1
|
Zhang T, Li L, Sun H, Xu D, Wang G. DeepICSH: a complex deep learning framework for identifying cell-specific silencers and their strength from the human genome. Brief Bioinform 2023; 24:bbad316. [PMID: 37643374 DOI: 10.1093/bib/bbad316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Silencers are noncoding DNA sequence fragments located on the genome that suppress gene expression. The variation of silencers in specific cells is closely related to gene expression and cancer development. Computational approaches that exclusively rely on DNA sequence information for silencer identification fail to account for the cell specificity of silencers, resulting in diminished accuracy. Despite the discovery of several transcription factors and epigenetic modifications associated with silencers on the genome, there is still no definitive biological signal or combination thereof to fully characterize silencers, posing challenges in selecting suitable biological signals for their identification. Therefore, we propose a sophisticated deep learning framework called DeepICSH, which is based on multiple biological data sources. Specifically, DeepICSH leverages a deep convolutional neural network to automatically capture biologically relevant signal combinations strongly associated with silencers, originating from a diverse array of biological signals. Furthermore, the utilization of attention mechanisms facilitates the scoring and visualization of these signal combinations, whereas the employment of skip connections facilitates the fusion of multilevel sequence features and signal combinations, thereby empowering the accurate identification of silencers within specific cells. Extensive experiments on HepG2 and K562 cell line data sets demonstrate that DeepICSH outperforms state-of-the-art methods in silencer identification. Notably, we introduce for the first time a deep learning framework based on multi-omics data for classifying strong and weak silencers, achieving favorable performance. In conclusion, DeepICSH shows great promise for advancing the study and analysis of silencers in complex diseases. The source code is available at https://github.com/lyli1013/DeepICSH.
Collapse
Affiliation(s)
- Tianjiao Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Liangyu Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Hailong Sun
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Dali Xu
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Shevkoplyas D, Vuu YM, Davie JR, Rastegar M. The Chromatin Structure at the MECP2 Gene and In Silico Prediction of Potential Coding and Non-Coding MECP2 Splice Variants. Int J Mol Sci 2022; 23:ijms232415643. [PMID: 36555295 PMCID: PMC9779294 DOI: 10.3390/ijms232415643] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is an epigenetic reader that binds to methylated CpG dinucleotides and regulates gene transcription. Mecp2/MECP2 gene has 4 exons, encoding for protein isoforms MeCP2E1 and MeCP2E2. MeCP2 plays key roles in neurodevelopment, therefore, its gain- and loss-of-function mutations lead to neurodevelopmental disorders including Rett Syndrome. Here, we describe the structure, functional domains, and evidence support for potential additional alternatively spliced MECP2 transcripts and protein isoforms. We conclude that NCBI MeCP2 isoforms 3 and 4 contain certain MeCP2 functional domains. Our in silico analysis led to identification of histone modification and accessibility profiles at the MECP2 gene and its cis-regulatory elements. We conclude that the human MECP2 gene associated histone post-translational modifications exhibit high similarity between males and females. Between brain regions, histone modifications were found to be less conserved and enriched within larger genomic segments named as "S1-S11". We also identified highly conserved DNA accessibility regions in different tissues and brain regions, named as "A1-A9" and "B1-B9". DNA methylation profile was similar between mid-frontal gyrus of donors 35 days-25 years of age. Based on ATAC-seq data, the identified hypomethylated regions "H1-H8" intersected with most regions of the accessible chromatin (A regions).
Collapse
|
3
|
Long-Distance Repression by Human Silencers: Chromatin Interactions and Phase Separation in Silencers. Cells 2022; 11:cells11091560. [PMID: 35563864 PMCID: PMC9101175 DOI: 10.3390/cells11091560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional genome organization represents an additional layer in the epigenetic regulation of gene expression. Active transcription controlled by enhancers or super-enhancers has been extensively studied. Enhancers or super-enhancers can recruit activators or co-activators to activate target gene expression through long-range chromatin interactions. Chromatin interactions and phase separation play important roles in terms of enhancer or super-enhancer functioning. Silencers are another major type of cis-regulatory element that can mediate gene regulation by turning off or reducing gene expression. However, compared to active transcription, silencer studies are still in their infancy. This review covers the current knowledge of human silencers, especially the roles of chromatin interactions and phase separation in silencers. This review also proposes future directions for human silencer studies.
Collapse
|
4
|
MeCP2 and transcriptional control of eukaryotic gene expression. Eur J Cell Biol 2022; 101:151237. [DOI: 10.1016/j.ejcb.2022.151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
|
5
|
Cai F, Chen S, Yu X, Zhang J, Liang W, Zhang Y, Chen Y, Chen S, Hong Y, Yan W, Wang W, Zhang J, Wu Q. Transcription factor GTF2B regulates AIP protein expression in growth hormone-secreting pituitary adenomas and influences tumor phenotypes. Neuro Oncol 2021; 24:925-935. [PMID: 34932801 DOI: 10.1093/neuonc/noab291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Clinically, the low expression of wild-type aryl hydrocarbon receptor-interacting protein (AIP) in patients with sporadic growth hormone (GH)-secreting pituitary adenoma (GHPA) is associated with a more aggressive phenotype. However, the mechanism by which AIP expression is regulated in GHPA remains unclear. Herein, we investigated a transcription factor that regulates AIP expression and explored its role in tumor phenotypes. METHODS General transcription factor IIB (GTF2B) was predicted by several bioinformatic tools to regulate AIP expression transcriptionally. Regulation by GTF2B was evaluated using chromatin immunoprecipitation (ChIP), reverse transcription PCR, luciferase reporter, and western blot experiments in SH-SY5Y cells. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, transwell invasive assay, ELISA, western blot, immunohistochemical staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling were performed to investigate the effects of GTF2B and AIP on tumor cell proliferation, apoptosis, growth hormone secretion, and invasiveness in GH3 cells and mouse xenograft models. Moreover, correlations between GTF2B and AIP expression were explored in GHPA cases. RESULTS ChIP and luciferase reporter studies demonstrated that the regulation of AIP expression by GTF2B was dependent on the intergenic-5' untranslated region element of AIP and the initial residual S65 of GTF2B. In vitro and in vivo experiments indicated that GTF2B regulated AIP expression to impact GHPA phenotype; this was confirmed by data from 33 GHPA cases. CONCLUSIONS We determined the regulation by GTF2B of AIP transcription in GHPA and its impact on tumor phenotype. Our findings suggest that GTF2B may be a potential therapeutic target for GHPA with low AIP expression.
Collapse
Affiliation(s)
- Feng Cai
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Shasha Chen
- Geriatrics, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Xuebin Yu
- Dept. of Neurosurgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), the city of Shaoxing, Zhejiang Province, P.R. China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics, Dept. of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang Province, P.R. China
| | - Weiwei Liang
- Endocrinology, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Yan Zhang
- Medical oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Yike Chen
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Sheng Chen
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Yuan Hong
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Wei Yan
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Wei Wang
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Jianmin Zhang
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Qun Wu
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
6
|
Abdala BB, Gonçalves AP, Dos Santos JM, Boy R, de Carvalho CMB, Grochowski CM, Krepischi ACV, Rosenberg C, Gusmão L, Pehlivan D, Pimentel MMG, Santos-Rebouças CB. Molecular and clinical insights into complex genomic rearrangements related to MECP2 duplication syndrome. Eur J Med Genet 2021; 64:104367. [PMID: 34678473 DOI: 10.1016/j.ejmg.2021.104367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/04/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
MECP2 duplication syndrome (MDS) is caused by copy number variation (CNV) spanning the MECP2 gene at Xq28 and is a major cause of intellectual disability (ID) in males. Herein, we describe two unrelated males harboring non-recurrent complex Xq28 rearrangements associated with MDS. Copy number gains were initially detected by quantitative real-time polymerase chain reaction and further delineated by high-resolution array comparative genomic hybridization, familial segregation, expression analysis and X-chromosome inactivation (XCI) evaluation in a carrier mother. SNVs within the rearrangements and/or fluorescent in situ hybridization (FISH) were used to assess the parental origin of the rearrangements. Patient 1 exhibited an intrachromosomal rearrangement, whose structure is consistent with a triplicated segment presumably embedded in an inverted orientation between two duplicated sequences (DUP-TRP/INV-DUP). The rearrangement was inherited from the carrier mother, who exhibits extreme XCI skewing and subtle psychiatric symptoms. Patient 2 presented a de novo (X;Y) unbalanced translocation resulting in duplication of Xq28 and deletion of Yp, originated in the paternal gametogenesis. Neurodevelopmental trajectory and non-neurological symptoms were consistent with previous reports, with the exception of cerebellar vermis hypoplasia in patient 2. Although both patients share the core MDS phenotype, patient 1 showed MECP2 transcript levels in blood similar to controls. Understanding the molecular mechanisms related to MDS is essential for designing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Bianca Barbosa Abdala
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa Pereira Gonçalves
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jussara Mendonça Dos Santos
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Boy
- Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas, USA; Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Texas, USA
| | - Márcia Mattos Gonçalves Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Rodrigues DC, Mufteev M, Ellis J. Regulation, diversity and function of MECP2 exon and 3'UTR isoforms. Hum Mol Genet 2021; 29:R89-R99. [PMID: 32681172 PMCID: PMC7530521 DOI: 10.1093/hmg/ddaa154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
The methyl-CpG-binding protein 2 (MECP2) is a critical global regulator of gene expression. Mutations in MECP2 cause neurodevelopmental disorders including Rett syndrome (RTT). MECP2 exon 2 is spliced into two alternative messenger ribonucleic acid (mRNA) isoforms encoding MECP2-E1 or MECP2-E2 protein isoforms that differ in their N-termini. MECP2-E2, isolated first, was used to define the general roles of MECP2 in methyl-deoxyribonucleic acid (DNA) binding, targeting of transcriptional regulatory complexes, and its disease-causing impact in RTT. It was later found that MECP2-E1 is the most abundant isoform in the brain and its exon 1 is also mutated in RTT. MECP2 transcripts undergo alternative polyadenylation generating mRNAs with four possible 3'untranslated region (UTR) lengths ranging from 130 to 8600 nt. Together, the exon and 3'UTR isoforms display remarkable abundance disparity across cell types and tissues during development. These findings indicate discrete means of regulation and suggest that protein isoforms perform non-overlapping roles. Multiple regulatory programs have been explored to explain these disparities. DNA methylation patterns of the MECP2 promoter and first intron impact MECP2-E1 and E2 isoform levels. Networks of microRNAs and RNA-binding proteins also post-transcriptionally regulate the stability and translation efficiency of MECP2 3'UTR isoforms. Finally, distinctions in biophysical properties in the N-termini between MECP2-E1 and E2 lead to variable protein stabilities and DNA binding dynamics. This review describes the steps taken from the discovery of MECP2, the description of its key functions, and its association with RTT, to the emergence of evidence revealing how MECP2 isoforms are differentially regulated at the transcriptional, post-transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Deivid Carvalho Rodrigues
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada
| | - Marat Mufteev
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| |
Collapse
|
8
|
Shao Y, Bajikar SS, Tirumala HP, Gutierrez MC, Wythe JD, Zoghbi HY. Identification and characterization of conserved noncoding cis-regulatory elements that impact Mecp2 expression and neurological functions. Genes Dev 2021; 35:489-494. [PMID: 33737384 PMCID: PMC8015713 DOI: 10.1101/gad.345397.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
In this study, Shao et al. investigated the transcriptional regulation of MeCP2, and identified six putative noncoding regulatory elements of Mecp2, two of which are conserved in humans. Their findings provide insight into transcriptional regulation of Mecp2/MECP2 and highlight genomic sites that could serve as diagnostic and therapeutic targets in Rett syndrome (RTT) and MECP2 duplication syndrome (MDS). While changes in MeCP2 dosage cause Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), its transcriptional regulation is poorly understood. Here, we identified six putative noncoding regulatory elements of Mecp2, two of which are conserved in humans. Upon deletion in mice and human iPSC-derived neurons, these elements altered RNA and protein levels in opposite directions and resulted in a subset of RTT- and MDS-like behavioral deficits in mice. Our discovery provides insight into transcriptional regulation of Mecp2/MECP2 and highlights genomic sites that could serve as diagnostic and therapeutic targets in RTT or MDS.
Collapse
Affiliation(s)
- Yingyao Shao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sameer S Bajikar
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Harini P Tirumala
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manuel Cantu Gutierrez
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joshua D Wythe
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Pejhan S, Rastegar M. Role of DNA Methyl-CpG-Binding Protein MeCP2 in Rett Syndrome Pathobiology and Mechanism of Disease. Biomolecules 2021; 11:75. [PMID: 33429932 PMCID: PMC7827577 DOI: 10.3390/biom11010075] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Abstract
Rett Syndrome (RTT) is a severe, rare, and progressive developmental disorder with patients displaying neurological regression and autism spectrum features. The affected individuals are primarily young females, and more than 95% of patients carry de novo mutation(s) in the Methyl-CpG-Binding Protein 2 (MECP2) gene. While the majority of RTT patients have MECP2 mutations (classical RTT), a small fraction of the patients (atypical RTT) may carry genetic mutations in other genes such as the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1. Due to the neurological basis of RTT symptoms, MeCP2 function was originally studied in nerve cells (neurons). However, later research highlighted its importance in other cell types of the brain including glia. In this regard, scientists benefitted from modeling the disease using many different cellular systems and transgenic mice with loss- or gain-of-function mutations. Additionally, limited research in human postmortem brain tissues provided invaluable findings in RTT pathobiology and disease mechanism. MeCP2 expression in the brain is tightly regulated, and its altered expression leads to abnormal brain function, implicating MeCP2 in some cases of autism spectrum disorders. In certain disease conditions, MeCP2 homeostasis control is impaired, the regulation of which in rodents involves a regulatory microRNA (miR132) and brain-derived neurotrophic factor (BDNF). Here, we will provide an overview of recent advances in understanding the underlying mechanism of disease in RTT and the associated genetic mutations in the MECP2 gene along with the pathobiology of the disease, the role of the two most studied protein variants (MeCP2E1 and MeCP2E2 isoforms), and the regulatory mechanisms that control MeCP2 homeostasis network in the brain, including BDNF and miR132.
Collapse
Affiliation(s)
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
10
|
Jagtap S, Thanos JM, Fu T, Wang J, Lalonde J, Dial TO, Feiglin A, Chen J, Kohane I, Lee JT, Sheridan SD, Perlis RH. Aberrant mitochondrial function in patient-derived neural cells from CDKL5 deficiency disorder and Rett syndrome. Hum Mol Genet 2020; 28:3625-3636. [PMID: 31518399 DOI: 10.1093/hmg/ddz208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
The X-linked neurodevelopmental diseases CDKL5 deficiency disorder (CDD) and Rett syndrome (RTT) are associated with intellectual disability, infantile spasms and seizures. Although mitochondrial dysfunction has been suggested in RTT, less is understood about mitochondrial function in CDD. A comparison of bioenergetics and mitochondrial function between isogenic wild-type and mutant neural progenitor cell (NPC) lines revealed increased oxygen consumption in CDD mutant lines, which is associated with altered mitochondrial function and structure. Transcriptomic analysis revealed differential expression of genes related to mitochondrial and REDOX function in NPCs expressing the mutant CDKL5. Furthermore, a similar increase in oxygen consumption specific to RTT patient-derived isogenic mutant NPCs was observed, though the pattern of mitochondrial functional alterations was distinct from CDKL5 mutant-expressing NPCs. We propose that aberrant neural bioenergetics is a common feature between CDD and RTT disorders. The observed changes in oxidative stress and mitochondrial function may facilitate the development of therapeutic agents for CDD and related disorders.
Collapse
Affiliation(s)
- Smita Jagtap
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica M Thanos
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Ting Fu
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Wang
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Thomas O Dial
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Chen
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Piper DA, Sastre D, Schüle B. Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. Front Neurosci 2018; 12:199. [PMID: 29686602 PMCID: PMC5900030 DOI: 10.3389/fnins.2018.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (non A4 component of amyloid precursor, SNCA, NM_000345.3) plays a central role in the pathogenesis of Parkinson's disease (PD) and related Lewy body disorders such as Parkinson's disease dementia, Lewy body dementia, and multiple system atrophy. Since its discovery as a disease-causing gene in 1997, alpha-synuclein has been a central point of scientific interest both at the protein and gene level. Mutations, including copy number variants, missense mutations, short structural variants, and single nucleotide polymorphisms, can be causative for PD and affect conformational changes of the protein, can contribute to changes in expression of alpha-synuclein and its isoforms, and can influence regulation of temporal as well as spatial levels of alpha-synuclein in different tissues and cell types. A lot of progress has been made to understand both the physiological transcriptional and epigenetic regulation of the alpha-synuclein gene and whether changes in transcriptional regulation could lead to disease and neurodegeneration in PD and related alpha-synucleinopathies. Although the histopathological changes in these neurodegenerative disorders are similar, the temporal and spatial presentation and progression distinguishes them which could be in part due to changes or disruption of transcriptional regulation of alpha-synuclein. In this review, we describe different genetic alterations that contribute to PD and neurodegenerative conditions and review aspects of transcriptional regulation of the alpha-synuclein gene in the context of the development of PD. New technologies, advanced gene engineering and stem cell modeling, are on the horizon to shed further light on a better understanding of gene regulatory processes and exploit them for therapeutic developments.
Collapse
Affiliation(s)
- Desiree A Piper
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Danuta Sastre
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| |
Collapse
|
12
|
Bai Y, Chen Y, Kong X. Contiguous 22.1-kb deletion embracing AVPR2 and ARHGAP4 genes at novel breakpoints leads to nephrogenic diabetes insipidus in a Chinese pedigree. BMC Nephrol 2018; 19:26. [PMID: 29394883 PMCID: PMC5797393 DOI: 10.1186/s12882-018-0825-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/21/2018] [Indexed: 12/02/2022] Open
Abstract
Background It has been reported that mutations in arginine vasopressin type 2 receptor (AVPR2) cause congenital X-linked nephrogenic diabetes insipidus (NDI). However, only a few cases of AVPR2 deletion have been documented in China. Methods An NDI pedigree was included in this study, including the proband and his mother. All NDI patients had polyuria, polydipsia, and growth retardation. PCR mapping, long range PCR and sanger sequencing were used to identify genetic causes of NDI. Results A novel 22,110 bp deletion comprising AVPR2 and ARH4GAP4 genes was identified by PCR mapping, long range PCR and sanger sequencing. The deletion happened perhaps due to the 4-bp homologous sequence (TTTT) at the junctions of both 5′ and 3′ breakpoints. The gross deletion co-segregates with NDI. After analyzing available data of putative clinical signs of AVPR2 and ARH4GAP4 deletion, we reconsider the potential role of AVPR2 deletion in short stature. Conclusions We identified a novel 22.1-kb deletion leading to X-linked NDI in a Chinese pedigree, which would increase the current knowledge in AVPR2 mutation.
Collapse
Affiliation(s)
- Ying Bai
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road East, Zhengzhou, Henan, 450052, China
| | - Yibing Chen
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road East, Zhengzhou, Henan, 450052, China.
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road East, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
13
|
Gadalla KK, Vudhironarit T, Hector RD, Sinnett S, Bahey NG, Bailey ME, Gray SJ, Cobb SR. Development of a Novel AAV Gene Therapy Cassette with Improved Safety Features and Efficacy in a Mouse Model of Rett Syndrome. Mol Ther Methods Clin Dev 2017; 5:180-190. [PMID: 28497075 PMCID: PMC5423329 DOI: 10.1016/j.omtm.2017.04.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
Rett syndrome (RTT), caused by loss-of-function mutations in the MECP2 gene, is a neurological disorder characterized by severe impairment of motor and cognitive functions. The aim of this study was to investigate the impact of vector design, dosage, and delivery route on the efficacy and safety of gene augmentation therapy in mouse models of RTT. Our results show that AAV-mediated delivery of MECP2 to Mecp2 null mice by systemic administration, and utilizing a minimal endogenous promoter, was associated with a narrow therapeutic window and resulted in liver toxicity at higher doses. Lower doses of this vector significantly extended the survival of mice lacking MeCP2 or expressing a mutant T158M allele but had no impact on RTT-like neurological phenotypes. Modifying vector design by incorporating an extended Mecp2 promoter and additional regulatory 3' UTR elements significantly reduced hepatic toxicity after systemic administration. Moreover, direct cerebroventricular injection of this vector into neonatal Mecp2-null mice resulted in high brain transduction efficiency, increased survival and body weight, and an amelioration of RTT-like phenotypes. Our results show that controlling levels of MeCP2 expression in the liver is achievable through modification of the expression cassette. However, it also highlights the importance of achieving high brain transduction to impact the RTT-like phenotypes.
Collapse
Affiliation(s)
- Kamal K.E. Gadalla
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Thishnapha Vudhironarit
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ralph D. Hector
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sarah Sinnett
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Noha G. Bahey
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Histology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mark E.S. Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Steven J. Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Stuart R. Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
14
|
Sinnett SE, Hector RD, Gadalla KK, Heindel C, Chen D, Zaric V, Bailey ME, Cobb SR, Gray SJ. Improved MECP2 Gene Therapy Extends the Survival of MeCP2-Null Mice without Apparent Toxicity after Intracisternal Delivery. Mol Ther Methods Clin Dev 2017; 5:106-115. [PMID: 28497072 PMCID: PMC5424572 DOI: 10.1016/j.omtm.2017.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022]
Abstract
Intravenous administration of adeno-associated virus serotype 9 (AAV9)/hMECP2 has been shown to extend the lifespan of Mecp2-/y mice, but this delivery route induces liver toxicity in wild-type (WT) mice. To reduce peripheral transgene expression, we explored the safety and efficacy of AAV9/hMECP2 injected into the cisterna magna (ICM). AAV9/hMECP2 (1 × 1012 viral genomes [vg]; ICM) extended Mecp2-/y survival but aggravated hindlimb clasping and abnormal gait phenotypes. In WT mice, 1 × 1012 vg of AAV9/hMECP2 induced clasping and abnormal gait. A lower dose mitigated these adverse phenotypes but failed to extend survival of Mecp2-/y mice. Thus, ICM delivery of this vector is impractical as a treatment for Rett syndrome (RTT). To improve the safety of MeCP2 gene therapy, the gene expression cassette was modified to include more endogenous regulatory elements believed to modulate MeCP2 expression in vivo. In Mecp2-/y mice, ICM injection of the modified vector extended lifespan and was well tolerated by the liver but did not rescue RTT behavioral phenotypes. In WT mice, these same doses of the modified vector had no adverse effects on survival or neurological phenotypes. In summary, we identified limitations of the original vector and demonstrated that an improved vector design extends Mecp2-/y survival, without apparent toxicity.
Collapse
Affiliation(s)
- Sarah E. Sinnett
- University of North Carolina (UNC) Gene Therapy Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Chapel Hill, NC 27510, USA
| | - Ralph D. Hector
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kamal K.E. Gadalla
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Clifford Heindel
- University of North Carolina (UNC) Gene Therapy Center, Chapel Hill, NC 27599, USA
| | - Daphne Chen
- University of North Carolina (UNC) Gene Therapy Center, Chapel Hill, NC 27599, USA
| | - Violeta Zaric
- University of North Carolina (UNC) Gene Therapy Center, Chapel Hill, NC 27599, USA
| | - Mark E.S. Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stuart R. Cobb
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Steven J. Gray
- University of North Carolina (UNC) Gene Therapy Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Chapel Hill, NC 27510, USA
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27517, USA
| |
Collapse
|
15
|
Kwon DY, Zhao YT, Lamonica JM, Zhou Z. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat Commun 2017; 8:15315. [PMID: 28497787 PMCID: PMC5437308 DOI: 10.1038/ncomms15315] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/20/2017] [Indexed: 12/26/2022] Open
Abstract
Efforts to manipulate locus-specific histone acetylation to assess their causal role in gene expression and cellular and behavioural phenotypes have been impeded by a lack of experimental tools. The Cas9 nuclease has been adapted to target epigenomic modifications, but a detailed description of the parameters of such synthetic epigenome remodellers is still lacking. Here we describe a Cas9-based histone deacetylase (HDAC) and the design principles required to achieve locus-specific histone deacetylation. We assess its range of activity and specificity, and analyse target gene expression in two different cell types to investigate cellular context-dependent effects. Our findings demonstrate that the chromatin environment is an important element to consider when utilizing this synthetic HDAC. CRISPR-Cas9 has been utilized, through the fusion of catalytic dead nuclease with chromatin-remodellers, to modify the epigenetic state of specific loci. Here the authors manipulate locus-specific histone acetylation and describe the parameters that need to be considered for its use.
Collapse
Affiliation(s)
- Deborah Y Kwon
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ying-Tao Zhao
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Janine M Lamonica
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Ehrhart F, Coort SLM, Cirillo E, Smeets E, Evelo CT, Curfs LMG. Rett syndrome - biological pathways leading from MECP2 to disorder phenotypes. Orphanet J Rare Dis 2016; 11:158. [PMID: 27884167 PMCID: PMC5123333 DOI: 10.1186/s13023-016-0545-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a rare disease but still one of the most abundant causes for intellectual disability in females. Typical symptoms are onset at month 6-18 after normal pre- and postnatal development, loss of acquired skills and severe intellectual disability. The type and severity of symptoms are individually highly different. A single mutation in one gene, coding for methyl-CpG-binding protein 2 (MECP2), is responsible for the disease. The most important action of MECP2 is regulating epigenetic imprinting and chromatin condensation, but MECP2 influences many different biological pathways on multiple levels although the molecular pathways from gene to phenotype are currently not fully understood. In this review the known changes in metabolite levels, gene expression and biological pathways in RTT are summarized, discussed how they are leading to some characteristic RTT phenotypes and therefore the gaps of knowledge are identified. Namely, which phenotypes have currently no mechanistic explanation leading back to MECP2 related pathways? As a result of this review the visualization of the biologic pathways showing MECP2 up- and downstream regulation was developed and published on WikiPathways which will serve as template for future omics data driven research. This pathway driven approach may serve as a use case for other rare diseases, too.
Collapse
Affiliation(s)
- Friederike Ehrhart
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands. .,Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Susan L M Coort
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Elisa Cirillo
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Eric Smeets
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chris T Evelo
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Leopold M G Curfs
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
17
|
Balachandar V, Dhivya V, Gomathi M, Mohanadevi S, Venkatesh B, Geetha B. A review of Rett syndrome (RTT) with induced pluripotent stem cells. Stem Cell Investig 2016; 3:52. [PMID: 27777941 DOI: 10.21037/sci.2016.09.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are pluripotent stem cells generated from somatic cells by the introduction of a combination of pluripotency-associated genes such as OCT4, SOX2, along with either KLF4 and c-MYC or NANOG and LIN28 via retroviral or lentiviral vectors. Most importantly, hiPSCs are similar to human embryonic stem cells (hESCs) functionally as they are pluripotent and can potentially differentiate into any desired cell type when provided with the appropriate cues, but do not have the ethical issues surrounding hESCs. For these reasons, hiPSCs have huge potential in translational medicine such as disease modeling, drug screening, and cellular therapy. Indeed, patient-specific hiPSCs have been generated for a multitude of diseases, including many with a neurological basis, in which disease phenotypes have been recapitulated in vitro and proof-of-principle drug screening has been performed. As the techniques for generating hiPSCs are refined and these cells become a more widely used tool for understanding brain development, the insights they produce must be understood in the context of the greater complexity of the human genome and the human brain. Disease models using iPS from Rett syndrome (RTT) patient's fibroblasts have opened up a new avenue of drug discovery for therapeutic treatment of RTT. The analysis of X chromosome inactivation (XCI) upon differentiation of RTT-hiPSCs into neurons will be critical to conclusively demonstrate the isolation of pre-XCI RTT-hiPSCs in comparison to post-XCI RTT-hiPSCs. The current review projects on iPSC studies in RTT as well as XCI in hiPSC were it suggests for screening new potential therapeutic targets for RTT in future for the benefit of RTT patients. In conclusion, patient-specific drug screening might be feasible and would be particularly helpful in disorders where patients frequently have to try multiple drugs before finding a regimen that works.
Collapse
Affiliation(s)
- Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Venkatesan Dhivya
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Subramaniam Mohanadevi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Balasubramanian Venkatesh
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Bharathi Geetha
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| |
Collapse
|
18
|
Gadalla KKE, Ross PD, Hector RD, Bahey NG, Bailey MES, Cobb SR. Gene therapy for Rett syndrome: prospects and challenges. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rett syndrome (RTT) is a neurological disorder that affects females and is caused by loss-of-function mutations in the X-linked gene MECP2. Deletion of Mecp2 in mice results in a constellation of neurological features that resemble those seen in RTT patients. Experiments in mice have demonstrated that restoration of MeCP2, even at adult stages, reverses several aspects of the RTT-like pathology suggesting that the disorder may be inherently treatable. This has provided an impetus to explore several therapeutic approaches targeting RTT at the level of the gene, including gene therapy, activation of MECP2 on the inactive X chromosome and read-through and repair of RTT-causing mutations. Here, we review these different strategies and the challenges of gene-based approaches in RTT.
Collapse
Affiliation(s)
- Kamal KE Gadalla
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Pharmacology Department, Faculty of Medicine, Tanta University, Egypt
| | - Paul D Ross
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Ralph D Hector
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Noha G Bahey
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Histology Department, Faculty of Medicine, Tanta University, Egypt
| | - Mark ES Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stuart R Cobb
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| |
Collapse
|
19
|
McGowan H, Pang ZP. Regulatory functions and pathological relevance of the MECP2 3'UTR in the central nervous system. CELL REGENERATION 2015; 4:9. [PMID: 26516454 PMCID: PMC4625459 DOI: 10.1186/s13619-015-0023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022]
Abstract
Methyl-CpG-binding protein 2 (MeCP2), encoded by the gene MECP2, is a transcriptional regulator and chromatin-remodeling protein, which is ubiquitously expressed and plays an essential role in the development and maintenance of the central nervous system (CNS). Highly enriched in post-migratory neurons, MeCP2 is needed for neuronal maturation, including dendritic arborization and the development of synapses. Loss-of-function mutations in MECP2 cause Rett syndrome (RTT), a debilitating neurodevelopmental disorder characterized by a phase of normal development, followed by the progressive loss of milestones and cognitive disability. While a great deal has been discovered about the structure, function, and regulation of MeCP2 in the time since its discovery as the genetic cause of RTT, including its involvement in a number of RTT-related syndromes that have come to be known as MeCP2-spectrum disorders, much about this multifunctional protein remains enigmatic. One unequivocal fact that has become apparent is the importance of maintaining MeCP2 protein levels within a narrow range, the limits of which may depend upon the cell type and developmental time point. As such, MeCP2 is amenable to complex, multifactorial regulation. Here, we summarize the role of the MECP2 3' untranslated region (UTR) in the regulation of MeCP2 protein levels and how mutations in this region contribute to autism and other non-RTT neuropsychiatric disorders.
Collapse
Affiliation(s)
- Heather McGowan
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University Robert Wood Johnson Medical School, 89 French Street, Room 3277, New Brunswick, NJ 08901 USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University Robert Wood Johnson Medical School, 89 French Street, Room 3277, New Brunswick, NJ 08901 USA
| |
Collapse
|
20
|
Functional validation of a constitutive autonomous silencer element. PLoS One 2015; 10:e0124588. [PMID: 25910277 PMCID: PMC4409358 DOI: 10.1371/journal.pone.0124588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/14/2015] [Indexed: 11/19/2022] Open
Abstract
Sequences of the genome that are capable of silencing gene expression are thought to play a key role in gene regulation. However, very few silencer elements capable of functioning in mammalian cells have been described, and only a fraction of these have been tested for the ability to function in an autonomous fashion. We report here the characterization and functional validation of a constitutive autonomous silencer element from the human genome called T39, and the comparison of T39 to three other putative silencer elements previously described by others. Functional analysis included one assay for enhancer-blocking insulator activity and two independent assays for silencer activity, all based on stable transfection and comparison to a neutral spacer control. In erythroid K562 cells, T39 exhibited potent silencer activity, the previously described element PRE2-S5 exhibited modest silencer activity, and the two other previously described elements exhibited no silencer activity. T39 was further found to be capable of silencing three disparate promoters, of silencing gene expression in three disparate cell lines, and of functioning as a single copy in a topology-independent manner. Of the four elements analyzed, only T39 exhibits a constitutive pattern of DNase hypersensitivity and binding by CTCF. In its native location the T39 element also exhibits a unique interaction profile with a subset of distal putative regulatory elements. Taken together, these studies validate T39 as a constitutive autonomous silencer, identify T39 as a defined control for future studies of other regulatory elements such as insulators, and provide a basic chromatin profile for one highly potent silencer element.
Collapse
|
21
|
Differential allelic expression of SOS1 and hyperexpression of the activating SOS1 c.755C variant in a Noonan syndrome family. Eur J Hum Genet 2015; 23:1531-7. [PMID: 25712082 DOI: 10.1038/ejhg.2015.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/07/2014] [Accepted: 12/25/2014] [Indexed: 12/22/2022] Open
Abstract
Noonan syndrome (NS) is a genetic condition characterized by congenital heart defects, short stature and characteristic facial features. We here present the case of a girl with moderate learning disabilities, delayed language development, craniofacial features and skin anomalies reminiscent of NS. After a mutation screening of the known NS genes PTPN11, SOS1, RAF1, KRAS, GRB2, BRAF and SHOC2 we found the heterozygous c.755T>C variant in SOS1 causing the p.I252T amino-acid substitution, which was considered possibly pathogenetic by bioinformatic predictions. The same variant was present in the proband's mother, displaying some NS features, and maternal grandfather showing no NS traits, but also by a healthy subject in 1000 genomes project database without phenotype informations. The functional analysis revealed that SOS1 c.755C activated the RAS-ERK intracellular pathway, whereas no effects on RAC-JNK cascade have been detected. After a comparison between the sequence of SOS1 cDNA from peripheral blood and SOS1 genomic DNA, we showed for the first time a differential allelic expression of the SOS1 gene in healthy individuals, thus occurring as a physiologic condition. Interestingly, we found that the mutated allele C was 50% more expressed than the wild-type allele T in all familial carriers. The comparable amount of SOS1 mRNA between mutated individuals and the controls indicates that the variant does not affect SOS1 expression. The present study provides a first evidence of allelic imbalance of SOS1 and pinpoints this condition as a possible mechanism underlying a different penetrance of some SOS1-mutated alleles in unrelated carriers.
Collapse
|
22
|
Liyanage VRB, Zachariah RM, Davie JR, Rastegar M. Ethanol deregulates Mecp2/MeCP2 in differentiating neural stem cells via interplay between 5-methylcytosine and 5-hydroxymethylcytosine at the Mecp2 regulatory elements. Exp Neurol 2015; 265:102-17. [PMID: 25620416 DOI: 10.1016/j.expneurol.2015.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/23/2014] [Accepted: 01/18/2015] [Indexed: 11/29/2022]
Abstract
Methyl CpG Binding Protein 2 (MeCP2) is an important epigenetic factor in the brain. MeCP2 expression is affected by different environmental insults including alcohol exposure. Accumulating evidence supports the role of aberrant MeCP2 expression in ethanol exposure-induced neurological symptoms. However, the underlying molecular mechanisms of ethanol-induced MeCP2 deregulation remain elusive. To study the effect of ethanol on Mecp2/MeCP2 expression during neurodifferentiation, we established an in vitro model of ethanol exposure, using differentiating embryonic brain-derived neural stem cells (NSC). Previously, we demonstrated the impact of DNA methylation at the Mecp2 regulatory elements (REs) on Mecp2/MeCP2 expression in vitro and in vivo. Here, we studied whether altered DNA methylation at these REs is associated with the Mecp2/MeCP2 misexpression induced by ethanol. Binge-like and continuous ethanol exposure upregulated Mecp2/MeCP2, while ethanol withdrawal downregulated its expression. DNA methylation analysis by methylated DNA immunoprecipitation indicated that increased 5-hydroxymethylcytosine (5hmC) and decreased 5-methylcytosine (5mC) enrichment at specific REs were associated with upregulated Mecp2/MeCP2 following continuous ethanol exposure. The reduced Mecp2/MeCP2 expression upon ethanol withdrawal was associated with reduced 5hmC and increased 5mC enrichment at these REs. Moreover, ethanol altered global DNA methylation (5mC and 5hmC). Under the tested conditions, ethanol had minimal effects on NSC cell fate commitment, but caused changes in neuronal morphology and glial cell size. Taken together, our data represent an epigenetic mechanism for ethanol-mediated misexpression of Mecp2/MeCP2 in differentiating embryonic brain cells. We also show the potential role of DNA methylation and MeCP2 in alcohol-related neurological disorders, specifically Fetal Alcohol Spectrum Disorders.
Collapse
Affiliation(s)
- Vichithra Rasangi Batuwita Liyanage
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Robby Mathew Zachariah
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - James Ronald Davie
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Mojgan Rastegar
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
23
|
Sterling L, Walter M, Ting D, Schüle B. Discovery of functional non-coding conserved regions in the α-synuclein gene locus. F1000Res 2014; 3:259. [PMID: 25566351 PMCID: PMC4275022 DOI: 10.12688/f1000research.3281.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 12/15/2022] Open
Abstract
Several single nucleotide polymorphisms (SNPs) and the Rep-1 microsatellite marker of the α-synuclein (
SNCA) gene have consistently been shown to be associated with Parkinson’s disease, but the functional relevance is unclear. Based on these findings we hypothesized that conserved cis-regulatory elements in the
SNCA genomic region regulate expression of
SNCA, and that SNPs in these regions could be functionally modulating the expression of
SNCA, thus contributing to neuronal demise and predisposing to Parkinson’s disease. In a pair-wise comparison of a 206kb genomic region encompassing the
SNCA gene, we revealed 34 evolutionary conserved DNA sequences between human and mouse. All elements were cloned into reporter vectors and assessed for expression modulation in dual luciferase reporter assays. We found that 12 out of 34 elements exhibited either an enhancement or reduction of the expression of the reporter gene. Three elements upstream of the
SNCA gene displayed an approximately 1.5 fold (p<0.009) increase in expression. Of the intronic regions, three showed a 1.5 fold increase and two others indicated a 2 and 2.5 fold increase in expression (p<0.002). Three elements downstream of the
SNCA gene showed 1.5 fold and 2.5 fold increase (p<0.0009). One element downstream of
SNCA had a reduced expression of the reporter gene of 0.35 fold (p<0.0009) of normal activity. Our results demonstrate that the
SNCA gene contains cis-regulatory regions that might regulate the transcription and expression of
SNCA. Further studies in disease-relevant tissue types will be important to understand the functional impact of regulatory regions and specific Parkinson’s disease-associated SNPs and its function in the disease process.
Collapse
Affiliation(s)
- Lori Sterling
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94085, USA
| | - Michael Walter
- Institute of Human Genetics, Eberhard-Karls-University Tübingen, Tübingen, 72076, Germany
| | - Dennis Ting
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94085, USA
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94085, USA
| |
Collapse
|
24
|
Vermunt MW, Reinink P, Korving J, de Bruijn E, Creyghton PM, Basak O, Geeven G, Toonen PW, Lansu N, Meunier C, van Heesch S, Clevers H, de Laat W, Cuppen E, Creyghton MP. Large-scale identification of coregulated enhancer networks in the adult human brain. Cell Rep 2014; 9:767-79. [PMID: 25373911 DOI: 10.1016/j.celrep.2014.09.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/26/2014] [Accepted: 09/12/2014] [Indexed: 01/04/2023] Open
Abstract
Understanding the complexity of the human brain and its functional diversity remain a major challenge. Distinct anatomical regions are involved in an array of processes, including organismal homeostasis, cognitive functions, and susceptibility to neurological pathologies, many of which define our species. Distal enhancers have emerged as key regulatory elements that acquire histone modifications in a cell- and species-specific manner, thus enforcing specific gene expression programs. Here, we survey the epigenomic landscape of promoters and cis-regulatory elements in 136 regions of the adult human brain. We identify a total of 83,553 promoter-distal H3K27ac-enriched regions showing global characteristics of brain enhancers. We use coregulation of enhancer elements across many distinct regions of the brain to uncover functionally distinct networks at high resolution and link these networks to specific neuroglial functions. Furthermore, we use these data to understand the relevance of noncoding genomic variations previously linked to Parkinson's disease incidence.
Collapse
Affiliation(s)
- Marit W Vermunt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Peter Reinink
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Ewart de Bruijn
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Paul M Creyghton
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Onur Basak
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Geert Geeven
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Pim W Toonen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Nico Lansu
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Charles Meunier
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Sebastiaan van Heesch
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | | | - Hans Clevers
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Wouter de Laat
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Edwin Cuppen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Menno P Creyghton
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands.
| |
Collapse
|
25
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
26
|
Olson CO, Zachariah RM, Ezeonwuka CD, Liyanage VRB, Rastegar M. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements. PLoS One 2014; 9:e90645. [PMID: 24594659 PMCID: PMC3940938 DOI: 10.1371/journal.pone.0090645] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/05/2014] [Indexed: 01/08/2023] Open
Abstract
MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs) within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum), whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute towards characterizing the expression profiles of Mecp2/MeCP2 isoforms and thereby provide insights on the potential role of MeCP2 isoforms in the developing and adult brain.
Collapse
Affiliation(s)
- Carl O. Olson
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robby M. Zachariah
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chinelo D. Ezeonwuka
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vichithra R. B. Liyanage
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
27
|
Abstract
The role of epigenetics in human disease has become an area of increased research interest. Collaborative efforts from scientists and clinicians have led to a better understanding of the molecular mechanisms by which epigenetic regulation is involved in the pathogenesis of many human diseases. Several neurological and non-neurological disorders are associated with mutations in genes that encode for epigenetic factors. One of the most studied proteins that impacts human disease and is associated with deregulation of epigenetic processes is Methyl CpG binding protein 2 (MeCP2). MeCP2 is an epigenetic regulator that modulates gene expression by translating epigenetic DNA methylation marks into appropriate cellular responses. In order to highlight the importance of epigenetics to development and disease, we will discuss how MeCP2 emerges as a key epigenetic player in human neurodevelopmental, neurological, and non-neurological disorders. We will review our current knowledge on MeCP2-related diseases, including Rett Syndrome, Angelman Syndrome, Fetal Alcohol Spectrum Disorder, Hirschsprung disease, and Cancer. Additionally, we will briefly discuss about the existing MeCP2 animal models that have been generated for a better understanding of how MeCP2 impacts certain human diseases.
Collapse
Affiliation(s)
| | - Mojgan Rastegar
- Author to whom correspondence should be addressed; ; Tel.: +204-272-3108; Fax: +204-789-3900
| |
Collapse
|
28
|
Liyanage VRB, Zachariah RM, Rastegar M. Decitabine alters the expression of Mecp2 isoforms via dynamic DNA methylation at the Mecp2 regulatory elements in neural stem cells. Mol Autism 2013; 4:46. [PMID: 24238559 PMCID: PMC3900258 DOI: 10.1186/2040-2392-4-46] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/01/2013] [Indexed: 01/01/2023] Open
Abstract
Background Aberrant MeCP2 expression in brain is associated with neurodevelopmental disorders including autism. In the brain of stressed mouse and autistic human patients, reduced MeCP2 expression is correlated with Mecp2/MECP2 promoter hypermethylation. Altered expression of MeCP2 isoforms (MeCP2E1 and MeCP2E2) is associated with neurological disorders, highlighting the importance of proper regulation of both isoforms. While known regulatory elements (REs) within the MECP2/Mecp2 promoter and intron 1 are involved in MECP2/Mecp2 regulation, Mecp2 isoform-specific regulatory mechanisms are unknown. We hypothesized that DNA methylation at these REs may impact the expression of Mecp2 isoforms. Methods We used a previously characterized in vitro differentiating neural stem cell (NSC) system to investigate the interplay between Mecp2 isoform-specific expression and DNA methylation at the Mecp2 REs. We studied altered expression of Mecp2 isoforms, affected by global DNA demethylation and remethylation, induced by exposure and withdrawal of decitabine (5-Aza-2′-deoxycytidine). Further, we performed correlation analysis between DNA methylation at the Mecp2 REs and the expression of Mecp2 isoforms after decitabine exposure and withdrawal. Results At different stages of NSC differentiation, Mecp2 isoforms showed reciprocal expression patterns associated with minor, but significant changes in DNA methylation at the Mecp2 REs. Decitabine treatment induced Mecp2e1/MeCP2E1 (but not Mecp2e2) expression at day (D) 2, associated with DNA demethylation at the Mecp2 REs. In contrast, decitabine withdrawal downregulated both Mecp2 isoforms to different extents at D8, without affecting DNA methylation at the Mecp2 REs. NSC cell fate commitment was minimally affected by decitabine under tested conditions. Expression of both isoforms negatively correlated with methylation at specific regions of the Mecp2 promoter, both at D2 and D8. The correlation between intron 1 methylation and Mecp2e1 (but not Mecp2e2) varied depending on the stage of NSC differentiation (D2: negative; D8: positive). Conclusions Our results show the correlation between the expression of Mecp2 isoforms and DNA methylation in differentiating NSC, providing insights on the potential role of DNA methylation at the Mecp2 REs in Mecp2 isoform-specific expression. The ability of decitabine to induce Mecp2e1/MeCP2E1, but not Mecp2e2 suggests differential sensitivity of Mecp2 isoforms to decitabine and is important for future drug therapies for autism.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Rm, 627, Basic Medical Sciences Bldg,, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
29
|
McFarland KN, Huizenga MN, Darnell SB, Sangrey GR, Berezovska O, Cha JHJ, Outeiro TF, Sadri-Vakili G. MeCP2: a novel Huntingtin interactor. Hum Mol Genet 2013; 23:1036-44. [PMID: 24105466 DOI: 10.1093/hmg/ddt499] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transcriptional dysregulation has been proposed to play a major role in the pathology of Huntington's disease (HD). However, the mechanisms that cause selective downregulation of target genes remain unknown. Previous studies have shown that mutant huntingtin (Htt) protein interacts with a number of transcription factors thereby altering transcription. Here we report that Htt directly interacts with methyl-CpG binding protein 2 (MeCP2) in mouse and cellular models of HD using complimentary biochemical and Fluorescent Lifetime Imaging to measure Förster Resonance Energy Transfer approaches. Htt-MeCP2 interactions are enhanced in the presence of the expanded polyglutamine (polyQ) tract and are stronger in the nucleus compared with the cytoplasm. Furthermore, we find increased binding of MeCP2 to the promoter of brain-derived neurotrophic factor (BDNF), a gene that is downregulated in HD, in the presence of mutant Htt. Finally, decreasing MeCP2 levels in mutant Htt-expressing cells using siRNA increases BDNF levels, suggesting that MeCP2 downregulates BDNF expression in HD. Taken together, these findings suggest that aberrant interactions between Htt and MeCP2 contribute to transcriptional dysregulation in HD.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology and The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Takahashi K, Orba Y, Kimura T, Wang L, Kohsaka S, Tsuda M, Tanino M, Nishihara H, Nagashima K, Sawa H, Tanaka S. Relationship between methyl CpG binding protein 2 and JC viral proteins. Jpn J Infect Dis 2013; 66:126-32. [PMID: 23514909 DOI: 10.7883/yoken.66.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
JC virus (JCV) is a causative agent of progressive multifocal leukoencephalopathy (PML). Methyl CpG binding protein 2 (MeCP2) is a transcriptional control nuclear protein that is abundantly expressed in neurons. We previously observed that the MeCP2 protein is expressed in JCV large T antigen (TAg)-expressing glial cells in PML brains. To investigate the relationship between MeCP2 and JCV TAg, we examined the promoter activity and mRNA and protein expression levels of MeCP2 in JCV TAg-expressing cells. We found that JCV TAg enhances the promoter activity of MeCP2, but does not enhance the mRNA and protein levels of MeCP2. These results suggest that post-transcriptional mechanisms may play a role in MeCP2 expression.
Collapse
Affiliation(s)
- Kenta Takahashi
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Francke U. 2012 William Allan Award: Adventures in cytogenetics. Am J Hum Genet 2013; 92:325-37. [PMID: 23472754 DOI: 10.1016/j.ajhg.2013.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 12/25/2022] Open
Affiliation(s)
- Uta Francke
- Departments of Genetics and Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
32
|
Peters SU, Hundley RJ, Wilson AK, Warren Z, Vehorn A, Carvalho CMB, Lupski JR, Ramocki MB. The behavioral phenotype in MECP2 duplication syndrome: a comparison with idiopathic autism. Autism Res 2012; 6:42-50. [PMID: 23169761 DOI: 10.1002/aur.1262] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/16/2012] [Indexed: 01/21/2023]
Abstract
Alterations in the X-linked gene MECP2 encoding the methyl-CpG-binding protein 2 have been linked to autism spectrum disorders (ASDs). Most recently, data suggest that overexpression of MECP2 may be related to ASD. To better characterize the relevance of MECP2 overexpression to ASD-related behaviors, we compared the core symptoms of ASD in MECP2 duplication syndrome to nonverbal mental age-matched boys with idiopathic ASD. Within the MECP2 duplication group, we further delineated aspects of the behavioral phenotype and also examined how duplication size and gene content corresponded to clinical severity. We compared ten males with MECP2 duplication syndrome (ages 3-10) with a chronological and mental age-matched sample of nine nonverbal males with idiopathic ASD. Our results indicate that boys with MECP2 duplication syndrome share the core behavioral features of ASD (e.g. social affect, restricted/repetitive behaviors). Direct comparisons of ASD profiles revealed that a majority of boys with MECP2 duplication syndrome are similar to idiopathic ASD; they have impairments in social affect (albeit to a lesser degree than idiopathic ASD) and similar severity in restricted/repetitive behaviors. Nonverbal mental age did not correlate with severity of social impairment or repetitive behaviors. Within the MECP2 duplication group, breakpoint size does not predict differences in clinical severity. In addition to social withdrawal and stereotyped behaviors, we also found that hyposensitivity to pain/temperature are part of the behavioral phenotype of MECP2 duplication syndrome. Our results illustrate that overexpression/increased dosage of MECP2 is related to core features of ASD.
Collapse
Affiliation(s)
- Sarika U Peters
- Departments of Pediatrics and Psychiatry, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang L, Jolly LA, Willis-Owen S, Gardner A, Kumar R, Douglas E, Shoubridge C, Wieczorek D, Tzschach A, Cohen M, Hackett A, Field M, Froyen G, Hu H, Haas SA, Ropers HH, Kalscheuer VM, Corbett MA, Gecz J. A noncoding, regulatory mutation implicates HCFC1 in nonsyndromic intellectual disability. Am J Hum Genet 2012; 91:694-702. [PMID: 23000143 DOI: 10.1016/j.ajhg.2012.08.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/26/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022] Open
Abstract
The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.
Collapse
Affiliation(s)
- Lingli Huang
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Huang L, Poke G, Gecz J, Gibson K. A novel contiguous gene deletion of AVPR2 and ARHGAP4 genes in male dizygotic twins with nephrogenic diabetes insipidus and intellectual disability. Am J Med Genet A 2012; 158A:2511-8. [PMID: 22965914 DOI: 10.1002/ajmg.a.35591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/28/2012] [Indexed: 11/08/2022]
Abstract
The clinical features of loss of ARHGAP4 function remain unclear despite several reports of different patterns of deletions inactivating different functional regions of the protein. The protein encoded by ARHGAP4 is thought to function as a Rho GTPase activating protein. Characterization of the genetic defect causing X-linked nephrogenic diabetes insipidus (NDI) and intellectual disability in two dizygotic twin brothers revealed a novel contiguous deletion of 17,905 bp encompassing the entire AVPR2 gene and extending into intron 7 of the ARHGAP4 gene. Examination of their mother showed that she was a carrier of this deletion. An attempt was made to distinguish the putative clinical signs of an ARHGAP4 deletion from the well-defined phenotype of X-linked NDI caused by an AVPR2 gene deletion. By reviewing all characterized deletions encompassing ARHGAP4, we reconsider the potential role of ARHGAP4 in cognition.
Collapse
Affiliation(s)
- Lingli Huang
- Institute of Reproductive and Stem Cell Engineering, Central South University, China
| | | | | | | |
Collapse
|
35
|
Hanchard NA, Carvalho CMB, Bader P, Thome A, Omo-Griffith L, del Gaudio D, Pehlivan D, Fang P, Schaaf CP, Ramocki MB, Lupski JR, Cheung SW. A partial MECP2 duplication in a mildly affected adult male: a putative role for the 3' untranslated region in the MECP2 duplication phenotype. BMC MEDICAL GENETICS 2012; 13:71. [PMID: 22883432 PMCID: PMC3575261 DOI: 10.1186/1471-2350-13-71] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/23/2012] [Indexed: 11/17/2022]
Abstract
Background Duplications of the X-linked MECP2 gene are associated with moderate to severe intellectual disability, epilepsy, and neuropsychiatric illness in males, while triplications are associated with a more severe phenotype. Most carrier females show complete skewing of X-inactivation in peripheral blood and an apparent susceptibility to specific personality traits or neuropsychiatric symptoms. Methods We describe the clinical phenotype of a pedigree segregating a duplication of MECP2 found on clinical array comparative genomic hybridization. The position, size, and extent of the duplication were delineated in peripheral blood samples from affected individuals using multiplex ligation-dependent probe amplification and fluorescence in situ hybridization, as well as targeted high-resolution oligonucleotide microarray analysis and long-range PCR. The molecular consequences of the rearrangement were studied in lymphoblast cell lines using quantitative real-time PCR, reverse transcriptase PCR, and western blot analysis. Results We observed a partial MECP2 duplication in an adult male with epilepsy and mild neurocognitive impairment who was able to function independently; this phenotype has not previously been reported among males harboring gains in MECP2 copy number. The same duplication was inherited by this individual’s daughter who was also affected with neurocognitive impairment and epilepsy and carried an additional copy-number variant. The duplicated segment involved all four exons of MECP2, but excluded almost the entire 3' untranslated region (UTR), and the genomic rearrangement resulted in a MECP2-TEX28 fusion gene mRNA transcript. Increased expression of MECP2 and the resulting fusion gene were both confirmed; however, western blot analysis of lysates from lymphoblast cells demonstrated increased MeCP2 protein without evidence of a stable fusion gene protein product. Conclusion The observations of a mildly affected adult male with a MECP2 duplication and paternal transmission of this duplication are unique among reported cases with a duplication of MECP2. The clinical and molecular findings imply a minimal critical region for the full neurocognitive expression of the MECP2 duplication syndrome, and suggest a role for the 3′ UTR in mitigating the severity of the disease phenotype.
Collapse
Affiliation(s)
- Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Weissmann S, Brutnell TP. Engineering C4 photosynthetic regulatory networks. Curr Opin Biotechnol 2012; 23:298-304. [PMID: 22261559 DOI: 10.1016/j.copbio.2011.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/25/2022]
Abstract
C4 photosynthesis is a complex metabolic pathway responsible for carbon fixation in major feed, food and bioenergy crops. Although many enzymes driving this pathway have been identified, regulatory mechanisms underlying this system remain elusive. C4 photosynthesis contributes to photosynthetic efficiency in major bioenergy crops such as sugarcane, Miscanthus, switchgrass, maize and sorghum, and international efforts are underway to engineer C4 photosynthesis into C3 crops. A fundamental understanding of the C4 network is thus needed. New experimental and informatics methods can facilitate the accumulation and analysis of high-throughput data to define components of the C4 system. The use of new model plants, closely related to C4 crops, will also contribute to our understanding of the mechanisms that regulate this complex and important pathway.
Collapse
Affiliation(s)
- Sarit Weissmann
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853, United States
| | | |
Collapse
|
37
|
Abuhatzira L, Shamir A, Schones DE, Schäffer AA, Bustin M. The chromatin-binding protein HMGN1 regulates the expression of methyl CpG-binding protein 2 (MECP2) and affects the behavior of mice. J Biol Chem 2011; 286:42051-42062. [PMID: 22009741 PMCID: PMC3234940 DOI: 10.1074/jbc.m111.300541] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/05/2011] [Indexed: 11/06/2022] Open
Abstract
High mobility group N1 protein (HMGN1), a nucleosomal-binding protein that affects the structure and function of chromatin, is encoded by a gene located on chromosome 21 and is overexpressed in Down syndrome, one of the most prevalent genomic disorders. Misexpression of HMGN1 affects the cellular transcription profile; however, the biological function of this protein is still not fully understood. We report that HMGN1 modulates the expression of methyl CpG-binding protein 2 (MeCP2), a DNA-binding protein known to affect neurological functions including autism spectrum disorders, and whose alterations in HMGN1 levels affect the behavior of mice. Quantitative PCR and Western analyses of cell lines and brain tissues from mice that either overexpress or lack HMGN1 indicate that HMGN1 is a negative regulator of MeCP2 expression. Alterations in HMGN1 levels lead to changes in chromatin structure and histone modifications in the MeCP2 promoter. Behavior analyses by open field test, elevated plus maze, Reciprocal Social Interaction, and automated sociability test link changes in HMGN1 levels to abnormalities in activity and anxiety and to social deficits in mice. Targeted analysis of the Autism Genetic Resource Exchange genotype collection reveals a non-random distribution of genotypes within 500 kbp of HMGN1 in a region affecting its expression in families predisposed to autism spectrum disorders. Our results reveal that HMGN1 affects the behavior of mice and suggest that epigenetic changes resulting from altered HMGN1 levels could play a role in the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Liron Abuhatzira
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | | | | | - Alejandro A Schäffer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, Bethesda, Maryland 20892.
| |
Collapse
|
38
|
Abstract
Advances in the clinical and genetic understanding of Rett syndrome have meant that existing diagnostic guidelines for this neurodevelopmental disorder need to be revisited. New clinical criteria for the diagnosis of Rett syndrome by Neul and colleagues are welcome, but should more prominence be given to molecular diagnosis?
Collapse
|
39
|
Zweier M, Gregor A, Zweier C, Engels H, Sticht H, Wohlleber E, Bijlsma EK, Holder SE, Zenker M, Rossier E, Grasshoff U, Johnson DS, Robertson L, Firth HV, Ekici AB, Reis A, Rauch A. Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression. Hum Mutat 2010; 31:722-33. [PMID: 20513142 DOI: 10.1002/humu.21253] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The etiology of mental retardation remains elusive in the majority of cases. Microdeletions within chromosomal bands 5q14.3q15 were recently identified as a recurrent cause of severe mental retardation, epilepsy, muscular hypotonia, and variable minor anomalies. By molecular karyotyping we identified two novel 2.4- and 1.5-Mb microdeletions of this region in patients with a similar phenotype. Both deletions contained the MEF2C gene, which is located proximally to the previously defined smallest region of overlap. Nevertheless, due to its known role in neurogenesis, we considered MEF2C as a phenocritical candidate gene for the 5q14.3q15 microdeletion phenotype. We therefore performed mutational analysis in 362 patients with severe mental retardation and found two truncating and two missense de novo mutations in MEF2C, establishing defects in this transcription factor as a novel relatively frequent autosomal dominant cause of severe mental retardation accounting for as much as 1.1% of patients. In these patients we found diminished MECP2 and CDKL5 expression in vivo, and transcriptional reporter assays indicated that MEF2C mutations diminish synergistic transactivation of E-box promoters including that of MECP2 and CDKL5. We therefore conclude that the phenotypic overlap of patients with MEF2C mutations and atypical Rett syndrome is due to the involvement of a common pathway.
Collapse
Affiliation(s)
- Markus Zweier
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rao A, States DJ, Hero AO, Engel JD. Understanding distal transcriptional regulation from sequence, expression and interactome perspectives. J Bioinform Comput Biol 2010; 8:219-46. [PMID: 20401945 DOI: 10.1142/s0219720010004756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/17/2009] [Accepted: 10/17/2009] [Indexed: 11/18/2022]
Abstract
Gene regulation in eukaryotes involves a complex interplay between the proximal promoter and distal genomic elements (such as enhancers) which work in concert to drive precise spatio-temporal gene expression. The experimental localization and characterization of gene regulatory elements is a very complex and resource-intensive process. The computational identification of regulatory regions that confer spatiotemporally specific tissue-restricted expression of a gene is thus an important challenge for computational biology. One of the most popular strategies for enhancer localization from DNA sequence is the use of conservation-based prefiltering and more recently, the use of canonical (transcription factor motifs) or de novo tissue-specific sequence motifs. However, there is an ongoing effort in the computational biology community to further improve the fidelity of enhancer predictions from sequence data by integrating other, complementary genomic modalities. In this work, we propose a framework that complements existing methodologies for prospective enhancer identification. The methods in this work are derived from two key insights: (i) that chromatin modification signatures can discriminate proximal and distally located regulatory regions and (ii) the notion of promoter-enhancer cross-talk (as assayed in 3C/5C experiments) might have implications in the search for regulatory sequences that co-operate with the promoter to yield tissue-restricted, gene-specific expression.
Collapse
Affiliation(s)
- Arvind Rao
- Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
41
|
Schmitt A, Koschel J, Zink M, Bauer M, Sommer C, Frank J, Treutlein J, Schulze T, Schneider-Axmann T, Parlapani E, Rietschel M, Falkai P, Henn FA. Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2010; 260:101-11. [PMID: 19856012 PMCID: PMC2830629 DOI: 10.1007/s00406-009-0017-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 04/22/2009] [Indexed: 02/05/2023]
Abstract
To determine if NMDA receptor alterations are present in the cerebellum in schizophrenia, we measured NMDA receptor binding and gene expression of the NMDA receptor subunits in a post-mortem study of elderly patients with schizophrenia and non-affected subjects. Furthermore, we assessed influence of genetic variation in the candidate gene neuregulin-1 (NRG1) on the expression of the NMDA receptor in an exploratory study. Post-mortem samples from the cerebellar cortex of ten schizophrenic patients were compared with nine normal subjects. We investigated NMDA receptor binding by receptor autoradiography and gene expression of the NMDA receptor subunits NR1, NR2A, NR2B, NR2C and NR2D by in situ hybridization. For the genetic study, we genotyped the NRG1 polymorphism rs35753505 (SNP8NRG221533). Additionally, we treated rats with the antipsychotics haloperidol or clozapine and assessed cerebellar NMDA receptor binding and gene expression of subunits to examine the effects of antipsychotic treatment. Gene expression of the NR2D subunit was increased in the right cerebellum of schizophrenic patients compared to controls. Individuals carrying at least one C allele of rs35753505 (SNP8NRG221533) showed decreased expression of the NR2C subunit in the right cerebellum, compared to individuals homozygous for the T allele. Correlation with medication parameters and the animal model revealed no treatment effects. In conclusion, increased NR2D expression results in a hyperexcitable NMDA receptor suggesting an adaptive effect due to receptor hypofunction. The decreased NR2C expression in NRG1 risk variant may cause a deficit in NMDA receptor function. This supports the hypothesis of an abnormal glutamatergic neurotransmission in the right cerebellum in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry, University of Goettingen, von-Siebold Strasse 5, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
TIAN J, ZHAO ZH, CHEN HP. [Conserved non-coding elements in human genome]. YI CHUAN = HEREDITAS 2009; 31:1067-1076. [PMID: 19933086 DOI: 10.3724/sp.j.1005.2009.01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Study of comparative genomics has revealed that about 5% of the human genome are under purifying selection, 3.5% of which are conserved non-coding elements (CNEs). While the coding regions comprise of only a small part. In human, the CNEs are functionally important, which may be associated with the process of the establishment and maintain of chromatin architecture, transcription regulation, and pre-mRNA processing. They are also related to ontogeny of mammals and human diseases. This review outlined the identification, functional significance, evolutionary origin, and effects on human genetic defects of the CNEs.
Collapse
Affiliation(s)
- Jing TIAN
- Institute of Biotechnology, Academy of Military Medical Science, Beijing 100071, China.
| | | | | |
Collapse
|
43
|
Chandrasekar V, Dreyer JL. The brain-specific Neural Zinc Finger transcription factor 2b (NZF-2b/7ZFMyt1) causes suppression of cocaine-induced locomotor activity. Neurobiol Dis 2009; 37:86-98. [PMID: 19786102 DOI: 10.1016/j.nbd.2009.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/03/2009] [Accepted: 09/15/2009] [Indexed: 01/29/2023] Open
Abstract
Chronic cocaine induces high expression of the brain-specific Neural-Zinc-Finger transcription factor-2b (NZF-2b/7ZFMyt1), particularly in the mesolimbic dopaminergic pathway, resulting in a 11-fold increase in NZF-2b/7ZFMyt1 expression in the Nucleus Accumbens (NAc). Overexpression of this gene in the NAc with a NZF-2b/7ZFMyt1-expressing lentivirus resulted in >55% decrease in locomotor activity upon chronic cocaine administration, compared to control animals. In contrast knocking-down the gene in the NAc with lentiviruses expressing shRNAs against NZF-2b/7ZFMyt1 induced strong hyperlocomotor activity upon cocaine. Strong inhibition of BDNF is observed upon NZF-2b/7ZFMyt1 expression, concomitant with strong induction of transcription factors REST1 (RE silencing transcription factor-1) and NAC1, probably leading to regulation of gene expression by interaction with histone deacetylases. These changes lead to decreased responsiveness of the animal to the locomotor-activating effects of cocaine, indicating that NZF-2b/7ZFMyt1 expression plays an important role in phenotypic changes induced by the drug.
Collapse
Affiliation(s)
- Vijay Chandrasekar
- Division of Biochemistry, Department of Medicine, University of Fribourg, Rue du Musée 5, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
44
|
A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proc Natl Acad Sci U S A 2009; 106:15483-8. [PMID: 19717458 DOI: 10.1073/pnas.0901866106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene MECP2 is a well-known determinant of brain structure. Mutations in the MECP2 protein cause microencephalopathy and are associated with several neurodevelopmental disorders that affect both brain morphology and cognition. Although mutations in MECP2 result in severe neurological phenotypes, the effect of common variation in this genetic region is unknown. We find that common sequence variations in a region in and around MECP2 show association with structural brain size measures in 2 independent cohorts, a discovery sample from the Thematic Organized Psychosis research group, and a replication sample from the Alzheimer's Disease Neuroimaging Initiative. The most statistically significant replicated association (P < 0.025 in both cohorts) involved the minor allele of SNP rs2239464 with reduced cortical surface area, and the finding was specific to male gender in both populations. Variations in the MECP2 region were associated with cortical surface area but not cortical thickness. Secondary analysis showed that this allele was also associated with reduced surface area in specific cortical regions (cuneus, fusiform gyrus, pars triangularis) in both populations.
Collapse
|
45
|
Impact of BRCA1 and BRCA2 variants on splicing: clues from an allelic imbalance study. Eur J Hum Genet 2009; 17:1471-80. [PMID: 19471317 DOI: 10.1038/ejhg.2009.89] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nearly one-half of BRCA1 and BRCA2 sequence variations are variants of uncertain significance (VUSs) and are candidates for splice alterations for example, by disrupting/creating splice sites. As out-of-frame splicing defects lead to a marked reduction of the level of the mutant mRNA cleared through nonsense-mediated mRNA decay, a cDNA-based test was developed to show the resulting allelic imbalance (AI). Fifty-four VUSs identified in 53 hereditary breast/ovarian cancer (HBOC) patients without BRCA1/2 mutation were included in the study. Two frequent exonic single-nucleotide polymorphisms on both BRCA1 and BRCA2 were investigated by using a semiquantitative single-nucleotide primer extension approach and the cDNA allelic ratios obtained were corrected using genomic DNA ratios from the same sample. A total of five samples showed AI. Subsequent transcript analyses ruled out the implication of VUS on AI and identified a deletion encompassing BRCA2 exons 12 and 13 in one sample. No sequence abnormality was found in the remaining four samples, suggesting implication of cis- or trans-acting factors in allelic expression regulation that might be disease causative in these HBOC patients. Overall, this study showed that AI screening is a simple way to detect deleterious splicing defects and that a major role for VUSs and deep intronic mutations in splicing anomalies is unlikely in BRCA1/2 genes. Methods to analyze gene expression and identify regulatory elements in BRCA1/2 are now needed to complement standard approaches to mutational analysis.
Collapse
|
46
|
Attanasio C, Reymond A, Humbert R, Lyle R, Kuehn MS, Neph S, Sabo PJ, Goldy J, Weaver M, Haydock A, Lee K, Dorschner M, Dermitzakis ET, Antonarakis SE, Stamatoyannopoulos JA. Assaying the regulatory potential of mammalian conserved non-coding sequences in human cells. Genome Biol 2008; 9:R168. [PMID: 19055709 PMCID: PMC2646272 DOI: 10.1186/gb-2008-9-12-r168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/24/2008] [Accepted: 12/02/2008] [Indexed: 01/26/2023] Open
Abstract
The fraction of experimentally active conserved non-coding sequences within any given cell type is low, so classical assays are unlikely to expose their potential. Background Conserved non-coding sequences in the human genome are approximately tenfold more abundant than known genes, and have been hypothesized to mark the locations of cis-regulatory elements. However, the global contribution of conserved non-coding sequences to the transcriptional regulation of human genes is currently unknown. Deeply conserved elements shared between humans and teleost fish predominantly flank genes active during morphogenesis and are enriched for positive transcriptional regulatory elements. However, such deeply conserved elements account for <1% of the conserved non-coding sequences in the human genome, which are predominantly mammalian. Results We explored the regulatory potential of a large sample of these 'common' conserved non-coding sequences using a variety of classic assays, including chromatin remodeling, and enhancer/repressor and promoter activity. When tested across diverse human model cell types, we find that the fraction of experimentally active conserved non-coding sequences within any given cell type is low (approximately 5%), and that this proportion increases only modestly when considered collectively across cell types. Conclusions The results suggest that classic assays of cis-regulatory potential are unlikely to expose the functional potential of the substantial majority of mammalian conserved non-coding sequences in the human genome.
Collapse
Affiliation(s)
- Catia Attanasio
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 rue Michel Servet, 1211, Geneva 4, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Swanberg SE, Nagarajan RP, Peddada S, Yasui DH, LaSalle JM. Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism. Hum Mol Genet 2008; 18:525-34. [PMID: 19000991 PMCID: PMC2638799 DOI: 10.1093/hmg/ddn380] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutations in MECP2, encoding methyl-CpG-binding protein 2 (MeCP2), cause the neurodevelopmental disorder Rett syndrome (RTT). Although MECP2 mutations are rare in idiopathic autism, reduced MeCP2 levels are common in autism cortex. MeCP2 is critical for postnatal neuronal maturation and a modulator of activity-dependent genes such as Bdnf (brain-derived neurotropic factor) and JUNB. The activity-dependent early growth response gene 2 (EGR2), required for both early hindbrain development and mature neuronal function, has predicted binding sites in the promoters of several neurologically relevant genes including MECP2. Conversely, MeCP2 family members MBD1, MBD2 and MBD4 bind a methylated CpG island in an enhancer region located in EGR2 intron 1. This study was designed to test the hypothesis that MECP2 and EGR2 regulate each other’s expression during neuronal maturation in postnatal brain development. Chromatin immunoprecipitation analysis showed EGR2 binding to the MECP2 promoter and MeCP2 binding to the enhancer region in EGR2 intron 1. Reduction in EGR2 and MeCP2 levels in cultured human neuroblastoma cells by RNA interference reciprocally reduced expression of both EGR2 and MECP2 and their protein products. Consistent with a role of MeCP2 in enhancing EGR2, Mecp2-deficient mouse cortex samples showed significantly reduced EGR2 by quantitative immunofluorescence. Furthermore, MeCP2 and EGR2 show coordinately increased levels during postnatal development of both mouse and human cortex. In contrast to age-matched Controls, RTT and autism postmortem cortex samples showed significant reduction in EGR2. Together, these data support a role of dysregulation of an activity-dependent EGR2/MeCP2 pathway in RTT and autism.
Collapse
Affiliation(s)
- Susan E Swanberg
- Department of Medical Microbiology and Immunology, Rowe Program in Human Genetics, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
48
|
Dura E, Villard L, Roux JC. Expression of methyl CpG binding protein 2 (Mecp2) during the postnatal development of the mouse brainstem. Brain Res 2008; 1236:176-84. [DOI: 10.1016/j.brainres.2008.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 11/27/2022]
|
49
|
Loat CS, Curran S, Lewis CM, Duvall J, Geschwind D, Bolton P, Craig IW. Methyl-CpG-binding protein 2 polymorphisms and vulnerability to autism. GENES, BRAIN, AND BEHAVIOR 2008; 7:754-60. [PMID: 19125863 PMCID: PMC3645848 DOI: 10.1111/j.1601-183x.2008.00414.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The methyl-binding protein gene, MECP2, is a candidate for involvement in autism through its implication as a major causative factor in Rett syndrome that has similarities to autism. Rare mutations in MECP2 have also been identified in autistic individuals. We have examined the possible broader involvement of MECP2 as a predisposing factor in the disorder. Analysis of polymorphic markers spanning the gene and comprising both microsatellites and single nucleotide polymorphisms (SNPs) by the transmission disequilibrium test in two collections of families (219 in total), one in the USA and one in the UK, has provided evidence for significant association (P = 0.009) for a three-marker SNP haplotype of MECP2 with autism/autism spectrum disorders. This association is supported by association of both Single Sequence Repeat (SSR) and SNP single markers located at the 3' end of the MECP2 locus and flanking sequence, the most significant being that of an indel marker located in intron 2 (P = 0.001 - Bonferroni corrected P = 0.006). This suggests that one or more functional variants of MECP2 existing at significant frequencies in the population may confer increased risk of autism/autism spectrum disorders and warrants further investigation in additional independent samples.
Collapse
Affiliation(s)
- C. S. Loat
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - S. Curran
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - C. M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
- Statistical Genetics Unit, Department of Medical and Molecular Genetics, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom
| | - J. Duvall
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - D. Geschwind
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - P. Bolton
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - I. W. Craig
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| |
Collapse
|
50
|
Singh J, Saxena A, Christodoulou J, Ravine D. MECP2 genomic structure and function: insights from ENCODE. Nucleic Acids Res 2008; 36:6035-47. [PMID: 18820302 PMCID: PMC2577328 DOI: 10.1093/nar/gkn591] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MECP2, a relatively small gene located in the human X chromosome, was initially described with three exons transcribing RNA from which the protein MeCP2 was translated. It is now known to have four exons from which two isoforms are translated; however, there is also evidence of additional functional genomic structures within MECP2, including exons potentially transcribing non-coding RNAs. Accompanying the recognition of a higher level of intricacy within MECP2 has been a recent surge of knowledge about the structure and function of human genes more generally, to the extent that the definition of a gene is being revisited. It is timely now to review the published and novel functional elements within MECP2, which is proving to have a complexity far greater than was previously thought.
Collapse
Affiliation(s)
- Jasmine Singh
- Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Australia
| | | | | | | |
Collapse
|