesting that USH2A should also be included in the candidate gene of cochlear implantation. A specific combination of USH2A variants causing truncating proteins in both alleles could demonstrate more severe audiological phenotype than that of USH2A variants carrying one truncating mutation and one missense mutation, suggesting a possible genotype-phenotype correlation. The understanding of audiological complexity associated with USH2A will be helpful for genetic counseling and treatment starategy.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jayoung Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye-Rim Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seungmin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Doo-Yi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
33
|
Wang L, Wei B, Fu X, Wang Y, Sui Y, Ma J, Gong X, Hao J, Xing S. Identification of whirlin domains interacting with espin: A study of the mechanism of Usher syndrome type II. Mol Med Rep 2019; 20:5111-5117. [PMID: 31638198 PMCID: PMC6854525 DOI: 10.3892/mmr.2019.10728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/19/2019] [Indexed: 11/23/2022] Open
Abstract
Usher syndrome is the most common condition of combined blindness and deafness and is classified into three types (USH1-USH3). USH2 is the most commonly diagnosed of all Usher syndrome cases. There are three identified proteins (usherin, GPR98 and whirlin) that form the USH2 complex. Defects in any of these proteins may cause failure in the formation of the USH2 complex, which is the primary cause of USH2. Whirlin is a scaffold protein and is essential for the assembly of the USH2 protein complex. It has been reported that espin is an interacting partner protein for whirlin. However, which fragment of whirlin interacts with espin remains unclear. In the present study, whirlin N- and C-terminal fragments in the pEGFP-C2 vectors were constructed. The recombinant plasmids were transfected into COS-7 cells to observe the co-localization by confocal laser scanning microscopy. The interactions between whirlin and espin were investigated by co-immunoprecipitation using the 293 cell line. It was demonstated that only the whirlin N-terminal fragment was able to interact with espin and the PR (proline-rich) region in whirlin may be important for the interaction. However, the present study did not investigate the interaction between whirlin and espin without the PR domain which warrants future research. Our findings elucidated a primary mechanism of interaction between whirlin and espin, which are crucial for further study on the USH2 complex and USH2 pathogenesis.
Collapse
Affiliation(s)
- Le Wang
- Department of Ophthalmology, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yuchen Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yuan Sui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Junfeng Ma
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xianhui Gong
- Department of Opthalmology, Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jilong Hao
- Department of Ophthalmology, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
34
|
Lee SY, Han JH, Kim BJ, Oh SH, Lee S, Oh DY, Choi BY. Identification of a Potential Founder Effect of a Novel PDZD7 Variant Involved in Moderate-to-Severe Sensorineural Hearing Loss in Koreans. Int J Mol Sci 2019; 20:ijms20174174. [PMID: 31454969 PMCID: PMC6747409 DOI: 10.3390/ijms20174174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
PDZD7, a PDZ domain-containing scaffold protein, is critical for the organization of Usher syndrome type 2 (USH2) interactome. Recently, biallelic PDZD7 variants have been associated with autosomal-recessive, non-syndromic hearing loss (ARNSHL). Indeed, we identified novel, likely pathogenic PDZD7 variants based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines from Korean families manifesting putative moderate-to-severe prelingual ARNSHL; these were c.490C>T (p.Arg164Trp), c.1669delC (p.Arg557Glyfs*13), and c.1526G>A (p.Gly509Glu), with p.Arg164Trp being a predominantly recurring variant. Given the recurring missense variant (p.Arg164Trp) from our cohort, we compared the genotyping data using six short tandem-repeat (STR) markers within or flanking PDZD7 between four probands carrying p.Arg164Trp and 81 normal-hearing controls. We observed an identical haplotype across three out of six STR genotyping markers exclusively shared by two unrelated hearing impaired probands but not by any of the 81 normal-hearing controls, suggesting a potential founder effect. However, STR genotyping, based on six STR markers, revealed various p.Arg164Trp-linked haplotypes shared by all of the affected subjects. In conclusion, PDZD7 can be an important causative gene for moderate to severe ARNSHL in Koreans. Moreover, at least some, if not all, p.Arg164Trp alleles in Koreans could exert a potential founder effect and arise from diverse haplotypes as a mutational hot spot.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 04401, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Bong Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 04401, Korea
| | - Seungmin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Doo-Yi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| |
Collapse
|
35
|
Knapp B, Roedig J, Boldt K, Krzysko J, Horn N, Ueffing M, Wolfrum U. Affinity proteomics identifies novel functional modules related to adhesion GPCRs. Ann N Y Acad Sci 2019; 1456:144-167. [PMID: 31441075 DOI: 10.1111/nyas.14220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 01/04/2023]
Abstract
Adhesion G protein-coupled receptors (ADGRs) have recently become a target of intense research. Their unique protein structure, which consists of a G protein-coupled receptor combined with long adhesive extracellular domains, suggests a dual role in cell signaling and adhesion. Despite considerable progress in the understanding of ADGR signaling over the past years, the knowledge about ADGR protein networks is still limited. For most receptors, only a few interaction partners are known thus far. We aimed to identify novel ADGR-interacting partners to shed light on cellular protein networks that rely on ADGR function. For this, we applied affinity proteomics, utilizing tandem affinity purifications combined with mass spectrometry. Analysis of the acquired proteomics data provides evidence that ADGRs not only have functional roles at synapses but also at intracellular membranes, namely at the endoplasmic reticulum, the Golgi apparatus, mitochondria, and mitochondria-associated membranes (MAMs). Specifically, we found an association of ADGRs with several scaffold proteins of the membrane-associated guanylate kinases family, elementary units of the γ-secretase complex, the outer/inner mitochondrial membrane, MAMs, and regulators of the Wnt signaling pathways. Furthermore, the nuclear localization of ADGR domains together with their physical interaction with nuclear proteins and several transcription factors suggests a role of ADGRs in gene regulation.
Collapse
Affiliation(s)
- Barbara Knapp
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Jens Roedig
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research and Medical Bioanalytics, Centre for Ophthalmology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Jacek Krzysko
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Nicola Horn
- Institute for Ophthalmic Research and Medical Bioanalytics, Centre for Ophthalmology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research and Medical Bioanalytics, Centre for Ophthalmology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
36
|
Langenhan T. Adhesion G protein–coupled receptors—Candidate metabotropic mechanosensors and novel drug targets. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:5-16. [DOI: 10.1111/bcpt.13223] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty Leipzig University Leipzig Germany
| |
Collapse
|
37
|
Folts CJ, Giera S, Li T, Piao X. Adhesion G Protein-Coupled Receptors as Drug Targets for Neurological Diseases. Trends Pharmacol Sci 2019; 40:278-293. [PMID: 30871735 DOI: 10.1016/j.tips.2019.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023]
Abstract
The family of adhesion G protein-coupled receptors (aGPCRs) consists of 33 members in humans. Although the majority are orphan receptors with unknown functions, many reports have demonstrated critical functions for some members of this family in organogenesis, neurodevelopment, myelination, angiogenesis, and cancer progression. Importantly, mutations in several aGPCRs have been linked to human diseases. The crystal structure of a shared protein domain, the GPCR Autoproteolysis INducing (GAIN) domain, has enabled the discovery of a common signaling mechanism - a tethered agonist - for this class of receptors. A series of recent reports has shed new light on their biological functions and disease relevance. This review focuses on these recent advances in our understanding of aGPCR biology in the nervous system and the untapped potential of aGPCRs as novel therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Christopher J Folts
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Sanofi S.A., 49 New York Avenue, Framingham, MA 01701, USA
| | - Tao Li
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Mathur PD, Yang J. Usher syndrome and non-syndromic deafness: Functions of different whirlin isoforms in the cochlea, vestibular organs, and retina. Hear Res 2019; 375:14-24. [PMID: 30831381 DOI: 10.1016/j.heares.2019.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
Usher syndrome (USH) is the leading cause of inherited combined vision and hearing loss. However, mutations in most USH causative genes lead to other diseases, such as hearing loss only or vision loss only. The molecular mechanisms underlying the variable disease manifestations associated with USH gene mutations are unclear. This review focuses on an USH type 2 (USH2) gene encoding whirlin (WHRN; previously known as DFNB31), mutations in which have been found to cause either USH2 subtype USH2D or autosomal recessive non-syndromic deafness type 31 (DFNB31). This review summarizes the current knowledge about different whirlin isoforms encoded by WHRN orthologs in animal models, the interactions of different whirlin isoforms with their partners, and the function of whirlin isoforms in different cellular and subcellular locations. The recent findings regarding the function of whirlin isoforms suggest that disruption of different isoforms may be one of the mechanisms underlying the variable disease manifestations caused by USH gene mutations. This review also presents recent findings about the vestibular defects in Whrn mutant mouse models, which suggests that previous assumptions about the normal vestibular function of USH2 patients need to be re-evaluated. Finally, this review describes recent progress in developing therapeutics for diseases caused by WHRN mutations.
Collapse
Affiliation(s)
- Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, 84132, USA; Department of Otolaryngology Head and Neck Surgery, University of Utah, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
39
|
Photoreceptor actin dysregulation in syndromic and non-syndromic retinitis pigmentosa. Biochem Soc Trans 2018; 46:1463-1473. [PMID: 30464047 DOI: 10.1042/bst20180138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/26/2018] [Accepted: 10/12/2018] [Indexed: 01/11/2023]
Abstract
Retinitis pigmentosa (RP) is the leading cause of inherited blindness. RP is a genetically heterogeneous disorder, with more than 100 different causal genes identified in patients. Central to disease pathogenesis is the progressive loss of retinal photoreceptors. Photoreceptors are specialised sensory neurons that exhibit a complex and highly dynamic morphology. The highly polarised and elaborated architecture of photoreceptors requires precise regulation of numerous cytoskeletal elements. In recent years, significant work has been placed on investigating the role of microtubules (specifically, the acetylated microtubular axoneme of the photoreceptor connecting cilium) and their role in normal photoreceptor function. This has been driven by the emerging field of ciliopathies, human diseases arising from mutations in genes required for cilia formation or function, of which RP is a frequently reported phenotype. Recent studies have highlighted an intimate relationship between cilia and the actin cystoskeleton. This review will focus on the role of actin in photoreceptors, examining the connection between actin dysregulation in RP.
Collapse
|
40
|
Saifetiarova J, Bhat MA. Ablation of cytoskeletal scaffolding proteins, Band 4.1B and Whirlin, leads to cerebellar purkinje axon pathology and motor dysfunction. J Neurosci Res 2018; 97:313-331. [PMID: 30447021 DOI: 10.1002/jnr.24352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022]
Abstract
The cerebellar cortex receives neural information from other brain regions to allow fine motor coordination and motor learning. The primary output neurons from the cerebellum are the Purkinje neurons that transmit inhibitory responses to deep cerebellar nuclei through their myelinated axons. Altered morphological organization and electrical properties of the Purkinje axons lead to detrimental changes in locomotor activity often leading to cerebellar ataxias. Two cytoskeletal scaffolding proteins Band 4.1B (4.1B) and Whirlin (Whrn) have been previously shown to play independent roles in axonal domain organization and maintenance in myelinated axons in the spinal cord and sciatic nerves. Immunoblot analysis had indicated cerebellar expression for both 4.1B and Whrn; however, their subcellular localization and cerebellum-specific functions have not been characterized. Using 4.1B and Whrn single and double mutant animals, we show that both proteins are expressed in common cellular compartments of the cerebellum and play cooperative roles in preservation of the integrity of Purkinje neuron myelinated axons. We demonstrate that both 4.1B and Whrn are required for the maintenance of axonal ultrastructure and health. Loss of 4.1B and Whrn leads to axonal transport defects manifested by formation of swellings containing cytoskeletal components, membranous organelles, and vesicles. Moreover, ablation of both proteins progressively affects cerebellar function with impairment in locomotor performance detected by altered gait parameters. Together, our data indicate that 4.1B and Whrn are required for maintaining proper axonal cytoskeletal organization and axonal domains, which is necessary for cerebellum-controlled fine motor coordination.
Collapse
Affiliation(s)
- Julia Saifetiarova
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
41
|
Knockout of ush2a gene in zebrafish causes hearing impairment and late onset rod-cone dystrophy. Hum Genet 2018; 137:779-794. [PMID: 30242501 DOI: 10.1007/s00439-018-1936-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
Most cases of Usher syndrome type II (USH2) are due to mutations in the USH2A gene. There are no effective treatments or ideal animal models for this disease, and the pathological mechanisms of USH2 caused by USH2A mutations are still unknown. Here, we constructed a ush2a knockout (ush2a-/-) zebrafish model using TALEN technology to investigate the molecular pathology of USH2. An early onset auditory disorder and abnormal morphology of inner ear stereocilia were identified in the ush2a-/- zebrafish. Consequently, the disruption of Ush2a in zebrafish led to a hearing impairment, like that in mammals. Electroretinography (ERG) test indicated that deletion of Ush2a affected visual function at an early stage, and histological analysis revealed that the photoreceptors progressively degenerated. Rod degeneration occurred prior to cone degeneration in ush2a-/- zebrafish, which is consistent with the classical description of the progression of retinitis pigmentosa (RP). Destruction of the outer segments (OSs) of rods led to the down-regulation of phototransduction cascade proteins at late stage. The expression of Ush1b and Ush1c was up-regulated when Ush2a was null. We also found that disruption of fibronectin assembly at the retinal basement membrane weakened cell adhesion in ush2a-/- mutants. In summary, for the first time, we generated a ush2a knockout zebrafish line with auditory disorder and retinal degeneration which mimicked the symptoms of patients, and revealed that disruption of fibronectin assembly may be one of the factors underlying RP. This model may help us to better understand the pathogenic mechanism and find treatment for USH2 in the future.
Collapse
|
42
|
Wang L, Kempton JB, Brigande JV. Gene Therapy in Mouse Models of Deafness and Balance Dysfunction. Front Mol Neurosci 2018; 11:300. [PMID: 30210291 PMCID: PMC6123355 DOI: 10.3389/fnmol.2018.00300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Therapeutic strategies to restore hearing and balance in mouse models of inner ear disease aim to rescue sensory function by gene replacement, augmentation, knock down or knock out. Modalities to achieve therapeutic effects have utilized virus-mediated transfer of wild type genes and small interfering ribonucleic acids; systemic and focal administration of antisense oligonucleotides (ASO) and designer small molecules; and lipid-mediated transfer of Cas 9 ribonucleoprotein (RNP) complexes. This work has established that gene or drug administration to the structurally and functionally immature, early neonatal mouse inner ear prior to hearing onset is a prerequisite for the most robust therapeutic responses. These observations may have significant implications for translating mouse inner ear gene therapies to patients. The human fetus hears by gestational week 19, suggesting that a corollary window of therapeutic efficacy closes early in the second trimester of pregnancy. We hypothesize that fetal therapeutics deployed prior to hearing onset may be the most effective approach to preemptively manage genetic mutations that cause deafness and vestibular dysfunction. We assert that gene therapy studies in higher vertebrate model systems with fetal hearing onset and a comparable acoustic range and sensitivity to that of humans are an essential step to safely and effectively translate murine gene therapies to the clinic.
Collapse
Affiliation(s)
- Lingyan Wang
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, OR, United States
| | - J Beth Kempton
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, OR, United States
| | - John V Brigande
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
43
|
Ahmed ZM, Jaworek TJ, Sarangdhar GN, Zheng L, Gul K, Khan SN, Friedman TB, Sisk RA, Bartles JR, Riazuddin S, Riazuddin S. Inframe deletion of human ESPN is associated with deafness, vestibulopathy and vision impairment. J Med Genet 2018; 55:479-488. [PMID: 29572253 PMCID: PMC6232856 DOI: 10.1136/jmedgenet-2017-105221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Usher syndrome (USH) is a neurosensory disorder characterised by deafness, variable vestibular areflexia and vision loss. The aim of the study was to identify the genetic defect in a Pakistani family (PKDF1051) segregating USH. METHODS Genome-wide linkage analysis was performed by using an Illumina linkage array followed by Sanger and exome sequencing. Heterologous cells and mouse organ of Corti explant-based transfection assays were used for functional evaluations. Detailed clinical evaluations were performed to characterise the USH phenotype. RESULTS Through homozygosity mapping, we genetically linked the USH phenotype segregating in family PKDF1051 to markers on chromosome 1p36.32-p36.22. The locus was designated USH1M. Using a combination of Sanger sequencing and exome sequencing, we identified a novel homozygous 18 base pair inframe deletion in ESPN. Variants of ESPN, encoding the actin-bundling protein espin, have been previously associated with deafness and vestibular areflexia in humans with no apparent visual deficits. Our functional studies in heterologous cells and in mouse organ of Corti explant cultures revealed that the six deleted residues in affected individuals of family PKDF1051 are essential for the actin bundling function of espin demonstrated by ultracentrifugation actin binding and bundling assays. Funduscopic examination of the affected individuals of family PKDF1051 revealed irregular retinal contour, temporal flecks and disc pallor in both eyes. ERG revealed diminished rod photoreceptor function among affected individuals. CONCLUSION Our study uncovers an additional USH gene, assigns the USH1 phenotype to a variant of ESPN and provides a 12th molecular component to the USH proteome.
Collapse
Affiliation(s)
- Zubair M Ahmed
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Thomas J Jaworek
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Gowri N Sarangdhar
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Lili Zheng
- Department of Cell and Molecular Biology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Khitab Gul
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Shaheen N Khan
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A Sisk
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
- Ophthalmology, Cincinnati Eye Institute, Cincinnati, Ohio, USA
| | - James R Bartles
- Department of Cell and Molecular Biology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Sheikh Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
- University of Lahore and Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| |
Collapse
|
44
|
Dona M, Slijkerman R, Lerner K, Broekman S, Wegner J, Howat T, Peters T, Hetterschijt L, Boon N, de Vrieze E, Sorusch N, Wolfrum U, Kremer H, Neuhauss S, Zang J, Kamermans M, Westerfield M, Phillips J, van Wijk E. Usherin defects lead to early-onset retinal dysfunction in zebrafish. Exp Eye Res 2018; 173:148-159. [PMID: 29777677 DOI: 10.1016/j.exer.2018.05.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/24/2023]
Abstract
Mutations in USH2A are the most frequent cause of Usher syndrome and autosomal recessive nonsyndromic retinitis pigmentosa. To unravel the pathogenic mechanisms underlying USH2A-associated retinal degeneration and to evaluate future therapeutic strategies that could potentially halt the progression of this devastating disorder, an animal model is needed. The available Ush2a knock-out mouse model does not mimic the human phenotype, because it presents with only a mild and late-onset retinal degeneration. Using CRISPR/Cas9-technology, we introduced protein-truncating germline lesions into the zebrafish ush2a gene (ush2armc1: c.2337_2342delinsAC; p.Cys780GlnfsTer32 and ush2ab1245: c.15520_15523delinsTG; p.Ala5174fsTer). Homozygous mutants were viable and displayed no obvious morphological or developmental defects. Immunohistochemical analyses with antibodies recognizing the N- or C-terminal region of the ush2a-encoded protein, usherin, demonstrated complete absence of usherin in photoreceptors of ush2armc1, but presence of the ectodomain of usherin at the periciliary membrane of ush2ab1245-derived photoreceptors. Furthermore, defects of usherin led to a reduction in localization of USH2 complex members, whirlin and Adgrv1, at the photoreceptor periciliary membrane of both mutants. Significantly elevated levels of apoptotic photoreceptors could be observed in both mutants when kept under constant bright illumination for three days. Electroretinogram (ERG) recordings revealed a significant and similar decrease in both a- and b-wave amplitudes in ush2armc1 as well as ush2ab1245 larvae as compared to strain- and age-matched wild-type larvae. In conclusion, this study shows that mutant ush2a zebrafish models present with early-onset retinal dysfunction that is exacerbated by light exposure. These models provide a better understanding of the pathophysiology underlying USH2A-associated RP and a unique opportunity to evaluate future therapeutic strategies.
Collapse
Affiliation(s)
- Margo Dona
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Ralph Slijkerman
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Kimberly Lerner
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA
| | - Sanne Broekman
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Jeremy Wegner
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA
| | - Taylor Howat
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA
| | - Theo Peters
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Lisette Hetterschijt
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Nanda Boon
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Nasrin Sorusch
- Institute of Molecular Physiology, Johannes Gutenberg University, Johannes-von-Muellerweg 6, D-55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, Johannes-von-Muellerweg 6, D-55099 Mainz, Germany
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Stephan Neuhauss
- University of Zürich, Institute of Molecular Life Sciences, Winterthurerstrasse 190, Zürich, CH - 8057, Switzerland
| | - Jingjing Zang
- University of Zürich, Institute of Molecular Life Sciences, Winterthurerstrasse 190, Zürich, CH - 8057, Switzerland
| | - Maarten Kamermans
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Biomedical Physics, Academisch Medisch Centrum, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Monte Westerfield
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA
| | - Jennifer Phillips
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Abstract
The adhesion G protein-coupled receptors (aGPCRs) are an evolutionarily ancient family of receptors that play key roles in many different physiological processes. These receptors are notable for their exceptionally long ectodomains, which span several hundred to several thousand amino acids and contain various adhesion-related domains, as well as a GPCR autoproteolysis-inducing (GAIN) domain. The GAIN domain is conserved throughout almost the entire family and undergoes autoproteolysis to cleave the receptors into two noncovalently-associated protomers. Recent studies have revealed that the signaling activity of aGPCRs is largely determined by changes in the interactions among these protomers. We review recent advances in understanding aGPCR activation mechanisms and discuss the physiological roles and pharmacological properties of aGPCRs, with an eye toward the potential utility of these receptors as drug targets.
Collapse
Affiliation(s)
- Ryan H Purcell
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| |
Collapse
|
46
|
Delhommel F, Cordier F, Bardiaux B, Bouvier G, Colcombet-Cazenave B, Brier S, Raynal B, Nouaille S, Bahloul A, Chamot-Rooke J, Nilges M, Petit C, Wolff N. Structural Characterization of Whirlin Reveals an Unexpected and Dynamic Supramodule Conformation of Its PDZ Tandem. Structure 2017; 25:1645-1656.e5. [PMID: 28966015 DOI: 10.1016/j.str.2017.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/26/2017] [Accepted: 08/18/2017] [Indexed: 10/18/2022]
Abstract
Hearing relies on the transduction of sound-evoked vibrations into electric signals, occurring in the stereocilia bundle of hair cells. The bundle is organized in a staircase pattern formed by rows of packed stereocilia. This architecture is pivotal to transduction and involves a network of scaffolding proteins with hitherto uncharacterized features. Key interactions in this network are mediated by PDZ domains. Here, we describe the architecture of the first two PDZ domains of whirlin, a protein involved in these assemblies and associated with congenital deaf-blindness. C-terminal hairpin extensions of the PDZ domains mediate the transient supramodular assembly, which improves the binding capacity of the first domain. We determined a detailed structural model of the closed conformation of the PDZ tandem and characterized its equilibrium with an ensemble of open conformations. The structural and dynamic behavior of this PDZ tandem provides key insights into the regulatory mechanisms involved in the hearing machinery.
Collapse
Affiliation(s)
- Florent Delhommel
- Sorbonne Universités, UPMC Université Paris 06, Complexité du Vivant, 75005 Paris, France; CNRS, UMR 3528, 75015 Paris, France; Unité de Résonance Magnétique Nucléaire des Biomolécules, Institut Pasteur, 75015 Paris, France
| | - Florence Cordier
- CNRS, UMR 3528, 75015 Paris, France; Unité de Résonance Magnétique Nucléaire des Biomolécules, Institut Pasteur, 75015 Paris, France
| | - Benjamin Bardiaux
- CNRS, UMR 3528, 75015 Paris, France; Unité de Bio-Informatique Structurale, Institut Pasteur, 75015 Paris, France
| | - Guillaume Bouvier
- CNRS, UMR 3528, 75015 Paris, France; Unité de Bio-Informatique Structurale, Institut Pasteur, 75015 Paris, France
| | - Baptiste Colcombet-Cazenave
- CNRS, UMR 3528, 75015 Paris, France; Unité de Résonance Magnétique Nucléaire des Biomolécules, Institut Pasteur, 75015 Paris, France
| | - Sébastien Brier
- CNRS, UMR 3528, 75015 Paris, France; Unité de Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, 75015 Paris, France
| | - Bertrand Raynal
- CNRS, UMR 3528, 75015 Paris, France; Plateforme de Biophysique Moléculaire, Institut Pasteur, 75015 Paris, France
| | - Sylvie Nouaille
- Sorbonne Universités, UPMC Université Paris 06, Complexité du Vivant, 75005 Paris, France; Unité de Génétique et physiologie de l'audition, Institut Pasteur, 75015 Paris, France; Unité Mixte de Recherche, UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France
| | - Amel Bahloul
- Sorbonne Universités, UPMC Université Paris 06, Complexité du Vivant, 75005 Paris, France; Unité de Génétique et physiologie de l'audition, Institut Pasteur, 75015 Paris, France; Unité Mixte de Recherche, UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France
| | - Julia Chamot-Rooke
- CNRS, UMR 3528, 75015 Paris, France; Unité de Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, 75015 Paris, France
| | - Michael Nilges
- CNRS, UMR 3528, 75015 Paris, France; Unité de Bio-Informatique Structurale, Institut Pasteur, 75015 Paris, France
| | - Christine Petit
- Sorbonne Universités, UPMC Université Paris 06, Complexité du Vivant, 75005 Paris, France; Unité de Génétique et physiologie de l'audition, Institut Pasteur, 75015 Paris, France; Unité Mixte de Recherche, UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; Collège de France, 75005 Paris, France
| | - Nicolas Wolff
- CNRS, UMR 3528, 75015 Paris, France; Unité de Résonance Magnétique Nucléaire des Biomolécules, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
47
|
Disease mechanisms of X-linked retinitis pigmentosa due to RP2 and RPGR mutations. Biochem Soc Trans 2017; 44:1235-1244. [PMID: 27911705 DOI: 10.1042/bst20160148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023]
Abstract
Photoreceptor degeneration is the prominent characteristic of retinitis pigmentosa (RP), a heterogeneous group of inherited retinal dystrophies resulting in blindness. Although abnormalities in many pathways can cause photoreceptor degeneration, one of the most important causes is defective protein transport through the connecting cilium, the structure that connects the biosynthetic inner segment with the photosensitive outer segment of the photoreceptors. The majority of patients with X-linked RP have mutations in the retinitis pigmentosa GTPase regulator (RPGR) or RP2 genes, the protein products of which are both components of the connecting cilium and associated with distinct mechanisms of protein delivery to the outer segment. RP2 and RPGR proteins are associated with severe diseases ranging from classic RP to atypical forms. In this short review, we will summarise current knowledge generated by experimental studies and knockout animal models, compare and discuss the prominent hypotheses about the two proteins' functions in retinal cell biology.
Collapse
|
48
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
49
|
Hartel BP, Löfgren M, Huygen PLM, Guchelaar I, Lo-A-Njoe Kort N, Sadeghi AM, van Wijk E, Tranebjærg L, Kremer H, Kimberling WJ, Cremers CWRJ, Möller C, Pennings RJE. A combination of two truncating mutations in USH2A causes more severe and progressive hearing impairment in Usher syndrome type IIa. Hear Res 2016; 339:60-8. [PMID: 27318125 DOI: 10.1016/j.heares.2016.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Usher syndrome is an inherited disorder that is characterized by hearing impairment (HI), retinitis pigmentosa, and in some cases vestibular dysfunction. Usher syndrome type IIa is caused by mutations in USH2A. HI in these patients is highly heterogeneous and the present study evaluates the effects of different types of USH2A mutations on the audiometric phenotype. Data from two large centres of expertise on Usher Syndrome in the Netherlands and Sweden were combined in order to create a large combined sample of patients to identify possible genotype-phenotype correlations. DESIGN A retrospective study on HI in 110 patients (65 Dutch and 45 Swedish) genetically diagnosed with Usher syndrome type IIa. We used methods especially designed for characterizing and testing differences in audiological phenotype between patient subgroups. These methods included Age Related Typical Audiograms (ARTA) and a method to evaluate the difference in the degree of HI developed throughout life between subgroups. RESULTS Cross-sectional linear regression analysis of last-visit audiograms for the best hearing ear demonstrated a gradual decline of hearing over decades. The congenital level of HI was in the range of 16-33 dB at 0.25-0.5 kHz, and in the range of 51-60 dB at 1-8 kHz. The annual threshold deterioration was in the range of 0.4-0.5 dB/year at 0.25-2 kHz and in the range of 0.7-0.8 dB/year at 4-8 kHz. Patients with two truncating mutations, including homozygotes for the common c.2299delG mutation, developed significantly more severe HI throughout life than patients with one truncating mutation combined with one nontruncating mutation, and patients with two nontruncating mutations. CONCLUSIONS The results have direct implications for patient counselling in terms of prognosis of hearing and may serve as baseline measures for future (genetic) therapeutic interventions.
Collapse
Affiliation(s)
- Bas P Hartel
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Maria Löfgren
- Swedish Institute for Disability Research (SIDR) Linköping, Sweden; Audiological Research Centre, Örebro University Hospital, Örebro, Sweden; School of Medicine and Health, Örebro University, Örebro, Sweden
| | - Patrick L M Huygen
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Guchelaar
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicole Lo-A-Njoe Kort
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre M Sadeghi
- The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Audiology, Göteborg, Sweden; Hearing and Deafness Activities Organization, Habilitation & Health, Göteborg, Sweden
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisbeth Tranebjærg
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Bispebjerg Hospital/Rigshospitalet, Copenhagen, Denmark
| | - Hannie Kremer
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - William J Kimberling
- Department of Otolaryngology, Molecular Otolaryngology, and Renal Research Laboratories, University of Iowa, Iowa City, IA, USA
| | - Cor W R J Cremers
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claes Möller
- Swedish Institute for Disability Research (SIDR) Linköping, Sweden; Audiological Research Centre, Örebro University Hospital, Örebro, Sweden; School of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ronald J E Pennings
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
50
|
Dinculescu A, Stupay RM, Deng WT, Dyka FM, Min SH, Boye SL, Chiodo VA, Abrahan CE, Zhu P, Li Q, Strettoi E, Novelli E, Nagel-Wolfrum K, Wolfrum U, Smith WC, Hauswirth WW. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy. PLoS One 2016; 11:e0148874. [PMID: 26881841 PMCID: PMC4755610 DOI: 10.1371/journal.pone.0148874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.
Collapse
Affiliation(s)
- Astra Dinculescu
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Rachel M. Stupay
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Wen-Tao Deng
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Frank M. Dyka
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Seok-Hong Min
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Sanford L. Boye
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Vince A. Chiodo
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Carolina E. Abrahan
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Ping Zhu
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Qiuhong Li
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | | | | | - Kerstin Nagel-Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - W. Clay Smith
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | | |
Collapse
|