1
|
Akiyama F, Takahashi N, Ueda Y, Tada S, Takeuchi N, Ohno Y, Kihara A. Correlations between Skin Condition Parameters and Ceramide Profiles in the Stratum Corneum of Healthy Individuals. Int J Mol Sci 2024; 25:8291. [PMID: 39125861 PMCID: PMC11311646 DOI: 10.3390/ijms25158291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Ceramides are essential lipids for skin barrier function, and various classes and species exist in the human stratum corneum (SC). To date, the relationship between skin conditions and ceramide composition in healthy individuals has remained largely unclear. In the present study, we measured six skin condition parameters (capacitance, transepidermal water loss, scaliness, roughness, multilayer exfoliation, and corneocyte cell size) for the SC of the cheeks and upper arms of 26 healthy individuals and performed correlation analyses with their SC ceramide profiles, which we measured via liquid chromatography-tandem mass spectrometry. In the cheeks, high levels and/or ratios of two free ceramide classes containing an extra hydroxyl group in the long-chain moiety and a protein-bound ceramide class containing 6-hydroxysphingosine correlated with healthy skin conditions. In contrast, the ratios of two other free ceramide classes, both containing sphingosine, and a protein-bound ceramide class containing 4,14-sphingadiene correlated with unhealthy skin conditions, as did shortening of the carbon chain of the fatty acid portion of two ceramide classes containing non-hydroxy fatty acids. Thus, our findings help to elucidate the relationship between skin conditions and ceramide composition.
Collapse
Affiliation(s)
- Fuminari Akiyama
- Taisho Pharmaceutical Co., Ltd., 3-24-1 Takada, Toshima-ku, Tokyo 170-8633, Japan
| | - Natsumi Takahashi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yuto Ueda
- Taisho Pharmaceutical Co., Ltd., 3-24-1 Takada, Toshima-ku, Tokyo 170-8633, Japan
| | - Shizuno Tada
- Taisho Pharmaceutical Co., Ltd., 3-24-1 Takada, Toshima-ku, Tokyo 170-8633, Japan
| | - Nobuyuki Takeuchi
- Taisho Pharmaceutical Co., Ltd., 3-24-1 Takada, Toshima-ku, Tokyo 170-8633, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Yamaji M, Ohno Y, Shimada M, Kihara A. Alteration of epidermal lipid composition as a result of deficiency in the magnesium transporter Nipal4. J Lipid Res 2024; 65:100550. [PMID: 38692573 PMCID: PMC11153242 DOI: 10.1016/j.jlr.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Lipids in the stratum corneum play an important role in the formation of the skin permeability barrier. The causative gene for congenital ichthyosis, NIPAL4, encodes a Mg2+ transporter and is involved in increases in intracellular Mg2+ concentrations that depend on keratinocyte differentiation. However, the role of this increased Mg2+ concentration in skin barrier formation and its effect on the lipid composition of the stratum corneum has remained largely unknown. Therefore, in the present study, we performed a detailed analysis of epidermal lipids in Nipal4 KO mice via TLC and MS. Compared with WT mice, the Nipal4 KO mice showed compositional changes in many ceramide classes (including decreases in ω-O-acylceramides and increases in ω-hydroxy ceramides), together with increases in ω-hydroxy glucosylceramides, triglycerides, and free fatty acids and decreases in ω-O-acyl hydroxy fatty acids containing a linoleic acid. We also found increases in unusual ω-O-acylceramides containing oleic acid or palmitic acid in the KO mice. However, there was little change in levels of cholesterol or protein-bound ceramides. The TLC analysis showed that some unidentified lipids were increased, and the MS analysis showed that these were special ceramides called 1-O-acylceramides. These results suggest that elevated Mg2+ concentrations in differentiated keratinocytes affect the production of various lipids, resulting in the lipid composition necessary for skin barrier formation.
Collapse
Affiliation(s)
- Marino Yamaji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Madoka Shimada
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Vaz FM, Ferdinandusse S, Salomons GS, Wanders RJA. Disorders of fatty acid homeostasis. J Inherit Metab Dis 2024. [PMID: 38693715 DOI: 10.1002/jimd.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Humans derive fatty acids (FA) from exogenous dietary sources and/or endogenous synthesis from acetyl-CoA, although some FA are solely derived from exogenous sources ("essential FA"). Once inside cells, FA may undergo a wide variety of different modifications, which include their activation to their corresponding CoA ester, the introduction of double bonds, the 2- and ω-hydroxylation and chain elongation, thereby generating a cellular FA pool which can be used for the synthesis of more complex lipids. The biological properties of complex lipids are very much determined by their molecular composition in terms of the FA incorporated into these lipid species. This immediately explains the existence of a range of genetic diseases in man, often with severe clinical consequences caused by variants in one of the many genes coding for enzymes responsible for these FA modifications. It is the purpose of this review to describe the current state of knowledge about FA homeostasis and the genetic diseases involved. This includes the disorders of FA activation, desaturation, 2- and ω-hydroxylation, and chain elongation, but also the disorders of FA breakdown, including disorders of peroxisomal and mitochondrial α- and β-oxidation.
Collapse
Affiliation(s)
- Frédéric M Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Diociaiuti A, Corbeddu M, Rossi S, Pisaneschi E, Cesario C, Condorelli AG, Samela T, Giancristoforo S, Angioni A, Zambruno G, Novelli A, Alaggio R, Abeni D, El Hachem M. Cross-Sectional Study on Autosomal Recessive Congenital Ichthyoses: Association of Genotype with Disease Severity, Phenotypic, and Ultrastructural Features in 74 Italian Patients. Dermatology 2024; 240:397-413. [PMID: 38588653 PMCID: PMC11168449 DOI: 10.1159/000536366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 01/14/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Autosomal recessive congenital ichthyoses (ARCIs) are a clinically heterogeneous group of keratinization disorders characterized by generalized skin scaling due to mutations in at least 12 genes. The aim of our study was to assess disease severity, phenotypic, and ultrastructural features and to evaluate their association with genetic findings in ARCI patients. METHODS Clinical signs and symptoms, and disease severity were scored in a single-center series of patients with a genetic diagnosis of ARCI. Skin ultrastructural findings were reviewed. RESULTS Seventy-four consecutive patients (mean age 11.0 years, range 0.1-48.8) affected with lamellar ichthyosis (50/74, 67.5%), congenital ichthyosiform erythroderma (18/74, 24.3%), harlequin ichthyosis (two/74, 2.7%), and other minor ARCI subtypes (four/74, 5.4%) were enrolled. Mutated genes were as follows: TGM1 in 18/74 (24.3%) patients, ALOX12B in 18/74 (24.3%), CYP4F22 in 12/74 (16.2%), ABCA12 in nine/74 (12.2%), ALOXE3 in seven/74 (9.5%), NIPAL4 in seven/74 (9.5%), and CERS3, PNPLA1, and SDR9C7 in 1 patient each (1.4%). Twenty-five previously undescribed mutations in the different ARCI causative genes, as well as two microduplications in TGM1, and two microdeletions in CYP4F22 and NIPAL4 were identified. The mean ichthyosis severity score in TGM1- and ABCA12-mutated patients was significantly higher than in all other mutated genes, while the lowest score was observed in CYP4F22-mutated patients. Alopecia, ectropion, and eclabium were significantly associated with TGM1 and ABCA12 mutations, and large, thick, and brownish scales with TGM1 mutations. Among specific phenotypic features, psoriasis-like lesions as well as a trunk reticulate scale pattern and striated keratoderma were present in NIPAL4-mutated patients. Ultrastructural data available for 56 patients showed a 100% specificity of cholesterol clefts for TGM1-mutated cases and revealed abnormal lamellar bodies in SDR9C7 and CERS3 patients. CONCLUSION Our study expands the phenotypic and genetic characterization of ARCI by the description of statistically significant associations between disease severity, specific clinical signs, and different mutated genes. Finally, we highlighted the presence of psoriasis-like lesions in NIPAL4-ARCI patients as a novel phenotypic feature with diagnostic and possible therapeutic implications.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marialuisa Corbeddu
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Sabrina Rossi
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Tonia Samela
- Clinical Epidemiology Unit, IDI-IRCCS, Rome, Italy
| | - Simona Giancristoforo
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Adriano Angioni
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Ohno Y, Nakamura T, Iwasaki T, Katsuyama A, Ichikawa S, Kihara A. Determining the structure of protein-bound ceramides, essential lipids for skin barrier function. iScience 2023; 26:108248. [PMID: 37965138 PMCID: PMC10641502 DOI: 10.1016/j.isci.2023.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Protein-bound ceramides, specialized ceramides covalently bound to corneocyte surface proteins, are essential for skin permeability barrier function. However, their exact structure and target amino acid residues are unknown. Here, we found that epoxy-enone (EE) ceramides, precursors of protein-bound ceramides, as well as their synthetic analog, formed stable conjugates only with Cys among nucleophilic amino acids. NMR spectroscopy revealed that the β-carbon of the enone was attached by the thiol group of Cys via a Michael addition reaction. We confirmed the presence of Cys-bound EE ceramides in mouse epidermis by mass spectrometry analysis of protease-digested epidermis samples. EE ceramides were reversibly released from protein-bound ceramides via sulfoxide elimination. We found that protein-bound ceramides with reversible release properties accounted for approximately 60% of total protein-bound ceramides, indicating that Cys-bound EE ceramides are the predominant protein-bound ceramides. Our findings provide clues to the molecular mechanism of skin barrier formation by protein-bound ceramides.
Collapse
Affiliation(s)
- Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Tetsuya Nakamura
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Takafumi Iwasaki
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
6
|
Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method. Int J Mol Sci 2023; 24:ijms24055035. [PMID: 36902463 PMCID: PMC10003399 DOI: 10.3390/ijms24055035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Attached to the outer surface of the corneocyte lipid envelope (CLE), omega-hydroxy ceramides (ω-OH-Cer) link to involucrin and function as lipid components of the stratum corneum (SC). The integrity of the skin barrier is highly dependent on the lipid components of SC, especially on ω-OH-Cer. Synthetic ω-OH-Cer supplementation has been utilized in clinical practice for epidermal barrier injury and related surgeries. However, the mechanism discussion and analyzing methods are not keeping pace with its clinical application. Though mass spectrometry (MS) is the primary choice for biomolecular analysis, method modifications for ω-OH-Cer identification are lacking in progress. Therefore, finding conclusions on ω-OH-Cer biological function, as well as on its identification, means it is vital to remind further researchers of how the following work should be done. This review summarizes the important role of ω-OH-Cer in epidermal barrier functions and the forming mechanism of ω-OH-Cer. Recent identification methods for ω-OH-Cer are also discussed, which could provide new inspirations for study on both ω-OH-Cer and skin care development.
Collapse
|
7
|
Gutiérrez-Cerrajero C, Sprecher E, Paller AS, Akiyama M, Mazereeuw-Hautier J, Hernández-Martín A, González-Sarmiento R. Ichthyosis. Nat Rev Dis Primers 2023; 9:2. [PMID: 36658199 DOI: 10.1038/s41572-022-00412-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 01/20/2023]
Abstract
The ichthyoses are a large, heterogeneous group of skin cornification disorders. They can be inherited or acquired, and result in defective keratinocyte differentiation and abnormal epidermal barrier formation. The resultant skin barrier dysfunction leads to increased transepidermal water loss and inflammation. Disordered cornification is clinically characterized by skin scaling with various degrees of thickening, desquamation (peeling) and erythema (redness). Regardless of the type of ichthyosis, many patients suffer from itching, recurrent infections, sweating impairment (hypohidrosis) with heat intolerance, and diverse ocular, hearing and nutritional complications that should be monitored periodically. The characteristic clinical features are considered to be a homeostatic attempt to repair the skin barrier, but heterogeneous clinical presentation and imperfect phenotype-genotype correlation hinder diagnosis. An accurate molecular diagnosis is, however, crucial for predicting prognosis and providing appropriate genetic counselling. Most ichthyoses severely affect patient quality of life and, in severe forms, may cause considerable disability and even death. So far, treatment provides only symptomatic relief. It is lifelong, expensive, time-consuming, and often provides disappointing results. A better understanding of the molecular mechanisms that underlie these conditions is essential for designing pathogenesis-driven and patient-tailored innovative therapeutic solutions.
Collapse
Affiliation(s)
- Carlos Gutiérrez-Cerrajero
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amy S Paller
- Departments of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Rogelio González-Sarmiento
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
8
|
Widjaja-Adhi MAK, Chao K, Golczak M. Mouse models in studies on the etiology of evaporative dry eye disease. Exp Eye Res 2022; 219:109072. [DOI: 10.1016/j.exer.2022.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
|
9
|
Chulpanova DS, Shaimardanova AA, Ponomarev AS, Elsheikh S, Rizvanov AA, Solovyeva VV. Current Strategies for the Gene Therapy of Autosomal Recessive Congenital Ichthyosis and Other Types of Inherited Ichthyosis. Int J Mol Sci 2022; 23:2506. [PMID: 35269649 PMCID: PMC8910354 DOI: 10.3390/ijms23052506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes such as transglutaminase-1 (TGM1), which are responsible for the formation and normal functioning of a lipid barrier, lead to the development of autosomal recessive congenital ichthyosis (ARCI). ARCIs are characterized by varying degrees of hyperkeratosis and the presence of scales on the body surface since birth. The quality of life of patients is often significantly affected, and in order to alleviate the manifestations of the disease, symptomatic therapy with moisturizers, keratolytics, retinoids and other cosmetic substances is often used to improve the condition of the patients' skin. Graft transplantation is commonly used to correct defects of the eye. However, these approaches offer symptomatic treatment that does not restore the lost protein function or provide a long-term skin barrier. Gene and cell therapies are evolving as promising therapy for ARCIs that can correct the functional activity of altered proteins. However, these approaches are still at an early stage of development. This review discusses current studies of gene and cell therapy approaches for various types of ichthyosis and their further prospects for patient treatment.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Aleksei S. Ponomarev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Somaia Elsheikh
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| |
Collapse
|
10
|
Zhao L, Wang C, Zhang Y, Li J, Liu H, Feng D. Whole-exome sequencing identified a novel pathogenic mutation of the CYP4F22 gene in a Chinese patient with autosomal recessive congenital ichthyosis and in vitro study of the mutant CYP4F22 protein. J Dermatol 2022; 49:550-555. [PMID: 35014717 DOI: 10.1111/1346-8138.16300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/05/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of rare cornification disorders. Of the 14 genes already known to cause ARCI, CYP4F22 is a relatively new genetic etiology, the mutation spectrum of which has yet to be profiled. Using whole-exome sequencing in family trios, we identified the compound heterozygous mutations, c.844C>T (p.R282W) and c.1189C>T (p.R397C), of the CYP4F22 gene (NM_173483.4) in a Chinese neonatal boy with a congenital ichthyosis phenotype. In combination with multiple in silico analyses and the following in vitro functional studies, we provided evidence to classify these two variations as pathogenic mutations and demonstrated that both variants significantly reduced the CYP4F22 protein amount. Interestingly, the reduction of both mutant CYP4F22 protein could be recovered by trichostatin A (TSA) treatment, suggesting some deacetylation factors involved in regulating the mutant CYP4F22 protein and implying TSA might be a potential candidate compound for congenital ichthyosis caused by CYP4F22 variations.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Medical Genetics and Prenatal Diagnosis, Affiliated Hospital of Weifang Medical University, Weifang, China.,School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Caixia Wang
- Department of Pediatrics, Qingdao Municipal Hospital Group, Qingdao, China
| | - Yaning Zhang
- Department of Medical Genetics and Prenatal Diagnosis, Affiliated Hospital of Weifang Medical University, Weifang, China.,School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jinyun Li
- Department of Medical Genetics and Prenatal Diagnosis, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Huize Liu
- Department of Medical Genetics and Prenatal Diagnosis, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Dairong Feng
- Department of Medical Genetics and Prenatal Diagnosis, Affiliated Hospital of Weifang Medical University, Weifang, China.,School of Life Science and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
11
|
Molina-Ortiz D, Torres-Zárate C, Santes-Palacios R. Human Orphan Cytochromes P450: An Update. Curr Drug Metab 2022; 23:942-963. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Carmen Torres-Zárate
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Rebeca Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| |
Collapse
|
12
|
Ohmomo H, Harada S, Komaki S, Ono K, Sutoh Y, Otomo R, Umekage S, Hachiya T, Katanoda K, Takebayashi T, Shimizu A. DNA Methylation Abnormalities and Altered Whole Transcriptome Profiles after Switching from Combustible Tobacco Smoking to Heated Tobacco Products. Cancer Epidemiol Biomarkers Prev 2022; 31:269-279. [PMID: 34728466 PMCID: PMC9398167 DOI: 10.1158/1055-9965.epi-21-0444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/29/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The use of heated tobacco products (HTP) has increased exponentially in Japan since 2016; however, their effects on health remain a major concern. METHODS Tsuruoka Metabolome Cohort Study participants (n = 11,002) were grouped on the basis of their smoking habits as never smokers (NS), past smokers (PS), combustible tobacco smokers (CS), and HTP users for <2 years. Peripheral blood mononuclear cells were collected from 52 participants per group matched to HTP users using propensity scores, and DNA and RNA were purified from the samples. DNA methylation (DNAm) analysis of the 17 smoking-associated DNAm biomarker genes (such as AHRR, F2RL3, LRRN3, and GPR15), as well as whole transcriptome analysis, was performed. RESULTS Ten of the 17 genes were significantly hypomethylated in CS and HTP users compared with NS, among which AHRR, F2RL3, and RARA showed intermediate characteristics between CS and NS; nonetheless, AHRR expression was significantly higher in CS than in the other three groups. Conversely, LRRN3 and GPR15 were more hypomethylated in HTP users than in NS, and GPR15 expression was markedly upregulated in all the groups when compared with that in NS. CONCLUSIONS HTP users (switched from CS <2 years) display abnormal DNAm and transcriptome profiles, albeit to a lesser extent than the CS. However, because the molecular genetic effects of long-term HTP use are still unknown, long-term molecular epidemiologic studies are needed. IMPACT This study provides new insights into the molecular genetic effects on DNAm and transcriptome profiles in HTP users who switched from CS.
Collapse
Affiliation(s)
- Hideki Ohmomo
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shohei Komaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Kanako Ono
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Yoichi Sutoh
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Ryo Otomo
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - So Umekage
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Tsuyoshi Hachiya
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan
| | - Kota Katanoda
- Division of Cancer Statistics Integration, National Cancer Center Research Institute, Chuo, Tokyo, Japan
| | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Shiwa, Iwate, Japan.,Corresponding Author: Atsushi Shimizu, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate 028-3694, Japan. Phone: 81-19-651-5110, ext. 5473; E-mail:
| |
Collapse
|
13
|
Ahmad F, Ahmed I, Alam Q, Ahmad T, Khan A, Ahmad I, Bilal M, Hayat A, Khan A, Waqas A, Rafeeq MM, Sain ZM, Umair M. Variants in the PNPLA1 Gene in Families with Autosomal Recessive Congenital Ichthyosis Reveal Clinical Significance. Mol Syndromol 2021; 12:351-361. [PMID: 34899144 DOI: 10.1159/000516943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 01/13/2023] Open
Abstract
The term autosomal recessive congenital ichthyosis (ARCI) is the subgroup of ichthyosis, which describes a highly heterogeneous group of genetic disorders of the skin characterized by cornification and defective keratinocytes differentiation associated with mutations in at least 14 genes including PNPLA1. To study the molecular basis of the Pakistani kindreds (A and B) affected by ARCI, whole-exome sequencing (WES) in the DNA samples of affected members was performed followed by Sanger sequencing of the candidate gene to hunt down the disease-causing sequence variant/s. WES data analysis led to the identification of a novel nonsense sequence variant (c.892C>T; p.Arg298*, family A) and a recurrent missense variant (c.102C>A; p.Asp34Glu, family B) in PNPLA1 mapped to the ARCI locus in chromosome 6p21.31. Validation and cosegregation analysis of the variants in the remaining family members of the respective families were confirmed by Sanger sequencing. The current investigation expands the spectrum of PNPLA1 mutations and helps establish the proper clinico-genetic diagnosis and correct genotype-phenotype correlation.
Collapse
Affiliation(s)
- Farooq Ahmad
- Department of Chemistry, Women University Swabi, Swabi, Pakistan.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan
| | | | - Qamre Alam
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Science, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Tanveer Ahmad
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University (AWKUM), Mardan, Pakistan
| | - Ammara Khan
- Department of Chemistry, Women University Swabi, Swabi, Pakistan
| | - Ijaz Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan
| | - Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan
| | - Amir Hayat
- Department Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Amjad Khan
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Ahmed Waqas
- Division of Science and Technology, Department of Zoology, University of Education Lahore, Multan Campus, Multan, Pakistan
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abduaziz University, Jeddah, Saudi Arabia
| | - Ziaullah M Sain
- Department of Microbiology, Faculty of Medicine, Rabigh, King Abduaziz University, Jeddah, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Science, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
14
|
Sun Q, Burgren NM, Cheraghlou S, Paller AS, Larralde M, Bercovitch L, Levinsohn J, Ren I, Hu RH, Zhou J, Zaki T, Fan R, Tian C, Saraceni C, Nelson-Williams CJ, Loring E, Craiglow BG, Milstone LM, Lifton RP, Boyden LM, Choate KA. The Genomic and Phenotypic Landscape of Ichthyosis: An Analysis of 1000 Kindreds. JAMA Dermatol 2021; 158:16-25. [PMID: 34851365 DOI: 10.1001/jamadermatol.2021.4242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Ichthyoses are clinically and genetically heterogeneous disorders characterized by scaly skin. Despite decades of investigation identifying pathogenic variants in more than 50 genes, clear genotype-phenotype associations have been difficult to establish. Objective To expand the genotypic and phenotypic spectra of ichthyosis and delineate genotype-phenotype associations. Design, Setting, and Participants This cohort study recruited an international group of individuals with ichthyosis and describes characteristic and distinguishing features of common genotypes, including genotype-phenotype associations, during a 10-year period from June 2011 to July 2021. Participants of all ages, races, and ethnicities were included and were enrolled worldwide from referral centers and patient advocacy groups. A questionnaire to assess clinical manifestations was completed by those with a genetic diagnosis. Main Outcomes and Measures Genetic analysis of saliva or blood DNA, a phenotyping questionnaire, and standardized clinical photographs. Descriptive statistics, such as frequency counts, were used to describe the cases in the cohort. Fisher exact tests identified significant genotype-phenotype associations. Results Results were reported for 1000 unrelated individuals enrolled from around the world (mean [SD] age, 50.0 [34.0] years; 524 [52.4%] were female, 427 [42.7%] were male, and 49 [4.9%] were not classified); 75% were from the US, 12% from Latin America, 4% from Canada, 3% from Europe, 3% from Asia, 2% from Africa, 1% from the Middle East, and 1% from Australia and New Zealand. A total of 266 novel disease-associated variants in 32 genes were identified among 869 kindreds. Of these, 241 (91%) pathogenic variants were found through multiplex amplicon sequencing and 25 (9%) through exome sequencing. Among the 869 participants with a genetic diagnosis, 304 participants (35%) completed the phenotyping questionnaire. Analysis of clinical manifestations in these 304 individuals revealed that pruritus, hypohydrosis, skin pain, eye problems, skin odor, and skin infections were the most prevalent self-reported features. Genotype-phenotype association analysis revealed that the presence of a collodion membrane at birth (odds ratio [OR], 6.7; 95% CI, 3.0-16.7; P < .001), skin odor (OR, 2.8; 95% CI, 1.1-6.8; P = .02), hearing problems (OR, 2.9; 95% CI, 1.6-5.5; P < .001), eye problems (OR, 3.0; 95% CI, 1.5-6.0; P < .001), and alopecia (OR, 4.6; 95% CI, 2.4-9.0; P < .001) were significantly associated with TGM1 variants compared with other ichthyosis genotypes studied. Skin pain (OR, 6.8; 95% CI, 1.6-61.2; P = .002), odor (OR, 5.7; 95% CI, 2.0-19.7; P < .001), and infections (OR, 3.1; 95% CI, 1.4-7.7; P = .03) were significantly associated with KRT10 pathogenic variants compared with disease-associated variants in other genes that cause ichthyosis. Pathogenic variants were identified in 869 (86.9%) participants. Most of the remaining individuals had unique phenotypes, enabling further genetic discovery. Conclusions and Relevance This cohort study expands the genotypic and phenotypic spectrum of ichthyosis, establishing associations between clinical manifestations and genotypes. Collectively, the findings may help improve clinical assessment, assist with developing customized management plans, and improve clinical course prognostication.
Collapse
Affiliation(s)
- Qisi Sun
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Nareh M Burgren
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Shayan Cheraghlou
- The Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York, New York
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Lionel Bercovitch
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Jonathan Levinsohn
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Ivy Ren
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Rong Hua Hu
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Jing Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Theodore Zaki
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Ryan Fan
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Charlie Tian
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Corey Saraceni
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Erin Loring
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Brittany G Craiglow
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Leonard M Milstone
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Lynn M Boyden
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Tang H, Shi X, Zhang G. Novel compound heterozygous mutations in the CYP4F22 gene in a patient with autosomal recessive congenital ichthyosis. Clin Case Rep 2021; 9:e05082. [PMID: 34917360 PMCID: PMC8645175 DOI: 10.1002/ccr3.5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022] Open
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a rare form of keratinization disorder of the skin, which can be caused by mutations in 14 ARCI genes. We present a rare case of ARCI that carried a novel null mutation and a novel splice site mutation in the CYP4F22 gene.
Collapse
Affiliation(s)
- Haiyan Tang
- Department of Medical GeneticsThe Second Xiangya HospitalCentral South UniversityChangshaChina
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Xiaoliu Shi
- Department of Medical GeneticsThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Guiying Zhang
- Department of DermatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
16
|
Zwara A, Wertheim-Tysarowska K, Mika A. Alterations of Ultra Long-Chain Fatty Acids in Hereditary Skin Diseases-Review Article. Front Med (Lausanne) 2021; 8:730855. [PMID: 34497816 PMCID: PMC8420999 DOI: 10.3389/fmed.2021.730855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022] Open
Abstract
The skin is a flexible organ that forms a barrier between the environment and the body's interior; it is involved in the immune response, in protection and regulation, and is a dynamic environment in which skin lipids play an important role in maintaining homeostasis. The different layers of the skin differ in both the composition and amount of lipids. The epidermis displays the best characteristics in this respect. The main lipids in this layer are cholesterol, fatty acids (FAs) and ceramides. FAs can occur in free form and as components of complex molecules. The most poorly characterized FAs are very long-chain fatty acids (VLCFAs) and ultra long-chain fatty acids (ULCFAs). VLCFAs and ULCFAs are among the main components of ceramides and are part of the free fatty acid (FFA) fraction. They are most abundant in the brain, liver, kidneys, and skin. VLCFAs and ULCFAs are responsible for the rigidity and impermeability of membranes, forming the mechanically and chemically strong outer layer of cell membranes. Any changes in the composition and length of the carbon chains of FAs result in a change in their melting point and therefore a change in membrane permeability. One of the factors causing a decrease in the amount of VLCFAs and ULCFAs is an improper diet. Another much more important factor is mutations in the genes which code proteins involved in the metabolism of VLCFAs and ULCFAs—regarding their elongation, their attachment to ceramides and their transformation. These mutations have their clinical consequences in the form of inborn errors in metabolism and neurodegenerative disorders, among others. Some of them are accompanied by skin symptoms such as ichthyosis and ichthyosiform erythroderma. In the following review, the structure of the skin is briefly characterized and the most important lipid components of the skin are presented. The focus is also on providing an overview of selected proteins involved in the metabolism of VLCFAs and ULCFAs in the skin.
Collapse
Affiliation(s)
- Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
17
|
Xiao C, Rossignol F, Vaz FM, Ferreira CR. Inherited disorders of complex lipid metabolism: A clinical review. J Inherit Metab Dis 2021; 44:809-825. [PMID: 33594685 DOI: 10.1002/jimd.12369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Over 80 human diseases have been attributed to defects in complex lipid metabolism. A majority of them have been reported recently in the setting of rapid advances in genomic technology and their increased use in clinical settings. Lipids are ubiquitous in human biology and play roles in many cellular and intercellular processes. While inborn errors in lipid metabolism can affect every organ system with many examples of genetic heterogeneity and pleiotropy, the clinical manifestations of many of these disorders can be explained based on the disruption of the metabolic pathway involved. In this review, we will discuss the physiological function of major pathways in complex lipid metabolism, including nonlysosomal sphingolipid metabolism, acylceramide metabolism, de novo phospholipid synthesis, phospholipid remodeling, phosphatidylinositol metabolism, mitochondrial cardiolipin synthesis and remodeling, and ether lipid metabolism as well as common clinical phenotypes associated with each.
Collapse
Affiliation(s)
- Changrui Xiao
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis Rossignol
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Youssefian L, Niaziorimi F, Saeidian AH, South AP, Khosravi-Bachehmir F, Khodavaisy S, Vahidnezhad H, Uitto J. Knockdown of SDR9C7 Impairs Epidermal Barrier Function. J Invest Dermatol 2021; 141:1754-1764.e1. [PMID: 33422619 DOI: 10.1016/j.jid.2020.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The Mendelian disorders of cornification consist of a highly heterogeneous group of diseases, and the majority of nonsyndromic cases belong to the family of autosomal recessive congenital ichthyosis. Mutations in SDR9C7 have been associated with autosomal recessive congenital ichthyosis, and clinical manifestations include mild to moderately dry, scaly skin with or without hyperkeratosis, palmoplantar keratoderma, and erythroderma. SDR9C7, with short-chain dehydrogenase and/or reductase activity, is known as nicotinamide adenine dinucleotide‒ or nicotinamide adenine dinucleotide phosphate‒dependent oxidoreductase and has been shown to be involved in the final step of epidermal lipid barrier formation by covalent binding of acylceramide to the cornified envelope. In this study, we present the clinical and molecular description of 19 patients with autosomal recessive congenital ichthyosis in five consanguineous families with SDR9C7 mutations. We also downregulated the expression of SDR9C7 in keratinocytes using the small interfering RNA technique in three-dimensional organotypic skin constructs. Our results demonstrated morphological and histological abnormalities in these constructs ex vivo, similar to those observed in patients with ichthyosis. Moreover, the results from keratinocyte migration and epidermal dye penetration assays provided evidence for the role of SDR9C7 in the disease pathomechanism. Collectively, our results indicate that SDR9C7 deficiency by itself is sufficient to disrupt epidermal barrier function leading to ichthyotic phenotype.
Collapse
Affiliation(s)
- Leila Youssefian
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Genetics, Genomics & Cancer Biology Ph.D. Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fatemeh Niaziorimi
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Amir Hossein Saeidian
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Genetics, Genomics & Cancer Biology Ph.D. Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew P South
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Farzaneh Khosravi-Bachehmir
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vahidnezhad
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jouni Uitto
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
19
|
Hotz A, Kopp J, Bourrat E, Oji V, Komlosi K, Giehl K, Bouadjar B, Bygum A, Tantcheva-Poor I, Hellström Pigg M, Has C, Yang Z, Irvine AD, Betz RC, Zambruno G, Tadini G, Süßmuth K, Gruber R, Schmuth M, Mazereeuw-Hautier J, Jonca N, Guez S, Brena M, Hernandez-Martin A, van den Akker P, Bolling MC, Hannula-Jouppi K, Zimmer AD, Alter S, Vahlquist A, Fischer J. Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients. Genes (Basel) 2021; 12:genes12010080. [PMID: 33435499 PMCID: PMC7826849 DOI: 10.3390/genes12010080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/23/2022] Open
Abstract
The autosomal recessive congenital ichthyoses (ARCI) are a nonsyndromic group of cornification disorders that includes lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. To date mutations in ten genes have been identified to cause ARCI: TGM1, ALOX12B, ALOXE3, NIPAL4, CYP4F22, ABCA12, PNPLA1, CERS3, SDR9C7, and SULT2B1. The main focus of this report is the mutational spectrum of the genes ALOX12B and ALOXE3, which encode the epidermal lipoxygenases arachidonate 12-lipoxygenase, i.e., 12R type (12R-LOX), and the epidermis-type lipoxygenase-3 (eLOX3), respectively. Deficiency of 12R-LOX and eLOX3 disrupts the epidermal barrier function and leads to an abnormal epidermal differentiation. The type and the position of the mutations may influence the ARCI phenotype; most patients present with a mild erythrodermic ichthyosis, and only few individuals show severe erythroderma. To date, 88 pathogenic mutations in ALOX12B and 27 pathogenic mutations in ALOXE3 have been reported in the literature. Here, we presented a large cohort of 224 genetically characterized ARCI patients who carried mutations in these genes. We added 74 novel mutations in ALOX12B and 25 novel mutations in ALOXE3. We investigated the spectrum of mutations in ALOX12B and ALOXE3 in our cohort and additionally in the published mutations, the distribution of these mutations within the gene and gene domains, and potential hotspots and recurrent mutations.
Collapse
Affiliation(s)
- Alrun Hotz
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.H.); (J.K.); (K.K.); (Z.Y.); (A.D.Z.); (S.A.)
| | - Julia Kopp
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.H.); (J.K.); (K.K.); (Z.Y.); (A.D.Z.); (S.A.)
| | - Emmanuelle Bourrat
- Department of Dermatology, Reference Center for Rare Skin Diseases MAGEC, Saint Louis Hospital AP-HP, 75010 Paris, France;
| | - Vinzenz Oji
- Department of Dermatology and Venereology, Münster University Medical Center, 48149 Münster, Germany; (V.O.); (K.S.)
| | - Katalin Komlosi
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.H.); (J.K.); (K.K.); (Z.Y.); (A.D.Z.); (S.A.)
| | - Kathrin Giehl
- Department of Dermatology and Allergy, University of Munich LMU, 80337 Munich, Germany;
| | - Bakar Bouadjar
- Department of Dermatology, CHU of Bab-El-Oued Algiers, Algiers 16008, Algeria;
| | - Anette Bygum
- Department of Dermatology, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
- Clinical Institute, University of Southern Denmark, 5000 Odense, Denmark
| | | | - Maritta Hellström Pigg
- Department of Clinical Genetics, Karolinska University Hospital, 17176 Stockholm, Sweden;
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, University of Freiburg, 79104 Freiburg, Germany;
| | - Zhou Yang
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.H.); (J.K.); (K.K.); (Z.Y.); (A.D.Z.); (S.A.)
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Alan D. Irvine
- Dermatology, Children’s Health Ireland and Clinical Medicine, Trinity College Dublin, D12 N512 Dublin, Ireland;
| | - Regina C. Betz
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Gianluca Tadini
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UOSD Pediatria ad Alta Intensità di Cura, 20122 Milan, Italy; (G.T.); (S.G.); (M.B.)
| | - Kira Süßmuth
- Department of Dermatology and Venereology, Münster University Medical Center, 48149 Münster, Germany; (V.O.); (K.S.)
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.G.); (M.S.)
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.G.); (M.S.)
| | - Juliette Mazereeuw-Hautier
- Reference Center for Rare Skin Diseases, Dermatology Department, CHU Larrey, Université Paul Sabatier, 31000 Toulouse, France;
| | - Natalie Jonca
- Department of Epidermis Differentiation and Rheumatoid Autoimmunity, UMR 1056 Inserm University Toulouse, Place du Dr Baylac, Hôpital Purpan, 31059 Toulouse, France;
| | - Sophie Guez
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UOSD Pediatria ad Alta Intensità di Cura, 20122 Milan, Italy; (G.T.); (S.G.); (M.B.)
| | - Michela Brena
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UOSD Pediatria ad Alta Intensità di Cura, 20122 Milan, Italy; (G.T.); (S.G.); (M.B.)
| | | | - Peter van den Akker
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands;
| | - Maria C. Bolling
- Center for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands;
| | - Katariina Hannula-Jouppi
- ERN-Skin Center, Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, 00029 HUS Helsinki, Finland;
- Folkhälsan Research Center, Helsinki, Finland and Research Programs Unit, Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
| | - Andreas D. Zimmer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.H.); (J.K.); (K.K.); (Z.Y.); (A.D.Z.); (S.A.)
| | - Svenja Alter
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.H.); (J.K.); (K.K.); (Z.Y.); (A.D.Z.); (S.A.)
| | - Anders Vahlquist
- Department of Medical Sciences/Dermatology, Uppsala University, SE-751 85 Uppsala, Sweden;
| | - Judith Fischer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.H.); (J.K.); (K.K.); (Z.Y.); (A.D.Z.); (S.A.)
- Correspondence:
| |
Collapse
|
20
|
Regulation of cytochrome P450 4F11 expression by liver X receptor alpha. Int Immunopharmacol 2020; 90:107240. [PMID: 33310663 DOI: 10.1016/j.intimp.2020.107240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Cytochrome P450 4F (CYP4F) enzymes are responsible for the metabolism of eicosanoids, which play important roles in inflammation. Nuclear receptor liver X receptor alpha (LXRα) is a critical signal node connecting inflammation and lipid metabolism. Studies revealed that the release of cytokines and nuclear factor-κB (NF-κB) can change the CYP4F11 expression in HepG2 cells. However, the effect of LXRα on the CYP4F family and the underlying mechanism remain unclear. This study found that CYP4F11 is a target gene of LXRα. Luciferase assays and siRNA transfection showed that LXRα increased the transcription of CYP4F11 and LXRα agonist GW3965 could induce the expression of CYP4F11 by activating the LXRα-CYP4F11 pathway. Besides, overexpression of CYP4F11 could decrease TNF-α and IL-1β in lipopolysaccharide (LPS)-induced THP-1 cells. The finding of the regulation of CYP4F11 may contribute to the anti-inflammatory activity of LXRα agonists.
Collapse
|
21
|
Pinkova B, Buckova H, Borska R, Fajkusova L. Types of congenital nonsyndromic ichthyoses. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:357-365. [PMID: 33087941 DOI: 10.5507/bp.2020.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022] Open
Abstract
Congenital ichthyoses are a very heterogeneous group of diseases manifested by dry, rough and scaling skin. In all forms of ichthyoses, the skin barrier is damaged to a certain degree. Congenital ichthyoses are caused by various gene mutations. Clinical manifestations of the individual types vary as the patient ages. Currently, the diagnosis of congenital ichthyoses is based on molecular analysis, which also allows a complete genetic counseling and genetic prevention. It is appropriate to refer the patients to specialized medical centers, where the cooperation of a neonatologist, a pediatric dermatologist, a geneticist and other specialists is ensured.
Collapse
Affiliation(s)
- Blanka Pinkova
- Children's Dermatological Department of the Paediatric Clinic, Faculty of Medicine, Masaryk University and University Hospital Brno, Czech Republic
| | - Hana Buckova
- Children's Dermatological Department of the Paediatric Clinic, Faculty of Medicine, Masaryk University and University Hospital Brno, Czech Republic
| | - Romana Borska
- Center of Molecular Biology and Gene Therapy IHOK University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic Corresponding author: Blanka Pinkova, e-mail
| | - Lenka Fajkusova
- Center of Molecular Biology and Gene Therapy IHOK University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic Corresponding author: Blanka Pinkova, e-mail
| |
Collapse
|
22
|
Akiyama M. Acylceramide is a key player in skin barrier function: insight into the molecular mechanisms of skin barrier formation and ichthyosis pathogenesis. FEBS J 2020. [DOI: 10.1111/febs.15497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
23
|
Miyamoto M, Sassa T, Sawai M, Kihara A. Lipid polarity gradient formed by ω-hydroxy lipids in tear film prevents dry eye disease. eLife 2020; 9:53582. [PMID: 32252890 PMCID: PMC7138607 DOI: 10.7554/elife.53582] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Meibum lipids form a lipid layer on the outermost side of the tear film and function to prevent water evaporation and reduce surface tension. (O-Acyl)-ω-hydroxy fatty acids (OAHFAs), a subclass of these lipids, are thought to be involved in connecting the lipid and aqueous layers in tears, although their actual function and synthesis pathway have to date remained unclear. Here, we reveal that the fatty acid ω-hydroxylase Cyp4f39 is involved in OAHFA production. Cyp4f39-deficient mice exhibited damaged corneal epithelium and shortening of tear film break-up time, both indicative of dry eye disease. In addition, tears accumulated on the lower eyelid side, indicating increased tear surface tension. In Cyp4f39-deficient mice, the production of wax diesters (type 1ω and 2ω) and cholesteryl OAHFAs was also impaired. These OAHFA derivatives show intermediate polarity among meibum lipids, suggesting that OAHFAs and their derivatives contribute to lipid polarity gradient formation for tear film stabilization.
Collapse
Affiliation(s)
- Masatoshi Miyamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Megumi Sawai
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Esperón-Moldes U, Ginarte-Val M, Rodríguez-Pazos L, Fachal L, Martín-Santiago A, Vicente A, Jiménez-Gallo D, Guillén-Navarro E, Sampol LM, González-Enseñat MA, Vega A. Novel CYP4F22 mutations associated with autosomal recessive congenital ichthyosis (ARCI). Study of the CYP4F22 c.1303C>T founder mutation. PLoS One 2020; 15:e0229025. [PMID: 32069299 PMCID: PMC7028276 DOI: 10.1371/journal.pone.0229025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Mutations in CYP4F22 cause autosomal recessive congenital ichthyosis (ARCI). However, less than 10% of all ARCI patients carry a mutation in CYP4F22. In order to identify the molecular basis of ARCI among our patients (a cohort of ninety-two Spanish individuals) we performed a mutational analysis using direct Sanger sequencing in combination with a multigene targeted NGS panel. From these, eight ARCI families (three of them with Moroccan origin) were found to carry five different CYP4F22 mutations, of which two were novel. Computational analysis showed that the mutations found were present in highly conserved residues of the protein and may affect its structure and function. Seven of the eight families were carriers of a highly recurrent CYP4F22 variant, c.1303C>T; p.(His435Tyr). A 12Mb haplotype was reconstructed in all c.1303C>T carriers by genotyping ten microsatellite markers flanking the CYP4F22 gene. A prevalent 2.52Mb haplotype was observed among Spanish carrier patients suggesting a recent common ancestor. A smaller core haplotype of 1.2Mb was shared by Spanish and Moroccan families. Different approaches were applied to estimate the time to the most recent common ancestor (TMRCA) of carrier patients with Spanish origin. The age of the mutation was calculated by using DMLE and BDMC2. The algorithms estimated that the c.1303C>T variant arose approximately 2925 to 4925 years ago, while Spanish carrier families derived from a common ancestor who lived in the XIII century. The present study reports five CYP4F22 mutations, two of them novel, increasing the number of CYP4F22 mutations currently listed. Additionally, our results suggest that the recurrent c.1303C>T change has a founder effect in Spanish population and c.1303C>T carrier families originated from a single ancestor with probable African ancestry.
Collapse
Affiliation(s)
- Uxia Esperón-Moldes
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
- Departamento de Ciencias Forenses, Anatomía Patolóxica, Xinecoloxía, Obstetricia e Pediatría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Ginarte-Val
- Dermatology Service of Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | | | - Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Ana Martín-Santiago
- Dermatology Service of Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Asunción Vicente
- Dermatology Service of Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
25
|
Skin permeability barrier formation by the ichthyosis-causative gene FATP4 through formation of the barrier lipid ω- O-acylceramide. Proc Natl Acad Sci U S A 2020; 117:2914-2922. [PMID: 31974308 DOI: 10.1073/pnas.1917525117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The epidermis-specific lipid acylceramide plays a pivotal role in the formation of the permeability barrier in the skin; abrogation of its synthesis causes the skin disorder ichthyosis. However, the acylceramide synthetic pathway has not yet been fully elucidated: Namely, the acyl-CoA synthetase (ACS) involved in this pathway remains to be identified. Here, we hypothesized it to be encoded by FATP4/ACSVL4, the causative gene of ichthyosis prematurity syndrome (IPS). In vitro experiments revealed that FATP4 exhibits ACS activity toward an ω-hydroxy fatty acid (FA), an intermediate of the acylceramide synthetic pathway. Fatp4 knockout (KO) mice exhibited severe skin barrier dysfunction and morphological abnormalities in the epidermis. The total amount of acylceramide in Fatp4 KO mice was reduced to ∼10% of wild-type mice. Decreased levels and shortening of chain lengths were observed in the saturated, nonacylated ceramides. FA levels were not decreased in the epidermis of Fatp4 KO mice. The expression levels of the FA elongase Elovl1 were reduced in Fatp4 KO epidermis, partly accounting for the reduction and shortening of saturated, nonacylated ceramides. A decrease in acylceramide levels was also observed in human keratinocytes with FATP4 knockdown. From these results, we conclude that skin barrier dysfunction observed in IPS patients and Fatp4 KO mice is caused mainly by reduced acylceramide production. Our findings further elucidate the molecular mechanism governing acylceramide synthesis and IPS pathology.
Collapse
|
26
|
Seidl‐Philipp M, Schatz UA, Gasslitter I, Moosbrugger‐Martinz V, Blunder S, Schossig AS, Zschocke J, Schmuth M, Gruber R. Spektrum der Ichthyosen in einer österreichischen Ichthyosekohorte von 2004–2007. J Dtsch Dermatol Ges 2020; 18:17-26. [DOI: 10.1111/ddg.13968_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Magdalena Seidl‐Philipp
- Universitätsklinik für DermatologieVenerologie und AllergologieMedizinische Universität Innsbruck Innsbruck Österreich
| | - Ulrich A. Schatz
- Division für HumangenetikMedizinische Universität Innsbruck Innsbruck Österreich
| | - Irina Gasslitter
- Universitätsklinik für Innere Medizin IIMedizinische Universität Innsbruck Innsbruck Österreich
| | - Verena Moosbrugger‐Martinz
- Universitätsklinik für DermatologieVenerologie und AllergologieMedizinische Universität Innsbruck Innsbruck Österreich
| | - Stefan Blunder
- Universitätsklinik für DermatologieVenerologie und AllergologieMedizinische Universität Innsbruck Innsbruck Österreich
| | - Anna S. Schossig
- Division für HumangenetikMedizinische Universität Innsbruck Innsbruck Österreich
| | - Johannes Zschocke
- Division für HumangenetikMedizinische Universität Innsbruck Innsbruck Österreich
| | - Matthias Schmuth
- Universitätsklinik für DermatologieVenerologie und AllergologieMedizinische Universität Innsbruck Innsbruck Österreich
| | - Robert Gruber
- Universitätsklinik für DermatologieVenerologie und AllergologieMedizinische Universität Innsbruck Innsbruck Österreich
| |
Collapse
|
27
|
Elias MS, Wright SC, Nicholson WV, Morrison KD, Prescott AR, Ten Have S, Whitfield PD, Lamond AI, Brown SJ. Functional and proteomic analysis of a full thickness filaggrin-deficient skin organoid model. Wellcome Open Res 2019; 4:134. [PMID: 31641698 PMCID: PMC6790913 DOI: 10.12688/wellcomeopenres.15405.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Atopic eczema is an itchy inflammatory disorder characterised by skin barrier dysfunction. Loss-of-function mutations in the gene encoding filaggrin (
FLG) are a major risk factor, but the mechanisms by which filaggrin haploinsufficiency leads to atopic inflammation remain incompletely understood. Skin as an organ that can be modelled using primary cells
in vitro provides the opportunity for selected genetic effects to be investigated in detail. Methods: Primary human keratinocytes and donor-matched primary fibroblasts from healthy individuals were used to create skin organoid models with and without siRNA-mediated knockdown of
FLG. Biological replicate sets of organoids were assessed using histological, functional and biochemical measurements. Results:FLG knockdown leads to subtle changes in histology and ultrastructure including a reduction in thickness of the stratum corneum and smaller, less numerous keratohyalin granules. Immature organoids showed some limited evidence of barrier impairment with
FLG knockdown, but the mature organoids showed no difference in transepidermal water loss, water content or dye penetration. There was no difference in epidermal ceramide content. Mass spectrometry proteomic analysis detected >8000 proteins per sample. Gene ontology and pathway analyses identified an increase in transcriptional and translational activity but a reduction in proteins contributing to terminal differentiation, including caspase 14, dermokine, AKT1 and TGF-beta-1. Aspects of innate and adaptive immunity were represented in both the up-regulated and down-regulated protein groups, as was the term ‘axon guidance’. Conclusions: This work provides further evidence for keratinocyte-specific mechanisms contributing to immune and neurological, as well as structural, aspects of skin barrier dysfunction. Individuals with filaggrin deficiency may derive benefit from future therapies targeting keratinocyte-immune crosstalk and neurogenic pruritus.
Collapse
Affiliation(s)
- Martina S Elias
- Skin Research Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Sheila C Wright
- Skin Research Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - William V Nicholson
- Skin Research Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Kimberley D Morrison
- Skin Research Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Alan R Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Phillip D Whitfield
- Lipidomics Research Facility, Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, Scotland, IV2 3JH, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Sara J Brown
- Skin Research Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, DD1 9SY, UK.,Department of Dermatology, Ninewells Hospital, Dundee, Scotland, DD1 9SY, UK
| |
Collapse
|
28
|
Seidl-Philipp M, Schatz UA, Gasslitter I, Moosbrugger-Martinz V, Blunder S, Schossig AS, Zschocke J, Schmuth M, Gruber R. Spectrum of ichthyoses in an Austrian ichthyosis cohort from 2004 to 2017. J Dtsch Dermatol Ges 2019; 18:17-25. [PMID: 31642606 DOI: 10.1111/ddg.13968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ichthyoses are a heterogeneous disease group, which makes clinical classification challenging. An ichthyosis cohort at a center for genodermatoses is presented in detail. PATIENTS AND METHODS Patients with clinically and/or genetically confirmed ichthyosis seen from 2004 to 2017 and listed in a database were included. Disease onset, phenotype, histology, comorbidities and family history were described in detail. In genetically tested patients, the prevalence of various ARCI genes, ARCI phenotypes and syndromic ichthyoses, as well as genotype-phenotype correlation and year/method of genetic testing was assessed. RESULTS Of all 198 patients who were included in the cohort, 151 were genetically tested. 81 had ichthyosis vulgaris, 43 X-linked ichthyosis, 38 autosomal recessive congenital ichthyosis (ARCI), 9 keratinopathic ichthyosis (KPI) and one exfoliative ichthyosis. 26 individuals suffered from syndromic ichthyoses. A good genotype-phenotype correlation was observed for common ichthyoses and KPI; the correlation was less good in syndromic ichthyoses. In 91 % of ARCI patients an accurate diagnosis was obtained by genetic testing. In only 33 % of syndromic ichthyoses was the definitive diagnosis suspected before genetic testing, which revealed a causative mutation in 86 % of cases. CONCLUSION This study describes the spectrum of ichthyoses in a center of expertise and shows that genetic testing should become a diagnostic standard for this disease group.
Collapse
Affiliation(s)
- Magdalena Seidl-Philipp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulrich A Schatz
- Department of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Irina Gasslitter
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Moosbrugger-Martinz
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Blunder
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna S Schossig
- Department of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Department of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Elias MS, Wright SC, Nicholson WV, Morrison KD, Prescott AR, Ten Have S, Whitfield PD, Lamond AI, Brown SJ. Proteomic analysis of a filaggrin-deficient skin organoid model shows evidence of increased transcriptional-translational activity, keratinocyte-immune crosstalk and disordered axon guidance. Wellcome Open Res 2019; 4:134. [DOI: 10.12688/wellcomeopenres.15405.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
Background:Atopic eczema is an itchy inflammatory disorder characterised by skin barrier dysfunction. Loss-of-function mutations in the gene encoding filaggrin (FLG) are a major risk factor, but the mechanisms by which filaggrin haploinsufficiency leads to atopic inflammation remain incompletely understood. Skin as an organ that can be modelled using primary cellsin vitroprovides the opportunity for selected genetic effects to be investigated in detail.Methods:Primary human keratinocytes and donor-matched primary fibroblasts from healthy individuals were used to create skin organoid models with and without siRNA-mediated knockdown ofFLG. Biological replicate sets of organoids were assessed using histological, functional and biochemical measurements.Results:FLGknockdown leads to subtle changes in histology and ultrastructure including a reduction in thickness of the stratum corneum and smaller, less numerous keratohyalin granules. Immature organoids showed evidence of barrier impairment withFLGknockdown, but the mature organoids showed no difference in transepidermal water loss, water content or dye penetration. There was no difference in epidermal ceramide content. Mass spectrometry proteomic analysis detected >8000 proteins per sample. Gene ontology and pathway analyses identified an increase in transcriptional and translational activity but a reduction in proteins contributing to terminal differentiation, including caspase 14, dermokine, AKT1 and TGF-beta-1. Aspects of innate and adaptive immunity were represented in both the up-regulated and down-regulated protein groups, as was the term ‘axon guidance’. Conclusions:This work provides further evidence for keratinocyte-specific mechanisms contributing to immune and neurological, as well as structural, aspects of skin barrier dysfunction. Individuals with filaggrin deficiency may derive benefit from future therapies targeting keratinocyte-immune crosstalk and neurogenic pruritus.
Collapse
|
30
|
Molecular Functionality of Cytochrome P450 4 (CYP4) Genetic Polymorphisms and Their Clinical Implications. Int J Mol Sci 2019; 20:ijms20174274. [PMID: 31480463 PMCID: PMC6747359 DOI: 10.3390/ijms20174274] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/03/2023] Open
Abstract
Enzymes in the cytochrome P450 4 (CYP4) family are involved in the metabolism of fatty acids, xenobiotics, therapeutic drugs, and signaling molecules, including eicosanoids, leukotrienes, and prostanoids. As CYP4 enzymes play a role in the maintenance of fatty acids and fatty-acid-derived bioactive molecules within a normal range, they have been implicated in various biological functions, including inflammation, skin barrier, eye function, cardiovascular health, and cancer. Numerous studies have indicated that genetic variants of CYP4 genes cause inter-individual variations in metabolism and disease susceptibility. Genetic variants of CYP4A11, 4F2 genes are associated with cardiovascular diseases. Mutations of CYP4B1, CYP4Z1, and other CYP4 genes that generate 20-HETE are a potential risk for cancer. CYP4V2 gene variants are associated with ocular disease, while those of CYP4F22 are linked to skin disease and CYP4F3B is associated with the inflammatory response. The present study comprehensively collected research to provide an updated view of the molecular functionality of CYP4 genes and their associations with human diseases. Functional analysis of CYP4 genes with clinical implications is necessary to understand inter-individual variations in disease susceptibility and for the development of alternative treatment strategies.
Collapse
|
31
|
Simpson J, Martinez‐Queipo M, Onoufriadis A, Tso S, Glass E, Liu L, Higashino T, Scott W, Tierney C, Simpson M, Desomchoke R, Youssefian L, SaeIdian A, Vahidnezhad H, Bisquera A, Ravenscroft J, Moss C, O'Toole E, Burrows N, Leech S, Jones E, Lim D, Ilchyshyn A, Goldstraw N, Cork M, Darne S, Uitto J, Martinez A, Mellerio J, McGrath J. Genotype–phenotype correlation in a large English cohort of patients with autosomal recessive ichthyosis. Br J Dermatol 2019; 182:729-737. [DOI: 10.1111/bjd.18211] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
|
32
|
Severe Skin Permeability Barrier Dysfunction in Knockout Mice Deficient in a Fatty Acid ω-Hydroxylase Crucial to Acylceramide Production. J Invest Dermatol 2019; 140:319-326.e4. [PMID: 31356814 DOI: 10.1016/j.jid.2019.07.689] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/08/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022]
Abstract
The skin permeability barrier is indispensable for maintaining water inside the body and preventing the invasion of pathogens and allergens; abnormalities lead to skin disorders such as atopic dermatitis and ichthyosis. Acylceramide is an essential lipid for skin barrier formation, and CYP4F22 is a fatty acid ω-hydroxylase involved in its synthesis. Mutations in CYP4F22 cause autosomal recessive congenital ichthyosis, although the symptoms vary among mutation sites and types. Here, we generated knockout mice deficient in Cyp4f39, the mouse ortholog of human CYP4F22, to investigate the effects of completely abrogating the function of the fatty acid ω-hydroxylase involved in acylceramide production on skin barrier formation. Cyp4f39 knockout mice died within 8 hours of birth. Large increases in transepidermal water loss and penetration of a dye from outside the body were observed, indicating severe skin barrier dysfunction. Histologic analyses of the epidermis revealed impairment of lipid lamella formation, accumulation of corneodesmosomes in the stratum corneum, and persistence of periderm. In addition, lipid analyses by mass spectrometry showed almost complete loss of acylceramide and its precursor ω-hydroxy ceramide. In conclusion, our findings provide clues to the molecular mechanisms of skin barrier abnormalities and the pathogenesis of ichthyosis caused by Cyp4f39 and CYP4F22 by association.
Collapse
|
33
|
Sayeb M, Riahi Z, Laroussi N, Bonnet C, Romdhane L, Mkaouar R, Zaouak A, Marrakchi J, Abdessalem G, Messaoud O, Bouchniba O, Ghilane N, Mokni M, Besbes G, Yacoub‐Youssef H, Petit C, Abdelhak S. A Tunisian family with a novel mutation in the gene
CYP
4F22
for lamellar ichthyosis and co‐occurrence of hearing loss in a child due to mutation in the
SLC
26A4
gene. Int J Dermatol 2019; 58:1439-1443. [DOI: 10.1111/ijd.14452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Marwa Sayeb
- Laboratory of Biomedical Genomics and Oncogenetics (LR11IPT05) University of Tunis El Manar Pasteur Institut of Tunis Tunis Tunisia
| | - Zied Riahi
- Laboratory of Biomedical Genomics and Oncogenetics (LR11IPT05) University of Tunis El Manar Pasteur Institut of Tunis Tunis Tunisia
- INSERM UMRS 1120 Vision Institut Paris France
- University of Paris VI UPMC Sorbonnes Paris France
| | - Nadia Laroussi
- Laboratory of Biomedical Genomics and Oncogenetics (LR11IPT05) University of Tunis El Manar Pasteur Institut of Tunis Tunis Tunisia
| | - Crystel Bonnet
- INSERM UMRS 1120 Vision Institut Paris France
- University of Paris VI UPMC Sorbonnes Paris France
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics (LR11IPT05) University of Tunis El Manar Pasteur Institut of Tunis Tunis Tunisia
- Department of Biology Faculty of Science of Bizerte Université Tunis Carthage ZarzounaTunisia
| | - Rahma Mkaouar
- Laboratory of Biomedical Genomics and Oncogenetics (LR11IPT05) University of Tunis El Manar Pasteur Institut of Tunis Tunis Tunisia
| | - Anissa Zaouak
- Department of Dermatology Habib Thameur Hospital TunisTunisia
| | | | - Ghaith Abdessalem
- Laboratory of Biomedical Genomics and Oncogenetics (LR11IPT05) University of Tunis El Manar Pasteur Institut of Tunis Tunis Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics (LR11IPT05) University of Tunis El Manar Pasteur Institut of Tunis Tunis Tunisia
| | - Oussema Bouchniba
- Departement of Biochemistry Habib Bourguiba Hospital MedenineTunisia
| | - Nacer Ghilane
- Departement of Biochemistry Habib Bourguiba Hospital MedenineTunisia
| | - Mourad Mokni
- Department of Dermatology CHU La Rabta Tunis Tunis Tunisia
| | - Ghazi Besbes
- Department of Otorhinolaryngology CHU La Rabta TunisTunisia
| | - Houda Yacoub‐Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR11IPT05) University of Tunis El Manar Pasteur Institut of Tunis Tunis Tunisia
| | - Christine Petit
- INSERM UMRS 1120 Vision Institut Paris France
- University of Paris VI UPMC Sorbonnes Paris France
- Unité de Génétique et Physiologie de l'Audition Institut Pasteur Paris France
- Collège de France Paris France
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics (LR11IPT05) University of Tunis El Manar Pasteur Institut of Tunis Tunis Tunisia
| |
Collapse
|
34
|
Montalván-Suárez M, Esperón-Moldes US, Rodríguez-Pazos L, Ordóñez-Ugalde A, Moscoso F, Ugalde-Noritz N, Santomé L, Fachal L, Tettamanti-Miranda D, Ruiz JC, Ginarte M, Vega A. A novel ABCA12 pathologic variant identified in an Ecuadorian harlequin ichthyosis patient: A step forward in genotype-phenotype correlations. Mol Genet Genomic Med 2019; 7:e608. [PMID: 30916489 PMCID: PMC6503032 DOI: 10.1002/mgg3.608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 11/22/2022] Open
Abstract
Background Autosomal recessive congenital ichthyoses (ARCI) have been associated with different phenotypes including: harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). While pathogenic variants in all ARCI genes are associated with LI and CIE phenotypes, the unique gene associated with HI is ABCA12. In HI, the most severe ARCI form, pathogenic variants in both ABCA12 gene alleles usually have a severe impact on protein function. The presence of at least one non‐truncating variant frequently causes a less severe congenital ichthyosis phenotype (LI and CIE). Methods We report the case of a 4‐year‐old Ecuadorian boy with a severe skin disease. Genetic diagnosis was performed by NGS. In silico predictions were performed using Alamut software v2.11. A review of the literature was carried out to identify all patients carrying ABCA12 splice‐site and missense variants, and to explore their genotype‐phenotype correlations. Results Genetic testing revealed a nonsense substitution, p.(Arg2204*), and a new missense variant, p.(Val1927Leu), in the ABCA12 gene. After performing in silico analysis and a comprehensive review of the literature, we conclude that p.(Val1927Leu) affects a well conserved residue which could either disturb the protein function or alter the splicing process, both alternatives could explain the severe phenotype of our patient. Conclusion This case expands the spectrum of ABCA12 reported disease‐causing variants which is important to unravel genotype‐phenotype correlations and highlights the importance of missense variants in the development of HI.
Collapse
Affiliation(s)
- Martha Montalván-Suárez
- Sistema de Investigación y Desarrollo SINDE, Universidad Católica de Santiago de Guayaquil and Universidad de Guayaquil, Guayaquil, Ecuador
| | - Uxia Saraiva Esperón-Moldes
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain.,Departamento de Ciencias Forenses, Anatomía Patolóxica, Xinecoloxía, Obstetricia e Pediatría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Rodríguez-Pazos
- Servicio de Dermatología del Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Andrés Ordóñez-Ugalde
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain.,Laboratorio Biomolecular, Cuenca, Ecuador.,Unidad de Genética y Molecular del Hospital de Especialidades José Carrasco Arteaga, Cuenca, Ecuador
| | | | - Nora Ugalde-Noritz
- Unidad de Genética y Molecular del Hospital de Especialidades José Carrasco Arteaga, Cuenca, Ecuador
| | - Luis Santomé
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | | | - Juan Carlos Ruiz
- Universidad Espíritu Santo and Hospital Luis Vernaza, Guayaquil, Ecuador.,Instituto de Biomedicina Universidad Católica de Santiago de Guayaquil and Centro de Investigación, Universidad Espíritu Santo, Guayaquil, Ecuador
| | - Manuel Ginarte
- Servicio de Dermatología del Complexo Hospitalario Universitario de Santiago, Facultad de Medicina, Santiago de Compostela, Spain
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| |
Collapse
|
35
|
Onal G, Kutlu O, Ozer E, Gozuacik D, Karaduman A, Dokmeci Emre S. Impairment of lipophagy by PNPLA1 mutations causes lipid droplet accumulation in primary fibroblasts of Autosomal Recessive Congenital Ichthyosis patients. J Dermatol Sci 2019; 93:50-57. [DOI: 10.1016/j.jdermsci.2018.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
|
36
|
Lima Cunha D, Alakloby OM, Gruber R, Kakar N, Ahmad J, Alawbathani S, Plank R, Eckl K, Krabichler B, Altmüller J, Nürnberg P, Zschocke J, Borck G, Schmuth M, Alabdulkareem AS, Abdulaziz Alnutaifi K, Hennies HC. Unknown mutations and genotype/phenotype correlations of autosomal recessive congenital ichthyosis in patients from Saudi Arabia and Pakistan. Mol Genet Genomic Med 2019; 7:e539. [PMID: 30600594 PMCID: PMC6418373 DOI: 10.1002/mgg3.539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/26/2018] [Accepted: 11/15/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Autosomal recessive congenital ichthyosis (ARCI) is a genetically and phenotypically heterogeneous skin disease, associated with defects in the skin permeability barrier. Several but not all genes with underlying mutations have been identified, but a clear correlation between genetic causes and clinical picture has not been described to date. METHODS Our study included 19 families from Saudi Arabia, Yemen, and Pakistan. All patients were born to consanguineous parents and diagnosed with ARCI. Mutations were analyzed by homozygosity mapping and direct sequencing. RESULTS We have detected mutations in all families in five different genes: TGM1, ABCA12, CYP4F22, NIPAL4, and ALOXE3. Five likely pathogenic variants were unknown so far, a splice site and a missense variant in TGM1, a splice site variant in NIPAL4, and missense variants in ABCA12 and CYP4F22. We attributed TGM1 and ABCA12 mutations to the most severe forms of lamellar and erythematous ichthyoses, respectively, regardless of treatment. Other mutations highlighted the presence of a phenotypic spectrum in ARCI. CONCLUSION Our results contribute to expanding the mutational spectrum of ARCI and revealed new insights into genotype/phenotype correlations. The findings are instrumental for a faster and more precise diagnosis, a better understanding of the pathophysiology, and the definition of targets for more specific therapies for ARCI.
Collapse
Affiliation(s)
- Dulce Lima Cunha
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Omar Mohammed Alakloby
- Department of Dermatology, College of Medicine, Imam Abdulrahman Bin Faisal University (formerly University of Dammam), Dammam, Saudi Arabia
| | - Robert Gruber
- Department of Dermatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Naseebullah Kakar
- Institute of Human Genetics, University of Ulm, Ulm, Germany.,Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Jamil Ahmad
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Salem Alawbathani
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Roswitha Plank
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katja Eckl
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.,Department of Biology, Edge Hill University, Ormskirk, UK
| | - Birgit Krabichler
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,CECAD Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Matthias Schmuth
- Department of Dermatology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kholood Abdulaziz Alnutaifi
- Department of Dermatology, College of Medicine, Imam Abdulrahman Bin Faisal University (formerly University of Dammam), Dammam, Saudi Arabia
| | - Hans Christian Hennies
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.,Cologne Center for Genomics, University of Cologne, Cologne, Germany.,CECAD Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
37
|
Kien B, Grond S, Haemmerle G, Lass A, Eichmann TO, Radner FPW. ABHD5 stimulates PNPLA1-mediated ω- O-acylceramide biosynthesis essential for a functional skin permeability barrier. J Lipid Res 2018; 59:2360-2367. [PMID: 30361410 PMCID: PMC6277169 DOI: 10.1194/jlr.m089771] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/24/2018] [Indexed: 11/20/2022] Open
Abstract
Mutations in the genes coding for patatin-like phospholipase domain-containing 1 (PNPLA1) and α/β-hydrolase domain-containing 5 (ABHD5), also known as comparative gene identification 58, are causative for ichthyosis, a severe skin barrier disorder. Individuals with mutations in either of these genes show a defect in epidermal ω-O-acylceramide (AcylCer) biosynthesis, suggesting that PNPLA1 and ABHD5 act in the same metabolic pathway. In this report, we identified ABHD5 as a coactivator of PNPLA1 that stimulates the esterification of ω-hydroxy ceramides with linoleic acid for AcylCer biosynthesis. ABHD5 interacts with PNPLA1 and recruits the enzyme to its putative triacylglycerol substrate onto cytosolic lipid droplets. Conversely, alleles of ABHD5 carrying point mutations associated with ichthyosis in humans failed to accelerate PNPLA1-mediated AcylCer biosynthesis. Our findings establish an important biochemical function of ABHD5 in interacting with PNPLA1 to synthesize crucial epidermal lipids, emphasizing the significance of these proteins in the formation of a functional skin permeability barrier.
Collapse
Affiliation(s)
- Benedikt Kien
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Susanne Grond
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Center for Explorative Lipidomics, Graz, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
38
|
Hirabayashi T, Murakami M, Kihara A. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:869-879. [PMID: 30290227 DOI: 10.1016/j.bbalip.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/14/2022]
Abstract
The human genome encodes nine enzymes belonging to the patatin-like phospholipase domain-containing lipase (PNPLA)/Ca2+-independent phospholipase A2 (iPLA2) family. Although most PNPLA/iPLA2 enzymes are widely distributed and act on phospholipids or neutral lipids as (phospho)lipases to play homeostatic roles in lipid metabolism, the function of PNPLA1 remained a mystery until a few years ago. However, the recent finding that mutations in the human PNPLA1 gene are linked to autosomal recessive congenital ichthyosis (ARCI), as well as evidence obtained from biochemical and gene knockout studies, has shed light on the function of this enzyme in skin-specific sphingolipid metabolism rather than glycerophospholipid metabolism. PNPLA1 is specifically expressed in differentiated keratinocytes and plays a crucial role in the biosynthesis of ω-O-acylceramide, a particular class of sphingolipids that is essential for skin barrier function. PNPLA1 acts as a unique transacylase that specifically transfers linoleic acid from triglyceride to ω-hydroxy fatty acid in ceramide, thus giving rise to ω-O-acylceramide. In this review, we overview the biosynthetic route and biological role of epidermal ω-O-acylceramide, highlight the function of PNPLA1 as a bona fide acylceramide synthase required for proper skin barrier function and keratinocyte differentiation, and summarize the mutations of PNPLA1 currently identified in ARCI patients. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Tetsuya Hirabayashi
- Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
39
|
Hotz A, Bourrat E, Küsel J, Oji V, Alter S, Hake L, Korbi M, Ott H, Hausser I, Zimmer AD, Fischer J. Mutation update for CYP4F22 variants associated with autosomal recessive congenital ichthyosis. Hum Mutat 2018; 39:1305-1313. [PMID: 30011118 DOI: 10.1002/humu.23594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 11/06/2022]
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of rare disorders of keratinization characterized by generalized abnormal scaling of the skin. Ten genes are currently known to be associated with ARCI: TGM1, ALOXE3, ALOX12B, NIPAL4 (ICHTHYIN), ABCA12, CYP4F22, PNPLA1, CERS3, SDR9C7, and SULT2B1. Over a period of 22 years, we have studied a large patient cohort from 770 families with a clinical diagnosis of ARCI. Since the first report that mutations in the gene CYP4F22 are causative for ARCI in 2006, we have identified 54 families with pathogenic mutations in CYP4F22 including 23 previously unreported mutations. In this report, we provide an up-to-date overview of all published and novel CYP4F22 mutations and point out possible mutation hot spots. We discuss the molecular and clinical findings, the genotype-phenotype correlations and consequences on genetic testing.
Collapse
Affiliation(s)
- Alrun Hotz
- Faculty of Medicine, Institute of Human Genetics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Emmanuelle Bourrat
- Centre de Référence des Génodermatoses, Hôpital Saint-Louis, Paris, France
| | - Julia Küsel
- Faculty of Medicine, Institute of Human Genetics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Vinzenz Oji
- Department of Dermatology, University Hospital, Münster, Germany
| | - Svenja Alter
- Faculty of Medicine, Institute of Human Genetics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Lisanne Hake
- Department of Dermatology, University Hospital, Münster, Germany
| | - Mouna Korbi
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
| | - Hagen Ott
- Division of Pediatric Dermatology and Allergology, Children's Hospital Auf der Bult, Hanover, Germany
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas D Zimmer
- Faculty of Medicine, Institute of Human Genetics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Judith Fischer
- Faculty of Medicine, Institute of Human Genetics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Abstract
The ichthyoses are a heterogeneous group of skin diseases characterized by localized or generalized scaling or both. Other common manifestations include palmoplantar keratoderma, erythroderma, recurrent infections, and hypohidrosis. Abnormal barrier function is a cardinal feature of the ichthyoses, which results in compensatory hyperproliferation and transepidermal water loss. Barrier function is maintained primarily by the stratum corneum, which is composed of cornified cells surrounded by a corneocyte lipid envelope and intercellular lipid layers. The lipid components are composed primarily of ceramides. Human genetics has advanced our understanding of the role of the epidermal lipid barrier, and a series of discoveries in animals and humans revealed mutations in novel genes causing disorders of keratinization. Recently, next-generation sequencing has further expanded our knowledge, identifying novel mutations that disrupt the ceramide pathway and result in disorders of keratinization. This review focuses on new findings in ichthyoses caused by mutations involving lipid synthesis or function or both.
Collapse
Affiliation(s)
- Theodore Zaki
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Keith Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
41
|
Shigehara Y, Okuda S, Nemer G, Chedraoui A, Hayashi R, Bitar F, Nakai H, Abbas O, Daou L, Abe R, Sleiman MB, Kibbi AG, Kurban M, Shimomura Y. Mutations in SDR9C7 gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis. Hum Mol Genet 2018; 25:4484-4493. [PMID: 28173123 DOI: 10.1093/hmg/ddw277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/16/2016] [Accepted: 08/15/2016] [Indexed: 11/14/2022] Open
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of hereditary skin disorder characterized by an aberrant cornification of the epidermis. ARCI is classified into a total of 11 subtypes (ARCI1-ARCI11) based on their causative genes or loci. Of these, the causative gene for only ARCI7 has not been identified, while it was previously mapped on chromosome 12p11.2-q13.1. In this study, we performed genetic analyses for three Lebanese families with ARCI, and successfully determined the linkage interval to 9.47 Mb region on chromosome 12q13.13-q14.1, which was unexpectedly outside of the ARCI7 locus. Whole-exome sequencing and the subsequent Sanger sequencing led to the identification of missense mutations in short chain dehydrogenase/reductase family 9C, member 7 (SDR9C7) gene on chromosome 12q13.3, i.e. two families shared an identical homozygous mutation c.599T > C (p.Ile200Thr) and one family had another homozygous mutation c.214C > T (p.Arg72Trp). In cultured cells, expression of both the mutant SDR9C7 proteins was markedly reduced as compared to wild-type protein, suggesting that the mutations severely affected a stability of the protein. In normal human skin, the SDR9C7 was abundantly expressed in granular and cornified layers of the epidermis. By contrast, in a patient’s skin, its expression in the cornified layer was significantly decreased. It has previously been reported that SDR9C7 is an enzyme to convert retinal into retinol. Therefore, our study not only adds a new gene responsible for ARCI, but also further suggests a potential role of vitamin A metabolism in terminal differentiation of the epidermis in humans.
Collapse
Affiliation(s)
- Yohya Shigehara
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Georges Nemer
- Biochemistry & molecular genetics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Adele Chedraoui
- Department of Dermatology, Lebanese American University-Hospital Rizk, Beirut, Lebanon
| | - Ryota Hayashi
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fadi Bitar
- Department of Pediatrics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laetitia Daou
- Department of Laboratory medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Riichiro Abe
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maria Bou Sleiman
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Abdul Ghani Kibbi
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Biochemistry & molecular genetics, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Dermatology, Columbia University, New York, NY, USA
| | - Yutaka Shimomura
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
42
|
Vahlquist A, Fischer J, Törmä H. Inherited Nonsyndromic Ichthyoses: An Update on Pathophysiology, Diagnosis and Treatment. Am J Clin Dermatol 2018; 19:51-66. [PMID: 28815464 PMCID: PMC5797567 DOI: 10.1007/s40257-017-0313-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hereditary ichthyoses are due to mutations on one or both alleles of more than 30 different genes, mainly expressed in the upper epidermis. Syndromic as well as nonsyndromic forms of ichthyosis exist. Irrespective of etiology, virtually all types of ichthyosis exhibit a defective epidermal barrier that constitutes the driving force for hyperkeratosis, skin scaling, and inflammation. In nonsyndromic forms, these features are most evident in severe autosomal recessive congenital ichthyosis (ARCI) and epidermolytic ichthyosis, but to some extent also occur in the common type of non-congenital ichthyosis. A correct diagnosis of ichthyosis-essential not only for genetic counseling but also for adequate patient information about prognosis and therapeutic options-is becoming increasingly feasible thanks to recent progress in genetic knowledge and DNA sequencing methods. This paper reviews the most important aspects of nonsyndromic ichthyoses, focusing on new knowledge about the pathophysiology of the disorders, which will hopefully lead to novel ideas about therapy.
Collapse
Affiliation(s)
- Anders Vahlquist
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Judith Fischer
- Institute of Human Genetics, University Medical Centre, Freiburg, Germany
| | - Hans Törmä
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Ohno Y. Elucidation of the Synthetic Mechanism of Acylceramide, an Essential Lipid for Skin Barrier Function. YAKUGAKU ZASSHI 2017; 137:1201-1208. [PMID: 28966260 DOI: 10.1248/yakushi.17-00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary function of the skin is to act as a permeability barrier that prevents water loss from inside the body and external invasion such as by pathogens, harmful substances, and allergens. Lipids play a critical role in skin barrier formation by forming multi-lamellar structures in the stratum corneum, the outermost cell layer of the epidermis. Ceramide, the backbone of sphingolipids, accounts for more than 50% of the stratum corneum lipids. Acylceramides are epidermis-specific ceramide species essential for skin barrier formation. Decreases in acylceramide levels and changes in ceramide composition and chain-length are associated with such cutaneous disorders as ichthyosis, atopic dermatitis, and psoriasis. Acylceramide consists of a long-chain base and an amide-linked ultra-long-chain fatty acid (ULCFA, 28-36 carbon chain), which is ω-hydroxylated and esterified with linoleic acid. Although the molecular mechanism by which acylceramide is generated has not been fully understood for decades, we recently identified two genes, CYP4F22 and PNPLA1, involved in acylceramide synthesis and elucidated the entire biosynthetic pathway of acylceramide: the synthesis of ULCFA by ELOVL1 and ELOVL4, ω-hydroxylation of the ULCFA by CYP4F22, amide-bond formation with a long-chain base by CERS3, and transacylation of linoleic acid from triacylglycerol to ω-hydroxyceramide by PNPLA1 to generate acylceramide. CYP4F22 and PNPLA1 are the causative genes of ichthyosis. We demonstrated that mutations of CYP4F22 or PNPLA1 markedly reduced acylceramide production. Our recent findings provide important insights into the molecular mechanisms of skin barrier formation and of ichthyosis pathogenesis.
Collapse
Affiliation(s)
- Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
44
|
Akiyama M. Corneocyte lipid envelope (CLE), the key structure for skin barrier function and ichthyosis pathogenesis. J Dermatol Sci 2017. [DOI: 10.1016/j.jdermsci.2017.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Expression of CYP4V2 in human THP1 macrophages and its transcriptional regulation by peroxisome proliferator-activated receptor gamma. Toxicol Appl Pharmacol 2017; 330:100-106. [PMID: 28729181 DOI: 10.1016/j.taap.2017.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/29/2017] [Accepted: 07/16/2017] [Indexed: 02/05/2023]
Abstract
Because macrophages respond to a variety of pathological and pharmacological reagents, understanding the role of P450s in macrophages is important for therapeutic intervention. There has been a lack of research on CYP4 in macrophages, but fatty acid accumulation and lipid trafficking in macrophages have been suggested to be a main cause of atherosclerosis. All human CYP4 genes (n=12) were screened in THP1 macrophages by gene-specific reverse transcriptase-polymerase chain reaction (RT-PCR). Only CYP4V2 exhibited strong expression of both mRNA and protein. Expression levels of both CYP4V2 mRNA and protein were significantly reduced after treatment with peroxisome proliferator-activated receptor gamma (PPARγ) antagonist GW9662. However, the expression levels of CYP4V2 were not changed by PPARα antagonist (GW6471) and liver X receptor alpha antagonist (22-S hydroxycholesterol). A metabolite of the CYP4V2 enzyme, 12-hydroxydodecanoic acid, was detected in THP1 macrophages, and this metabolite was significantly decreased after treatment with the PPARγ inhibitor GW9662 (>80% decreased, p<0.05). In summary, fatty acid metabolizing protein CYP4V2 was identified in human THP1 macrophages, and its expression was regulated by PPARγ. Further study is required to understand the role of CYP4V2 with regard to fat accumulation in the activated macrophage and atherosclerotic plaque development.
Collapse
|
46
|
Heinz L, Kim GJ, Marrakchi S, Christiansen J, Turki H, Rauschendorf MA, Lathrop M, Hausser I, Zimmer AD, Fischer J. Mutations in SULT2B1 Cause Autosomal-Recessive Congenital Ichthyosis in Humans. Am J Hum Genet 2017; 100:926-939. [PMID: 28575648 DOI: 10.1016/j.ajhg.2017.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/05/2017] [Indexed: 12/30/2022] Open
Abstract
Ichthyoses are a clinically and genetically heterogeneous group of genodermatoses associated with abnormal scaling of the skin over the whole body. Mutations in nine genes are known to cause non-syndromic forms of autosomal-recessive congenital ichthyosis (ARCI). However, not all genetic causes for ARCI have been discovered to date. Using whole-exome sequencing (WES) and multigene panel screening, we identified 6 ARCI-affected individuals from three unrelated families with mutations in Sulfotransferase family 2B member 1 (SULT2B1), showing their causative association with ARCI. Cytosolic sulfotransferases form a large family of enzymes that are involved in the synthesis and metabolism of several steroids in humans. We identified four distinct mutations including missense, nonsense, and splice site mutations. We demonstrated the loss of SULT2B1 expression at RNA and protein levels in keratinocytes from individuals with ARCI by functional analyses. Furthermore, we succeeded in reconstructing the morphologic skin alterations in a 3D organotypic tissue culture model with SULT2B1-deficient keratinocytes and fibroblasts. By thin layer chromatography (TLC) of extracts from these organotypic cultures, we could show the absence of cholesterol sulfate, the metabolite of SULT2B1, and an increased level of cholesterol, indicating a disturbed cholesterol metabolism of the skin upon loss-of-function mutation in SULT2B1. In conclusion, our study reveals an essential role for SULT2B1 in the proper development of healthy human skin. Mutation in SULT2B1 leads to an ARCI phenotype via increased proliferation of human keratinocytes, thickening of epithelial layers, and altered epidermal cholesterol metabolism.
Collapse
|
47
|
Zhang JE, Klein K, Jorgensen AL, Francis B, Alfirevic A, Bourgeois S, Deloukas P, Zanger UM, Pirmohamed M. Effect of Genetic Variability in the CYP4F2, CYP4F11, and CYP4F12 Genes on Liver mRNA Levels and Warfarin Response. Front Pharmacol 2017; 8:323. [PMID: 28620303 PMCID: PMC5449482 DOI: 10.3389/fphar.2017.00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Genetic polymorphisms in the gene encoding cytochrome P450 (CYP) 4F2, a vitamin K oxidase, affect stable warfarin dose requirements and time to therapeutic INR. CYP4F2 is part of the CYP4F gene cluster, which is highly polymorphic and exhibits a high degree of linkage disequilibrium, making it difficult to define causal variants. Our objective was to examine the effect of genetic variability in the CYP4F gene cluster on expression of the individual CYP4F genes and warfarin response. mRNA levels of the CYP4F gene cluster were quantified in human liver samples (n = 149) obtained from a well-characterized liver bank and fine mapping of the CYP4F gene cluster encompassing CYP4F2, CYP4F11, and CYP4F12 was performed. Genome-wide association study (GWAS) data from a prospective cohort of warfarin-treated patients (n = 711) was also analyzed for genetic variations across the CYP4F gene cluster. In addition, SNP-gene expression in human liver tissues and interactions between CYP4F genes were explored in silico using publicly available data repositories. We found that SNPs in CYP4F2, CYP4F11, and CYP4F12 were associated with mRNA expression in the CYP4F gene cluster. In particular, CYP4F2 rs2108622 was associated with increased CYP4F2 expression while CYP4F11 rs1060467 was associated with decreased CYP4F2 expression. Interestingly, these CYP4F2 and CYP4F11 SNPs showed similar effects with warfarin stable dose where CYP4F11 rs1060467 was associated with a reduction in daily warfarin dose requirement (∼1 mg/day, Pc = 0.017), an effect opposite to that previously reported with CYP4F2 (rs2108622). However, inclusion of either or both of these SNPs in a pharmacogenetic algorithm consisting of age, body mass index (BMI), gender, baseline clotting factor II level, CYP2C9∗2 rs1799853, CYP2C9∗3 rs1057910, and VKORC1 rs9923231 improved warfarin dose variability only by 0.5–0.7% with an improvement in dose prediction accuracy of ∼1–2%. Although there is complex regulation across the CYP4F gene cluster, the opposing effects between the two SNPs in the CYP4F gene cluster appear to compensate for each other and their effect on warfarin dose requirement is unlikely to be clinically significant.
Collapse
Affiliation(s)
- J E Zhang
- Wolfson Centre for Personalized Medicine, Department of Molecular and Clinical Pharmacology, The University of LiverpoolLiverpool, United Kingdom
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgart, Germany.,Department of Clinical Pharmacology, University of TuebingenTuebingen, Germany
| | - Andrea L Jorgensen
- Department of Biostatistics, The University of LiverpoolLiverpool, United Kingdom
| | - Ben Francis
- Department of Biostatistics, The University of LiverpoolLiverpool, United Kingdom
| | - Ana Alfirevic
- Wolfson Centre for Personalized Medicine, Department of Molecular and Clinical Pharmacology, The University of LiverpoolLiverpool, United Kingdom
| | - Stephane Bourgeois
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondon, United Kingdom
| | - Panagiotis Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondon, United Kingdom.,Wellcome Trust Sanger InstituteCambridge, United Kingdom.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgart, Germany.,Department of Clinical Pharmacology, University of TuebingenTuebingen, Germany
| | - Munir Pirmohamed
- Wolfson Centre for Personalized Medicine, Department of Molecular and Clinical Pharmacology, The University of LiverpoolLiverpool, United Kingdom
| |
Collapse
|
48
|
The Molecular Revolution in Cutaneous Biology: Identification of Skin Disease Genes. J Invest Dermatol 2017; 137:e61-e65. [DOI: 10.1016/j.jid.2016.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023]
|
49
|
PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat Commun 2017; 8:14610. [PMID: 28248318 PMCID: PMC5337975 DOI: 10.1038/ncomms14610] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/14/2017] [Indexed: 01/24/2023] Open
Abstract
Lipids are the primary components of the skin permeability barrier, which is the body's most powerful defensive mechanism against pathogens. Acylceramide (ω-O-acylceramide) is a specialized lipid essential for skin barrier formation. Here, we identify PNPLA1 as the long-sought gene involved in the final step of acylceramide synthesis, esterification of ω-hydroxyceramide with linoleic acid, by cell-based assays. We show that increasing triglyceride levels by overproduction of the diacylglycerol acyltransferase DGAT2 stimulates acylceramide production, suggesting that triglyceride may act as a linoleic acid donor. Indeed, the in vitro analyses confirm that PNPLA1 catalyses acylceramide synthesis using triglyceride as a substrate. Mutant forms of PNPLA1 found in patients with ichthyosis exhibit reduced or no enzyme activity in either cell-based or in vitro assays. Altogether, our results indicate that PNPLA1 is directly involved in acylceramide synthesis as a transacylase, and provide important insights into the molecular mechanisms of skin barrier formation and of ichthyosis pathogenesis.
Collapse
|
50
|
Bastaki F, Mohamed M, Nair P, Saif F, Mustafa EM, Bizzari S, Al-Ali MT, Hamzeh AR. Summary of mutations underlying autosomal recessive congenital ichthyoses (ARCI) in Arabs with four novel mutations in ARCI-related genes from the United Arab Emirates. Int J Dermatol 2017; 56:514-523. [PMID: 28236338 DOI: 10.1111/ijd.13568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/24/2016] [Accepted: 01/10/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Clinical and molecular heterogeneity is a prominent characteristic of congenital ichthyoses, with the involvement of numerous causative loci. Mutations in these loci feature in autosomal recessive congenital ichthyoses (ARCIs) quite variably, with certain genes/mutations being more frequently uncovered in particular populations. METHODS In this study, we used whole exome sequencing as well as direct Sanger sequencing to uncover four novel mutations in ARCI-related genes, which were found in families from the United Arab Emirates. In silico tools such as CADD and SIFT Indel were used to predict the functional consequences of these mutations. RESULTS The here-presented mutations occurred in three genes (ALOX12B, TGM1, ABCA12), and these are a mixture of missense and indel variants with damaging functional consequences on their encoded proteins. CONCLUSIONS This study presents an overview of the mutations that were found in ARCI-related genes in Arabs and discusses molecular and clinical details pertaining to the above-mentioned Emirati cases and their novel mutations with special emphasis on the resulting protein changes.
Collapse
Affiliation(s)
- Fatma Bastaki
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, UAE
| | - Madiha Mohamed
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, UAE
| | | | - Fatima Saif
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, UAE
| | - Ethar M Mustafa
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, UAE
| | | | | | | |
Collapse
|