1
|
McFeely A, O'Connor A, Kennelly SP. Use of biomarkers in the diagnosis of Alzheimer's disease in adults with intellectual disability. THE LANCET. HEALTHY LONGEVITY 2024; 5:100639. [PMID: 39369728 DOI: 10.1016/j.lanhl.2024.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 10/08/2024] Open
Abstract
People with intellectual disability are a vulnerable cohort who face challenges accessing health care. Compared with the general population, people with intellectual disability have an elevated risk of developing dementia, which often presents at a younger age and with atypical symptoms. The lifelong cognitive and functional difficulties faced by people with intellectual disability further complicate the diagnostic process. Specialised intellectual disability memory services and evaluation using reliable biomarkers of neurodegeneration are needed to improve diagnostic and prognostic certainty in this group. Inadequate specialist services and paucity of research on biomarkers in this population hinders progress and impedes the delivery of adequate health care. Although cerebrospinal fluid-based biomarkers and radiological biomarkers are used routinely in the evaluation of Alzheimer's disease in the general population, biological variation within the clinically heterogenous group of people with intellectual disability could affect the clinical utility of existing biomarkers. As disease-modifying therapies become available for the treatment of early Alzheimer's disease, and hopefully other neurodegenerative conditions in the future, biomarkers will serve as gatekeepers to establish the eligibility for such therapies. Inadequate representation of adults with intellectual disability in biomarker research will result in their exclusion from treatment with disease-modifying therapies, thus perpetuating the inequity in health care that is already faced by this group. The aim of this Series paper is to summarise current evidence on the application of biomarkers for Alzheimer's disease in a population with intellectual disability (that is not attributable to Down syndrome) and suspected cognitive decline.
Collapse
Affiliation(s)
- Aoife McFeely
- National Intellectual Disability Memory Service, Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland; Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Antoinette O'Connor
- National Intellectual Disability Memory Service, Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland; Department of Neurology, Tallaght University Hospital, Dublin, Ireland; Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sean P Kennelly
- National Intellectual Disability Memory Service, Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland; Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Hao X, Sun J, Zhong L, Baudry M, Bi X. UBE3A deficiency-induced autophagy is associated with activation of AMPK-ULK1 and p53 pathways. Exp Neurol 2023; 363:114358. [PMID: 36849003 PMCID: PMC10073344 DOI: 10.1016/j.expneurol.2023.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Angelman Syndrome (AS) is a neurodevelopmental disorder caused by deficiency of the maternally expressed UBE3A gene. The UBE3A proteins functions both as an E3 ligase in the ubiquitin-proteasome system (UPS), and as a transcriptional co-activator for steroid hormone receptors. Here we investigated the effects of UBE3A deficiency on autophagy in the cerebellum of AS mice and in COS1 cells. Numbers and size of LC3- and LAMP2-immunopositive puncta were increased in cerebellar Purkinje cells of AS mice, as compared to wildtype mice. Western blot analysis showed an increase in the conversion of LC3I to LC3II in AS mice, as expected from increased autophagy. Levels of active AMPK and of one of its substrates, ULK1, a factor involved in autophagy initiation, were also increased. Colocalization of LC3 with LAMP2 was increased and p62 levels were decreased, indicating an increase in autophagy flux. UBE3A deficiency was also associated with reduced levels of phosphorylated p53 in the cytosol and increased levels in nuclei, which favors autophagy induction. UBE3A siRNA knockdown in COS-1 cells resulted in increased size and intensity of LC3-immunopositive puncta and increased the LC3 II/I ratio, as compared to control siRNA-treated cells, confirming the results found in the cerebellum of AS mice. These results indicate that UBE3A deficiency enhances autophagic activity through activation of the AMPK-ULK1 pathway and alterations in p53.
Collapse
Affiliation(s)
- Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Li Zhong
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
3
|
Jiang H, Tang W, Song Y, Jin W, Du Q. Induction of Apoptosis by Metabolites of Rhei Radix et Rhizoma (Da Huang): A Review of the Potential Mechanism in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:806175. [PMID: 35308206 PMCID: PMC8924367 DOI: 10.3389/fphar.2022.806175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Liver cancer is a global disease with a high mortality rate and limited treatment options. Alternations in apoptosis of tumor cells and immune cells have become an important method for detailing the underlying mechanisms of hepatocellular carcinoma (HCC). Bcl-2 family, Caspase family, Fas and other apoptosis-related proteins have also become antagonistic targets of HCC. Da Huang (Rhei Radix et Rhizoma, RR), a traditional Chinese herb, has recently demonstrated antitumor behaviors. Multiple active metabolites of RR, including emodin, rhein, physcion, aloe-emodin, gallic acid, and resveratrol, can successfully induce apoptosis and inhibit HCC. However, the underlying mechanisms of these metabolites inhibiting the occurrence and development of HCC by inducing apoptosis is complicated owing to the multi-target and multi-pathway characteristics of traditional Chinese herbs. Accordingly, this article reviews the pathways of apoptosis, the relationship between HCC and apoptosis, the role and mechanism of apoptosis induced by mitochondrial endoplasmic reticulum pathway and death receptor pathway in HCC and the mechanism of six RR metabolites inhibiting HCC by inducing apoptosis.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuyinuo Tang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Tamada K, Fukumoto K, Toya T, Nakai N, Awasthi JR, Tanaka S, Okabe S, Spitz F, Saitow F, Suzuki H, Takumi T. Genetic dissection identifies Necdin as a driver gene in a mouse model of paternal 15q duplications. Nat Commun 2021; 12:4056. [PMID: 34210967 PMCID: PMC8249516 DOI: 10.1038/s41467-021-24359-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Maternally inherited duplication of chromosome 15q11-q13 (Dup15q) is a pathogenic copy number variation (CNV) associated with autism spectrum disorder (ASD). Recently, paternally derived duplication has also been shown to contribute to the development of ASD. The molecular mechanism underlying paternal Dup15q remains unclear. Here, we conduct genetic and overexpression-based screening and identify Necdin (Ndn) as a driver gene for paternal Dup15q resulting in the development of ASD-like phenotypes in mice. An excess amount of Ndn results in enhanced spine formation and density as well as hyperexcitability of cortical pyramidal neurons. We generate 15q dupΔNdn mice with a normalized copy number of Ndn by excising its one copy from Dup15q mice using a CRISPR-Cas9 system. 15q dupΔNdn mice do not show ASD-like phenotypes and show dendritic spine dynamics and cortical excitatory-inhibitory balance similar to wild type animals. Our study provides an insight into the role of Ndn in paternal 15q duplication and a mouse model of paternal Dup15q syndrome.
Collapse
Affiliation(s)
- Kota Tamada
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan ,grid.31432.370000 0001 1092 3077Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan
| | - Keita Fukumoto
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Tsuyoshi Toya
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.26091.3c0000 0004 1936 9959Graduate School of Pharmaceutical Sciences, Keio University, Minato, Tokyo, Japan
| | - Nobuhiro Nakai
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan ,grid.31432.370000 0001 1092 3077Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan
| | - Janak R. Awasthi
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.263023.60000 0001 0703 3735Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| | - Shinji Tanaka
- grid.26999.3d0000 0001 2151 536XDepartment of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shigeo Okabe
- grid.26999.3d0000 0001 2151 536XDepartment of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - François Spitz
- grid.170205.10000 0004 1936 7822Department of Human Genetics, University of Chicago, Chicago, IL USA
| | - Fumihito Saitow
- grid.410821.e0000 0001 2173 8328Department of Pharmacology, Garduate School of Medicine, Nippon Medical School, Bunkyo, Tokyo, Japan
| | - Hidenori Suzuki
- grid.410821.e0000 0001 2173 8328Department of Pharmacology, Garduate School of Medicine, Nippon Medical School, Bunkyo, Tokyo, Japan
| | - Toru Takumi
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan ,grid.31432.370000 0001 1092 3077Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan ,grid.263023.60000 0001 0703 3735Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| |
Collapse
|
5
|
Gropman AL. Epigenetics and pervasive developmental disorders. EPIGENETICS IN PSYCHIATRY 2021:519-552. [DOI: 10.1016/b978-0-12-823577-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Salcedo-Arellano MJ, Cabal-Herrera AM, Punatar RH, Clark CJ, Romney CA, Hagerman RJ. Overlapping Molecular Pathways Leading to Autism Spectrum Disorders, Fragile X Syndrome, and Targeted Treatments. Neurotherapeutics 2021; 18:265-283. [PMID: 33215285 PMCID: PMC8116395 DOI: 10.1007/s13311-020-00968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are subdivided into idiopathic (unknown) etiology and secondary, based on known etiology. There are hundreds of causes of ASD and most of them are genetic in origin or related to the interplay of genetic etiology and environmental toxicology. Approximately 30 to 50% of the etiologies can be identified when using a combination of available genetic testing. Many of these gene mutations are either core components of the Wnt signaling pathway or their modulators. The full mutation of the fragile X mental retardation 1 (FMR1) gene leads to fragile X syndrome (FXS), the most common cause of monogenic origin of ASD, accounting for ~ 2% of the cases. There is an overlap of molecular mechanisms in those with idiopathic ASD and those with FXS, an interaction between various signaling pathways is suggested during the development of the autistic brain. This review summarizes the cross talk between neurobiological pathways found in ASD and FXS. These signaling pathways are currently under evaluation to target specific treatments in search of the reversal of the molecular abnormalities found in both idiopathic ASD and FXS.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| | - Ana Maria Cabal-Herrera
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Cali, 00000, Colombia
| | - Ruchi Harendra Punatar
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Courtney Jessica Clark
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Christopher Allen Romney
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| |
Collapse
|
7
|
Tsagkaris C, Papakosta V, Miranda AV, Zacharopoulou L, Danilchenko V, Matiashova L, Dhar A. Gene Therapy for Angelman Syndrome: Contemporary Approaches and Future Endeavors. Curr Gene Ther 2020; 19:359-366. [DOI: 10.2174/1566523220666200107151025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/28/2019] [Accepted: 01/01/2020] [Indexed: 01/20/2023]
Abstract
Background:
Angelman Syndrome (AS) is a congenital non inherited neurodevelopmental
disorder. The contemporary AS management is symptomatic and it has been accepted that gene therapy
may play a key role in the treatment of AS.
Objective:
The purpose of this study is to summarize existing and suggested gene therapy approaches
to Angelman syndrome.
Methods:
This is a literature review. Pubmed and Scopus databases were researched with keywords
(gene therapy, Angelman’s syndrome, neurological disorders, neonates). Peer-reviewed studies that
were closely related to gene therapies in Angelman syndrome and available in English, Greek, Ukrainian
or Indonesian were included. Studies that were published before 2000 were excluded and did not
align with the aforementioned criteria.
Results:
UBE3A serves multiple roles in signaling and degradation procedures. Although the restoration
of UBE3A expression rather than targeting known activities of the molecule would be the optimal
therapeutic goal, it is not possible so far. Reinstatement of paternal UBE3A appears as an adequate alternative.
This can be achieved by administering topoisomerase-I inhibitors or reducing UBE3A antisense
transcript (UBE3A-ATS), a molecule which silences paternal UBE3A.
Conclusion:
Understanding UBE3A imprinting unravels the path to an etiologic treatment of AS.
Gene therapy models tested on mice appeared less effective than anticipated pointing out that activation
of paternal UBE3A cannot counteract the existing CNS defects. On the other hand, targeting abnormal
downstream cell signaling pathways has provided promising rescue effects. Perhaps, combined
reinstatement of paternal UBE3A expression with abnormal signaling pathways-oriented treatment is
expected to provide better therapeutic effects. However, AS gene therapy remains debatable in pharmacoeconomics
and ethics context.
Collapse
Affiliation(s)
| | | | | | | | - Valeriia Danilchenko
- Department of Pediatrics #1 with Propaedeutics and Neonatology, Ukrainian Medical Stomatological Academy, Poltava, Ukraine
| | | | - Amrit Dhar
- Government Medical College, Jammu and Kashmir, India
| |
Collapse
|
8
|
Pain O, Pocklington AJ, Holmans PA, Bray NJ, O’Brien HE, Hall LS, Pardiñas AF, O’Donovan MC, Owen MJ, Anney R. Novel Insight Into the Etiology of Autism Spectrum Disorder Gained by Integrating Expression Data With Genome-wide Association Statistics. Biol Psychiatry 2019; 86:265-273. [PMID: 31230729 PMCID: PMC6664597 DOI: 10.1016/j.biopsych.2019.04.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND A recent genome-wide association study (GWAS) of autism spectrum disorder (ASD) (ncases = 18,381, ncontrols = 27,969) has provided novel opportunities for investigating the etiology of ASD. Here, we integrate the ASD GWAS summary statistics with summary-level gene expression data to infer differential gene expression in ASD, an approach called transcriptome-wide association study (TWAS). METHODS Using FUSION software, ASD GWAS summary statistics were integrated with predictors of gene expression from 16 human datasets, including adult and fetal brains. A novel adaptation of established statistical methods was then used to test for enrichment within candidate pathways and specific tissues and at different stages of brain development. The proportion of ASD heritability explained by predicted expression of genes in the TWAS was estimated using stratified linkage disequilibrium score regression. RESULTS This study identified 14 genes as significantly differentially expressed in ASD, 13 of which were outside of known genome-wide significant loci (±500 kb). XRN2, a gene proximal to an ASD GWAS locus, was inferred to be significantly upregulated in ASD, providing insight into the functional consequence of this associated locus. One novel transcriptome-wide significant association from this study is the downregulation of PDIA6, which showed minimal evidence of association in the GWAS, and in gene-based analysis using MAGMA. Predicted gene expression in this study accounted for 13.0% of the total ASD single nucleotide polymorphism heritability. CONCLUSIONS This study has implicated several genes as significantly up/downregulated in ASD, providing novel and useful information for subsequent functional studies. This study also explores the utility of TWAS-based enrichment analysis and compares TWAS results with a functionally agnostic approach.
Collapse
Affiliation(s)
- Oliver Pain
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Andrew J. Pocklington
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Peter A. Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicholas J. Bray
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Heath E. O’Brien
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lynsey S. Hall
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Antonio F. Pardiñas
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael C. O’Donovan
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael J. Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard Anney
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
9
|
Antonucci R, Vacca N, Ghisu E, Acquaviva G, Cosmi C, Marinaro AM, Locci C, Fozza C. Acute lymphoblastic leukemia in a nine-year-old girl with isodicentric chromosome 15 syndrome. Cancer Genet 2019; 235-236:93-94. [PMID: 31155481 DOI: 10.1016/j.cancergen.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
10
|
Talebizadeh Z, Shah A, DiTacchio L. The potential role of a retrotransposed gene and a long noncoding RNA in regulating an X-linked chromatin gene (KDM5C): Novel epigenetic mechanism in autism. Autism Res 2019; 12:1007-1021. [PMID: 31087518 DOI: 10.1002/aur.2116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
A growing body of evidence supports the potential role of the circadian system and chromatin remodeling genes in autism. Considering the heterogeneity and gender discrepancy in autism, and the complex nature of the epigenetic landscape, identification of biologically relevant epigenetic factors requires reducing heterogeneity using proper subtyping. For this study, we used X chromosome inactivation (XCI) status in females with autism as an epigenetic marker for subtyping and examined the expression level of members of KDM5, a chromatin remodeling gene family. KDM5 are histone demethylases involved in the circadian molecular machinery. We used human blood samples to characterize alternatively spliced KDM5 isoforms and noticed that KDM5C undergoes a complex splicing process. We also identified a KDM5C isoform (KDM5C-3'UTR-lncRNA) containing a novel 3'UTR originated from a retrotransposed gene (retro-SUV39H2) of an autosomal methyltransferase (SUV39H2). This 3'UTR shows 84% sequence homology with long ncRNAs (lncRNAs) and is located 32 kb downstream of KDM5C. The KDM5C-3'UTR-lncRNA isoform was differentially expressed in autistic females with XCI skewness compared with controls. KDM5C plays a crucial role in balancing histone H3K4 methylation states. The identified retro-SUV39H2 originated lncRNA also shows H3K4 marks. By assessing the expression level of alternatively spliced Kdm5 isoforms at different circadian time-points, we showed that some isoforms follow a circadian oscillation pattern in wild type mouse brain.This study provides the first evidence and a suggestive model for the potential role of retrotransposed elements in autism through linking methylases and demethylases, two functionally complementary components of chromatin remodeling, which may collectively contribute to disease etiology through lncRNAs. Autism Res 2019, 12: 1007-1021. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Genes do not function in isolated conditions and their proper expression level also depends on a mechanism called gene regulation. An example of gene regulation is when changes outside DNA sequences influence the function of autism susceptibility genes. Alternative splicing is one type of gene regulation, which produces several versions of a gene (called variants) that may slightly differ from each other and be expressed at different levels in response to environmental changes. The circadian clock is an essential timing mechanism that enables organisms to maintain internal processes in sync with the dynamic environment brought about by the day-night cycle. The goal of this study was to assess if a subset of females with autism with certain genetic marker had a unique pattern of alternative splicing of three circadian genes. We identified a novel variant that is differentially expressed in this subset. Our study provides a novel subject stratification strategy, and a suggestive model of how biologically relevant components of a gene regulatory process may be linked and, possibly, collectively contribute to the etiology of autism.
Collapse
Affiliation(s)
- Zohreh Talebizadeh
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ayten Shah
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | | |
Collapse
|
11
|
Olabarria M, Pasini S, Corona C, Robador P, Song C, Patel H, Lefort R. Dysfunction of the ubiquitin ligase E3A Ube3A/E6-AP contributes to synaptic pathology in Alzheimer's disease. Commun Biol 2019; 2:111. [PMID: 30937395 PMCID: PMC6430817 DOI: 10.1038/s42003-019-0350-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Synaptic dysfunction and synapse loss are prominent features in Alzheimer's disease. Members of the Rho-family of guanosine triphosphatases, specifically RhoA, and the synaptic protein Arc are implicated in these pathogenic processes. They share a common regulatory molecule, the E3 ligase Ube3A/E6-AP. Here, we show that Ube3A is reduced in an Alzheimer's disease mouse model, Tg2576 mouse, which overexpresses human APP695 carrying the Swedish mutation, and accumulates Aβ in the brain. Depletion of Ube3A precedes the age-dependent behavioral deficits and loss of dendritic spines in these mice, and results from a decrease in solubility following phosphorylation by c-Abl, after Aβ exposure. Loss of Ube3A triggers the accumulation of Arc and Ephexin-5, driving internalization of GluR1, and activation of RhoA, respectively, culminating in pruning of synapses, which is blocked by restoring Ube3A. Taken together, our results place Ube3A as a critical player in Alzheimer's disease pathogenesis, and as a potential therapeutic target.
Collapse
Affiliation(s)
- Markel Olabarria
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| | - Silvia Pasini
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
- Present Address: Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37205 USA
| | - Carlo Corona
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| | - Pablo Robador
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| | - Cheng Song
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| | - Hardik Patel
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| | - Roger Lefort
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| |
Collapse
|
12
|
Abstract
Many processes in the human body - including brain function - are regulated over the 24-hour cycle, and there are strong associations between disrupted circadian rhythms (for example, sleep-wake cycles) and disorders of the CNS. Brain disorders such as autism, depression and Parkinson disease typically develop at certain stages of life, and circadian rhythms are important during each stage of life for the regulation of processes that may influence the development of these disorders. Here, we describe circadian disruptions observed in various brain disorders throughout the human lifespan and highlight emerging evidence suggesting these disruptions affect the brain. Currently, much of the evidence linking brain disorders and circadian dysfunction is correlational, and so whether and what kind of causal relationships might exist are unclear. We therefore identify remaining questions that may direct future research towards a better understanding of the links between circadian disruption and CNS disorders.
Collapse
Affiliation(s)
- Ryan W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Colleen A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Burette AC, Judson MC, Li AN, Chang EF, Seeley WW, Philpot BD, Weinberg RJ. Subcellular organization of UBE3A in human cerebral cortex. Mol Autism 2018; 9:54. [PMID: 30364390 PMCID: PMC6194692 DOI: 10.1186/s13229-018-0238-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 12/04/2022] Open
Abstract
Background Loss of UBE3A causes Angelman syndrome, whereas excess UBE3A activity appears to increase the risk for autism. Despite this powerful association with neurodevelopmental disorders, there is still much to be learned about UBE3A, including its cellular and subcellular organization in the human brain. The issue is important, since UBE3A’s localization is integral to its function. Methods We used light and electron microscopic immunohistochemistry to study the cellular and subcellular distribution of UBE3A in the adult human cerebral cortex. Experiments were performed on multiple tissue sources, but our results focused on optimally preserved material, using surgically resected human temporal cortex of high ultrastructural quality from nine individuals. Results We demonstrate that UBE3A is expressed in both glutamatergic and GABAergic neurons, and to a lesser extent in glial cells. We find that UBE3A in neurons has a non-uniform subcellular distribution. In somata, UBE3A preferentially concentrates in euchromatin-rich domains within the nucleus. Electron microscopy reveals that labeling concentrates in the head and neck of dendritic spines and is excluded from the PSD. Strongest labeling within the neuropil was found in axon terminals. Conclusions By highlighting the subcellular compartments in which UBE3A is likely to function in the human neocortex, our data provide insight into the diverse functional capacities of this E3 ligase. These anatomical data may help to elucidate the role of UBE3A in Angelman syndrome and autism spectrum disorder.
Collapse
Affiliation(s)
- Alain C Burette
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 314 Taylor Hall, Campus, Box 7545, Chapel Hill, NC 27599-7545 USA
| | - Matthew C Judson
- 2Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Alissa N Li
- 3Department of Neurology, University of California, San Francisco, CA USA.,4Department of Pathology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA USA
| | - Edward F Chang
- 5Department of Neurological Surgery, University of California, 505 Parnassus Avenue, Box 0112, San Francisco, CA 94143-0112 USA
| | - William W Seeley
- 3Department of Neurology, University of California, San Francisco, CA USA.,4Department of Pathology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA USA
| | - Benjamin D Philpot
- 2Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA.,6Neuroscience Curriculum, Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Richard J Weinberg
- 2Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
14
|
Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Res 2017; 28:48-68. [PMID: 29076503 DOI: 10.1038/cr.2017.132] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 01/27/2023] Open
Abstract
The autism spectrum disorders (ASDs) are a collection of human neurological disorders with heterogeneous etiologies. Hyperactivity of E3 ubiquitin (Ub) ligase UBE3A, stemming from 15q11-q13 copy number variations, accounts for 1%-3% of ASD cases worldwide, but the underlying mechanisms remain incompletely characterized. Here we report that the functionality of ALDH1A2, the rate-limiting enzyme of retinoic acid (RA) synthesis, is negatively regulated by UBE3A in a ubiquitylation-dependent manner. Excessive UBE3A dosage was found to impair RA-mediated neuronal homeostatic synaptic plasticity. ASD-like symptoms were recapitulated in mice by overexpressing UBE3A in the prefrontal cortex or by administration of an ALDH1A antagonist, whereas RA supplements significantly alleviated excessive UBE3A dosage-induced ASD-like phenotypes. By identifying reduced RA signaling as an underlying mechanism in ASD phenotypes linked to UBE3A hyperactivities, our findings introduce a new vista of ASD etiology and facilitate a mode of therapeutic development against this increasingly prevalent disease.
Collapse
|
15
|
Reilly J, Gallagher L, Chen JL, Leader G, Shen S. Bio-collections in autism research. Mol Autism 2017; 8:34. [PMID: 28702161 PMCID: PMC5504648 DOI: 10.1186/s13229-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with diverse clinical manifestations and symptoms. In the last 10 years, there have been significant advances in understanding the genetic basis for ASD, critically supported through the establishment of ASD bio-collections and application in research. Here, we summarise a selection of major ASD bio-collections and their associated findings. Collectively, these include mapping ASD candidate genes, assessing the nature and frequency of gene mutations and their association with ASD clinical subgroups, insights into related molecular pathways such as the synapses, chromatin remodelling, transcription and ASD-related brain regions. We also briefly review emerging studies on the use of induced pluripotent stem cells (iPSCs) to potentially model ASD in culture. These provide deeper insight into ASD progression during development and could generate human cell models for drug screening. Finally, we provide perspectives concerning the utilities of ASD bio-collections and limitations, and highlight considerations in setting up a new bio-collection for ASD research.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute and Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital Street, Dublin 8, Ireland
| | - June L Chen
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062 China
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
16
|
Tylee DS, Espinoza AJ, Hess JL, Tahir MA, McCoy SY, Rim JK, Dhimal T, Cohen OS, Glatt SJ. RNA sequencing of transformed lymphoblastoid cells from siblings discordant for autism spectrum disorders reveals transcriptomic and functional alterations: Evidence for sex-specific effects. Autism Res 2016; 10:439-455. [DOI: 10.1002/aur.1679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/07/2016] [Accepted: 07/01/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel S. Tylee
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University; Syracuse New York
| | - Alfred J. Espinoza
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University; Syracuse New York
| | - Jonathan L. Hess
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University; Syracuse New York
| | - Muhammad A. Tahir
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University; Syracuse New York
| | - Sarah Y. McCoy
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University; Syracuse New York
| | - Joshua K. Rim
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University; Syracuse New York
| | - Totadri Dhimal
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University; Syracuse New York
| | - Ori S. Cohen
- Department of Neuroscience; The Scripps Research Institute; Jupiter Florida
| | - Stephen J. Glatt
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University; Syracuse New York
| |
Collapse
|
17
|
Friedman D, Thaler A, Thaler J, Rai S, Cook E, Schanen C, Devinsky O. Mortality in isodicentric chromosome 15 syndrome: The role of SUDEP. Epilepsy Behav 2016; 61:1-5. [PMID: 27218684 DOI: 10.1016/j.yebeh.2016.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/30/2016] [Accepted: 04/02/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE To ascertain the cause of mortality and incidence of sudden unexpected death in epilepsy (SUDEP) in patients with supernumerary isodicentric chromosome 15 (idic15). METHODS Cases were obtained from those reported to the Dup15q Alliance (www.dup15q.org) between April 2006 and June 2012; ~709 families were registered in their database. We performed a case-control study comparing reported SUDEP cases to living patients with epilepsy from the Dup15q Alliance registry who volunteered to be interviewed to examine clinical risk factors. KEY FINDINGS There were nineteen deaths with idic15; 17 had epilepsy, and nine deaths were due to probable or definite SUDEP (4 females, median age of death was 13.5years, range: 3-26years). Possible SUDEP occurred in 2 others. The remainder died from status epilepticus (3), pneumonia (3), aspiration (1), and drowning (1). Nonambulatory status and lack of seizure control were more common among SUDEP cases than living dup15q patients. SIGNIFICANCE Our findings suggest that SUDEP is a common cause of death among children and young adults with isodicentric chromosome 15q11.2q13 duplications and patients with the most severe neurologic dysfunction may be at highest risk. Further studies are needed to examine if this specific genetic defect plays a role in the mechanism of SUDEP in these patients.
Collapse
Affiliation(s)
- Daniel Friedman
- Department of Neurology, NYU Langone School of Medicine, New York, NY, United States.
| | - Alison Thaler
- Department of Neurology, NYU Langone School of Medicine, New York, NY, United States
| | - Jonathan Thaler
- Department of Neurology, NYU Langone School of Medicine, New York, NY, United States
| | - Samhitha Rai
- Department of Neurology, NYU Langone School of Medicine, New York, NY, United States
| | - Edwin Cook
- Department of Psychiatry, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Carolyn Schanen
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, United States
| | - Orrin Devinsky
- Department of Neurology, NYU Langone School of Medicine, New York, NY, United States
| |
Collapse
|
18
|
Erickson CA, Wink LK, Baindu B, Ray B, Schaefer TL, Pedapati EV, Lahiri DK. Analysis of peripheral amyloid precursor protein in Angelman Syndrome. Am J Med Genet A 2016; 170:2334-7. [PMID: 27327493 DOI: 10.1002/ajmg.a.37811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/06/2016] [Indexed: 01/10/2023]
Abstract
Angelman Syndrome is a rare neurodevelopmental disorder associated with significant developmental and communication delays, high risk for epilepsy, motor dysfunction, and a characteristic behavioral profile. While Angelman Syndrome is known to be associated with the loss of maternal expression of the ubiquitin-protein ligase E3A gene, the molecular sequelae of this loss remain to be fully understood. Amyloid precursor protein (APP) is involved in neuronal development and APP dysregulation has been implicated in the pathophysiology of other developmental disorders including fragile X syndrome and idiopathic autism. APP dysregulation has been noted in preclinical model of chromosome 15q13 duplication, a disorder whose genetic abnormality results in duplication of the region that is epigenetically silenced in Angelman Syndrome. In this duplication model, APP levels have been shown to be significantly reduced leading to the hypothesis that enhanced ubiquitin-protein ligase E3A expression may be associated with this phenomena. We tested the hypothesis that ubiquitin-protein ligase E3A regulates APP protein levels by comparing peripheral APP and APP derivative levels in humans with Angelman Syndrome to those with neurotypical development. We report that APP total, APP alpha (sAPPα) and A Beta 40 and 42 are elevated in the plasma of humans with Angelman Syndrome compared to neurotypical matched human samples. Additionally, we found that elevations in APP total and sAPPα correlated positively with peripheral brain derived neurotrophic factor levels previously reported in this same patient cohort. Our pilot report on APP protein levels in Angelman Syndrome warrants additional exploration and may provide a molecular target of treatment for the disorder. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Logan K Wink
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Bayon Baindu
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Balmiki Ray
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Tori L Schaefer
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | |
Collapse
|
19
|
Pinto MJ, Pedro JR, Costa RO, Almeida RD. Visualizing K48 Ubiquitination during Presynaptic Formation By Ubiquitination-Induced Fluorescence Complementation (UiFC). Front Mol Neurosci 2016; 9:43. [PMID: 27375430 PMCID: PMC4901079 DOI: 10.3389/fnmol.2016.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022] Open
Abstract
In recent years, signaling through ubiquitin has been shown to be of great importance for normal brain development. Indeed, fluctuations in ubiquitin levels and spontaneous mutations in (de)ubiquitination enzymes greatly perturb synapse formation and neuronal transmission. In the brain, expression of lysine (K) 48-linked ubiquitin chains is higher at a developmental stage coincident with synaptogenesis. Nevertheless, no studies have so far delved into the involvement of this type of polyubiquitin chains in synapse formation. We have recently proposed a role for polyubiquitinated conjugates as triggering signals for presynaptic assembly. Herein, we aimed at characterizing the axonal distribution of K48 polyubiquitin and its dynamics throughout the course of presynaptic formation. To accomplish so, we used an ubiquitination-induced fluorescence complementation (UiFC) strategy for the visualization of K48 polyubiquitin in live hippocampal neurons. We first validated its use in neurons by analyzing changing levels of polyubiquitin. UiFC signal is diffusely distributed with distinct aggregates in somas, dendrites and axons, which perfectly colocalize with staining for a K48-specific antibody. Axonal UiFC aggregates are relatively stable and new aggregates are formed as an axon grows. Approximately 65% of UiFC aggregates colocalize with synaptic vesicle clusters and they preferentially appear in the axonal domains of axo-somatodendritic synapses when compared to isolated axons. We then evaluated axonal accumulation of K48 ubiquitinated signals in bead-induced synapses. We observed rapid accumulation of UiFC signal and endogenous K48 ubiquitin at the sites of newly formed presynapses. Lastly, we show by means of a microfluidic platform, for the isolation of axons, that presynaptic clustering on beads is dependent on E1-mediated ubiquitination at the axonal level. Altogether, these results indicate that enrichment of K48 polyubiquitin at the site of nascent presynaptic terminals is an important axon-intrinsic event for presynaptic differentiation.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology (CNC), University of CoimbraCoimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Joana R Pedro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra Coimbra, Portugal
| | - Rui O Costa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra Coimbra, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology (CNC), University of CoimbraCoimbra, Portugal; School of Allied Health Technologies, Polytechnic Institute of Porto (ESTSP-IPP)Vila Nova de Gaia, Portugal; Institute for Interdisciplinary Research, University of CoimbraCoimbra, Portugal
| |
Collapse
|
20
|
Ivanov HY, Stoyanova VK, Popov NT, Vachev TI. Autism Spectrum Disorder - A Complex Genetic Disorder. Folia Med (Plovdiv) 2015; 57:19-28. [PMID: 26431091 DOI: 10.1515/folmed-2015-0015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/01/2015] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder is an entity that reflects a scientific consensus that several previously separated disorders are actually a single spectrum disorder with different levels of symptom severity in two core domains - deficits in social communication and interaction, and restricted repetitive behaviors. Autism spectrum disorder is diagnosed in all racial, ethnic and socioeconomic groups and because of its increased prevalence, reported worldwide through the last years, made it one of the most discussed child psychiatric disorders. In term of aetiology as several other complex diseases, Autism spectrum disorder is considered to have a strong genetic component.
Collapse
Affiliation(s)
- Hristo Y Ivanov
- Department of Pediatrics and Medical Genetics, Medical Faculty, Medical University, Plovdiv
| | - Vili K Stoyanova
- Department of Pediatrics and Medical Genetics, Medical Faculty, Medical University, Plovdiv,Department of Medical Genetics, St. George University Hospital, Plovdiv
| | - Nikolay T Popov
- Psychiatric Ward for Men, State Psychiatric Hospital, Pazardzhik
| | - Tihomir I Vachev
- Department of Pediatrics and Medical Genetics, Medical Faculty, Medical University, Plovdiv,Department of Plant Physiology and Molecular Biology, Paisii Hilendarski University, Plovdiv, Bulgaria
| |
Collapse
|
21
|
Kusenda M, Vacic V, Malhotra D, Rodgers L, Pavon K, Meth J, Kumar RA, Christian SL, Peeters H, Cho SS, Addington A, Rapoport JL, Sebat J. The Influence of Microdeletions and Microduplications of 16p11.2 on Global Transcription Profiles. J Child Neurol 2015; 30:1947-53. [PMID: 26391891 PMCID: PMC4739844 DOI: 10.1177/0883073815602066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
Copy number variants (CNVs) of a 600 kb region on 16p11.2 are associated with neurodevelopmental disorders and changes in brain volume. The authors hypothesize that abnormal brain development associated with this CNV can be attributed to changes in transcriptional regulation. The authors determined the effects of 16p11.2 dosage on gene expression by transcription profiling of lymphoblast cell lines derived from 6 microdeletion carriers, 15 microduplication carriers and 15 controls. Gene dosage had a significant influence on the transcript abundance of a majority (20/34) of genes within the CNV region. In addition, a limited number of genes were dysregulated in trans. Genes most strongly correlated with patient head circumference included SULT1A, KCTD13, and TMEM242. Given the modest effect of 16p11.2 copy number on global transcriptional regulation in lymphocytes, larger studies utilizing neuronal cell types may be needed in order to elucidate the signaling pathways that influence brain development in this genetic disorder.
Collapse
Affiliation(s)
- Mary Kusenda
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Department of Biology, Chemistry and Environmental Studies, Molloy College, Rockville Centre, New York 11571, USA
| | - Vladimir Vacic
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Dheeraj Malhotra
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Linda Rodgers
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kevin Pavon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jennifer Meth
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ravinesh A. Kumar
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - Hilde Peeters
- Laboratory for Genetics of Human Development, Department of Human Genetics, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Netherlands
| | - Shawn S. Cho
- Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Anjene Addington
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Judith L. Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jonathan Sebat
- Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Wegiel J, Flory M, Schanen NC, Cook EH, Nowicki K, Kuchna I, Imaki H, Ma SY, Wegiel J, London E, Casanova MF, Wisniewski T, Brown WT. Significant neuronal soma volume deficit in the limbic system in subjects with 15q11.2-q13 duplications. Acta Neuropathol Commun 2015; 3:63. [PMID: 26463344 PMCID: PMC4603300 DOI: 10.1186/s40478-015-0241-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022] Open
Abstract
Introduction Autism is diagnosed in numerous genetic and genomic developmental disorders associated with an overlap in high-risk genes and loci that underlie intellectual disability (ID) and epilepsy. The aim of this stereological study of neuronal soma volume in 25 brain structures and their subdivisions in eight individuals 9 to 26 years of age who were diagnosed with chromosome 15q11.2-13.1 duplication syndrome [dup(15)], autism, ID and epilepsy; eight age-matched subjects diagnosed with autism of unknown etiology (idiopathic autism) and seven control individuals was to establish whether defects of neuronal soma growth are a common denominator of developmental pathology in idiopathic and syndromic autism and how genetic modifications alter the trajectory of neuronal soma growth in dup(15) autism. Results Application of the Nucleator software to estimate neuronal size revealed significant neuronal soma volume deficits in 11 of 25 structures and their subregions (44 %) in subjects diagnosed with dup(15) autism, including consistent neuronal soma volume deficits in the limbic system (sectors CA2, 3 and 4 in Ammon’s horn, the second and third layers of the entorhinal cortex and in the amygdala), as well as in the thalamus, nucleus accumbens, external globus pallidus, and Ch3 nucleus in the magnocellular basal complex, and in the inferior olive in the brainstem. The second feature distinguishing dup(15) autism was persistent neuronal soma deficits in adolescents and young adults, whereas in idiopathic autism, neuronal volume deficit is most prominent in 4- to 8-year-old children but affects only a few brain regions in older subjects. Conclusions This study demonstrates that alterations in the trajectory of neuronal growth throughout the lifespan are a core pathological features of idiopathic and syndromic autism. However, dup(15) causes persistent neuronal volume deficits in adolescence and adulthood, with prominent neuronal growth deficits in all major compartments of the limbic system. The more severe neuronal nuclear and cytoplasic volume deficits in syndromic autism found in this study and the more severe focal developmental defects in the limbic system in dup(15) previously reported in this cohort may contribute to the high prevalence of early onset intractable epilepsy and sudden unexpected death in epilepsy.
Collapse
|
23
|
Rao G, Croft B, Teng C, Awasthi V. Ubiquitin-Proteasome System in Neurodegenerative Disorders. JOURNAL OF DRUG METABOLISM & TOXICOLOGY 2015; 6:187. [PMID: 30761219 PMCID: PMC6370320 DOI: 10.4172/2157-7609.1000187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular proteostasis is a highly dynamic process and is primarily carried out by the degradation tools of ubiquitin-proteasome system (UPS). Abnormalities in UPS function result in the accumulation of damaged or misfolded proteins which can form intra- and extracellular aggregated proteinaceous deposits leading to cellular dysfunction and/or death. Deposition of abnormal protein aggregates and the cellular inability to clear them have been implicated in the pathogenesis of a number of neurodegenerative disorders such as Alzheimer's and Parkinson's. Contrary to the upregulation of proteasome function in oncogenesis and the use of proteasome inhibition as a therapeutic strategy, activation of proteasome function would serve therapeutic objectives of treatment of neurodegenerative diseases. This review describes the current understanding of the role of the proteasome in neurodegenerative disorders and potential utility of proteasomal modulation therein.
Collapse
Affiliation(s)
- Geeta Rao
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Brandon Croft
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Chengwen Teng
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
24
|
Germain ND, Chen PF, Plocik AM, Glatt-Deeley H, Brown J, Fink JJ, Bolduc KA, Robinson TM, Levine ES, Reiter LT, Graveley BR, Lalande M, Chamberlain SJ. Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Mol Autism 2014; 5:44. [PMID: 25694803 PMCID: PMC4332023 DOI: 10.1186/2040-2392-5-44] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/01/2014] [Indexed: 12/15/2022] Open
Abstract
Background Duplications of the chromosome 15q11-q13.1 region are associated with an estimated 1 to 3% of all autism cases, making this copy number variation (CNV) one of the most frequent chromosome abnormalities associated with autism spectrum disorder (ASD). Several genes located within the 15q11-q13.1 duplication region including ubiquitin protein ligase E3A (UBE3A), the gene disrupted in Angelman syndrome (AS), are involved in neural function and may play important roles in the neurobehavioral phenotypes associated with chromosome 15q11-q13.1 duplication (Dup15q) syndrome. Methods We have generated induced pluripotent stem cell (iPSC) lines from five different individuals containing CNVs of 15q11-q13.1. The iPSC lines were differentiated into mature, functional neurons. Gene expression across the 15q11-q13.1 locus was compared among the five iPSC lines and corresponding iPSC-derived neurons using quantitative reverse transcription PCR (qRT-PCR). Genome-wide gene expression was compared between neurons derived from three iPSC lines using mRNA-Seq. Results Analysis of 15q11-q13.1 gene expression in neurons derived from Dup15q iPSCs reveals that gene copy number does not consistently predict expression levels in cells with interstitial duplications of 15q11-q13.1. mRNA-Seq experiments show that there is substantial overlap in the genes differentially expressed between 15q11-q13.1 deletion and duplication neurons, Finally, we demonstrate that UBE3A transcripts can be pharmacologically rescued to normal levels in iPSC-derived neurons with a 15q11-q13.1 duplication. Conclusions Chromatin structure may influence gene expression across the 15q11-q13.1 region in neurons. Genome-wide analyses suggest that common neuronal pathways may be disrupted in both the Angelman and Dup15q syndromes. These data demonstrate that our disease-specific stem cell models provide a new tool to decipher the underlying cellular and genetic disease mechanisms of ASD and may also offer a pathway to novel therapeutic intervention in Dup15q syndrome.
Collapse
Affiliation(s)
- Noelle D Germain
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032, USA
| | - Pin-Fang Chen
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032, USA
| | - Alex M Plocik
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032, USA
| | - Heather Glatt-Deeley
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032, USA
| | - Judith Brown
- Chromosome Core, Department of Molecular and Cell Biology and Department of Allied Health Sciences, University of Connecticut, 354 Mansfield Road, Storrs, CT 06269, USA
| | - James J Fink
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Kaitlyn A Bolduc
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Tiwanna M Robinson
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Lawrence T Reiter
- Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415, Memphis, TN 38163, USA
| | - Brenton R Graveley
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032, USA ; University of Connecticut Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Marc Lalande
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032, USA
| | - Stormy J Chamberlain
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06032, USA
| |
Collapse
|
25
|
Wei H, Alberts I, Li X. The apoptotic perspective of autism. Int J Dev Neurosci 2014; 36:13-8. [DOI: 10.1016/j.ijdevneu.2014.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hongen Wei
- Central LaboratoryShanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanChina
| | - Ian Alberts
- Department of Natural SciencesLaGuardia CC, CUNYNew YorkNY11101USA
| | - Xiaohong Li
- Department of NeurochemistryNY State Institute for Basic Research in Developmental DisabilitiesNew YorkNY10314USA
| |
Collapse
|
26
|
Gropman AL. Epigenetics and Pervasive Developmental Disorders. EPIGENETICS IN PSYCHIATRY 2014:395-424. [DOI: 10.1016/b978-0-12-417114-5.00019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Stamova BS, Tian Y, Nordahl CW, Shen MD, Rogers S, Amaral DG, Sharp FR. Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders. Mol Autism 2013; 4:30. [PMID: 24007566 PMCID: PMC3846739 DOI: 10.1186/2040-2392-4-30] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022] Open
Abstract
Background Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). Conclusions These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.
Collapse
Affiliation(s)
- Boryana S Stamova
- MIND Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen T, Zhu L, Zhou Y, Pi B, Liu X, Deng G, Zhang R, Wang Y, Wu Z, Han M, Luo X, Ning Q. KCTD9 contributes to liver injury through NK cell activation during hepatitis B virus-induced acute-on-chronic liver failure. Clin Immunol 2013; 146:207-16. [PMID: 23376586 DOI: 10.1016/j.clim.2012.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/11/2022]
Abstract
We explored the expression of a newly identified potassium channel tetramerisation domain containing 9 (KCTD9) protein in 113 blood and 81 liver samples, from patients with mild chronic hepatitis B (CHB) or HBV-induced acute-on-chronic liver failure (HBV-ACLF). KCTD9 was highly expressed in peripheral and hepatic NK cells from HBV-ACLF patients compared with mild CHB patients, and this correlated positively with the severity of liver injury. The role of KCTD9 was further investigated in NK92 cells in vitro. KCTD9 overexpressed NK92 cells exhibited a marked increase in CD69 expression, cytotoxicity, IFN-γ secretion and a significant decrease in NKG2A receptor expression. Inhibition of KCTD9 by shRNA resulted in reduced cytotoxic function. These results suggest the involvement of KCTD9 in NK cell activation and provide additional insight into a potential therapeutic target for molecular manipulation for HBV-ACLF patients.
Collapse
Affiliation(s)
- Tao Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Apoptosis by aloe-emodin is mediated through down-regulation of calpain-2 and ubiquitin-protein ligase E3A in human hepatoma Huh-7 cells. Cell Biol Int 2012; 36:163-7. [PMID: 21861846 DOI: 10.1042/cbi20100723] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural flavonoids are associated with anti-proliferation of cancer growth. However, the antioxidant and anti-proliferation effects of AE (aloe-emodin) have not been well studied. We have investigated how AE affects the proliferation of hepatic hepatocellular carcinoma cells and exerts an anti-cancer effect. The cytotoxic effect of AE was demonstrated using an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and Huh-7 cells were inhibited by AE treatment in both dose- and time-dependent manners. The IC(50) level of AE was ∼75 μM. AE also has anti-proliferative effects via induction of DNA damage and apoptosis. 2-DE (two-dimensional electrophoresis) revealed that several proteins were related to the anti-cancer effects of AE. CAPN2 (calpain-2) and UBE3A (ubiquitin-protein ligase E3A), which are associated with the apoptosis signalling pathway, were verified by Western blotting. AE exhibited potent anti-proliferative effects on Huh-7 cells via down-regulation of CAPN2 and UBE3A. The findings support the possibility of AE being a chemopreventative agent.
Collapse
|
30
|
Scoles HA, Urraca N, Chadwick SW, Reiter LT, Lasalle JM. Increased copy number for methylated maternal 15q duplications leads to changes in gene and protein expression in human cortical samples. Mol Autism 2011; 2:19. [PMID: 22152151 PMCID: PMC3287113 DOI: 10.1186/2040-2392-2-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 12/12/2011] [Indexed: 11/23/2022] Open
Abstract
Background Duplication of chromosome 15q11-q13 (dup15q) accounts for approximately 3% of autism cases. Chromosome 15q11-q13 contains imprinted genes necessary for normal mammalian neurodevelopment controlled by a differentially methylated imprinting center (imprinting center of the Prader-Willi locus, PWS-IC). Maternal dup15q occurs as both interstitial duplications and isodicentric chromosome 15. Overexpression of the maternally expressed gene UBE3A is predicted to be the primary cause of the autistic features associated with dup15q. Previous analysis of two postmortem dup15q frontal cortical samples showed heterogeneity between the two cases, with one showing levels of the GABAA receptor genes, UBE3A and SNRPN in a manner not predicted by copy number or parental imprint. Methods Postmortem human brain tissue (Brodmann area 19, extrastriate visual cortex) was obtained from 8 dup15q, 10 idiopathic autism and 21 typical control tissue samples. Quantitative PCR was used to confirm duplication status. Quantitative RT-PCR and Western blot analyses were performed to measure 15q11-q13 transcript and protein levels, respectively. Methylation-sensitive high-resolution melting-curve analysis was performed on brain genomic DNA to identify the maternal:paternal ratio of methylation at PWS-IC. Results Dup15q brain samples showed a higher level of PWS-IC methylation than control or autism samples, indicating that dup15q was maternal in origin. UBE3A transcript and protein levels were significantly higher than control and autism in dup15q, as expected, although levels were variable and lower than expected based on copy number in some samples. In contrast, this increase in copy number did not result in consistently increased GABRB3 transcript or protein levels for dup15q samples. Furthermore, SNRPN was expected to be unchanged in expression in dup15q because it is expressed from the single unmethylated paternal allele, yet SNRPN levels were significantly reduced in dup15q samples compared to controls. PWS-IC methylation positively correlated with UBE3A and GABRB3 levels but negatively correlated with SNRPN levels. Idiopathic autism samples exhibited significantly lower GABRB3 and significantly more variable SNRPN levels compared to controls. Conclusions Although these results show that increased UBE3A/UBE3A is a consistent feature of dup15q syndrome, they also suggest that gene expression within 15q11-q13 is not based entirely on copy number but can be influenced by epigenetic mechanisms in brain.
Collapse
Affiliation(s)
- Haley A Scoles
- Medical Microbiology and Immunology, Genome Center, and Medical Institute of Neurodevelopmental Disorders, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
31
|
Smith SEP, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 2011; 3:103ra97. [PMID: 21974935 PMCID: PMC3356696 DOI: 10.1126/scitranslmed.3002627] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
People with autism spectrum disorder are characterized by impaired social interaction, reduced communication, and increased repetitive behaviors. The disorder has a substantial genetic component, and recent studies have revealed frequent genome copy number variations (CNVs) in some individuals. A common CNV that occurs in 1 to 3% of those with autism--maternal 15q11-13 duplication (dup15) and triplication (isodicentric extranumerary chromosome, idic15)--affects several genes that have been suggested to underlie autism behavioral traits. To test this, we tripled the dosage of one of these genes, the ubiquitin protein ligase Ube3a, which is expressed solely from the maternal allele in mature neurons, and reconstituted the three core autism traits in mice: defective social interaction, impaired communication, and increased repetitive stereotypic behavior. The penetrance of these autism traits depended on Ube3a gene copy number. In animals with increased Ube3a gene dosage, glutamatergic, but not GABAergic, synaptic transmission was suppressed as a result of reduced presynaptic release probability, synaptic glutamate concentration, and postsynaptic action potential coupling. These results suggest that Ube3a gene dosage may contribute to the autism traits of individuals with maternal 15q11-13 duplication and support the idea that increased E3A ubiquitin ligase gene dosage results in reduced excitatory synaptic transmission.
Collapse
Affiliation(s)
- Stephen E. P. Smith
- Beth Israel Deaconess Medical Center, Departments of Pathology and Neurology, Harvard Medical School, Boston, MA 02215, USA
| | - Yu-Dong Zhou
- Beth Israel Deaconess Medical Center, Departments of Pathology and Neurology, Harvard Medical School, Boston, MA 02215, USA
| | - Guangping Zhang
- Beth Israel Deaconess Medical Center, Departments of Pathology and Neurology, Harvard Medical School, Boston, MA 02215, USA
| | - Zhe Jin
- Beth Israel Deaconess Medical Center, Departments of Pathology and Neurology, Harvard Medical School, Boston, MA 02215, USA
| | - David C. Stoppel
- Beth Israel Deaconess Medical Center, Departments of Pathology and Neurology, Harvard Medical School, Boston, MA 02215, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew P. Anderson
- Beth Israel Deaconess Medical Center, Departments of Pathology and Neurology, Harvard Medical School, Boston, MA 02215, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
32
|
Gene expression studies in autism: moving from the genome to the transcriptome and beyond. Neurobiol Dis 2011; 45:69-75. [PMID: 21839838 DOI: 10.1016/j.nbd.2011.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 07/20/2011] [Indexed: 12/22/2022] Open
Abstract
Autism is a clinically and genetically heterogeneous neurodevelopmental disorder. Although multiple genes, risk alleles and copy number variants (CNVs) have been implicated in ASD, none of the currently established genetic causes of ASD accounts for more than 2% of the cases, and a genetic diagnosis is not yet possible for most autism patients. Thus, advancing our understanding of autism genetics requires the integration of genetic information with information on genome function, as provided by transcriptomic data. We review recent autism transcriptome studies, in the context of current knowledge of autism genetics, and discuss the utility of gene expression data in evaluating the functional relevance of genetic variants and identifying common molecular pathways dysregulated in autism.
Collapse
|
33
|
Foldi CJ, Eyles DW, Flatscher-Bader T, McGrath JJ, Burne THJ. New perspectives on rodent models of advanced paternal age: relevance to autism. Front Behav Neurosci 2011; 5:32. [PMID: 21734873 PMCID: PMC3124931 DOI: 10.3389/fnbeh.2011.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/14/2011] [Indexed: 12/29/2022] Open
Abstract
Offspring of older fathers have an increased risk of various adverse health outcomes, including autism and schizophrenia. With respect to biological mechanisms for this association, there are many more germline cell divisions in the life history of a sperm relative to that of an oocyte. This leads to more opportunities for copy error mutations in germ cells from older fathers. Evidence also suggests that epigenetic patterning in the sperm from older men is altered. Rodent models provide an experimental platform to examine the association between paternal age and brain development. Several rodent models of advanced paternal age (APA) have been published with relevance to intermediate phenotypes related to autism. All four published APA models vary in key features creating a lack of consistency with respect to behavioral phenotypes. A consideration of common phenotypes that emerge from these APA-related mouse models may be informative in the exploration of the molecular and neurobiological correlates of APA.
Collapse
Affiliation(s)
- Claire J Foldi
- Queensland Brain Institute, The University of Queensland St Lucia, QLD, Australia
| | | | | | | | | |
Collapse
|
34
|
Yasuda Y, Hashimoto R, Yamamori H, Ohi K, Fukumoto M, Umeda-Yano S, Mohri I, Ito A, Taniike M, Takeda M. Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder. Mol Autism 2011; 2:9. [PMID: 21615902 PMCID: PMC3118341 DOI: 10.1186/2040-2392-2-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/26/2011] [Indexed: 12/22/2022] Open
Abstract
Background The autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that result in severe and pervasive impairment in the development of reciprocal social interaction and verbal and nonverbal communication skills. In addition, individuals with ASD have stereotypical behavior, interests and activities. Rare mutations of some genes, such as neuroligin (NLGN) 3/4, neurexin (NRXN) 1, SHANK3, MeCP2 and NHE9, have been reported to be associated with ASD. In the present study, we investigated whether alterations in mRNA expression levels of these genes could be found in lymphoblastoid cell lines derived from patients with ASD. Methods We measured mRNA expression levels of NLGN3/4, NRXN1, SHANK3, MeCP2, NHE9 and AKT1 in lymphoblastoid cells from 35 patients with ASD and 35 healthy controls, as well as from 45 patients with schizophrenia and 45 healthy controls, using real-time quantitative reverse transcriptase polymerase chain reaction assays. Results The mRNA expression levels of NLGN3 and SHANK3 normalized by β-actin or TBP were significantly decreased in the individuals with ASD compared to controls, whereas no difference was found in the mRNA expression level of MeCP2, NHE9 or AKT1. However, normalized NLGN3 and SHANK3 gene expression levels were not altered in patients with schizophrenia, and expression levels of NLGN4 and NRXN1 mRNA were not quantitatively measurable in lymphoblastoid cells. Conclusions Our results provide evidence that the NLGN3 and SHANK3 genes may be differentially expressed in lymphoblastoid cell lines from individuals with ASD compared to those from controls. These findings suggest the possibility that decreased mRNA expression levels of these genes might be involved in the pathophysiology of ASD in a substantial population of ASD patients.
Collapse
Affiliation(s)
- Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2, Yamadaoka, Suita, 565-0871, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The molecular genetics of autism spectrum disorders: genomic mechanisms, neuroimmunopathology, and clinical implications. AUTISM RESEARCH AND TREATMENT 2011; 2011:398636. [PMID: 22937247 PMCID: PMC3420760 DOI: 10.1155/2011/398636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 03/29/2011] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.
Collapse
|
36
|
Wei H, Malik M, Sheikh AM, Merz G, Ted Brown W, Li X. Abnormal cell properties and down-regulated FAK-Src complex signaling in B lymphoblasts of autistic subjects. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:66-74. [PMID: 21703394 DOI: 10.1016/j.ajpath.2011.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/04/2011] [Accepted: 03/21/2011] [Indexed: 12/26/2022]
Abstract
Recent studies suggest that one of the major pathways to the pathogenesis of autism is reduced cell migration. Focal adhesion kinase (FAK) has an important role in neural migration, dendritic morphological characteristics, axonal branching, and synapse formation. The FAK-Src complex, activated by upstream reelin and integrin β1, can initiate a cascade of phosphorylation events to trigger multiple intracellular pathways, including mitogen-activated protein kinase-extracellular signal-regulated kinase and phosphatidylinositol 3-kinase-Akt signaling. In this study, by using B lymphoblasts as a model, we tested whether integrin β1 and FAK-Src signaling are abnormally regulated in autism and whether abnormal FAK-Src signaling leads to defects in B-lymphoblast adhesion, migration, proliferation, and IgG production. To our knowledge, for the first time, we show that protein expression levels of both integrin β1 and FAK are significantly decreased in autistic lymphoblasts and that Src protein expression and the phosphorylation of an active site (Y416) are also significantly decreased. We also found that lymphoblasts from autistic subjects exhibit significantly decreased migration, increased adhesion properties, and an impaired capacity for IgG production. The overexpression of FAK in autistic lymphoblasts countered the adhesion and migration defects. In addition, we demonstrate that FAK mediates its effect through the activation of Src, phosphatidylinositol 3-kinase-Akt, and mitogen-activated protein kinase signaling cascades and that paxillin is also likely involved in the regulation of adhesion and migration in autistic lymphoblasts.
Collapse
Affiliation(s)
- Hongen Wei
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, New York 10314, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lavenex P, Sugden SG, Davis RR, Gregg JP, Lavenex PB. Developmental regulation of gene expression and astrocytic processes may explain selective hippocampal vulnerability. Hippocampus 2011; 21:142-9. [PMID: 20014383 DOI: 10.1002/hipo.20730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hippocampus plays a central role in the brain network that is essential for memory function. Paradoxically, the hippocampus is also the brain structure that is most sensitive to hypoxic-ischemic episodes. Here, we show that the expression of genes associated with glycolysis and glutamate metabolism in astrocytes and the coverage of excitatory synapses by astrocytic processes undergo significant decreases in the CA1 field of the monkey hippocampus during postnatal development. Given the established role of astrocytes in the regulation of glutamate concentration in the synaptic cleft, our findings suggest that a developmental decrease in astrocytic processes could underlie the selective vulnerability of CA1 during hypoxic-ischemic episodes in adulthood, its decreased susceptibility to febrile seizures with age, as well as contribute to the emergence of selective, adultlike memory function.
Collapse
Affiliation(s)
- Pierre Lavenex
- Department of Psychiatry and Behavioral Sciences, UC Davis, Sacramento, California 95817, USA.
| | | | | | | | | |
Collapse
|
38
|
Crepel A, Steyaert J, De la Marche W, De Wolf V, Fryns JP, Noens I, Devriendt K, Peeters H. Narrowing the critical deletion region for autism spectrum disorders on 16p11.2. Am J Med Genet B Neuropsychiatr Genet 2011; 156:243-5. [PMID: 21302354 DOI: 10.1002/ajmg.b.31163] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 11/30/2010] [Indexed: 11/11/2022]
|
39
|
Ferdousy F, Bodeen W, Summers K, Doherty O, Wright O, Elsisi N, Hilliard G, O'Donnell JM, Reiter LT. Drosophila Ube3a regulates monoamine synthesis by increasing GTP cyclohydrolase I activity via a non-ubiquitin ligase mechanism. Neurobiol Dis 2010; 41:669-77. [PMID: 21147225 DOI: 10.1016/j.nbd.2010.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/13/2010] [Accepted: 12/02/2010] [Indexed: 11/18/2022] Open
Abstract
The underlying defects in Angelman syndrome (AS) and autism spectrum disorder (ASD) may be in part due to basic defects in synaptic plasticity and function. In some individuals serotonin reuptake inhibitors, which decrease pre-synaptic re-uptake of serotonin, can ameliorate symptoms, as can resperidone, which blocks both dopamine and serotonin receptors. Loss of maternal UBE3A expression causes AS, while maternal duplications of chromosome 15q11.2-q13 that include the UBE3A gene cause ASD, implicating the maternally expressed UBE3A gene in the ASD phenotype. In a Drosophila screen for proteins regulated by UBE3A, we identified a key regulator of monoamine synthesis, the gene Punch, or GCH1, encoding the enzyme GTP cyclohydrolase I. Here we show that Dube3a, the fly UBE3A orthologue, regulates Punch/GCH1 in the fly brain. Over-expression of Dube3a elevates tetrahydrobiopterin (THB), the rate-limiting cofactor in monoamine synthesis while loss of Dube3a has the opposite effect. The fluctuations in dopamine levels were associated with hyper- and hypoactivity, respectively, in flies. We show that changes in Punch/GCH1 and dopamine levels do not depend on the ubiquitin ligase catalytic domain of Dube3a. In addition, both wild type Dube3a and a ubiquitination-defective Dube3a-C/A form were found at high levels in nuclear fractions and appear to be poly-ubiquitinated in vivo by endogenous Dube3a. We propose that the transcriptional co-activation function of Dube3a may regulate GCH1 activity in the brain. These results provide a connection between monoamine synthesis (dopamine/serotonin) and Dube3a expression that may explain why some individuals with ASD or AS respond better to selective serotonin reuptake inhibitors than others.
Collapse
Affiliation(s)
- Faiza Ferdousy
- Department of Biology, University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Philpot BD, Thompson CE, Franco L, Williams CA. Angelman syndrome: advancing the research frontier of neurodevelopmental disorders. J Neurodev Disord 2010; 3:50-6. [PMID: 21484597 PMCID: PMC3163993 DOI: 10.1007/s11689-010-9066-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 11/08/2010] [Indexed: 11/25/2022] Open
Abstract
This report is a meeting summary of the 2010 Angelman Syndrome Foundation's scientific symposium on the neuroscience of UBE3A. Angelman syndrome is characterized by loss of speech, severe developmental delay, seizures, and ataxia. These core symptoms are caused by maternal allele disruptions of a single gene-UBE3A. UBE3A encodes an E3 ubiquitin ligase that targets certain proteins for proteasomal degradation. This biology has led to the expectation that the identification of Ube3a protein targets will lead to therapies for Angelman syndrome. The recent discovery of Ube3a substrates such as Arc (activity-regulated cytoskeletal protein) provides new insight into the mechanisms underlying the synaptic function and plasticity deficits caused by the loss of Ube3a. In addition to identifying Ube3a substrates, there have also been recent advances in understanding UBE3A's integrated role in the neuronal repertoire of genes and protein interactions. A developmental picture is now emerging whereby UBE3A gene dosage on chromosome 15 alters synaptic function, with deficiencies leading to Angelman syndrome and overexpression associated with classic autism symptomatology.
Collapse
Affiliation(s)
- Benjamin D. Philpot
- Department of Cell and Molecular Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC USA
- Scientific Advisory Committee, Angelman Treatment and Research Institute, Angelman Syndrome Foundation, Aurora, IL USA
| | - Coral E. Thompson
- Scientific Advisory Committee, Angelman Treatment and Research Institute, Angelman Syndrome Foundation, Aurora, IL USA
| | - Lisa Franco
- Scientific Advisory Committee, Angelman Treatment and Research Institute, Angelman Syndrome Foundation, Aurora, IL USA
| | - Charles A. Williams
- Scientific Advisory Committee, Angelman Treatment and Research Institute, Angelman Syndrome Foundation, Aurora, IL USA
- Raymond C. Philips Unit, Division of Genetics and Metabolism, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL USA
- P.O. Box 100296, HSC, Gainesville, FL 32610 USA
| |
Collapse
|
41
|
Grafodatskaya D, Chung B, Szatmari P, Weksberg R. Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry 2010; 49:794-809. [PMID: 20643313 DOI: 10.1016/j.jaac.2010.05.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate neurodevelopmental processes. The objective of this review is to illustrate how epigenetic modifications that are known to alter gene expression without changing primary DNA sequence may play a role in the etiology of ASD. METHOD In this review, we summarize current knowledge about epigenetic modifications to genes and genomic regions possibly involved in the etiology of ASD. RESULTS Several genetic syndromes comorbid with ASD, which include Rett, Fragile X, Prader-Willi, Angelman, and CHARGE (Coloboma of the eye, Heart defects, Atresia of the nasal choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities and deafness), all demonstrate dysregulation of epigenetic marks or epigenetic mechanisms. We report also on genes or genomic regions exhibiting abnormal epigenetic regulation in association with either syndromic (15q11-13 maternal duplication) or nonsyndromic forms of ASD. Finally, we discuss the state of current knowledge regarding the etiologic role of environmental factors linked to both the development of ASD and epigenetic dysregulation. CONCLUSION Data reviewed in this article highlight a variety of situations in which epigenetic dysregulation is associated with the development of ASD, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD.
Collapse
|
42
|
Nakashima N, Yamagata T, Mori M, Kuwajima M, Suwa K, Momoi MY. Expression analysis and mutation detection of DLX5 and DLX6 in autism. Brain Dev 2010; 32:98-104. [PMID: 19195802 DOI: 10.1016/j.braindev.2008.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/25/2008] [Accepted: 12/30/2008] [Indexed: 11/26/2022]
Abstract
Linkage analysis has reported the chromosomal region 7q21 to be related with autism. This region contains an imprinting region with MECP2-binding sites, and DLX5 is reported to be modulated by MECP2. DLX5 and adjacent DLX6 are homeobox genes working in neurogenesis. From these points, DLX5 and DLX6 are candidate genes for autism. Therefore, we analyzed the expression of DLX5 and DLX6, and also PEG10 as a control in the lymphoblasts of autistic spectrum disorder (ASD) patients by real-time PCR to identify potential abnormality of expression. And we also analyzed DLX5 and DLX6 on ASD patients for mutation by direct sequence. The expression level of DLX5 was not different between ASD and controls but was higher in four ASD patients compared to controls. Clinical features of these four patients were variable. DLX5 expression was biallelic in two ASD patients and two controls, indicating that DLX5 was not imprinted. There was no mutation in DLX5 in ASD. Although DLX5 was not likely to play major role in ASD, genes relating to DLX5 expression and downstream of DLX5 are considered to be candidate genes for some of the ASD patients. In DLX6, we detected a G656A base change (R219H) in two ASD patients who were male siblings. DLX6 may contribute to the pathogenesis of ASD.
Collapse
Affiliation(s)
- Naomi Nakashima
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Talebizadeh Z, Butler MG, Theodoro MF. Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res 2009; 1:240-50. [PMID: 19360674 DOI: 10.1002/aur.33] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To assess the feasibility and relevance of using lymphoblastoid cell lines to study the role of noncoding RNAs in the etiology of autism, we evaluated global expression profiling of 470 mature human microRNAs from six subjects with autism compared with six matched controls. Differential expression (either higher or lower) for 9 of the 470 microRNAs was observed in our autism samples compared with controls. Potential target genes for these microRNAs were identified using computer tools, which included several autism susceptibility genes. Our preliminary results indicate microRNAs should be considered and evaluated in the etiology of autism. In addition, analysis of this class of noncoding RNAs in lymphoblastoid cells has the potential to reveal at least a subset of brain-related microRNAs implicated in autism. Subsequently, this model system should allow for detection of complex subtle changes in susceptibility genes/pathways contributing to autism.
Collapse
Affiliation(s)
- Zohreh Talebizadeh
- Section of Medical Genetics and Molecular Medicine, Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri 64108, USA.
| | | | | |
Collapse
|
44
|
Mishra A, Godavarthi SK, Jana NR. UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiol Dis 2009; 36:26-34. [PMID: 19591933 DOI: 10.1016/j.nbd.2009.06.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/16/2009] [Accepted: 06/28/2009] [Indexed: 11/16/2022] Open
Abstract
The UBE3A/E6-AP is known to function both as an E3 ubiquitin ligase of the ubiquitin proteasome system and as a transcriptional coactivator. E6-AP shows brain-specific imprinting and loss of function of maternally inherited E6-AP causes Angelman syndrome. However, how the loss of function of E6-AP causes disease pathogenesis is poorly understood. Here, we show that E6-AP interacts with and promotes proteasome-mediated degradation of cyclin-dependent kinase inhibitor p27. E6-AP also directly ubiquitinates p27 in an in vitro ubiquitination assay. Partial knockdown of E6-AP increases the level of p27 leading to cell cycle arrest. Interestingly, partial knockdown also increases the transcription of p27. Finally, we have demonstrated the increased levels of p27 in E6-AP-maternal-deficient and null mice brain. Our result suggests that E6-AP not only enhances the degradation but also regulates the expression of p27 and its loss of function in Angelman syndrome might cause cell cycle alteration leading to disease pathogenesis.
Collapse
Affiliation(s)
- Amit Mishra
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon-122 050, India
| | | | | |
Collapse
|
45
|
Cai G, Edelmann L, Goldsmith JE, Cohen N, Nakamine A, Reichert JG, Hoffman EJ, Zurawiecki DM, Silverman JM, Hollander E, Soorya L, Anagnostou E, Betancur C, Buxbaum JD. Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: efficient identification of known microduplications and identification of a novel microduplication in ASMT. BMC Med Genomics 2008; 1:50. [PMID: 18925931 PMCID: PMC2588447 DOI: 10.1186/1755-8794-1-50] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 10/16/2008] [Indexed: 11/10/2022] Open
Abstract
Background It has previously been shown that specific microdeletions and microduplications, many of which also associated with cognitive impairment (CI), can present with autism spectrum disorders (ASDs). Multiplex ligation-dependent probe amplification (MLPA) represents an efficient method to screen for such recurrent microdeletions and microduplications. Methods In the current study, a total of 279 unrelated subjects ascertained for ASDs were screened for genomic disorders associated with CI using MLPA. Fluorescence in situ hybridization (FISH), quantitative polymerase chain reaction (Q-PCR) and/or direct DNA sequencing were used to validate potential microdeletions and microduplications. Methylation-sensitive MLPA was used to characterize individuals with duplications in the Prader-Willi/Angelman (PWA) region. Results MLPA showed two subjects with typical ASD-associated interstitial duplications of the 15q11-q13 PWA region of maternal origin. Two additional subjects showed smaller, de novo duplications of the PWA region that had not been previously characterized. Genes in these two novel duplications include GABRB3 and ATP10A in one case, and MKRN3, MAGEL2 and NDN in the other. In addition, two subjects showed duplications of the 22q11/DiGeorge syndrome region. One individual was found to carry a 12 kb deletion in one copy of the ASPA gene on 17p13, which when mutated in both alleles leads to Canavan disease. Two subjects showed partial duplication of the TM4SF2 gene on Xp11.4, previously implicated in X-linked non-specific mental retardation, but in our subsequent analyses such variants were also found in controls. A partial duplication in the ASMT gene, located in the pseudoautosomal region 1 (PAR1) of the sex chromosomes and previously suggested to be involved in ASD susceptibility, was observed in 6–7% of the cases but in only 2% of controls (P = 0.003). Conclusion MLPA proves to be an efficient method to screen for chromosomal abnormalities. We identified duplications in 15q11-q13 and in 22q11, including new de novo small duplications, as likely contributing to ASD in the current sample by increasing liability and/or exacerbating symptoms. Our data indicate that duplications in TM4SF2 are not associated with the phenotype given their presence in controls. The results in PAR1/PAR2 are the first large-scale studies of gene dosage in these regions, and the findings at the ASMT locus indicate that further studies of the duplication of the ASMT gene are needed in order to gain insight into its potential involvement in ASD. Our studies also identify some limitations of MLPA, where single base changes in probe binding sequences alter results. In summary, our studies indicate that MLPA, with a focus on accepted medical genetic conditions, may be an inexpensive method for detection of microdeletions and microduplications in ASD patients for purposes of genetic counselling if MLPA-identified deletions are validated by additional methods.
Collapse
Affiliation(s)
- Guiqing Cai
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hogart A, Leung KN, Wang NJ, Wu DJ, Driscoll J, Vallero RO, Schanen NC, LaSalle JM. Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J Med Genet 2008; 46:86-93. [PMID: 18835857 DOI: 10.1136/jmg.2008.061580] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Chromosome 15q11-13 contains a cluster of imprinted genes essential for normal mammalian neurodevelopment. Deficiencies in paternal or maternal 15q11-13 alleles result in Prader-Willi or Angelman syndromes, respectively, and maternal duplications lead to a distinct condition that often includes autism. Overexpression of maternally expressed imprinted genes is predicted to cause 15q11-13-associated autism, but a link between gene dosage and expression has not been experimentally determined in brain. METHODS Postmortem brain tissue was obtained from a male with 15q11-13 hexasomy and a female with 15q11-13 tetrasomy. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure 10 15q11-13 transcripts in maternal 15q11-13 duplication, Prader-Willi syndrome, and control brain samples. Southern blot, bisulfite sequencing and fluorescence in situ hybridisation were used to investigate epigenetic mechanisms of gene regulation. RESULTS Gene expression and DNA methylation correlated with parental gene dosage in the male 15q11-13 duplication sample with severe cognitive impairment and seizures. Strikingly, the female with autism and milder Prader-Willi-like characteristics demonstrated unexpected deficiencies in the paternally expressed transcripts SNRPN, NDN, HBII85, and HBII52 and unchanged levels of maternally expressed UBE3A compared to controls. Paternal expression abnormalities in the female duplication sample were consistent with elevated DNA methylation of the 15q11-13 imprinting control region (ICR). Expression of non-imprinted 15q11-13 GABA receptor subunit genes was significantly reduced specifically in the female 15q11-13 duplication brain without detectable GABRB3 methylation differences. CONCLUSION Our findings suggest that genetic copy number changes combined with additional genetic or environmental influences on epigenetic mechanisms impact outcome and clinical heterogeneity of 15q11-13 duplication syndromes.
Collapse
Affiliation(s)
- A Hogart
- Medical Microbiology and Immunology, School of Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiol Dis 2008; 38:181-91. [PMID: 18840528 DOI: 10.1016/j.nbd.2008.08.011] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/05/2008] [Indexed: 12/21/2022] Open
Abstract
A cluster of low copy repeats on the proximal long arm of chromosome 15 mediates various forms of stereotyped deletions and duplication events that cause a group of neurodevelopmental disorders that are associated with autism or autism spectrum disorders (ASD). The region is subject to genomic imprinting and the behavioral phenotypes associated with the chromosome 15q11.2-q13 disorders show a parent-of-origin specific effect that suggests that an increased copy number of maternally derived alleles contributes to autism susceptibility. Notably, nonimprinted, biallelically expressed genes within the interval also have been shown to be misexpressed in brains of patients with chromosome 15q11.2-q13 genomic disorders, indicating that they also likely play a role in the phenotypic outcome. This review provides an overview of the phenotypes of these disorders and their relationships with ASD and outlines the regional genes that may contribute to the autism susceptibility imparted by copy number variation of the region.
Collapse
|
48
|
Fisch GS. Syndromes and epistemology II: Is autism a polygenic disorder? Am J Med Genet A 2008; 146A:2203-12. [DOI: 10.1002/ajmg.a.32438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Abstract
AbstractThe commentaries on our target article, “Psychosis and Autism as Diametrical Disorders of the Social Brain,” reflect the multidisciplinary yet highly fragmented state of current studies of human social cognition. Progress in our understanding of the human social brain must come from studies that integrate across diverse analytic levels, using conceptual frameworks grounded in evolutionary biology.
Collapse
|
50
|
Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008; 9:341-55. [PMID: 18414403 DOI: 10.1038/nrg2346] [Citation(s) in RCA: 1183] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.
Collapse
Affiliation(s)
- Brett S Abrahams
- Neurology Department, and Semel Institute for Neuroscience and Behaviour, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1769 USA.
| | | |
Collapse
|