1
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Fosséprez J, Roels T, Manicourt D, Behets C. Craniofacial dysmorphism of osteogenesis imperfecta mouse and effect of cathepsin K knockout: Preliminary craniometry observations. Morphologie 2024; 108:100785. [PMID: 38788496 DOI: 10.1016/j.morpho.2024.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVES In addition to bone fragility, patients with osteogenesis imperfecta (OI) type III have typical craniofacial abnormalities, such as a triangular face and maxillary micrognathism. However, in the osteogenesis imperfecta mouse (oim), a validated model of OI type III, few descriptions exist of craniofacial phenotype. Treatment of OI mostly consists of bisphosphonate administration. Cathepsin K inhibition has been tested as a promising therapeutic approach for osteoporosis and positive results were observed in long bones of cathepsin K knocked out oim (oim/CatK-/-). This craniometry study aimed to highlight the craniofacial characteristics of oim and Cathepsin K KO mouse. MATERIALS AND METHODS We analyzed the craniofacial skeleton of 51 mice distributed in 4 genotype groups: Wt (control), oim, CatK-/-, oim/CatK-/-. The mice were euthanized at 13 weeks and their heads were analyzed using densitometric (pQCT), X-ray cephalometric, and histomorphometric methods. RESULTS The craniofacial skeleton of the oim mouse is frailer than the Wt one, with a reduced thickness and mineral density of the cranial vault and mandibular ramus. Different cephalometric data attest a dysmorphism similar to the one observed in humans with OI type III. Those abnormalities were not improved in the oim/CatK-/- group. CONCLUSION These results suggest that oim mouse could serve as a complete model of the human OI type III, including the craniofacial skeleton. They also suggest that invalidation of cathepsin K has no impact on the craniofacial abnormalities of the oim model.
Collapse
Affiliation(s)
- J Fosséprez
- Pole of Morphology, institut de recherche expérimentale et clinique (IREC), université catholique de Louvain (UCLouvain), Brussels, Belgium.
| | - T Roels
- Pole of Morphology, institut de recherche expérimentale et clinique (IREC), université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - D Manicourt
- Pole of Rheumatic Diseases, IREC, UCLouvain, Brussels, Belgium
| | - C Behets
- Pole of Morphology, institut de recherche expérimentale et clinique (IREC), université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
3
|
Mi B, Xiong Y, Knoedler S, Alfertshofer M, Panayi AC, Wang H, Lin S, Li G, Liu G. Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system. Bone Res 2024; 12:42. [PMID: 39103328 DOI: 10.1038/s41413-024-00346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues, including the skeletal and immune systems. Recent studies have elucidated the intricate bidirectional interactions between these two systems. In this review, we provide a comprehensive synthesis of molecular mechanisms of cell ageing. We further discuss how age-related skeletal changes influence the immune system and the consequent impact of immune system alterations on the skeletal system. Finally, we highlight the clinical implications of these findings and propose potential strategies to promote healthy ageing and reduce pathologic deterioration of both the skeletal and immune systems.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
4
|
Wu Y, Jiang D, Liu Q, Yan S, Liu X, Wu T, Sun W, Li G. Cathepsin L induces cellular senescence by upregulating CUX1 and p16 INK4a. Aging (Albany NY) 2024; 16:10749-10764. [PMID: 38944813 PMCID: PMC11272106 DOI: 10.18632/aging.205955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/18/2024] [Indexed: 07/01/2024]
Abstract
Cathepsin L (CTSL) has been implicated in aging and age-related diseases, such as cardiovascular diseases, specifically atherosclerosis. However, the underlying mechanism(s) is not well documented. Recently, we demonstrated a role of CUT-like homeobox 1 (CUX1) in regulating the p16INK4a-dependent cellular senescence in human endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) via its binding to an atherosclerosis-associated functional SNP (fSNP) rs1537371 on the CDKN2A/B locus. In this study, to determine if CTSL, which was reported to proteolytically activate CUX1, regulates cellular senescence via CUX1, we measured the expression of CTSL, together with CUX1 and p16INK4a, in human ECs and VSMCs undergoing senescence. We discovered that CUX1 is not a substrate that is cleaved by CTSL. Instead, CTSL is an upstream regulator that activates CUX1 transcription indirectly in a process that requires the proteolytic activity of CTSL. Our findings suggest that there is a transcription factor in between CTSL and CUX1, and cleavage of this factor by CTSL can activate CUX1 transcription, inducing endothelial senescence. Thus, our findings provide new insights into the signal transduction pathway that leads to atherosclerosis-associated cellular senescence.
Collapse
Affiliation(s)
- Yuwei Wu
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- International Center for Aging and Cancer Hainan Medical University, Hainan, China
| | - Qing Liu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shaoyang Yan
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Tsinghua Medicine, Tsinghua University, Peking, China
| | - Xiuzhen Liu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ting Wu
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Wei Sun
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Zhang X, Luo Y, Hao H, Krahn JM, Su G, Dutcher R, Xu Y, Liu J, Pedersen LC, Xu D. Heparan sulfate selectively inhibits the collagenase activity of cathepsin K. Matrix Biol 2024; 129:15-28. [PMID: 38548090 DOI: 10.1016/j.matbio.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in resorption of bone matrix. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS regulates the biological functions of CtsK, remains largely unknown. In this report, we discovered that HS is a multifaceted regulator of the structure and function of CtsK. Structurally, HS forms a highly stable complex with CtsK and induces its dimerization. Co-crystal structures of CtsK with bound HS oligosaccharides reveal the location of the HS binding site and suggest how HS may support dimerization. Functionally, HS plays a dual role in regulating the enzymatic activity of CtsK. While it preserves the peptidase activity of CtsK by stabilizing its active conformation, it inhibits the collagenase activity of CtsK in a sulfation level-dependent manner. These opposing effects can be explained by our finding that the HS binding site is remote from the active site, which allows HS to specifically inhibit the collagenase activity without affecting the peptidase activity. At last, we show that structurally defined HS oligosaccharides effectively block osteoclast resorption of bone in vitro without inhibiting osteoclast differentiation, which suggests that HS-based oligosaccharide might be explored as a new class of selective CtsK inhibitor for many diseases involving exaggerated bone resorption.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| | - Yin Luo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| | - Huanmeng Hao
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| | - Juno M Krahn
- Macromolecular Structure Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Guowei Su
- Glycan Therapeutics Corp, 617 Hutton Street, Raleigh, NC 27606, USA
| | - Robert Dutcher
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Lars C Pedersen
- Macromolecular Structure Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
6
|
Zheng Z, Liu H, Liu S, Luo E, Liu X. Mesenchymal stem cells in craniofacial reconstruction: a comprehensive review. Front Mol Biosci 2024; 11:1362338. [PMID: 38690295 PMCID: PMC11058977 DOI: 10.3389/fmolb.2024.1362338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Craniofacial reconstruction faces many challenges, including high complexity, strong specificity, severe injury, irregular and complex wounds, and high risk of bleeding. Traditionally, the "gold standard" for treating craniofacial bone defects has been tissue transplantation, which involves the transplantation of bone, cartilage, skin, and other tissues from other parts of the body. However, the shape of craniofacial bone and cartilage structures varies greatly and is distinctly different from ordinary long bones. Craniofacial bones originate from the neural crest, while long bones originate from the mesoderm. These factors contribute to the poor effectiveness of tissue transplantation in repairing craniofacial defects. Autologous mesenchymal stem cell transplantation exhibits excellent pluripotency, low immunogenicity, and minimally invasive properties, and is considered a potential alternative to tissue transplantation for treating craniofacial defects. Researchers have found that both craniofacial-specific mesenchymal stem cells and mesenchymal stem cells from other parts of the body have significant effects on the restoration and reconstruction of craniofacial bones, cartilage, wounds, and adipose tissue. In addition, the continuous development and application of tissue engineering technology provide new ideas for craniofacial repair. With the continuous exploration of mesenchymal stem cells by researchers and the continuous development of tissue engineering technology, the use of autologous mesenchymal stem cell transplantation for craniofacial reconstruction has gradually been accepted and promoted. This article will review the applications of various types of mesenchymal stem cells and related tissue engineering in craniofacial repair and reconstruction.
Collapse
Affiliation(s)
| | | | | | - En Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Wang H, Yuan T, Wang Y, Liu C, Li D, Li Z, Sun S. Osteoclasts and osteoarthritis: Novel intervention targets and therapeutic potentials during aging. Aging Cell 2024; 23:e14092. [PMID: 38287696 PMCID: PMC11019147 DOI: 10.1111/acel.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is highly prevalent among the aging population, and often leads to joint pain, disability, and a diminished quality of life. Although considerable research has been conducted, the precise molecular mechanisms propelling OA pathogenesis continue to be elusive, thereby impeding the development of effective therapeutics. Notably, recent studies have revealed subchondral bone lesions precede cartilage degeneration in the early stage of OA. This development is marked by escalated osteoclast-mediated bone resorption, subsequent imbalances in bone metabolism, accelerated bone turnover, and a decrease in bone volume, thereby contributing significantly to the pathological changes. While the role of aging hallmarks in OA has been extensively elucidated from the perspective of chondrocytes, their connection with osteoclasts is not yet fully understood. There is compelling evidence to suggest that age-related abnormalities such as epigenetic alterations, proteostasis network disruption, cellular senescence, and mitochondrial dysfunction, can stimulate osteoclast activity. This review intends to systematically discuss how aging hallmarks contribute to OA pathogenesis, placing particular emphasis on the age-induced shifts in osteoclast activity. It also aims to stimulate future studies probing into the pathological mechanisms and therapeutic approaches targeting osteoclasts in OA during aging.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Dengju Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
8
|
Zhang X, Luo Y, Hao H, Krahn JM, Su G, Dutcher R, Xu Y, Liu J, Pedersen LC, Xu D. Heparan sulfate selectively inhibits the collagenase activity of cathepsin K. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574350. [PMID: 38260317 PMCID: PMC10802503 DOI: 10.1101/2024.01.05.574350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in bone remodeling. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS ultimately regulates the biological functions of CtsK, remains largely unknown. In this report, we determined that CtsK preferably binds to larger HS oligosaccharides, such as dodecasaccharides (12mer), and that the12mer can induce monomeric CtsK to form a stable dimer in solution. Interestingly, while HS has no effect on the peptidase activity of CtsK, it greatly inhibits the collagenase activity of CtsK in a manner dependent on sulfation level. By forming a complex with CtsK, HS was able to preserve the full peptidase activity of CtsK for prolonged periods, likely by stabilizing its active conformation. Crystal structures of Ctsk with a bound 12mer, alone and in the presence of the endogenous inhibitor cystatin-C reveal the location of HS binding is remote from the active site. Mutagenesis based on these complex structures identified 6 basic residues of Ctsk that play essential roles in mediating HS-binding. At last, we show that HS 12mers can effectively block osteoclast resorption of bone in vitro. Combined, we have shown that HS can function as a multifaceted regulator of CtsK and that HS-based oligosaccharide might be explored as a new class of selective CtsK inhibitor in many diseases that involve exaggerated bone resorption.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| | - Yin Luo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
- These authors contributed equally to this work
| | - Huanmeng Hao
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
- These authors contributed equally to this work
| | - Juno M. Krahn
- Macromolecular Structure Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Guowei Su
- Glycan Therapeutics Corp, 617 Hutton Street, Raleigh, NC 27606
| | - Robert Dutcher
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lars C. Pedersen
- Macromolecular Structure Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| |
Collapse
|
9
|
Wang J, McVicar A, Chen Y, Deng HW, Zhao Z, Chen W, Li YP. Atp6i deficient mouse model uncovers transforming growth factor-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation. Int J Oral Sci 2023; 15:35. [PMID: 37599332 PMCID: PMC10440342 DOI: 10.1038/s41368-023-00235-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/01/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
The biomolecular mechanisms that regulate tooth root development and odontoblast differentiation are poorly understood. We found that Atp6i deficient mice (Atp6i-/-) arrested tooth root formation, indicated by truncated Hertwig's epithelial root sheath (HERS) progression. Furthermore, Atp6i deficiency significantly reduced the proliferation and differentiation of radicular odontogenic cells responsible for root formation. Atp6i-/- mice had largely decreased expression of odontoblast differentiation marker gene expression profiles (Col1a1, Nfic, Dspp, and Osx) in the alveolar bone. Atp6i-/- mice sample RNA-seq analysis results showed decreased expression levels of odontoblast markers. Additionally, there was a significant reduction in Smad2/3 activation, inhibiting transforming growth factor-β (TGF-β) signaling in Atp6i-/- odontoblasts. Through treating pulp precursor cells with Atp6i-/- or wild-type OC bone resorption-conditioned medium, we found the latter medium to promote odontoblast differentiation, as shown by increased odontoblast differentiation marker genes expression (Nfic, Dspp, Osx, and Runx2). This increased expression was significantly blocked by anti-TGF-β1 antibody neutralization, whereas odontoblast differentiation and Smad2/3 activation were significantly attenuated by Atp6i-/- OC conditioned medium. Importantly, ectopic TGF-β1 partially rescued root development and root dentin deposition of Atp6i-/- mice tooth germs were transplanted under mouse kidney capsules. Collectively, our novel data shows that the prevention of TGF-β1 release from the alveolar bone matrix due to OC dysfunction may lead to osteopetrosis-associated root formation via impaired radicular odontoblast differentiation. As such, this study uncovers TGF-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation and may contribute to future therapeutic approaches to tooth root regeneration.
Collapse
Affiliation(s)
- Jue Wang
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yilin Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
10
|
Houchen CJ, Castro B, Hahn Leat P, Mohammad N, Hall-Glenn F, Bumann EE. Treatment with an inhibitor of matrix metalloproteinase 9 or cathepsin K lengthens embryonic lower jaw bone. Orthod Craniofac Res 2023; 26:500-509. [PMID: 36680416 PMCID: PMC11508777 DOI: 10.1111/ocr.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Skeletal malocclusions are common, and severe malocclusions are treated by invasive surgeries. Recently, jaw bone length has been shown to be developmentally controlled by osteoclasts. Our objective was to determine the effect of inhibiting osteoclast-secreted proteolytic enzymes on lower jaw bone length of avian embryos by pharmacologically inhibiting matrix metalloproteinase-9 (MMP9) or cathepsin K (CTSK). METHODS Quail (Coturnix coturnix japonica) embryos were given a single dose of an inhibitor of MMP9 (iMMP9), an inhibitor CTSK (iCTSK), or vehicle at a developmental stage when bone deposition is beginning to occur. At a developmental stage when the viscerocranium is largely calcified, the heads were scanned via micro-computed tomography and reproducible landmarks were placed on 3D-reconstructed skulls; the landmark coordinates were used to quantify facial bone dimensions. RESULTS Approximately half of the quail given either iMMP9 or iCTSK demonstrated an overt lower jaw phenotype, characterized by longer lower jaw bones and a greater lower to upper jaw ratio than control embryos. Additionally, iMMP9-treated embryos exhibited a significant change in midface length and iCTSK-treated embryos had significant change in nasal bone length. CONCLUSION MMP9 and CTSK play a role in osteoclast-mediated determination of lower jaw bone length. Pharmacological inhibition of MMP9 or CTSK may be a promising therapeutic alternative to surgery for treating skeletal jaw malocclusions, but more preclinical research is needed prior to clinical translation.
Collapse
Affiliation(s)
- Claire J Houchen
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bethany Castro
- Summer Scholar Program Participant, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Portia Hahn Leat
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Nashwa Mohammad
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Faith Hall-Glenn
- Department of Orthopaedic Surgery, School of Medicine, University of California-San Francisco, San Francisco, California, USA
- St. Anna's Children's Cancer Research Institute, Vienna, Austria
| | - Erin E Bumann
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
11
|
Hald JD, Beck-Nielsen S, Gregersen PA, Gjørup H, Langdahl B. Pycnodysostosis in children and adults. Bone 2023; 169:116674. [PMID: 36646263 DOI: 10.1016/j.bone.2023.116674] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Affiliation(s)
- Jannie Dahl Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark.
| | - Signe Beck-Nielsen
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Pernille Axel Gregersen
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Denmark
| | - Hans Gjørup
- Centre of Oral Health in Rare Diseases, Department of Maxillofacial Surgery, Aarhus University Hospital, Denmark
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
12
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Wen X, Hu G, Xiao X, Zhang X, Zhang Q, Guo H, Li X, Liu Q, Li H. FGF2 positively regulates osteoclastogenesis via activating the ERK-CREB pathway. Arch Biochem Biophys 2022; 727:109348. [PMID: 35835230 DOI: 10.1016/j.abb.2022.109348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
Fibroblast growth factor 2 (FGF2) plays crucial roles in the growth and development of several tissues. However, its function in bone homeostasis remains controversial. Here, we found that exogenous FGF2 supplementation inhibited the mineralization of bone marrow stromal cells (BMSCs), at least partially, via up-regulating the gene expression of osteoclastogenesis. The FGF receptor (FGFR) allosteric antagonist SSR128129E modestly, whereas the FGFR tyrosine kinase inhibitor AZD4547 significantly antagonized the effects of FGF2. Mechanistically, FGF2 stimulated ERK phosphorylation, and the ERK signaling inhibitor PD325901 strongly blocked FGF2 enhancement of osteoclastogenesis. Moreover, the phosphorylation of CREB was also activated in response to FGF2, thereby potentiating the interaction of p-CREB with the promoter region of Rankl gene. Notably, FGF2-deficient BMSCs exhibited higher mineralization capability and lower osteoclastogenic gene expression. Correspondingly, FGF2-knockout mice showed increased bone mass and attenuated expression of osteoclast-related markers, which were associated with moderate inhibition of the ERK signaling. In conclusion, FGF2 positively regulates osteoclastogenesis via stimulating the ERK-CREB pathway. These findings establish the importance of FGF2 in bone homeostasis, hinting the potential use of FGF2/ERK/CREB specific inhibitors to fight against bone-related disorders, such as osteoporosis.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xue Xiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xinzhi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xianyao Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
14
|
Zhu G, Chen W, Tang CY, McVicar A, Edwards D, Wang J, McConnell M, Yang S, Li Y, Chang Z, Li YP. Knockout and Double Knockout of Cathepsin K and Mmp9 reveals a novel function of Cathepsin K as a regulator of osteoclast gene expression and bone homeostasis. Int J Biol Sci 2022; 18:5522-5538. [PMID: 36147479 PMCID: PMC9461675 DOI: 10.7150/ijbs.72211] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/02/2022] [Indexed: 01/26/2023] Open
Abstract
Cathepsins play a role in regulation of cell function through their presence in the cell nucleus. However, the role of Cathepsin K (Ctsk) as an epigenetic regulator in osteoclasts remains unknown. Our data demonstrated that Ctsk-/-Mmp9-/- mice have a striking phenotype with a 5-fold increase in bone volume compared with WT. RNA-seq analysis of Ctsk-/- , Mmp9-/- and Ctsk-/-/Mmp9-/- osteoclasts revealed their distinct functions in gene expression regulation, including reduced Cebpa expression, increased Nfatc1 expression, and in signaling pathways activity regulation. Western blots and qPCR data validated these changes. ATAC-seq profiling of Ctsk-/- , Mmp9-/-, and Ctsk-/-/Mmp9-/- osteoclasts indicated the changes resulted from reduced chromatin openness in the promoter region of Cebpa and increased chromatin openness in Nfatc1 promoter in Ctsk-/-/Mmp9-/- osteoclasts compared to that in osteoclasts of WT, Ctsk/- and Mmp9-/- . We found co-localization of Ctsk with c-Fos and cleavage of H3K27me3 in wild-type osteoclasts. Remarkably, cleavage of H3K27me3 was blocked in osteoclasts of Ctsk-/- and Ctsk-/-/Mmp9-/- mice, suggesting that Ctsk may epigenetically regulate distinctive groups of genes' expression by regulating proteolysis of H3K27me3. Ctsk-/-/Mmp9-/- double knockout dramatically protects against ovariectomy induced bone loss. We found that Ctsk may function as an essential epigenetic regulator in modulating levels of H3K27me3 in osteoclast activation and maintaining bone homeostasis. Our study revealed complementary and unique functions of Ctsk as epigenetic regulators for maintaining osteoclast activation and bone homeostasis by orchestrating multiple signaling pathways and targeting both Ctsk and Mmp9 is a novel therapeutic approach for osteolytic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Guochun Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Chen-Yi Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Diep Edwards
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Jinwen Wang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Matthew McConnell
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| |
Collapse
|
15
|
Zou N, Liu R, Li C. Cathepsin K+ Non-Osteoclast Cells in the Skeletal System: Function, Models, Identity, and Therapeutic Implications. Front Cell Dev Biol 2022; 10:818462. [PMID: 35912093 PMCID: PMC9326176 DOI: 10.3389/fcell.2022.818462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cathepsin K (Ctsk) is a cysteine protease of the papain superfamily initially identified in differentiated osteoclasts; it plays a critical role in degrading the bone matrix. However, subsequent in vivo and in vitro studies based on animal models elucidate novel subpopulations of Ctsk-expressing cells, which display markers and properties of mesenchymal stem/progenitor cells. This review introduces the function, identity, and role of Ctsk+ cells and their therapeutic implications in related preclinical osseous disorder models. It also summarizes the available in vivo models for studying Ctsk+ cells and their progeny. Further investigations of detailed properties and mechanisms of Ctsk+ cells in transgenic models are required to guide potential therapeutic targets in multiple diseases in the future.
Collapse
Affiliation(s)
- Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Changjun Li,
| |
Collapse
|
16
|
Lee SY, Park KH, Lee G, Kim SJ, Song WH, Kwon SH, Koh JT, Huh YH, Ryu JH. Hypoxia-inducible factor-2α mediates senescence-associated intrinsic mechanisms of age-related bone loss. Exp Mol Med 2021; 53:591-604. [PMID: 33811248 PMCID: PMC8102580 DOI: 10.1038/s12276-021-00594-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 02/01/2023] Open
Abstract
Aging is associated with cellular senescence followed by bone loss leading to bone fragility in humans. However, the regulators associated with cellular senescence in aged bones need to be identified. Hypoxia-inducible factor (HIF)-2α regulates bone remodeling via the differentiation of osteoblasts and osteoclasts. Here, we report that HIF-2α expression was highly upregulated in aged bones. HIF-2α depletion in male mice reversed age-induced bone loss, as evidenced by an increase in the number of osteoblasts and a decrease in the number of osteoclasts. In an in vitro model of doxorubicin-mediated senescence, the expression of Hif-2α and p21, a senescence marker gene, was enhanced, and osteoblastic differentiation of primary mouse calvarial preosteoblast cells was inhibited. Inhibition of senescence-induced upregulation of HIF-2α expression during matrix maturation, but not during the proliferation stage of osteoblast differentiation, reversed the age-related decrease in Runx2 and Ocn expression. However, HIF-2α knockdown did not affect p21 expression or senescence progression, indicating that HIF-2α expression upregulation in senescent osteoblasts may be a result of aging rather than a cause of cellular senescence. Osteoclasts are known to induce a senescent phenotype during in vitro osteoclastogenesis. Consistent with increased HIF-2α expression, the expression of p16 and p21 was upregulated during osteoclastogenesis of bone marrow macrophages. ChIP following overexpression or knockdown of HIF-2α using adenovirus revealed that p16 and p21 are direct targets of HIF-2α in osteoclasts. Osteoblast-specific (Hif-2αfl/fl;Col1a1-Cre) or osteoclast-specific (Hif-2αfl/fl;Ctsk-Cre) conditional knockout of HIF-2α in male mice reversed age-related bone loss. Collectively, our results suggest that HIF-2α acts as a senescence-related intrinsic factor in age-related dysfunction of bone homeostasis.
Collapse
Affiliation(s)
- Sun Young Lee
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Ka Hyon Park
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Gyuseok Lee
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Su-Jin Kim
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Won-Hyun Song
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Seung-Hee Kwon
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jeong-Tae Koh
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Yun Hyun Huh
- grid.61221.360000 0001 1033 9831School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Republic of Korea
| | - Je-Hwang Ryu
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
17
|
Tang J, Xie J, Chen W, Tang C, Wu J, Wang Y, Zhou XD, Zhou HD, Li YP. Runt-related transcription factor 1 is required for murine osteoblast differentiation and bone formation. J Biol Chem 2020; 295:11669-11681. [PMID: 32571873 PMCID: PMC7450143 DOI: 10.1074/jbc.ra119.007896] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Despite years of research investigating osteoblast differentiation, the mechanisms by which transcription factors regulate osteoblast maturation, bone formation, and bone homeostasis is still unclear. It has been reported that runt-related transcription factor 1 (Runx1) is expressed in osteoblast progenitors, pre-osteoblasts, and mature osteoblasts; yet, surprisingly, the exact function of RUNX1 in osteoblast maturation and bone formation remains unknown. Here, we generated and characterized a pre-osteoblast and differentiating chondrocyte-specific Runx1 conditional knockout mouse model to study RUNX1's function in bone formation. Runx1 ablation in osteoblast precursors and differentiating chondrocytes via osterix-Cre (Osx-Cre) resulted in an osteoporotic phenotype and decreased bone density in the long bones and skulls of Runx1f/fOsx-Cre mice compared with Runx1f/f and Osx-Cre mice. RUNX1 deficiency reduced the expression of SRY-box transcription factor 9 (SOX9), Indian hedgehog signaling molecule (IHH), Patched (PTC), and cyclin D1 in the growth plate, and also reduced the expression of osteocalcin (OCN), OSX, activating transcription factor 4 (ATF4), and RUNX2 in osteoblasts. ChIP assays and promoter activity mapping revealed that RUNX1 directly associates with the Runx2 gene promoter and up-regulates Runx2 expression. Furthermore, the ChIP data also showed that RUNX1 associates with the Ocn promoter. In conclusion, RUNX1 up-regulates the expression of Runx2 and multiple bone-specific genes, and plays an indispensable role in bone formation and homeostasis in both trabecular and cortical bone. We propose that stimulating Runx1 activity may be useful in therapeutic approaches for managing some bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Jun Tang
- Department of Metabolism & Endocrinology, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Pathology, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Jing Xie
- Department of Pathology, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wei Chen
- Department of Pathology, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Chenyi Tang
- Department of Pathology, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Jinjin Wu
- Department of Pathology, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Yiping Wang
- Department of Pathology, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Xue-Dong Zhou
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yi-Ping Li
- Department of Pathology, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Xin Y, Liu Y, Liu D, Li J, Zhang C, Wang Y, Zheng S. New Function of RUNX2 in Regulating Osteoclast Differentiation via the AKT/NFATc1/CTSK Axis. Calcif Tissue Int 2020; 106:553-566. [PMID: 32008052 DOI: 10.1007/s00223-020-00666-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/22/2020] [Indexed: 01/12/2023]
Abstract
Cleidocranial dysplasia is an autosomal dominant skeletal disorder resulting from RUNX2 mutations. The influence of RUNX2 mutations on osteoclastogenesis and bone resorption have not been reported. To investigate the role of RUNX2 in osteoclast, RUNX2 expression in macrophages (RAW 264.7 cells) was detected. Stable RAW 264.7 cell lines expressing wild-type RUNX2 or mutated RUNX2 (c.514delT, p.172 fs) were established, and their functions in osteoclasts were investigated. Wild-type RUNX2 promoted osteoclast differentiation, formation of F-actin ring, and bone resorption, while mutant RUNX2 attenuated the positive differentiation effect. Wild-type RUNX2 increased the expression and activity of mTORC2. Subsequently, mTORC2 specifically promoted phosphorylation of AKT at the serine 473 residue. Activated AKT improved the nuclear translocation of NFATc1 and increased the expression of downstream genes, including CTSK. Inhibition of AKT phosphorylation abrogated the osteoclast formation of wild-type macrophages, whereas constitutively activated AKT rescued the osteoclast formation of mutant macrophages. The present study suggested that RUNX2 promotes osteoclastogenesis and bone resorption through the AKT/NFATc1/CTSK axis. Mutant RUNX2 lost the function of regulating osteoclast differentiation and bone remodeling, resulting in the defective formation of the tooth eruption pathway and impaction of permanent teeth in cleidocranial dysplasia. This study, for the first time, verifies the effect of RUNX2 on osteoclast differentiation and bone resorption and provides new insight for the explanation of cleidocranial dysplasia.
Collapse
Affiliation(s)
- Yuejiao Xin
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China
| | - Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China
| | - Dandan Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China
| | - Jie Li
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China
| | - Chenying Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China
| | - Yixiang Wang
- Central Laboratory, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China.
| |
Collapse
|
19
|
Razmara E, Azimi H, Bitaraf A, Daneshmand MA, Galehdari M, Dokhanchi M, Esmaeilzadeh‐Gharehdaghi E, Garshasbi M. Whole-exome sequencing identified a novel variant in an Iranian patient affected by pycnodysostosis. Mol Genet Genomic Med 2020; 8:e1118. [PMID: 31944631 PMCID: PMC7057126 DOI: 10.1002/mgg3.1118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) has emerged as a successful diagnostic tool in molecular genetics laboratories worldwide. In this study, we aimed to find the potential genetic cause of skeletal disease, a heterogeneous disease, revealing the obvious short stature phenotype. In an Iranian family, we used solo-WES in a suspected patient to decipher the potential genetic cause(s). METHODS A comprehensive clinical and genotyping examination was applied to suspect the disease of the patient. The solo clinical WES was exploited, and the derived data were filtered according to the standard pipelines. In order to validate the WES finding, the region harboring the candidate variant in the CTSK gene was amplified from genomic DNA and sequenced directly by Sanger sequencing. RESULTS Sequence analysis revealed a rare novel nonsense variant, p.(Trp320*); c.905G>A, in the CTSK gene (NM_000396.3). In silico analysis shed light on the contribution of the variant to the pathogenicity of pycnodysostosis. This variant was confirmed by Sanger sequencing and further clinical examinations of the patient confirmed the disease. CONCLUSION The present study shows a rare variant of the CTSK gene, which inherited as autosomal recessive, in an Iranian male patient with pycnodysostosis. Taken together, the novel nonsense CTSK variant meets the criteria of being likely pathogenic according to the American College of Medical Genetics and Genomics-the Association for Molecular Pathology (ACMG-AMP) variant interpretation guidelines.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | | | - Amirreza Bitaraf
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Mohammad Galehdari
- Department of BiologyFaculty of SciencesNorth Tehran BranchIslamic Azad UniversityTehranIran
| | - Maryam Dokhanchi
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Masoud Garshasbi
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
20
|
Identification of the Differentially Expressed Genes of Muscle Growth and Intramuscular Fat Metabolism in the Development Stage of Yellow Broilers. Genes (Basel) 2020; 11:genes11030244. [PMID: 32110997 PMCID: PMC7140879 DOI: 10.3390/genes11030244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 02/04/2023] Open
Abstract
High-quality chicken meat is an important source of animal protein for humans. Gene expression profiles in breast muscle tissue were determined, aiming to explore the common regulatory genes relevant to muscle and intramuscular fat (IMF) during the developmental stage in chickens. Results show that breast muscle weight (BMW), breast meat percentage (BMP, %), and IMF (%) continuously increased with development. A total of 256 common differentially expressed genes (DEGs) during the developmental stage were screened. Among them, some genes related to muscle fiber hypertrophy were upregulated (e.g., CSRP3, LMOD2, MUSTN1, MYBPC1), but others (e.g., ACTC1, MYL1, MYL4) were downregulated from Week 3 to Week 18. During this period, expression of some DEGs related to the cells cycle (e.g., CCNB3, CCNE2, CDC20, MCM2) changed in a way that genetically suggests possible inhibitory regulation on cells number. In addition, DEGs associated with energy metabolism (e.g., ACOT9, CETP, LPIN1, DGAT2, RBP7, FBP1, PHKA1) were found to regulate IMF deposition. Our data identified and provide new insights into the common regulatory genes related to muscle growth, cell proliferation, and energy metabolism at the developmental stage in chickens.
Collapse
|
21
|
Wang Y, Chen W, Hao L, McVicar A, Wu J, Gao N, Liu Y, Li YP. C1 Silencing Attenuates Inflammation and Alveolar Bone Resorption in Endodontic Disease. J Endod 2019; 45:898-906. [PMID: 31104818 DOI: 10.1016/j.joen.2019.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/23/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Endodontic disease, 1 of the most prevalent chronic infectious diseases worldwide, occurs when the dental pulp becomes infected and inflamed, leading to bone destruction around the tooth root, severe pain, and tooth loss. Although many studies have tried to develop therapies to alleviate the bone erosion and inflammation associated with endodontic disease, there is an urgent need for an effective treatment. METHODS In this study, we used a gene-based therapy approach by administering recombinant adeno-associated virus (AAV)-mediated Atp6v1c1 knockdown to target both periapical bone resorption and inflammation in the mouse model of endodontic disease. RESULTS The results showed that Atp6v1c1 knockdown is simultaneously capable of reducing bone resorption by 70% through impaired osteoclast activation, inhibiting inflammation by decreasing T-cell infiltration in the periapical lesion by 75%, and protecting the periodontal ligament from destruction caused by inflammation. Notably, AAV-mediated gene therapy of Atp6v1c1 knockdown significantly reduced proinflammatory cytokine expression, including tumor necrosis factor α, interleukin 1α, interleukin 17, interleukin 12, and interleukin 6 levels in periapical tissues caused by bacterial infection. Quantitative real-time polymerase chain reaction revealed that Atp6v1c1 knockdown reduced osteoclast-specific functional genes (ie, Ctsk) in periapical tissues. CONCLUSIONS Our results showed that AAV-mediated Atp6v1c1 knockdown in periapical tissues slowed endodontic disease progression, prevented bone erosion, and alleviated inflammation in the periapical tissues and periodontal ligament potentially through regulation of toll-like receptor signaling, indicating that targeting Atp6v1c1 may facilitate the design of novel therapeutic approaches to reduce inflammation and bone erosion in endodontic disease.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liang Hao
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Abigail McVicar
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jinjin Wu
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ning Gao
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuehua Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
22
|
Liu X, Wan M. A tale of the good and bad: Cell senescence in bone homeostasis and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:97-128. [PMID: 31122396 DOI: 10.1016/bs.ircmb.2019.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Historically, cellular senescence has been viewed as an irreversible cell-cycle arrest process with distinctive phenotypic alterations that were implicated primarily in aging and tumor suppression. Recent discoveries suggest that cellular senescence represents a series of diverse, dynamic, and heterogeneous cellular states with the senescence-associated secretory phenotype (SASP). Although senescent cells typically contribute to aging and age-related diseases, accumulating evidence has shown that they also have important physiological functions during embryonic development, late pubertal bone growth cessation, and adulthood tissue remodeling. Here, we review the recent research on cellular senescence and SASP, highlighting the key pathways that mediate senescence cell-cycle arrest and initiate SASP. We also summarize recent literature on the role of cellular senescence in maintaining bone homeostasis and mediating age-associated osteoporosis, discussing both the beneficial and adverse roles of cellular senescence in bone during different physiological stages, including bone development, childhood bone growth, adulthood bone remodeling, and bone aging.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
23
|
Gao B, Deng R, Chai Y, Chen H, Hu B, Wang X, Zhu S, Cao Y, Ni S, Wan M, Yang L, Luo Z, Cao X. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J Clin Invest 2019; 129:2578-2594. [PMID: 30946695 DOI: 10.1172/jci98857] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The periosteum, a thin tissue that covers almost the entire bone surface, accounts for more than 80% of human bone mass and is essential for bone regeneration. Its osteogenic and bone regenerative abilities are well studied, but much is unknown about the periosteum. In this study, we found that macrophage-lineage cells recruit periosteum-derived cells (PDCs) for cortical bone formation. Knockout of colony stimulating factor-1 eliminated macrophage-lineage cells and resulted in loss of PDCs with impaired periosteal bone formation. Moreover, macrophage-lineage TRAP+ cells induced transcriptional expression of periostin and recruitment of PDCs to the periosteal surface through secretion of platelet-derived growth factor-BB (PDGF-BB), where the recruited PDCs underwent osteoblast differentiation coupled with type H vessel formation. We also found that subsets of Nestin+ and LepR+ PDCs possess multipotent and self-renewal abilities and contribute to cortical bone formation. Nestin+ PDCs are found primarily during bone development, whereas LepR+ PDCs are essential for bone homeostasis in adult mice. Importantly, conditional knockout of Pdgfrβ (platelet-derived growth factor receptor beta) in LepR+ cells impaired periosteal bone formation and regeneration. These findings uncover the essential role of periosteal macrophage-lineage cells in regulating periosteum homeostasis and regeneration.
Collapse
Affiliation(s)
- Bo Gao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruoxian Deng
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yu Chai
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Chen
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bo Hu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shouan Zhu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yong Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liu Yang
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuojing Luo
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
|
25
|
Yang P, Lv S, Wang Y, Peng Y, Ye Z, Xia Z, Ding G, Cao X, Crane JL. Preservation of type H vessels and osteoblasts by enhanced preosteoclast platelet-derived growth factor type BB attenuates glucocorticoid-induced osteoporosis in growing mice. Bone 2018; 114:1-13. [PMID: 29800693 PMCID: PMC6309783 DOI: 10.1016/j.bone.2018.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Survival of chronic diseases in childhood is often achieved utilizing glucocorticoids, but comes with significant side effects, including glucocorticoid-induced osteoporosis (GIO). Knowledge of the mechanism of GIO is limited to the adult skeleton. We explored the effect of genetic loss and inhibition of cathepsin K (Ctsk) as a potential treatment target in a young GIO mouse model as genetic loss of cathepsin K results in a mild form of osteopetrosis secondary to impaired osteoclast bone resorption with maintenance of bone formation. We first characterized the temporal osteoclast and osteoblast progenitor populations in Ctsk-/- and wild type (WT) mice in the primary and secondary spongiosa, as sites representative of trabecular bone modeling and remodeling, respectively. In the primary spongiosa, Ctsk-/- mice had decreased numbers of osteoclasts at young ages (2 and 4 weeks) and increased osteoblast lineage cells at later age (8 weeks) relative to WT littermates. In the secondary spongiosa, Ctsk-/- mice had greater numbers of osteoclasts and osteoblast lineage cells relative to WT littermates. We next developed a young GIO mouse model with prednisolone 10 mg/m2/day injected intraperitoneally daily from 2 through 6 weeks of age. Overall, WT-prednisolone mice had lower bone volume per tissue volume, whereas Ctsk-/--prednisolone mice maintained a similar bone volume relative to Ctsk-/--vehicle controls. WT-prednisolone mice exhibited a decreased number of osteoclasts, tartrate-resistant acid phosphatase and platelet-derived growth factor type BB (PDGF-BB) co-positive cells, type H endothelial cells, and osteoblasts relative to WT-vehicle mice in both the primary and secondary spongiosa. Interestingly, Ctsk-/--prednisolone mice demonstrated a paradoxical response with increased numbers of all parameters in primary spongiosa and no change in secondary spongiosa. Finally, treatment with a cathepsin K inhibitor prevented WT-prednisolone decline in osteoclasts, osteoblasts, type H vessels, and bone volume. These data demonstrate that cells in the primary and secondary spongiosa respond differently to glucocorticoids and genetic manipulation. Inhibition of osteoclast resorption that preserves osteoclast coupling factors, such as through inhibition of cathepsin K, may be a potential preventive treatment strategy against GIO in the growing skeleton.
Collapse
Affiliation(s)
- Ping Yang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832008, China
| | - Shan Lv
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Jiangsu, China
| | - Yan Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Endocrinology Department of Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, China
| | - Yi Peng
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Orthopedic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zixing Ye
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Peking Union Medical College, Beijing, China
| | - Zhuying Xia
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoxian Ding
- Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Jiangsu, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet L Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Huang H, Wang J, Zhang Y, Zhu G, Li YP, Ping J, Chen W. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone 2018; 114:161-171. [PMID: 29292230 DOI: 10.1016/j.bone.2017.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/27/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023]
Abstract
The tooth root is essential for normal tooth physiological function. Studies on mice with mutations or targeted gene deletions revealed that osteoclasts (OCs) play an important role in tooth root development. However, knowledge on the cellular and molecular mechanism underlying how OCs mediate root formation is limited. During bone formation, growth factors (e.g. Insulin-like growth factor-1, IGF-1) liberated from bone matrix by osteoclastic bone resorption stimulate osteoblast differentiation. Thus, we hypothesize that OC-osteoblast coupling may also apply to OC-odontoblast coupling; therefore OCs may have a direct impact on odontoblast differentiation through the release of growth factor(s) from bone matrix, and consequently regulate tooth root formation. To test this hypothesis, we used a receptor activator of NF-κB ligand (RANKL) knockout mouse model in which OC differentiation and function was entirely blocked. We found that molar root formation and tooth eruption were defective in RANKL-/- mice. Disrupted elongation and disorganization of Hertwig's epithelial root sheath (HERS) was observed in RANKL-/- mice. Reduced expression of nuclear factor I C (NFIC), osterix, and dentin sialoprotein, markers essential for radicular (root) odontogenic cell differentiation indicated that odontoblast differentiation was disrupted in RANKL deficient mice likely contributing to the defect in root formation. Moreover, down-regulation of IGF/AKT/mTOR activity in odontoblast indicated that IGF signaling transduction in odontoblasts of the mutant mice was impaired. Treating odontoblast cells in vitro with conditioned medium from RANKL-/- OCs cultured on bone slices resulted in inhibition of odontoblast differentiation. Moreover, depletion of IGF-1 in bone resorption-conditioned medium (BRCM) from wild-type (WT) OC significantly compromised the ability of WT osteoclastic BRCM to induce odontoblast differentiation while addition of IGF-1 into RANKL-/- osteoclastic BRCM rescued impaired odontoblast differentiation, confirming that root and eruption defect in RANKL deficiency mice may result from failure of releasing of IGF-1 from bone matrix through OC bone resorption. These results suggest that OCs are important for odontoblast differentiation and tooth root formation, possibly through IGF/AKT/mTOR signaling mediated by cell-bone matrix interaction. These findings provide significant insights into regulatory mechanism of tooth root development, and also lay the foundation for root regeneration studies.
Collapse
Affiliation(s)
- Hong Huang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, 5 Shangqingsi Rd, Yuzhong Qu, Chongqing Shi 400065, China; Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Jue Wang
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yan Zhang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, 5 Shangqingsi Rd, Yuzhong Qu, Chongqing Shi 400065, China; Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Guochun Zhu
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Ji Ping
- The Affiliated Hospital of Stomatology, Chongqing Medical University, 5 Shangqingsi Rd, Yuzhong Qu, Chongqing Shi 400065, China.
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA.
| |
Collapse
|
27
|
Abstract
PURPOSE Transgenic Cre lines are a valuable tool for conditionally inactivating or activating genes to understand their function. Here, we provide an overview of Cre transgenic models used for studying gene function in bone cells and discuss their advantages and limitations, with particular emphasis on Cre lines used for studying osteocyte and osteoclast function. RECENT FINDINGS Recent studies have shown that many bone cell-targeted Cre models are not as specific as originally thought. To ensure accurate data interpretation, it is important for investigators to test for unexpected recombination events due to transient expression of Cre recombinase during development or in precursor cells and to be aware of the potential for germ line recombination of targeted genes as well as the potential for unexpected phenotypes due to the Cre transgene. Although many of the bone-targeted Cre-deleter strains are imperfect and each model has its own limitations, their careful use will continue to provide key advances in our understanding of bone cell function in health and disease.
Collapse
Affiliation(s)
- Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, 650 E. 25th Street, Kansas, MO, 64108, USA.
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, 650 E. 25th Street, Kansas, MO, 64108, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, 650 E. 25th Street, Kansas, MO, 64108, USA
| | - Yasuyoshi Ueki
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, 650 E. 25th Street, Kansas, MO, 64108, USA
| |
Collapse
|
28
|
Otaify GA, Abdel-Hamid MS, Mehrez MI, Aboul-Ezz E, Zaki MS, Aglan MS, Temtamy SA. Genetic study of eight Egyptian patients with pycnodysostosis: identification of novel CTSK mutations and founder effect. Osteoporos Int 2018; 29:1833-1841. [PMID: 29796728 DOI: 10.1007/s00198-018-4555-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022]
Abstract
UNLABELLED This is the first Egyptian study with detailed clinical and orodental evaluation of eight patients with pycnodysostosis and identification of four mutations in CTSK gene with two novel ones and a founder effect. INTRODUCTION Pycnodysostosis is a rare autosomal recessive skeletal dysplasia due to mutations in the CTSK gene encoding for cathepsin K, a lysosomal cysteine protease. METHODS We report on the clinical, orodental, radiological, and molecular findings of eight patients, from seven unrelated Egyptian families with pycnodysostosis. RESULTS All patients were offspring of consanguineous parents and presented with the typical clinical picture of the disorder including short stature, delayed closure of fontanels, hypoplastic premaxilla, obtuse mandibular angle, and drum stick terminal phalanges with dysplastic nails. Their radiological findings showed increased bone density, acro-osteolysis, and open cranial sutures. Mutational analysis of CTSK gene revealed four distinct homozygous missense mutations including two novel ones, c.164A>C (p. K55T) and c.433G>A (p.V145M). The c.164A>C (p. K55T) mutation was recurrent in three unrelated patients who also shared similar haplotype, suggesting a founder effect. CONCLUSION Our findings expand the mutational spectrum of CTSK gene and emphasize the importance of full clinical examination of all body systems including thorough orodental evaluation in patients with pycnodysostosis.
Collapse
Affiliation(s)
- G A Otaify
- Clinical Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt.
| | - M S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - M I Mehrez
- Orodental Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - E Aboul-Ezz
- Dental Basic Science Department, Dental and Oral Research Division, National Research Centre, Cairo, Egypt
| | - M S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - M S Aglan
- Clinical Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - S A Temtamy
- Clinical Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| |
Collapse
|
29
|
Gorissen B, de Bruin A, Miranda-Bedate A, Korthagen N, Wolschrijn C, de Vries TJ, van Weeren R, Tryfonidou MA. Hypoxia negatively affects senescence in osteoclasts and delays osteoclastogenesis. J Cell Physiol 2018; 234:414-426. [PMID: 29932209 PMCID: PMC6220985 DOI: 10.1002/jcp.26511] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Cellular senescence, that is, the withdrawal from the cell cycle, combined with the acquirement of the senescence associated secretory phenotype has important roles during health and disease and is essential for tissue remodeling during embryonic development. Osteoclasts are multinucleated cells, responsible for bone resorption, and cell cycle arrest during osteoclastogenesis is well recognized. Therefore, the aim of this study was to investigate whether these cells should be considered senescent and to assess the influence of hypoxia on their potential senescence status. Osteoclastogenesis and bone resorption capacity of osteoclasts, cultured from CD14+ monocytes, were evaluated in two oxygen concentrations, normoxia (21% O2) and hypoxia (5% O2). Osteoclasts were profiled by using specific staining for proliferation and senescence markers, qPCR of a number of osteoclast and senescence‐related genes and a bone resorption assay. Results show that during in vitro osteoclastogenesis, osteoclasts heterogeneously obtain a senescent phenotype. Furthermore, osteoclastogenesis was delayed at hypoxic compared to normoxic conditions, without negatively affecting the bone resorption capacity. It is concluded that osteoclasts can be considered senescent, although senescence is not uniformly present in the osteoclast population. Hypoxia negatively affects the expression of some senescence markers. Based on the direct relationship between senescence and osteoclastogenesis, it is tempting to hypothesize that contents of the so‐called senescence associated secretory phenotype (SASP) not only play a functional role in matrix resorption, but also may regulate osteoclastogenesis.
Collapse
Affiliation(s)
- Ben Gorissen
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda-Bedate
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicoline Korthagen
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claudia Wolschrijn
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Teun J de Vries
- Department of Periodontology,, Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
McConnell M, Feng S, Chen W, Zhu G, Shen D, Ponnazhagan S, Deng L, Li YP. Osteoclast proton pump regulator Atp6v1c1 enhances breast cancer growth by activating the mTORC1 pathway and bone metastasis by increasing V-ATPase activity. Oncotarget 2018; 8:47675-47690. [PMID: 28504970 PMCID: PMC5564597 DOI: 10.18632/oncotarget.17544] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
It is known that V-ATPases (vacuolar H+-ATPase) are involved in breast cancer growth and metastasis. Part of this action is similar to their role in osteoclasts, where they’re involved in extracellular acidification and matrix destruction; however, the roles of their subunits in cancer cell proliferation, signaling, and other pro-tumor actions are not well established. Analysis of TCGA data shows that V-ATPase subunit Atp6v1c1 is overexpressed or amplified in 34% of human breast cancer cases, with a 2-fold decrease in survival at 12 years. Whereas other subunits, such as Atp6v1c2 and Atp6v0a3, are overexpressed or genomically amplified less often, 6% each respectively, and have less impact on survival. Experiments show that lentiviral-shRNA mediated ATP6v1c1 knockdown in 4T1 mouse mammary cancer cells significantly reduces orthotopic and intraosseous tumor growth. ATP6v1c1 knockdown also significantly reduces tumor stimulated bone resorption through osteoclastogenesis at the bone and metastasis in vivo, as well as V-ATPase activity, proliferation, and mTORC1 activation in vitro. To generalize the effects of ATP6v1c1 knockdown on proliferation and mTORC1 activation we used human cancer cell lines - MCF-7, MDA-MB-231, and MDA-MB-435s. ATP6V1C1 knockdown reduced cell proliferation and impaired mTORC1 pathway activation in cancer cells but not in the untransformed cell line C3H10T1/2. Our study reveals that V-ATPase activity may be mediated through mTORC1 and that ATP6v1c1 can be knocked down to block both V-ATPase and mTORC1 activity.
Collapse
Affiliation(s)
- Matthew McConnell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shengmei Feng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Shanghai Institute of Traumatology and Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guochun Zhu
- Shanghai Institute of Traumatology and Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Dejun Shen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Lianfu Deng
- Shanghai Institute of Traumatology and Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
31
|
Chen W, Zhu G, Jules J, Nguyen D, Li YP. Monocyte-Specific Knockout of C/ebpα Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebpα in Osteoclast Differentiation and Function. J Bone Miner Res 2018; 33:691-703. [PMID: 29149533 PMCID: PMC6240465 DOI: 10.1002/jbmr.3342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 01/26/2023]
Abstract
CCAAT/enhancer-binding protein α (C/ebpα) is critical for osteoclastogenesis by regulating osteoclast (OC) lineage commitment and is also important for OC differentiation and function in vitro. However, the role of C/ebpα in postnatal skeletal development has not been reported owing to lethality in C/ebpα-/- mice from hypoglycemia within 8 hours after birth. Herein, we generated conditional knockout mice by deleting the C/ebpα gene in monocyte via LysM-Cre to examine its role in OC differentiation and function. C/ebpαf/f LysM-Cre mice exhibited postnatal osteopetrosis due to impaired osteoclastogenesis, OC lineage priming defects, as well as defective OC differentiation and activity. Furthermore, our ex vivo analysis demonstrated that C/ebpα conditional deletion significantly reduced OC differentiation, maturation, and activity while mildly repressing macrophage development. At the molecular level, C/ebpα deficiency significantly suppresses the expressions of OC genes associated with early stages of osteoclastogenesis as well as genes associated with OC differentiation and activity. We also identified numerous C/ebpα critical cis-regulatory elements on the Cathepsin K promoter that allow C/ebpα to significantly upregulate Cathepsin K expression during OC differentiation and activity. In pathologically induced mouse model of osteoporosis, C/ebpα deficiency can protect mice against ovariectomy-induced bone loss, uncovering a central role for C/ebpα in osteolytic diseases. Collectively, our findings have further established C/ebpα as a promising therapeutic target for bone loss by concurrently targeting OC lineage priming, differentiation, and activity. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Guochun Zhu
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Joel Jules
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Diep Nguyen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Yi-Ping Li
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
32
|
Chen W, Zhu G, Tang J, Zhou HD, Li YP. C/ebpα controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1. J Pathol 2018; 244:271-282. [PMID: 29083488 PMCID: PMC6240466 DOI: 10.1002/path.5001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
Osteoclast lineage commitment and differentiation have been studied extensively, although the mechanism by which transcription factor(s) control osteoclast terminal differentiation, activation, and function remains unclear. CCAAT/enhancer-binding protein α (C/ebpα) has been reported to be a key regulator of osteoclast cell lineage commitment, yet C/ebpα's roles in osteoclast terminal differentiation, activation and function, and bone homeostasis, under physiological or pathological conditions, have not been studied because newborn C/ebpα-null mice die within several hours after birth. Furthermore, the function of C/ebpα in osteoclast terminal differentiation, activation, and function is largely unknown. Herein, we generated and analyzed an osteoclast-specific C/ebpα conditional knockout (CKO) mouse model via Ctsk-Cre mice and found that C/ebpα-deficient mice exhibited a severe osteopetrosis phenotype due to impaired osteoclast terminal differentiation, activation, and function, including mildly reduced osteoclast number, impaired osteoclast polarization, actin formation, and bone resorption, which demonstrated the novel function of C/ebpα in cell function and terminal differentiation. Interestingly, C/ebpα deficiency did not affect bone formation or monocyte/macrophage development. Our results further demonstrated that C/ebpα deficiency suppressed the expression of osteoclast functional genes, e.g. encoding cathepsin K (Ctsk), Atp6i (Tcirg1), and osteoclast regulator genes, e.g. encoding c-fos (Fos), and nuclear factor of activated T-cells 1 (Nfatc1), while having no effect on Pu.1 (Spi1) expression. Promoter activity mapping and ChIP assay defined the critical cis-regulatory element (CCRE) in the promoter region of Nfatc1, and also showed that the CCREs were directly associated with C/ebpα, which enhanced the promoter's activity. The deficiency of C/ebpα in osteoclasts completely blocked ovariectomy-induced bone loss, indicating that C/ebpα is a promising new target for the treatment of osteolytic diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Jun Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| |
Collapse
|
33
|
Jules J, Chen W, Feng X, Li YP. C/EBPα transcription factor is regulated by the RANK cytoplasmic 535IVVY 538 motif and stimulates osteoclastogenesis more strongly than c-Fos. J Biol Chem 2018; 293:1480-1492. [PMID: 29122885 PMCID: PMC5787821 DOI: 10.1074/jbc.m116.736009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/21/2017] [Indexed: 01/18/2023] Open
Abstract
Binding of receptor activator of NF-κB ligand (RANKL) to its receptor RANK on osteoclast (OC) precursors up-regulates c-Fos and CCAAT/enhancer-binding protein-α (C/EBPα), two critical OC transcription factors. However, the effects of c-Fos and C/EBPα on osteoclastogenesis have not been compared. Herein, we demonstrate that overexpression of c-Fos or C/EBPα in OC precursors up-regulates OC genes and initiates osteoclastogenesis independently of RANKL. However, although C/EBPα up-regulated c-Fos, c-Fos failed to up-regulate C/EBPα in OC precursors. Consistently, C/EBPα overexpression more strongly promoted OC differentiation than did c-Fos overexpression. RANK has a cytoplasmic 535IVVY538 (IVVY) motif that is essential for osteoclastogenesis, and we found that mutation of the IVVY motif blocked OC differentiation by partly inhibiting expression of C/EBPα but not expression of c-Fos. We therefore hypothesized that C/EBPα overexpression might rescue osteoclastogenesis in cells expressing the mutated IVVY motif. However, overexpression of C/EBPα or c-Fos failed to stimulate osteoclastogenesis in the mutant cells. Notably, the IVVY motif mutation abrogated OC gene expression compared with a vector control, suggesting that the IVVY motif might counteract OC inhibitors during osteoclastogenesis. Consistently, the IVVY motif mutant triggered up-regulation of recombinant recognition sequence-binding protein at the Jκ site (RBP-J) protein, a potent OC inhibitor. Mechanistically, C/EBPα or c-Fos overexpression in the mutant cells failed to control the up-regulated RBP-J expression, leading to suppression of OC genes. Accordingly, RBP-J silencing in the mutant cells rescued osteoclastogenesis with C/EBPα or c-Fos overexpression with C/EBPα exhibiting a stronger osteoclastogenic effect. Collectively, our findings indicate that C/EBPα is a stronger inducer of OC differentiation than c-Fos, partly via C/EBPα regulation by the RANK 535IVVY538 motif.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Wei Chen
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Xu Feng
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Yi-Ping Li
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
34
|
Shi X, Huang C, Xiao F, Liu W, Zeng J, Li X. Pycnodysostosis with novel gene mutation and sporadic medullary thyroid carcinoma: A case report. Medicine (Baltimore) 2017; 96:e8730. [PMID: 29390266 PMCID: PMC5815678 DOI: 10.1097/md.0000000000008730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
RATIONALE Pycnodysostosis is a rare autosomal recessive skeletal dysplasia caused by a mutation in the cathepsin K encoded by cathepsin K gene (CTSK). Medullary thyroid carcinoma (MTC) is also a relatively rare type of primary thyroid carcinoma. PATIENT CONCERNS A 31-year-old woman presenting a short stature and a palpable nodule in the front of her neck that had gradually increased in size during the last 2 years was referred to our department. She has experienced multiple fractures at lower limbs in the last 2 decades. DIAGNOSES The patient's clinical examination revealed short stature, underweight, a prominent forehead, stubby fingers, and a fixed nodule in the right thyroid lobe. Intraoral examination revealed multiple clinically malposed and missing teeth, as well as chronic periodontitis with a narrow and grooved palate. Radiographic examination revealed typical widely separated cranial sutures and an open anterior/posterior fontanel with an obtuse gonial angle, acroosteolysis, and osteosclerosis with narrowed medullary cavities. Ultrasonography of the thyroid gland showed a marked hypoechoic solid nodule in the right lobe in which tumor cell clusters were confirmed by ultrasound-guided fine needle aspiration biopsy and was suspected to be MTC. Laboratory tests revealed dramatically elevated serum calcitonin >2000 pg/L (reference range: 0-5 pg/L) and carcinoembryonic antigen (CEA) 134.37 ng/mL (reference range: 0-5 ng/mL). Genotypic screening revealed compound heterozygous mutations in the CTSK gene (c.158delA, P.Asn53Thr/c.C830T, P.Ala277Val) but no mutation associated with the familial forms of MTC. INTERVENTIONS The patient underwent a total thyroidectomy with right-sided functional neck dissection. OUTCOMES CEA and serum calcitonin decreased significantly postthyroidectomy, and no further fracture has been reported by the patient so far. LESSONS The present study is the first to report a rare case of the coexistence of pycnodysostosis with a compound CTSK gene mutation and sporadic MTC. Radiological techniques and gene analysis play key roles in the definitive diagnosis.
Collapse
Affiliation(s)
- Xiulin Shi
- Department of Endocrinology and Diabetes
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | | | - Wei Liu
- Department of Endocrinology and Diabetes
| | | | - Xuejun Li
- Department of Endocrinology and Diabetes
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
35
|
Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocr Rev 2017; 38:325-350. [PMID: 28651365 PMCID: PMC5546879 DOI: 10.1210/er.2015-1114] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Cathepsin K is a cysteine protease member of the cathepsin lysosomal protease family. Although cathepsin K is highly expressed in osteoclasts, lower levels of cathepsin K are also found in a variety of other tissues. Secretion of cathepsin K from the osteoclast into the sealed osteoclast-bone cell interface results in efficient degradation of type I collagen. The absence of cathepsin K activity in humans results in pycnodysostosis, characterized by increased bone mineral density and fractures. Pharmacologic cathepsin K inhibition leads to continuous increases in bone mineral density for ≤5 years of treatment and improves bone strength at the spine and hip. Compared with other antiresorptive agents, cathepsin K inhibition is nearly equally efficacious for reducing biochemical markers of bone resorption but comparatively less active for reducing bone formation markers. Despite multiple efforts to develop cathepsin K inhibitors, potential concerns related to off-target effects of the inhibitors against other cathepsins and cathepsin K inhibition at nonbone sites, including skin and perhaps cardiovascular and cerebrovascular sites, prolonged the regulatory approval process. A large multinational randomized, double-blind phase III study of odanacatib in postmenopausal women with osteoporosis was recently completed. Although that study demonstrated clinically relevant reductions in fractures at multiple sites, odanacatib was ultimately withdrawn from the regulatory approval process after it was found to be associated with an increased risk of cerebrovascular accidents. Nonetheless, the underlying biology and clinical effects of cathepsin K inhibition remain of considerable interest and could guide future therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Matthew T. Drake
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Bart L. Clarke
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Merry Jo Oursler
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
36
|
Bahuguna R, Jain A, Khan SA, Arvind MS. Role of odanacatib in reducing bone loss due to endodontic disease: An overview. J Int Soc Prev Community Dent 2017; 6:S175-S181. [PMID: 28217533 PMCID: PMC5285591 DOI: 10.4103/2231-0762.197183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims and Objectives: Through a comprehensive literature review, this article provides an overview of the potential role of odanacatib (ODN) in reducing bone loss due to endodontic disease. Materials and Methods: A literature review was performed in PubMed Central, MEDLINE, Cochrane Library, and EBSCO databases. The articles identified included those published between 2002 and 2016. Based on the predetermined inclusion and exclusion criteria, out of 237 articles found, 50 were selected for this review. Results: Cathepsin K (CstK), which is indispensible to the immune system, also plays an important role in osteoclastic bone resorption. ODN, which is an orally active, selective, and effective inhibitor of CstK, decreases bone resorption by selectively inhibiting proteolysis of matrix proteins by CstK, without affecting other osteoclastic activity or osteoblast viability. Conclusion: The goal of endodontic treatment is to achieve a clinically asymptomatic state along with formation of reparative bone. This process could take 6 months or longer, hence, an earlier reversal of the resorption process could lead to faster healing and resolution of the periapical lesion. Use of ODN can be of help in achieving this goal.
Collapse
Affiliation(s)
- Rachana Bahuguna
- Department of Pedodontics, RKDF Dental College and Research Centre, Bhopal, Madhya Pradesh, India
| | - Atul Jain
- Department of Conservative Dentistry and Endodontics, RKDF Dental College and Research Centre, Bhopal, Madhya Pradesh, India
| | - Suleman Abbas Khan
- Department of Pedodontics, RKDF Dental College and Research Centre, Bhopal, Madhya Pradesh, India
| | - M S Arvind
- Department of Conservative Dentistry and Endodontics, RKDF Dental College and Research Centre, Bhopal, Madhya Pradesh, India
| |
Collapse
|
37
|
Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun 2017; 8:13700. [PMID: 28102206 PMCID: PMC5253683 DOI: 10.1038/ncomms13700] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Many positive signalling pathways of osteoclastogenesis have been characterized, but negative signalling pathways are less well studied. Here we show by microarray and RNAi that guanine nucleotide-binding protein subunit α13 (Gα13) is a negative regulator of osteoclastogenesis. Osteoclast-lineage-specific Gna13 conditional knockout mice have a severe osteoporosis phenotype. Gna13-deficiency triggers a drastic increase in both osteoclast number and activity (hyper-activation), mechanistically through decreased RhoA activity and enhanced Akt/GSK3β/NFATc1 signalling. Consistently, Akt inhibition or RhoA activation rescues hyper-activation of Gna13-deficient osteoclasts, and RhoA inhibition mimics the osteoclast hyperactivation resulting from Gna13-deficiency. Notably, Gα13 gain-of-function inhibits Akt activation and osteoclastogenesis, and protects mice from pathological bone loss in disease models. Collectively, we reveal that Gα13 is a master endogenous negative switch for osteoclastogenesis through regulation of the RhoA/Akt/GSK3β/NFATc1 signalling pathway, and that manipulating Gα13 activity might be a therapeutic strategy for bone diseases.
Collapse
|
38
|
Jiang T, Liu F, Wang WG, Jiang X, Wen X, Hu KJ, Xue Y. Distribution of Cathepsin K in Late Stage of Tooth Germ Development and Its Function in Degrading Enamel Matrix Proteins in Mouse. PLoS One 2017; 12:e0169857. [PMID: 28095448 PMCID: PMC5240959 DOI: 10.1371/journal.pone.0169857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/25/2016] [Indexed: 01/24/2023] Open
Abstract
Cathepsin K (CTSK) is a member of cysteine proteinase family, and is predominantly expressed in osteoclastsfor degradationof bone matrix proteins. Given the similarity in physical properties of bone and dental mineralized tissues, including enamel, dentin and cementum, CTSK is likely to take part in mineralization process during odontogenesis. On the other hand, patients with pycnodysostosis caused by mutations of the CTSK gene displayedmultipledental abnormalities, such as hypoplasia of the enamel, obliterated pulp chambers, hypercementosis and periodontal disease. Thereforeitis necessary to study the metabolic role of CTSK in tooth matrix proteins. In this study, BALB/c mice at embryonic day 18 (E18), post-natal day 1 (P1), P5, P10 and P20 were used (5 mice at each time point)for systematic analyses of CTSK expression in the late stage of tooth germ development. We found that CTSK was abundantly expressed in the ameloblasts during secretory and maturation stages (P5 and P10) by immunohistochemistry stainings.During dentinogenesis, the staining was also intense in the mineralization stage (P5 and P10),but not detectable in the early stage of dentin formation (P1) and after tooth eruption (P20).Furthermore, through zymography and digestion test in vitro, CTSK was proved to be capable of hydrolyzing Emdogain and also cleaving Amelogenininto multiple products. Our resultsshed lights on revealing new functions of CTSK and pathogenesis of pycnodysostosis in oral tissues.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
| | - Fen Liu
- Department of Periodontology, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
- Department of Stomatology, Northwest Women's and Children's Hospital, Xi’an, P. R. China
| | - Wei-Guang Wang
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an, P. R. China
- Medical Unit, Troops PLA, Liaocheng, P. R. China
| | - Xin Jiang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
- Department of Oral and Maxillofacial Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Xuan Wen
- Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
| | - Kai-Jin Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
- * E-mail: (YX); (KH)
| | - Yang Xue
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
- * E-mail: (YX); (KH)
| |
Collapse
|
39
|
Ketterer S, Gomez-Auli A, Hillebrand LE, Petrera A, Ketscher A, Reinheckel T. Inherited diseases caused by mutations in cathepsin protease genes. FEBS J 2017; 284:1437-1454. [PMID: 27926992 DOI: 10.1111/febs.13980] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
Lysosomal cathepsins are proteolytic enzymes increasingly recognized as prognostic markers and potential therapeutic targets in a variety of diseases. In those conditions, the cathepsins are mostly overexpressed, thereby driving the respective pathogenic processes. Although less known, there are also diseases with a genetic deficiency of cathepsins. In fact, nowadays 6 of the 15 human proteases called 'cathepsins' have been linked to inherited syndromes. However, only three of these syndromes are typical lysosomal storage diseases, while the others are apparently caused by defective cleavage of specific protein substrates. Here, we will provide an introduction on lysosomal cathepsins, followed by a brief description of the clinical symptoms of the various genetic diseases. For each disease, we focus on the known mutations of which many have been only recently identified by modern genome sequencing approaches. We further discuss the effect of the respective mutation on protease structure and activity, the resulting pathogenesis, and possible therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie Ketterer
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Germany
| | - Alejandro Gomez-Auli
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany
| | - Larissa E Hillebrand
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Agnese Petrera
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany
| | - Anett Ketscher
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany
| | - Thomas Reinheckel
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| |
Collapse
|
40
|
Mukherjee K, Chattopadhyay N. Pharmacological inhibition of cathepsin K: A promising novel approach for postmenopausal osteoporosis therapy. Biochem Pharmacol 2016; 117:10-9. [DOI: 10.1016/j.bcp.2016.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
|
41
|
Chen W, Gao B, Hao L, Zhu G, Jules J, Macdougall MJ, Han X, Zhou X, Li YP. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation. J Periodontal Res 2016; 51:647-60. [PMID: 26754272 PMCID: PMC5482270 DOI: 10.1111/jre.12345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a severe chronic inflammatory disease and one of the most prevalent non-communicable chronic diseases that affects the majority of the world's adult population. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this dreadful disease. In this study, we utilized adeno-associated virus (AAV) expressing cathepsin K (Ctsk) small hairpin (sh)RNA (AAV-sh-Ctsk) to silence Ctsk in vivo and subsequently evaluated its impact in periodontitis as a potential therapeutic strategy for this disease. MATERIAL AND METHODS We used a known mouse model of periodontitis, in which wild-type BALB/cJ mice were infected with Porphyromonas gingivalis W50 in the maxillary and mandibular periodontium to induce the disease. AAV-sh-Ctsk was then administrated locally into the periodontal tissues in vivo, followed by analyses to assess progression of the disease. RESULTS AAV-mediated Ctsk silencing drastically protected mice (> 80%) from P. gingivalis-induced bone resorption by osteoclasts. In addition, AAV-sh-Ctsk administration drastically reduced inflammation by impacting the expression of many inflammatory cytokines as well as T-cell and dendritic cell numbers in periodontal lesions. CONCLUSION AAV-mediated Ctsk silencing can simultaneously target both the inflammation and bone resorption associated with periodontitis through its inhibitory effect on immune cells and osteoclast function. Thereby, AAV-sh-Ctsk administration can efficiently protect against periodontal tissue damage and alveolar bone loss, establishing this AAV-mediated local silencing of Ctsk as an important therapeutic strategy for effectively treating periodontal disease.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Bo Gao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Joel Jules
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Mary J. Macdougall
- Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, SDB Room 702, 1919 7 Avenue South, Birmingham AL 35233, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Disease, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Xuedong Zhou
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| |
Collapse
|
42
|
Cline-Smith A, Gibbs J, Shashkova E, Buchwald ZS, Novack DV, Aurora R. Pulsed low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis. JCI Insight 2016; 1. [PMID: 27570837 DOI: 10.1172/jci.insight.88839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A number of studies in model animal systems and in the clinic have established that RANKL promotes bone resorption. Paradoxically, we found that pulsing ovariectomized mice with low-dose RANKL suppressed bone resorption, decreased the levels of proinflammatory effector T cells and led to increased bone mass. This effect of RANKL is mediated through the induction of FoxP3+CD25+ regulatory CD8+ T cells (TcREG) by osteoclasts. Here, we show that pulses of low-dose RANKL are needed to induce TcREG, as continuous infusion of identical doses of RANKL by pump did not induce TcREG. We also show that low-dose RANKL can induce TcREG at 2, 3, 6, and 10 weeks after ovariectomy. Our results show that low-dose RANKL treatment in ovariectomized mice is optimal at once-per-month doses to maintain the bone mass. Finally, we found that treatment of ovariectomized mice with the Cathepsin K inhibitor odanacatib also blocked TcREG induction by low-dose RANKL. We interpret this result to indicate that antigens presented to CD8+ T cells by osteoclasts are derived from the bone protein matrix because Cathepsin K degrades collagen in the bone. Taken together, our studies provide a basis for using low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Anna Cline-Smith
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jesse Gibbs
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elena Shashkova
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Zachary S Buchwald
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Deborah V Novack
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
43
|
Koehne T, Markmann S, Schweizer M, Muschol N, Friedrich RE, Hagel C, Glatzel M, Kahl-Nieke B, Amling M, Schinke T, Braulke T. Mannose 6-phosphate-dependent targeting of lysosomal enzymes is required for normal craniofacial and dental development. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1570-80. [PMID: 27239697 DOI: 10.1016/j.bbadis.2016.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/04/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Mucolipidosis II (MLII) is a severe systemic genetic disorder caused by defects in mannose 6-phosphate-dependent targeting of multiple lysosomal hydrolases and subsequent lysosomal accumulation of non-degraded material. MLII patients exhibit marked facial coarseness and gingival overgrowth soon after birth, accompanied with delayed tooth eruption and dental infections. To examine the pathomechanisms of early craniofacial and dental abnormalities, we analyzed mice with an MLII patient mutation that mimic the clinical and biochemical symptoms of MLII patients. The mouse data were compared with clinical and histological data of gingiva and teeth from MLII patients. Here, we report that progressive thickening and porosity of calvarial and mandibular bones, accompanied by elevated bone loss due to 2-fold higher number of osteoclasts cause the characteristic craniofacial phenotype in MLII. The analysis of postnatal tooth development by microcomputed tomography imaging and histology revealed normal dentin and enamel formation, and increased cementum thickness accompanied with accumulation of storage material in cementoblasts of MLII mice. Massive accumulation of storage material in subepithelial cells as well as disorganization of collagen fibrils led to gingival hypertrophy. Electron and immunofluorescence microscopy, together with (35)S-sulfate incorporation experiments revealed the accumulation of non-degraded material, non-esterified cholesterol and glycosaminoglycans in gingival fibroblasts, which was accompanied by missorting of various lysosomal proteins (α-fucosidase 1, cathepsin L and Z, Npc2, α-l-iduronidase). Our study shows that MLII mice closely mimic the craniofacial and dental phenotype of MLII patients and reveals the critical role of mannose 6-phosphate-dependent targeting of lysosomal proteins for alveolar bone, cementum and gingiva homeostasis.
Collapse
Affiliation(s)
- Till Koehne
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Osteology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandra Markmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michaela Schweizer
- ZMNH, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicole Muschol
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Amling
- Department of Osteology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
44
|
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4:16009. [PMID: 27563484 PMCID: PMC4985055 DOI: 10.1038/boneres.2016.9] [Citation(s) in RCA: 1035] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Guiqian Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA; Department of neurology, Bruke Medical Research Institute, Weil Cornell Medicine of Cornell University, White Plains, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| |
Collapse
|
45
|
Jules J, Chen W, Feng X, Li YP. CCAAT/Enhancer-binding Protein α (C/EBPα) Is Important for Osteoclast Differentiation and Activity. J Biol Chem 2016; 291:16390-403. [PMID: 27129246 DOI: 10.1074/jbc.m115.674598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBPα) can appoint mouse bone marrow (MBM) cells to the osteoclast (OC) lineage for osteoclastogenesis. However, whether C/EBPα is also involved in OC differentiation and activity is unknown. Here we demonstrated that C/EBPα overexpression in MBM cells can promote OC differentiation and strongly induce the expression of the OC genes encoding the nuclear factor of activated T-cells, c1 (NFATc1), cathepsin K (Cstk), and tartrate-resistant acid phosphatase 5 (TRAP) with receptor activator of NF-κB ligand-evoked OC lineage priming. Furthermore, while investigating the specific stage of OC differentiation that is regulated by C/EBPα, our gene overexpression studies revealed that, although C/EBPα plays a stronger role in the early stage of OC differentiation, it is also involved in the later stage. Accordingly, C/EBPα knockdown drastically inhibits osteoclastogenesis and markedly abrogates the expression of NFATc1, Cstk, and TRAP during OC differentiation. Consistently, C/EBPα silencing revealed that, although lack of C/EBPα affects all stages of OC differentiation, it has more impact on the early stage. Importantly, we showed that ectopic expression of rat C/EBPα restores osteoclastogenesis in C/EBPα-depleted MBM cells. Furthermore, our subsequent functional assays showed that C/EBPα exhibits a dispensable role on actin ring formation by mature OCs but is critically involved in bone resorption by stimulating extracellular acidification and regulating cell survival. We revealed that C/EBPα is important for receptor activator of NF-κB ligand-induced Akt activation, which is crucial for OC survival. Collectively, these results indicate that C/EBPα functions throughout osteoclastogenesis as well as in OC function. This study provides additional understanding of the roles of C/EBPα in OC biology.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Wei Chen
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Xu Feng
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Yi-Ping Li
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
46
|
Duong LT, Leung AT, Langdahl B. Cathepsin K Inhibition: A New Mechanism for the Treatment of Osteoporosis. Calcif Tissue Int 2016; 98:381-97. [PMID: 26335104 DOI: 10.1007/s00223-015-0051-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
Cathepsin K (CatK), a cysteine protease, is highly expressed by osteoclasts and very efficiently degrades type I collagen, the major component of the organic bone matrix. Robust genetic and pharmacological preclinical studies consistently demonstrate that CatK inhibition increases bone mass, improves bone microarchitecture and strength. Recent advances in the understanding of the molecular and cellular mechanisms involved in bone modeling and remodeling suggest that inhibition of CatK decreases bone resorption, but increases the number of cells of osteoclast lineage. This in turn maintains the signals for bone formation, and perhaps may even increase bone formation on some cortical surfaces. Several CatK inhibitors, including relacatib, balicatib, odanacatib and ONO-5334 had entered clinical development for metabolic bone disorders with increased bone resorption, such as postmenopausal osteoporosis. However, odanacatib (ODN) is the only candidate continuing in development. ODN is a highly selective oral CatK inhibitor dosed once-weekly in humans. In a Phase 2 clinical trial, postmenopausal women treated with ODN had sustained reductions of bone resorption markers, while bone formation markers returned to normal after an initial decline within the first 2 years on treatment. In turn areal bone mineral density increased continuously at both spine and hip for up to 5 years. ODN has also been demonstrated to improve bone mass in women with postmenopausal osteoporosis previously treated with alendronate and in men with osteoporosis. ODN is currently in a worldwide Phase 3 fracture outcome trial for the treatment of postmenopausal osteoporosis with interim results supporting its anti-fracture efficacy at the spine, hip and non-vertebral sites.
Collapse
Affiliation(s)
| | | | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
47
|
Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: Commonalities and differences. Expert Opin Drug Discov 2016; 11:457-72. [DOI: 10.1517/17460441.2016.1160884] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Istanbul, Turkey
| |
Collapse
|
48
|
Wen X, Yi LZ, Liu F, Wei JH, Xue Y. The role of cathepsin K in oral and maxillofacial disorders. Oral Dis 2015; 22:109-15. [PMID: 26458004 DOI: 10.1111/odi.12378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023]
Abstract
Cathepsin K (CTSK) was thought to be a collagenase, specifically expressed by osteoclasts, and played an important role in bone resorption. However, more and more research found that CTSK was expressed in more extensive cells, tissues, and organs. It may not only participate in regulating human physiological activity, but also be closely related to a variety of disease. In this review, we highlight the relationship between CTSK and oral and maxillofacial disorders on the following three aspects: oral and maxillofacial abnormities in patients with pycnodysostosis caused by CTSK mutations, oral and maxillofacial abnormities in Ctsk(-/-) mice, and the role of CTSK in oral and maxillofacial diseases, including periodontitis, peri-implantitis, tooth movement, oral and maxillofacial tumor, root resorption, and periapical disease.
Collapse
Affiliation(s)
- X Wen
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L-z Yi
- State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - F Liu
- Department of Stomatology, Northwest Women's and Children's Hospital, Xi'an, China
| | - J-h Wei
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y Xue
- State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
49
|
Manninen O, Puolakkainen T, Lehto J, Harittu E, Kallonen A, Peura M, Laitala-Leinonen T, Kopra O, Kiviranta R, Lehesjoki AE. Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy. Bone Rep 2015; 3:76-82. [PMID: 28377970 PMCID: PMC5365244 DOI: 10.1016/j.bonr.2015.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/19/2015] [Accepted: 10/04/2015] [Indexed: 01/09/2023] Open
Abstract
Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB) underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb−/−) model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb−/− mice. Histology from Cstb−/− mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb−/− group. Cstb−/− osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb−/− mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation. μCT reveals changes in trabecular bone of the Cstb−/− mouse model of EPM1, compatible with findings in human patients. Bone histology in Cstb−/− mice shows lower osteoclast number and thinner growth plates in long bones. Cultured osteoclasts of Cstb−/− mice show decreased size and number of mature osteoclasts with impaired bone resorption. Impaired osteoclast formation and resorption are likely to underlie the bone phenotype associated with CSTB deficiency.
Collapse
Affiliation(s)
- Otto Manninen
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | | | - Jemina Lehto
- Department of Medicine, University of Turku, 20520 Turku, Finland
| | - Elina Harittu
- Department of Anatomy, University of Turku, 20520 Turku, Finland
| | - Aki Kallonen
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Marko Peura
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | | | - Outi Kopra
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Riku Kiviranta
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
50
|
Li S, Hao L, Wang L, Lu Y, Li Q, Zhu Z, Shao JZ, Chen W. Targeting Atp6v1c1 Prevents Inflammation and Bone Erosion Caused by Periodontitis and Reveals Its Critical Function in Osteoimmunology. PLoS One 2015; 10:e0134903. [PMID: 26274612 PMCID: PMC4537256 DOI: 10.1371/journal.pone.0134903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease (Periodontitis) is a serious disease that affects a majority of adult Americans and is associated with other systemic diseases, including diabetes, rheumatoid arthritis, and other inflammatory diseases. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this pervasive and destructive disease. In this study, we utilized novel adeno-associated virus (AAV)-mediated Atp6v1c1 knockdown gene therapy to treat bone erosion and inflammatory caused by periodontitis in mouse model. Atp6v1c1 is a subunit of the V-ATPase complex and regulator of the assembly of the V0 and V1 domains of the V-ATPase complex. We demonstrated previously that Atp6v1c1 has an essential function in osteoclast mediated bone resorption. We hypothesized that Atp6v1c1 may be an ideal target to prevent the bone erosion and inflammation caused by periodontitis. To test the hypothesis, we employed AAV RNAi knockdown of Atp6v1c1 gene expression to prevent bone erosion and gingival inflammation simultaneously. We found that lesion-specific injection of AAV-shRNA-Atp6v1c1 into the periodontal disease lesions protected against bone erosion (>85%) and gingival inflammation caused by P. gingivalis W50 infection. AAV-mediated Atp6v1c1 knockdown dramatically reduced osteoclast numbers and inhibited the infiltration of dendritic cells and macrophages in the bacteria-induced inflammatory lesions in periodontitis. Silencing of Atp6v1c1 expression also prevented the expressions of osteoclast-related genes and pro-inflammatory cytokine genes. Our data suggests that AAV-shRNA-Atp6v1c1 treatment can significantly attenuate the bone erosion and inflammation caused by periodontitis, indicating the dual function of AAV-shRNA-Atp6v1c1 as an inhibitor of bone erosion mediated by osteoclasts, and as an inhibitor of inflammation through down-regulation of pro-inflammatory cytokine expression. This study demonstrated that Atp6v1c1 RNAi knockdown gene therapy mediated by AAV-shRNA-Atp6v1c1 is a promising novel therapeutic approach for the treatment of bone erosion and inflammatory related diseases, such as periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Sheng Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Lin Wang
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Qian Li
- Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Zheng Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jian-Zhong Shao
- Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- * E-mail:
| |
Collapse
|