1
|
Baville E, Carstanjen B, Thomas-Cancian A, Calgaro A, Bonnet N, Tiret L, Gache V, Abitbol M. Inherited non-syndromic polydactyly in a Berber and Arabian-Berber horse family. Equine Vet J 2025. [PMID: 39853805 DOI: 10.1111/evj.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND Supernumerary digits, or polydactyly, have been described in various species including humans, wild and domestic animals. In horses, it represents the most common congenital limb malformation, which has only been described in isolated cases or nuclear families. Molecular aetiology has not been reported. OBJECTIVES To characterise the phenotype of a non-syndromic pre-axial polydactyly in a horse family and to decipher the inheritance pattern. STUDY DESIGN Retrospective study. METHODS Forty-three members of the family including a previously reported polydactyl case were recruited. Available clinical and radiographical findings from the initial case and its family members were summarised and karyotypic examinations of the horses were performed. RESULTS On clinical examination, eight horses (including the previously reported case) had one or two supernumerary digits on their forelimbs and one additional case was diagnosed using radiography. Additional digits were located on the medial side of the forelimbs in all nine polydactyl horses. Radiography highlighted variable expression of the defect, which was either unilateral or bilateral. Variations were observed in the number of supernumerary phalanges, the level of development of a rudimentary metacarpal bone, the individualisation of a supernumerary digit and the existence of a rudimentary hoof. All nine affected horses were related to a single stallion. Pedigree analysis revealed that the most likely inheritance pattern was autosomal dominant with incomplete penetrance and variable expressivity. A more complex mode could not be ruled out. MAIN LIMITATIONS Restricted recruitment of the family members due to confidentiality constraints and to international dispersal of the relatives, quality of radiographs. CONCLUSIONS We describe an equine preaxial polydactyly in a Berber and Arabian-Berber family most likely with autosomal dominant inheritance with incomplete penetrance. This is the first description of an inherited non-syndromic polydactyly in horses.
Collapse
Affiliation(s)
- Ella Baville
- Université de Lyon, VetAgro Sup, Marcy l'Etoile, France
| | | | | | - Anne Calgaro
- Université de Toulouse, Genphyse, INRAE, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Nathale Bonnet
- Université de Toulouse, Genphyse, INRAE, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Laurent Tiret
- Université Paris-Est Créteil, INSERM, EFS, EnvA, IMRB Team Relaix, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Vincent Gache
- Université de Lyon, UCBL1 CNRS UMR5261, INSERM U1315, Institut NeuroMyoGene INMG-PNMG Team MNCA, Lyon, France
| | - Marie Abitbol
- Université de Lyon, VetAgro Sup, Marcy l'Etoile, France
- Université de Lyon, UCBL1 CNRS UMR5261, INSERM U1315, Institut NeuroMyoGene INMG-PNMG Team MNCA, Lyon, France
| |
Collapse
|
2
|
Hollingsworth EW, Liu TA, Alcantara JA, Chen CX, Jacinto SH, Kvon EZ. Rapid and quantitative functional interrogation of human enhancer variant activity in live mice. Nat Commun 2025; 16:409. [PMID: 39762235 PMCID: PMC11704014 DOI: 10.1038/s41467-024-55500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterise gene expression in cells where the enhancer is normally and ectopically active, revealing candidate pathways that may lead to enhancer misregulation. Finally, we demonstrate the widespread utility of dual-enSERT by testing the effects of fifteen previously uncharacterised rare and common non-coding variants linked to neurodevelopmental disorders. In doing so we identify variants that reproducibly alter the in vivo activity of OTX2 and MIR9-2 brain enhancers, implicating them in autism. Dual-enSERT thus allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Taryn A Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Joshua A Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Cindy X Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Sandra H Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
Lyons LA. Genetic Testing: practical dos and don'ts for cats. J Feline Med Surg 2024; 26:1098612X241303603. [PMID: 39648935 PMCID: PMC11626677 DOI: 10.1177/1098612x241303603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
PRACTICAL RELEVANCE A significant number of genetic variants are known for domestic cats and their breeds. Several DNA variants are causal for inherited diseases and most of the variants for phenotypic traits have been discovered. Genetic testing for these variants can support breeding decisions for both health and aesthetics. Genetic testing can also be used to monitor for the health of, or provide targeted therapy for, an individual cat and, more widely, can progress scientific discovery. Technological improvements have led to the development of large panel genetic testing, which can provide many DNA results for a low cost. CLINICAL CHALLENGES With the development of large panel genetic testing has come companies that can carry out this service, but which company is best to use may not always be clear - more tests are not necessarily better. Usage and interpretation of genetic data and how the results are presented by commercial laboratories may also be confusing for veterinary practitioners and owners, leading to misinterpretations for healthcare, improper genetic counseling, and poor breed and population management. EVIDENCE BASE The information provided in this review draws on scientific articles reporting the discovery, and discussing the meaning and implications, of DNA variants, as well as information from the Online Mendelian Inheritance in Animals (OMIA) website, which documents all the DNA variant discoveries. The author also provides suggestions and recommendations based on her personal experience and expertise in feline genetics. AUDIENCE This review is aimed at general practitioners and discusses the genetic tests that can be performed, what to consider when choosing a testing laboratory and provides genetic testing counseling advice. Practitioners with a high proportion of cat breeder clientele will especially benefit from this review and all veterinarians should realize that genetic testing and genomic medicine should be part of diagnostic plans and healthcare for their cat clients.
Collapse
Affiliation(s)
- Leslie A Lyons
- Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Bower G, Hollingsworth EW, Jacinto S, Clock B, Cao K, Liu M, Dziulko A, Alcaina-Caro A, Xu Q, Skowronska-Krawczyk D, Lopez-Rios J, Dickel DE, Bardet AF, Pennacchio LA, Visel A, Kvon EZ. Conserved Cis-Acting Range Extender Element Mediates Extreme Long-Range Enhancer Activity in Mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595809. [PMID: 38826394 PMCID: PMC11142232 DOI: 10.1101/2024.05.26.595809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
While most mammalian enhancers regulate their cognate promoters over moderate distances of tens of kilobases (kb), some enhancers act over distances in the megabase range. The sequence features enabling such extreme-distance enhancer-promoter interactions remain elusive. Here, we used in vivo enhancer replacement experiments in mice to show that short- and medium-range enhancers cannot initiate gene expression at extreme-distance range. We uncover a novel conserved cis-acting element, Range EXtender (REX), that confers extreme-distance regulatory activity and is located next to a long-range enhancer of Sall1. The REX element itself has no endogenous enhancer activity. However, addition of the REX to other short- and mid-range enhancers substantially increases their genomic interaction range. In the most extreme example observed, addition of the REX increased the range of an enhancer by an order of magnitude, from its native 71kb to 840kb. The REX element contains highly conserved [C/T]AATTA homeodomain motifs. These motifs are enriched around long-range limb enhancers genome-wide, including the ZRS, a benchmark long-range limb enhancer of Shh. Mutating the [C/T]AATTA motifs within the ZRS does not affect its limb-specific enhancer activity at short range, but selectively abolishes its long-range activity, resulting in severe limb reduction in knock-in mice. In summary, we identify a sequence signature globally associated with long-range enhancer-promoter interactions and describe a prototypical REX element that is necessary and sufficient to confer extreme-distance gene activation by remote enhancers.
Collapse
Affiliation(s)
- Grace Bower
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
- Medical Scientist Training Program, University of California, Irvine, CA 92967, USA
| | - Sandra Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Benjamin Clock
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Kaitlyn Cao
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Mandy Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Adam Dziulko
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Qianlan Xu
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anaïs F. Bardet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U1258, 67400 Illkirch, France
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| |
Collapse
|
5
|
Swaminathan U, Daigavane S, Gupta N. Polydactyly-Myopia Syndrome: Genetic and Ophthalmologic Perspectives. Cureus 2024; 16:e58235. [PMID: 38745815 PMCID: PMC11091933 DOI: 10.7759/cureus.58235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024] Open
Abstract
Polydactyly-myopia syndrome is a rare genetic condition characterized by the co-occurrence of polydactyly and myopia. Herein, we present the case of a 28-year-old Muslim male, born of consanguineous parents, who presented with complaints of diminished vision since childhood. Ophthalmologic examination revealed severe myopia with characteristic fundus changes indicative of high myopia. Additionally, the patient exhibited polydactyly in all limbs, with a positive family history of both polydactyly and myopia. This case underscores the importance of recognizing and managing rare syndromes to provide appropriate genetic counseling and clinical care. Further research is warranted to elucidate the underlying genetic mechanisms and optimize therapeutic strategies for polydactyly-myopia syndrome. Awareness of this syndrome among healthcare providers is essential to facilitate early diagnosis and intervention for affected individuals and their families.
Collapse
Affiliation(s)
- Uma Swaminathan
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Nivesh Gupta
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
6
|
Lim F, Solvason JJ, Ryan GE, Le SH, Jindal GA, Steffen P, Jandu SK, Farley EK. Affinity-optimizing enhancer variants disrupt development. Nature 2024; 626:151-159. [PMID: 38233525 PMCID: PMC10830414 DOI: 10.1038/s41586-023-06922-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Enhancers control the location and timing of gene expression and contain the majority of variants associated with disease1-3. The ZRS is arguably the most well-studied vertebrate enhancer and mediates the expression of Shh in the developing limb4. Thirty-one human single-nucleotide variants (SNVs) within the ZRS are associated with polydactyly4-6. However, how this enhancer encodes tissue-specific activity, and the mechanisms by which SNVs alter the number of digits, are poorly understood. Here we show that the ETS sites within the ZRS are low affinity, and identify a functional ETS site, ETS-A, with extremely low affinity. Two human SNVs and a synthetic variant optimize the binding affinity of ETS-A subtly from 15% to around 25% relative to the strongest ETS binding sequence, and cause polydactyly with the same penetrance and severity. A greater increase in affinity results in phenotypes that are more penetrant and more severe. Affinity-optimizing SNVs in other ETS sites in the ZRS, as well as in ETS, interferon regulatory factor (IRF), HOX and activator protein 1 (AP-1) sites within a wide variety of enhancers, cause gain-of-function gene expression. The prevalence of binding sites with suboptimal affinity in enhancers creates a vulnerability in genomes whereby SNVs that optimize affinity, even slightly, can be pathogenic. Searching for affinity-optimizing SNVs in genomes could provide a mechanistic approach to identify causal variants that underlie enhanceropathies.
Collapse
Affiliation(s)
- Fabian Lim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Joe J Solvason
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Genevieve E Ryan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sophia H Le
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Granton A Jindal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Paige Steffen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Simran K Jandu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emma K Farley
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Hollingsworth EW, Liu TA, Jacinto SH, Chen CX, Alcantara JA, Kvon EZ. Rapid and Quantitative Functional Interrogation of Human Enhancer Variant Activity in Live Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570890. [PMID: 38105996 PMCID: PMC10723448 DOI: 10.1101/2023.12.10.570890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Functional analysis of non-coding variants associated with human congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice of any genetic background. We use this new technology to examine and measure the gain- and loss-of-function effects of enhancer variants linked to limb polydactyly, autism, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterize variant enhancer alleles at cellular resolution, thereby implicating candidate molecular pathways in pathogenic enhancer misregulation. We further show that independent, polydactyly-linked enhancer variants lead to ectopic expression in the same cell populations, indicating shared genetic mechanisms underlying non-coding variant pathogenesis. Finally, we streamline dual-enSERT for analysis in F0 animals by placing both reporters on the same transgene separated by a synthetic insulator. Dual-enSERT allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Taryn A. Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Sandra H. Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Cindy X. Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Joshua A. Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Jindal GA, Bantle AT, Solvason JJ, Grudzien JL, D'Antonio-Chronowska A, Lim F, Le SH, Song BP, Ragsac MF, Klie A, Larsen RO, Frazer KA, Farley EK. Single-nucleotide variants within heart enhancers increase binding affinity and disrupt heart development. Dev Cell 2023; 58:2206-2216.e5. [PMID: 37848026 PMCID: PMC10720985 DOI: 10.1016/j.devcel.2023.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Transcriptional enhancers direct precise gene expression patterns during development and harbor the majority of variants associated with phenotypic diversity, evolutionary adaptations, and disease. Pinpointing which enhancer variants contribute to changes in gene expression and phenotypes is a major challenge. Here, we find that suboptimal or low-affinity binding sites are necessary for precise gene expression during heart development. Single-nucleotide variants (SNVs) can optimize the affinity of ETS binding sites, causing gain-of-function (GOF) gene expression, cell migration defects, and phenotypes as severe as extra beating hearts in the marine chordate Ciona robusta. In human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a SNV within a human GATA4 enhancer increases ETS binding affinity and causes GOF enhancer activity. The prevalence of suboptimal-affinity sites within enhancers creates a vulnerability whereby affinity-optimizing SNVs can lead to GOF gene expression, changes in cellular identity, and organismal-level phenotypes that could contribute to the evolution of novel traits or diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis T Bantle
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joe J Solvason
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Fabian Lim
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin P Song
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Klie
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reid O Larsen
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Kaucka M. Cis-regulatory landscapes in the evolution and development of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220079. [PMID: 37183897 PMCID: PMC10184250 DOI: 10.1098/rstb.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Extensive morphological variation found in mammals reflects the wide spectrum of their ecological adaptations. The highest morphological diversity is present in the craniofacial region, where geometry is mainly dictated by the bony skull. Mammalian craniofacial development represents complex multistep processes governed by numerous conserved genes that require precise spatio-temporal control. A central question in contemporary evolutionary biology is how a defined set of conserved genes can orchestrate formation of fundamentally different structures, and therefore how morphological variability arises. In principle, differential gene expression patterns during development are the source of morphological variation. With the emergence of multicellular organisms, precise regulation of gene expression in time and space is attributed to cis-regulatory elements. These elements contribute to higher-order chromatin structure and together with trans-acting factors control transcriptional landscapes that underlie intricate morphogenetic processes. Consequently, divergence in cis-regulation is believed to rewire existing gene regulatory networks and form the core of morphological evolution. This review outlines the fundamental principles of the genetic code and genomic regulation interplay during development. Recent work that deepened our comprehension of cis-regulatory element origin, divergence and function is presented here to illustrate the state-of-the-art research that uncovered the principles of morphological novelty. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
10
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Zhu M, Tabin CJ. The role of timing in the development and evolution of the limb. Front Cell Dev Biol 2023; 11:1135519. [PMID: 37200627 PMCID: PMC10185760 DOI: 10.3389/fcell.2023.1135519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
The term heterochrony was coined to describe changes in the timing of developmental processes relative to an ancestral state. Limb development is a well-suited system to address the contribution of heterochrony to morphological evolution. We illustrate how timing mechanisms have been used to establish the correct pattern of the limb and provide cases where natural variations in timing have led to changes in limb morphology.
Collapse
|
12
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Whole exome and genome sequencing in mendelian disorders: a diagnostic and health economic analysis. Eur J Hum Genet 2022; 30:1121-1131. [PMID: 35970915 PMCID: PMC9553973 DOI: 10.1038/s41431-022-01162-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/01/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022] Open
Abstract
Whole genome sequencing (WGS) improves Mendelian disorder diagnosis over whole exome sequencing (WES); however, additional diagnostic yields and costs remain undefined. We investigated differences between diagnostic and cost outcomes of WGS and WES in a cohort with suspected Mendelian disorders. WGS was performed in 38 WES-negative families derived from a 64 family Mendelian cohort that previously underwent WES. For new WGS diagnoses, contemporary WES reanalysis determined whether variants were diagnosable by original WES or unique to WGS. Diagnostic rates were estimated for WES and WGS to simulate outcomes if both had been applied to the 64 families. Diagnostic costs were calculated for various genomic testing scenarios. WGS diagnosed 34% (13/38) of WES-negative families. However, contemporary WES reanalysis on average 2 years later would have diagnosed 18% (7/38 families) resulting in a WGS-specific diagnostic yield of 19% (6/31 remaining families). In WES-negative families, the incremental cost per additional diagnosis using WGS following WES reanalysis was AU$36,710 (£19,407;US$23,727) and WGS alone was AU$41,916 (£22,159;US$27,093) compared to WES-reanalysis. When we simulated the use of WGS alone as an initial genomic test, the incremental cost for each additional diagnosis was AU$29,708 (£15,705;US$19,201) whereas contemporary WES followed by WGS was AU$36,710 (£19,407;US$23,727) compared to contemporary WES. Our findings confirm that WGS is the optimal genomic test choice for maximal diagnosis in Mendelian disorders. However, accepting a small reduction in diagnostic yield, WES with subsequent reanalysis confers the lowest costs. Whether WES or WGS is utilised will depend on clinical scenario and local resourcing and availability.
Collapse
|
14
|
Koyano-Nakagawa N, Gong W, Das S, Theisen JWM, Swanholm TB, Van Ly D, Dsouza N, Singh BN, Kawakami H, Young S, Chen KQ, Kawakami Y, Garry DJ. Etv2 regulates enhancer chromatin status to initiate Shh expression in the limb bud. Nat Commun 2022; 13:4221. [PMID: 35864091 PMCID: PMC9304341 DOI: 10.1038/s41467-022-31848-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Sonic hedgehog (Shh) is essential for limb development, and the mechanisms that govern the propagation and maintenance of its expression has been well studied; however, the mechanisms that govern the initiation of Shh expression are incomplete. Here we report that ETV2 initiates Shh expression by changing the chromatin status of the developmental limb enhancer, ZRS. Etv2 expression precedes Shh in limb buds, and Etv2 inactivation prevents the opening of limb chromatin, including the ZRS, resulting in an absence of Shh expression. Etv2 overexpression in limb buds causes nucleosomal displacement at the ZRS, ectopic Shh expression, and polydactyly. Areas of nucleosome displacement coincide with ETS binding site clusters. ETV2 also functions as a transcriptional activator of ZRS and is antagonized by ETV4/5 repressors. Known human polydactyl mutations introduce novel ETV2 binding sites in the ZRS, suggesting that ETV2 dosage regulates ZRS activation. These studies identify ETV2 as a pioneer transcription factor (TF) regulating the onset of Shh expression, having both a chromatin regulatory role and a transcriptional activation role.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Hamre, Schumann, Mueller & Larson, P.C., Minneapolis, MN, 55402, USA
- Mitchell Hamline School of Law, St. Paul, MN, 55105, USA
| | - Wuming Gong
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Satyabrata Das
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua W M Theisen
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tran B Swanholm
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel Van Ly
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nikita Dsouza
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bhairab N Singh
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hiroko Kawakami
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samantha Young
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Katherine Q Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yasuhiko Kawakami
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Anderson H, Davison S, Lytle KM, Honkanen L, Freyer J, Mathlin J, Kyöstilä K, Inman L, Louviere A, Chodroff Foran R, Forman OP, Lohi H, Donner J. Genetic epidemiology of blood type, disease and trait variants, and genome-wide genetic diversity in over 11,000 domestic cats. PLoS Genet 2022; 18:e1009804. [PMID: 35709088 PMCID: PMC9202916 DOI: 10.1371/journal.pgen.1009804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
In the largest DNA-based study of domestic cats to date, 11,036 individuals (10,419 pedigreed cats and 617 non-pedigreed cats) were genotyped via commercial panel testing elucidating the distribution and frequency of known disease, blood type, and physical trait associated genetic variants across cat breeds. This study provides allele frequencies for many disease-associated variants for the first time and provides updates on previously reported information with evidence suggesting that DNA testing has been effectively used to reduce disease associated variants within certain pedigreed cat populations over time. We identified 13 disease-associated variants in 47 breeds or breed types in which the variant had not previously been documented, highlighting the relevance of comprehensive genetic screening across breeds. Three disease-associated variants were discovered in non-pedigreed cats only. To investigate the causality of nine disease-associated variants in cats of different breed backgrounds our veterinarians conducted owner interviews, reviewed clinical records, and invited cats to have follow-up clinical examinations. Additionally, genetic variants determining blood types A, B and AB, which are relevant clinically and in cat breeding, were genotyped. Appearance-associated genetic variation in all cats is also discussed. Lastly, genome-wide SNP heterozygosity levels were calculated to obtain a comparable measure of the genetic diversity in different cat breeds. This study represents the first comprehensive exploration of informative Mendelian variants in felines by screening over 10,000 pedigreed cats. The results qualitatively contribute to the understanding of feline variant heritage and genetic diversity and demonstrate the clinical utility and importance of such information in supporting breeding programs and the research community. The work also highlights the crucial commitment of pedigreed cat breeders and registries in supporting the establishment of large genomic databases, that when combined with phenotype information can advance scientific understanding and provide insights that can be applied to improve the health and welfare of cats. Domestic cats are one of the world’s most popular companion animals, of which pedigreed cats represent small unique subpopulations. Genetic research on pedigreed cats has facilitated discoveries of heritable conditions resulting in the availability of DNA testing for studying and managing inherited disorders and traits in specific cat breeds. We have explored an extensive study cohort of 11,036 domestic cat samples representing pedigreed cats of 90 breeds and breed types. This work provided insight into the heritage of feline disease and trait alleles. We gained knowledge on the most common and relevant genetic markers for inherited disorders and physical traits, and the genetic determinants of the clinically relevant AB blood group system. We also used a measure of genetic diversity to compare inbreeding levels within and between breeds. This information can help support sustainable breeding goals within the cat fancy. Direct-to-consumer genetic tests help to raise awareness of various inherited single gene conditions in cats and provide information that owners can share with their veterinarians. In due course, ventures of this type will enable the genetics of common complex feline disease to be deciphered, paving the way for precision healthcare with the potential to ultimately improve welfare for all cats.
Collapse
Affiliation(s)
- Heidi Anderson
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
- * E-mail:
| | - Stephen Davison
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Katherine M. Lytle
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Leena Honkanen
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Jamie Freyer
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Julia Mathlin
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Kaisa Kyöstilä
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Laura Inman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Annette Louviere
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Rebecca Chodroff Foran
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Oliver P. Forman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| |
Collapse
|
16
|
Chua EHZ, Yasar S, Harmston N. The importance of considering regulatory domains in genome-wide analyses - the nearest gene is often wrong! Biol Open 2022; 11:274931. [PMID: 35377406 PMCID: PMC9002814 DOI: 10.1242/bio.059091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The expression of a large number of genes is regulated by regulatory elements that are located far away from their promoters. Identifying which gene is the target of a specific regulatory element or is affected by a non-coding mutation is often accomplished by assigning these regions to the nearest gene in the genome. However, this heuristic ignores key features of genome organisation and gene regulation; in that the genome is partitioned into regulatory domains, which at some loci directly coincide with the span of topologically associated domains (TADs), and that genes are regulated by enhancers located throughout these regions, even across intervening genes. In this review, we examine the results from genome-wide studies using chromosome conformation capture technologies and from those dissecting individual gene regulatory domains, to highlight that the phenomenon of enhancer skipping is pervasive and affects multiple types of genes. We discuss how simply assigning a genomic region of interest to its nearest gene is problematic and often leads to incorrect predictions and highlight that where possible information on both the conservation and topological organisation of the genome should be used to generate better hypotheses. The article has an associated Future Leader to Watch interview. Summary: Identifying which gene is the target of an enhancer is often accomplished by assigning it to the nearest gene, here we discuss how this heuristic can lead to incorrect predictions.
Collapse
Affiliation(s)
| | - Samen Yasar
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Nathan Harmston
- Science Division, Yale-NUS College, Singapore 138527, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
17
|
Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 2022; 23:182-194. [PMID: 34764456 PMCID: PMC8858888 DOI: 10.1038/s41576-021-00424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
18
|
LTBP3 Frameshift Variant in British Shorthair Cats with Complex Skeletal Dysplasia. Genes (Basel) 2021; 12:genes12121923. [PMID: 34946872 PMCID: PMC8701722 DOI: 10.3390/genes12121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/04/2022] Open
Abstract
We investigated a highly inbred family of British Shorthair cats in which two offspring were affected by deteriorating paraparesis due to complex skeletal malformations. Radiographs of both affected kittens revealed vertebral deformations with marked stenosis of the vertebral canal from T11 to L3. Additionally, compression of the spinal cord, cerebellar herniation, coprostasis and hypogangliosis were found. The pedigree suggested monogenic autosomal recessive inheritance of the trait. We sequenced the genome of an affected kitten and compared the data to 62 control genomes. This search yielded 55 private protein-changing variants of which only one was located in a likely functional candidate gene, LTBP3, encoding latent transforming growth factor β binding protein 3. This variant, c.158delG or p.(Gly53Alafs*16), represents a 1 bp frameshift deletion predicted to truncate 95% of the open reading frame. LTBP3 is a known key regulator of transforming growth factor β (TGF-β) and is involved in bone morphogenesis and remodeling. Genotypes at the LTBP3:c.158delG variant perfectly co-segregated with the phenotype in the investigated family. The available experimental data together with current knowledge on LTBP3 variants and their functional impact in human patients and mice suggest LTBP3:c.158delG as a candidate causative variant for the observed skeletal malformations in British Shorthair cats. To the best of our knowledge, this study represents the first report of LTBP3-related complex skeletal dysplasia in domestic animals.
Collapse
|
19
|
Xu J, Chen X, Teng X, Wang X, Chen H. Complex radial polydactyly in a Chinese family: inclusion of triphalangism, triplication, and syndactyly. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1296. [PMID: 34532433 PMCID: PMC8422142 DOI: 10.21037/atm-21-2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/01/2021] [Indexed: 11/21/2022]
Abstract
Background Few studies have investigated families in which multiple individuals over three or more generations are affected by radial polydactyly and syndactyly. This report describes an extremely rare family in which nine individuals across six generations were affected by complex radial polydactyly. Methods We investigated a six-generation pedigree with radial polydactyly including triplication, triphalangism, hypoplasia, and symphalangism. There was a total of 34 individuals (including their spouses) in the family and 11 individuals had polydactyly. The average age of the patients ranged from 7 months to 96 years. The characteristic feature of the malformation in these patients was described. Two patients underwent surgical resection for radial supernumerary thumbs. The Bilhout-Cloquet technique and On-top-plasty technique were used to reconstruct the nail and the joints. Results The patients in this family presented with thumb duplication and triphalangism in both hands, including a variety of deformities, such as triplication, triphalangism, hypoplasia, and symphalangism. Syndactyly and ulnar polydactyly were also frequently observed. Two patients who underwent surgical treatment showed good hand and thumb function at the 8- and 2-year post-operative follow-up, respectively. Conclusions The present study reported various mixed phenotypes including triplication, triphalangism, hypoplasia, and symphalangism within the same family which may represent a rare type of polydactyly. Surgical resection of extra digits to achieve mobility of the thumb is the main treatment option for radial polydactyly. Given the ulnar thumb is better developed, the radial thumb is typically resected in patients with radial polydactyly. These reconstructive principles are fit for this Chinese family as well.
Collapse
Affiliation(s)
- Jihai Xu
- Hand Surgery Department, Ningbo No. 6 Hospital, Ningbo, China
| | - Xiaokun Chen
- Department of Orthopedic Trauma, Peking University People Hospital, Beijing, China
| | - Xiaofeng Teng
- Hand Surgery Department, Ningbo No. 6 Hospital, Ningbo, China
| | - Xin Wang
- Hand Surgery Department, Ningbo No. 6 Hospital, Ningbo, China
| | - Hong Chen
- Hand Surgery Department, Ningbo No. 6 Hospital, Ningbo, China
| |
Collapse
|
20
|
Gu H, Zhang P, Xu M, Liang D. Amplicon genome fishing (AGF): a rapid and efficient method for sequencing target cis-regulatory regions in nonmodel organisms. Mol Genet Genomics 2021; 296:527-539. [PMID: 33797587 DOI: 10.1007/s00438-021-01775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Cis-regulatory sequences play a crucial role in regulating gene expression and are evolutionary hot spots that drive phenotypic divergence among organisms. Sequencing some cis-regulatory regions of interest in many different species is common in comparative genetic studies. For nonmodel organisms lacking genomic data, genome walking is often the preferred method for this type of application. However, applying genome walking will be laborious and time-consuming when the number of cis-regulatory regions and species to be analyzed is large. In this study, we propose a novel method called amplicon genome fishing (AGF), which can isolate and sequence cis-regulatory regions of interest for any organism. The main idea of the AGF method is to use fragments amplified from the target cis-regulatory regions as enrichment baits to capture and sequence the whole target cis-regulatory regions from genomic library pools. Unlike genome walking, the AGF method is based on hybridization capture and high-throughput sequencing, which makes this method rapid and efficient for projects where some cis-regulatory regions have to be sequenced for many species. We used human amplicons as capture baits and successfully sequenced five target enhancer regions of Homo sapiens, Mus musculus, Gallus gallus, and Xenopus tropicalis, proving the feasibility and repeatability of AGF. To show the utility of the AGF method in real studies, we used it to sequence the ZRS enhancer, a cis-regulatory region associated with the limb loss of snakes, for twenty-three vertebrate species (includes many limbless species never sequenced before). The newly obtained ZRS sequences provide new perspectives into the relationship between the ZRS enhancer's evolution and limb loss in major tetrapod lineages.
Collapse
Affiliation(s)
- HanMei Gu
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - ManHao Xu
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Jindal GA, Farley EK. Enhancer grammar in development, evolution, and disease: dependencies and interplay. Dev Cell 2021; 56:575-587. [PMID: 33689769 PMCID: PMC8462829 DOI: 10.1016/j.devcel.2021.02.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Each language has standard books describing that language's grammatical rules. Biologists have searched for similar, albeit more complex, principles relating enhancer sequence to gene expression. Here, we review the literature on enhancer grammar. We introduce dependency grammar, a model where enhancers encode information based on dependencies between enhancer features shaped by mechanistic, evolutionary, and biological constraints. Classifying enhancers based on the types of dependencies may identify unifying principles relating enhancer sequence to gene expression. Such rules would allow us to read the instructions for development within genomes and pinpoint causal enhancer variants underlying disease and evolutionary changes.
Collapse
Affiliation(s)
- Granton A Jindal
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Hamelin A, Conchou F, Fusellier M, Duchenij B, Vieira I, Filhol E, Dufaure de Citres C, Tiret L, Gache V, Abitbol M. Genetic heterogeneity of polydactyly in Maine Coon cats. J Feline Med Surg 2020; 22:1103-1113. [PMID: 32067556 PMCID: PMC10814362 DOI: 10.1177/1098612x20905061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Polydactyly has been described in two breeds of domestic cats (Maine Coon and Pixie Bob) and in some outbred domestic cats (eg, Hemingway cats). In most cases, feline polydactyly is a non-syndromic preaxial polydactyly. Three variants located in a regulatory sequence involved in limb development, named ZRS (zone of polarising activity regulatory sequence), have been identified to be responsible for feline polydactyly. These variants have been found in outbred domestic cats in the UK (UK1 and UK2 variants) and in Hemingway cats in the USA (Hw variant). The aim of this study was to characterise the genetic features of polydactyly in Maine Coon cats. METHODS Genotyping assay was used to identify the variant(s) segregating in a cohort of 75 polydactyl and non-polydactyl Maine Coon cats from different breeding lines from Europe, Canada and the USA. The authors performed a segregation analysis to identify the inheritance pattern of polydactyly in this cohort and analysed the population structure. RESULTS The Hw allele was identified in a subset of polydactyl cats. Sequencing of two regulatory sequences involved in limb development did not reveal any other variant in polydactyl cats lacking the Hw allele. Additionally, genotype-phenotype and segregation analyses revealed the peculiar inheritance pattern of polydactyly in Maine Coon cats. The population structure analysis demonstrated a genetic distinction between Hw and Hw-free polydactyl cats. CONCLUSIONS AND RELEVANCE Polydactyly in Maine Coon cats is inherited as an autosomal dominant trait with incomplete penetrance and variable expressivity, and this trait is characterised by genetic heterogeneity in the Maine Coon breed. Maine Coon breeders should be aware of this situation and adapt their breeding practices accordingly.
Collapse
Affiliation(s)
- Alexia Hamelin
- National Veterinary School of Alfort, Maisons-Alfort, and Faculty of Medicine, University of Paris-Est, Créteil, France
| | - Fabrice Conchou
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Marion Fusellier
- National Veterinary School of Nantes, Oniris, Atlanpole, La Chantrerie, Nantes, France
| | | | | | - Emilie Filhol
- National Veterinary School of Alfort, Maisons-Alfort, and Faculty of Medicine, University of Paris-Est, Créteil, France
| | | | - Laurent Tiret
- National Veterinary School of Alfort, Maisons-Alfort, and Faculty of Medicine, University of Paris-Est, Créteil, France
- U955 – IMRB, Team 10 – Biology of the Neuromuscular System, INSERM, UPEC, EFS, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Vincent Gache
- NeuroMyoGène Institute, CNRS UMR5310, INSERM U1217, Faculty of Medicine, Rockefeller, Claude Bernard Lyon I University, Lyon, France
| | - Marie Abitbol
- NeuroMyoGène Institute, CNRS UMR5310, INSERM U1217, Faculty of Medicine, Rockefeller, Claude Bernard Lyon I University, Lyon, France
- VetAgro Sup, University of Lyon, Marcy-l’Etoile, France
| |
Collapse
|
23
|
Warburton NM, Cake MA, Kelman KR. Extreme bilateral polydactyly in a wild-caught western grey kangaroo. Anat Rec (Hoboken) 2020; 304:1361-1374. [PMID: 33034115 DOI: 10.1002/ar.24530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 11/06/2022]
Abstract
Polydactyly is a congenital malformation resulting from an autosomal dominant mutation manifesting as supernumerary digits of the hands or feet. It is most commonly reported in humans and domestic mammals, though there have also been isolated examples across a range of wild vertebrate species. Here we report a case of extremely unusual bilateral preaxial polydactyly on the pectoral limbs of a male western grey kangaroo (Macropus fuliginosus) from the South West region of Western Australia, in which two supernumerary digits were present on each manus. A supernumerary digit I on each manus was rudimentary in morphology without extrinsic muscular connections. However, supernumerary digit II present on each manus had fully developed extrinsic and intrinsic muscular connections, suggesting that these digits possessed normal function in flexion and extension. An alternative hypothesis is that the two supernumerary digits are both representatives of the most radial digit I, though this would then require the true digit I to have taken on the appearance of digit II by acquiring an additional phalanx and modified muscular attachments. The carpal bones exhibited a number of subtle differences in morphology when compared to normal pentadactyl individuals. The presence of a distal, rather than proximal, epiphysis on the first metacarpal was unexpected but further investigation suggested that this characteristic is perhaps more variable (in this species at least) than has been previously recognized. This case provides an unusual example to be considered within the broader context of limb development.
Collapse
Affiliation(s)
- Natalie M Warburton
- Medical, Molecular and Forensic Science, Murdoch University, Murdoch, Western Australia, Australia.,Department of Earth and Planetary Sciences, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Martin A Cake
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
| | - Khama R Kelman
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
24
|
Bozal-Basterra L, Gonzalez-Santamarta M, Muratore V, Bermejo-Arteagabeitia A, Da Fonseca C, Barroso-Gomila O, Azkargorta M, Iloro I, Pampliega O, Andrade R, Martín-Martín N, Branon TC, Ting AY, Rodríguez JA, Carracedo A, Elortza F, Sutherland JD, Barrio R. LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome. eLife 2020; 9:e55957. [PMID: 32553112 PMCID: PMC7363444 DOI: 10.7554/elife.55957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Primary cilia are sensory organelles crucial for cell signaling during development and organ homeostasis. Cilia arise from centrosomes and their formation and function is governed by numerous factors. Through our studies on Townes-Brocks Syndrome (TBS), a rare disease linked to abnormal cilia formation in human fibroblasts, we uncovered the leucine-zipper protein LUZP1 as an interactor of truncated SALL1, a dominantly-acting protein causing the disease. Using TurboID proximity labeling and pulldowns, we show that LUZP1 associates with factors linked to centrosome and actin filaments. Here, we show that LUZP1 is a cilia regulator. It localizes around the centrioles and to actin cytoskeleton. Loss of LUZP1 reduces F-actin levels, facilitates ciliogenesis and alters Sonic Hedgehog signaling, pointing to a key role in cytoskeleton-cilia interdependency. Truncated SALL1 increases the ubiquitin proteasome-mediated degradation of LUZP1. Together with other factors, alterations in LUZP1 may be contributing to TBS etiology.
Collapse
Affiliation(s)
- Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - María Gonzalez-Santamarta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Veronica Muratore
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Aitor Bermejo-Arteagabeitia
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Carolina Da Fonseca
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
- CIBERehd, Instituto de Salud Carlos IIIMadridSpain
- ProteoRed-ISCIII, Instituto de Salud Carlos IIIMadridSpain
| | - Ibon Iloro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
- CIBERehd, Instituto de Salud Carlos IIIMadridSpain
- ProteoRed-ISCIII, Instituto de Salud Carlos IIIMadridSpain
| | - Olatz Pampliega
- Department of Neurosciences, University of the Basque Country, Achucarro Basque Center for Neuroscience-UPV/EHULeioaSpain
| | - Ricardo Andrade
- Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU)LeioaSpain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Tess C Branon
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
- Departments of Genetics, Chemistry and Biology, Stanford UniversityStanfordUnited States
| | - Alice Y Ting
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
- Departments of Genetics, Chemistry and Biology, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Jose A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU)LeioaSpain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
- CIBERONC, Instituto de Salud Carlos IIIMadridSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU)BilbaoSpain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
- CIBERehd, Instituto de Salud Carlos IIIMadridSpain
- ProteoRed-ISCIII, Instituto de Salud Carlos IIIMadridSpain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| |
Collapse
|
25
|
El-Kurdi A, Khalil GA, Khazen G, Khoueiry P. fcScan: a versatile tool to cluster combinations of sites using genomic coordinates. BMC Bioinformatics 2020; 21:194. [PMID: 32429868 PMCID: PMC7236483 DOI: 10.1186/s12859-020-3536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Finding combinations of homotypic or heterotypic genomic sites obeying a specific grammar in DNA sequences is a frequent task in bioinformatics. A typical case corresponds to the identification of cis-regulatory modules characterized by a combination of transcription factor binding sites in a defined window size. Although previous studies identified clusters of genomic sites in species with varying genome sizes, the availability of a dedicated and versatile tool to search for such clusters is lacking. RESULTS We present fcScan, an R/Bioconductor package to search for clusters of genomic sites based on user defined criteria including cluster size, inter-cluster distances and sites order and orientation allowing users to adapt their search criteria to specific biological questions. It supports GRanges, data frame and VCF/BED files as input and returns data in GRanges format. By performing clustering on vectorized data, fcScan is adapted to search for genomic clusters in millions of sites as input in short time and is thus ideal to scan data generated by high throughput methods including next generation sequencing. CONCLUSIONS fcScan is ideal for detecting cis-regulatory modules of transcription factor binding sites with a specific grammar as well as genomic loci enriched for mutations. The flexibility in input parameters allows users to perform searches targeting specific research questions. It is released under Artistic-2.0 License. The source code is freely available through Bioconductor (https://bioconductor.org/packages/fcScan) and GitHub (https://github.com/pkhoueiry/fcScan).
Collapse
Affiliation(s)
- Abdullah El-Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghiwa Ali Khalil
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Georges Khazen
- Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon. .,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
26
|
Amano T. Gene regulatory landscape of the sonic hedgehog locus in embryonic development. Dev Growth Differ 2020; 62:334-342. [PMID: 32343848 DOI: 10.1111/dgd.12668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
The organs of vertebrate species display a wide variety of morphology. A remaining challenge in evolutionary developmental biology is to elucidate how vertebrate lineages acquire distinct morphological features. Developmental programs are driven by spatiotemporal regulation of gene expression controlled by hundreds of thousands of cis-regulatory elements. Changes in the regulatory elements caused by the introduction of genetic variants can confer regulatory innovation that may underlie morphological novelties. Recent advances in sequencing technology have revealed a number of potential regulatory variants that can alter gene expression patterns. However, a limited number of studies demonstrate causal dependence between genetic and morphological changes. Regulation of Shh expression is a good model to understand how multiple regulatory elements organize tissue-specific gene expression patterns. This model also provides insights into how evolution of molecular traits, such as gene regulatory networks, lead to phenotypic novelty.
Collapse
Affiliation(s)
- Takanori Amano
- Next Generation Human Disease Model Team, RIKEN BioResource Research Center, Tsukuba, Japan
| |
Collapse
|
27
|
Ma C, Khederzadeh S, Adeola AC, Han XM, Xie HB, Zhang YP. Whole genome resequencing reveals an association of ABCC4 variants with preaxial polydactyly in pigs. BMC Genomics 2020; 21:268. [PMID: 32228435 PMCID: PMC7106734 DOI: 10.1186/s12864-020-6690-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/20/2020] [Indexed: 11/28/2022] Open
Abstract
Background Polydactyly is one of the most common congenital limb dysplasia in many animal species. Although preaxial polydactyly (PPD) has been comprehensively studied in humans as a common abnormality, the genetic variations in other animal species have not been fully understood. Herein, we focused on the pig, as an even-toed ungulate mammal model with its unique advantages in medical and genetic researches, two PPD families consisting of four affected and 20 normal individuals were sequenced. Results Our results showed that the PPD in the sampled pigs were not related to previously reported variants. A strong association was identified at ABCC4 and it encodes a transmembrane protein involved in ciliogenesis. We found that the affected and normal individuals were highly differentiated at ABCC4, and all the PPD individuals shared long haplotype stretches as compared with the unaffected individuals. A highly differentiated missense mutation (I85T) in ABCC4 was observed at a residue from a transmembrane domain highly conserved among a variety of organisms. Conclusions This study reports ABCC4 as a new candidate gene and identifies a missense mutation for PPD in pigs. Our results illustrate a putative role of ciliogenesis process in PPD, coinciding with an earlier observation of ciliogenesis abnormality resulting in pseudo-thumb development in pandas. These results expand our knowledge on the genetic variations underlying PPD in animals.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xu-Man Han
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hai-Bing Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
28
|
Kvon EZ, Zhu Y, Kelman G, Novak CS, Plajzer-Frick I, Kato M, Garvin TH, Pham Q, Harrington AN, Hunter RD, Godoy J, Meky EM, Akiyama JA, Afzal V, Tran S, Escande F, Gilbert-Dussardier B, Jean-Marçais N, Hudaiberdiev S, Ovcharenko I, Dobbs MB, Gurnett CA, Manouvrier-Hanu S, Petit F, Visel A, Dickel DE, Pennacchio LA. Comprehensive In Vivo Interrogation Reveals Phenotypic Impact of Human Enhancer Variants. Cell 2020; 180:1262-1271.e15. [PMID: 32169219 PMCID: PMC7179509 DOI: 10.1016/j.cell.2020.02.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Establishing causal links between non-coding variants and human phenotypes is an increasing challenge. Here, we introduce a high-throughput mouse reporter assay for assessing the pathogenic potential of human enhancer variants in vivo and examine nearly a thousand variants in an enhancer repeatedly linked to polydactyly. We show that 71% of all rare non-coding variants previously proposed as causal lead to reporter gene expression in a pattern consistent with their pathogenic role. Variants observed to alter enhancer activity were further confirmed to cause polydactyly in knockin mice. We also used combinatorial and single-nucleotide mutagenesis to evaluate the in vivo impact of mutations affecting all positions of the enhancer and identified additional functional substitutions, including potentially pathogenic variants hitherto not observed in humans. Our results uncover the functional consequences of hundreds of mutations in a phenotype-associated enhancer and establish a widely applicable strategy for systematic in vivo evaluation of human enhancer variants.
Collapse
Affiliation(s)
- Evgeny Z Kvon
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yiwen Zhu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Guy Kelman
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tyler H Garvin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Quan Pham
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne N Harrington
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Riana D Hunter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Janeth Godoy
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eman M Meky
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veena Afzal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | - Sanjarbek Hudaiberdiev
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew B Dobbs
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Florence Petit
- CHU Lille, University of Lille, EA7364, F-59000, Lille, France
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Luxey M, Berki B, Heusermann W, Fischer S, Tschopp P. Development of the chick wing and leg neuromuscular systems and their plasticity in response to changes in digit numbers. Dev Biol 2020; 458:133-140. [PMID: 31697937 DOI: 10.1016/j.ydbio.2019.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 01/28/2023]
Abstract
The tetrapod limb has long served as a paradigm to study vertebrate pattern formation. During limb morphogenesis, a number of distinct tissue types are patterned and subsequently must be integrated to form coherent functional units. For example, the musculoskeletal apparatus of the limb requires the coordinated development of the skeletal elements, connective tissues, muscles and nerves. Here, using light-sheet microscopy and 3D-reconstructions, we concomitantly follow the developmental emergence of nerve and muscle patterns in chicken wings and legs, two appendages with highly specialized locomotor outputs. Despite a comparable flexor/extensor-arrangement of their embryonic muscles, wings and legs show a rotated innervation pattern for their three main motor nerve branches. To test the functional implications of these distinct neuromuscular topologies, we challenge their ability to adapt and connect to an experimentally altered skeletal pattern in the distal limb, the autopod. Our results show that, unlike autopod muscle groups, motor nerves are unable to fully adjust to a changed peripheral organisation, potentially constrained by their original projection routes. As the autopod has undergone substantial morphological diversifications over the course of tetrapod evolution, our results have implications for the coordinated modification of the distal limb musculoskeletal apparatus, as well as for our understanding of the varying degrees of motor functionality associated with human hand and foot malformations.
Collapse
Affiliation(s)
- Maëva Luxey
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Bianka Berki
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | | | - Sabrina Fischer
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Patrick Tschopp
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| |
Collapse
|
30
|
Skuplik I, Cobb J. Animal Models for Understanding Human Skeletal Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:157-188. [DOI: 10.1007/978-981-15-2389-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Dynamic and self-regulatory interactions among gene regulatory networks control vertebrate limb bud morphogenesis. Curr Top Dev Biol 2020; 139:61-88. [DOI: 10.1016/bs.ctdb.2020.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Potuijt JWP, Galjaard RJH, van der Spek PJ, van Nieuwenhoven CA, Ahituv N, Oberg KC, Hovius SER. A multidisciplinary review of triphalangeal thumb. J Hand Surg Eur Vol 2019; 44:59-68. [PMID: 30318985 PMCID: PMC6297887 DOI: 10.1177/1753193418803521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite being a rare congenital limb anomaly, triphalangeal thumb is a subject of research in various scientific fields, providing new insights in clinical research and evolutionary biology. The findings of triphalangeal thumb can be predictive for other congenital anomalies as part of an underlying syndrome. Furthermore, triphalangeal thumb is still being used as a model in molecular genetics to study gene regulation by long-range regulatory elements. We present a review that summarizes a number of scientifically relevant topics that involve the triphalangeal thumb phenotype. Future initiatives involving multidisciplinary teams collaborating in the field of triphalangeal thumb research can lead to a better understanding of the pathogenesis and molecular mechanisms of this condition as well as other congenital upper limb anomalies.
Collapse
Affiliation(s)
- Jacob W. P. Potuijt
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Jacob W. P. Potuijt, Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Ee-1589 Postbus 2040, 3015 GE Rotterdam, The Netherlands.
| | - Robert-Jan H. Galjaard
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter J. van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christianne A. van Nieuwenhoven
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, SF, USA,Institute for Human Genetics, University of California San Francisco, SF, USA
| | - Kerby C. Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, USA
| | - Steven E. R. Hovius
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Genome Sequencing of the Japanese Eel ( Anguilla japonica) for Comparative Genomic Studies on tbx4 and a tbx4 Gene Cluster in Teleost Fishes. Mar Drugs 2019; 17:md17070426. [PMID: 31330852 PMCID: PMC6669545 DOI: 10.3390/md17070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Limbs originated from paired fish fins are an important innovation in Gnathostomata. Many studies have focused on limb development-related genes, of which the T-box transcription factor 4 gene (tbx4) has been considered as one of the most essential factors in the regulation of the hindlimb development. We previously confirmed pelvic fin loss in tbx4-knockout zebrafish. Here, we report a high-quality genome assembly of the Japanese eel (Anguilla japonica), which is an economically important fish without pelvic fins. The assembled genome is 1.13 Gb in size, with a scaffold N50 of 1.03 Mb. In addition, we collected 24 tbx4 sequences from 22 teleost fishes to explore the correlation between tbx4 and pelvic fin evolution. However, we observed complete exon structures of tbx4 in several pelvic-fin-loss species such as Ocean sunfish (Mola mola) and ricefield eel (Monopterus albus). More interestingly, an inversion of a special tbx4 gene cluster (brip1-tbx4-tbx2b- bcas3) occurred twice independently, which coincides with the presence of fin spines. A nonsynonymous mutation (M82L) was identified in the nuclear localization sequence (NLS) of the Japanese eel tbx4. We also examined variation and loss of hindlimb enhancer B (HLEB), which may account for pelvic fin loss in Tetraodontidae and Diodontidae. In summary, we generated a genome assembly of the Japanese eel, which provides a valuable genomic resource to study the evolution of fish tbx4 and helps elucidate the mechanism of pelvic fin loss in teleost fishes. Our comparative genomic studies, revealed for the first time a potential correlation between the tbx4 gene cluster and the evolutionary development of toxic fin spines. Because fin spines in teleosts are usually venoms, this tbx4 gene cluster may facilitate the genetic engineering of toxin-related marine drugs.
Collapse
|
34
|
Schoenfelder S, Fraser P. Long-range enhancer–promoter contacts in gene expression control. Nat Rev Genet 2019; 20:437-455. [DOI: 10.1038/s41576-019-0128-0] [Citation(s) in RCA: 486] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Habenicht R, Mann M, Guéro S, Ezaki M, Oberg KC. Distal Dorsal Dimelia: A Disturbance of Dorsal-Ventral Digit Development. J Hand Surg Am 2019; 44:421.e1-421.e8. [PMID: 30292712 DOI: 10.1016/j.jhsa.2018.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/24/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE Congenital palmar nail (distal dorsal dimelia [dDD]) of the hand is a rare malformation most commonly affecting the little finger. The purpose of this report was to review the features and associations of this rare disorder and discuss the suspected underlying etiology in light of our current understanding of developmental biology. METHODS In this retrospective cohort study from 3 practices, we describe our collective experience and review the reported literature on this disorder both as an isolated condition and in conjunction with other anomalies. RESULTS We examined 15 fingers with dDD, 5 of which involved little fingers. We also found dDD in 6 cases with radial polydactyly (preaxial polydactyl type II [PPD2]) and in 1 case of cleft hand involving digits adjacent to the clefted web space (the index and middle fingers). Cases of little finger dDD were also associated with prominent clefting of the adjacent web space in 4 of 5 cases. All cases had stiffness of the interphalangeal joints and loss of palmar creases consistent with dorsalization of the palmar aspect of the digit. When combined with 63 fingers reported in the literature with dDD, 3 patterns were evident. The most common form occurred in little fingers (n = 50; 64%; dDDu). The next most common form was reported in association with cleft hands (n = 16; 21%; dDDc). Radial digits in association with either radial polydactyly (PPD2) or radial longitudinal deficiency were also susceptible to dDD (n = 12; 15%; dDDr). CONCLUSIONS Congenital dDD is a disturbance of terminal dorsal-ventral digit patterning. The distribution of this condition with little fingers, clefting, and altered radial digit formation (PPD2 or radial longitudinal deficiency), as well as recent genetic and animal studies, suggests that dDD and altered dorsal-ventral patterning are linked to abnormal apical ectodermal ridge boundary formation. TYPE OF STUDY/LEVEL OF EVIDENCE Diagnostic IV.
Collapse
Affiliation(s)
- Rolf Habenicht
- Department of Hand Surgery, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Max Mann
- Department of Hand Surgery, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | | | - Marybeth Ezaki
- Department of Orthopedics, Texas Scottish Rite Hospital for Children, Dallas, TX
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA.
| |
Collapse
|
36
|
Yip RK, Chan D, Cheah KS. Mechanistic insights into skeletal development gained from genetic disorders. Curr Top Dev Biol 2019; 133:343-385. [DOI: 10.1016/bs.ctdb.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Thompson AC, Capellini TD, Guenther CA, Chan YF, Infante CR, Menke DB, Kingsley DM. A novel enhancer near the Pitx1 gene influences development and evolution of pelvic appendages in vertebrates. eLife 2018; 7:38555. [PMID: 30499775 PMCID: PMC6269122 DOI: 10.7554/elife.38555] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022] Open
Abstract
Vertebrate pelvic reduction is a classic example of repeated evolution. Recurrent loss of pelvic appendages in sticklebacks has previously been linked to natural mutations in a pelvic enhancer that maps upstream of Pitx1. The sequence of this upstream PelA enhancer is not conserved to mammals, so we have surveyed a large region surrounding the mouse Pitx1 gene for other possible hind limb control sequences. Here we identify a new pelvic enhancer, PelB, that maps downstream rather than upstream of Pitx1. PelB drives expression in the posterior portion of the developing hind limb, and deleting the sequence from mice alters the size of several hind limb structures. PelB sequences are broadly conserved from fish to mammals. A wild stickleback population lacking the pelvis has an insertion/deletion mutation that disrupts the structure and function of PelB, suggesting that changes in this ancient enhancer contribute to evolutionary modification of pelvic appendages in nature.
Collapse
Affiliation(s)
- Abbey C Thompson
- Department of Developmental Biology, Stanford University School of Medicine, California, United States.,Department of Genetics, Stanford University School of Medicine, California, United States
| | - Terence D Capellini
- Department of Developmental Biology, Stanford University School of Medicine, California, United States
| | - Catherine A Guenther
- Department of Developmental Biology, Stanford University School of Medicine, California, United States.,Howard Hughes Medical Institute, Stanford University, California, United States
| | - Yingguang Frank Chan
- Department of Developmental Biology, Stanford University School of Medicine, California, United States
| | - Carlos R Infante
- Department of Genetics, University of Georgia, Georgia, United States
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Georgia, United States
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, California, United States.,Howard Hughes Medical Institute, Stanford University, California, United States
| |
Collapse
|
38
|
A threshold model for polydactyly. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:1-11. [DOI: 10.1016/j.pbiomolbio.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/29/2022]
|
39
|
Lettice LA, Devenney P, De Angelis C, Hill RE. The Conserved Sonic Hedgehog Limb Enhancer Consists of Discrete Functional Elements that Regulate Precise Spatial Expression. Cell Rep 2018; 20:1396-1408. [PMID: 28793263 PMCID: PMC5561167 DOI: 10.1016/j.celrep.2017.07.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Expression of sonic hedgehog (Shh) in the limb bud is regulated by an enhancer called the zone of polarizing activity regulatory sequence (ZRS), which, in evolution, belongs to an ancient group of highly conserved cis regulators found in all classes of vertebrates. Here, we examined the endogenous ZRS in mice, using genome editing to establish the relationship between enhancer composition and embryonic phenotype. We show that enhancer activity is a consolidation of distinct activity domains. Spatial restriction of Shh expression is mediated by a discrete repressor module, whereas levels of gene expression are controlled by large overlapping domains containing varying numbers of HOXD binding sites. The number of HOXD binding sites regulates expression levels incrementally. Substantial portions of conserved sequence are dispensable, indicating the presence of sequence redundancy. We propose a collective model for enhancer activity in which function is an integration of discrete expression activities and redundant components that drive robust expression. The ancient vertebrate enhancer, the ZRS, shows sequence plasticity Discrete regulatory activities are assigned to specific sites in the enhancer The number of HOXD binding sites determines the level of Shh expression Robust expression is a collective of regulatory and redundant information
Collapse
Affiliation(s)
- Laura A Lettice
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Paul Devenney
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Carlo De Angelis
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Robert E Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
40
|
Potuijt JWP, Baas M, Sukenik-Halevy R, Douben H, Nguyen P, Venter DJ, Gallagher R, Swagemakers SM, Hovius SER, van Nieuwenhoven CA, Galjaard RJH, van der Spek PJ, Ahituv N, de Klein A. A point mutation in the pre-ZRS disrupts sonic hedgehog expression in the limb bud and results in triphalangeal thumb-polysyndactyly syndrome. Genet Med 2018. [PMID: 29543231 DOI: 10.1038/gim.2018.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The zone of polarizing activity regulatory sequence (ZRS) is an enhancer that regulates sonic hedgehog during embryonic limb development. Recently, mutations in a noncoding evolutionary conserved sequence 500 bp upstream of the ZRS, termed the pre-ZRS (pZRS), have been associated with polydactyly in dogs and humans. Here, we report the first case of triphalangeal thumb-polysyndactyly syndrome (TPT-PS) to be associated with mutations in this region and show via mouse enhancer assays how this mutation leads to ectopic expression throughout the developing limb bud. METHODS We used linkage analysis, whole-exome sequencing, Sanger sequencing, fluorescence in situ hybridization, multiplex ligation-dependent probe amplification, single-nucleotide polymorphism array, and a mouse transgenic enhancer assay. RESULTS Ten members of a TPT-PS family were included in this study. The mutation was linked to chromosome 7q36 (LOD score 3.0). No aberrations in the ZRS could be identified. A point mutation in the pZRS (chr7:156585476G>C; GRCh37/hg19) was detected in all affected family members. Functional characterization using a mouse transgenic enhancer essay showed extended ectopic expression dispersed throughout the entire limb bud (E11.5). CONCLUSION Our work describes the first mutation in the pZRS to be associated with TPT-PS and provides functional evidence that this mutation leads to ectopic expression of this enhancer within the developing limb.
Collapse
Affiliation(s)
- Jacob W P Potuijt
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Martijn Baas
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rivka Sukenik-Halevy
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California-San Francisco, San Francisco, California, USA.,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hannie Douben
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Picard Nguyen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Deon J Venter
- Department of Pathology, Mater Health Services, South Brisbane, Queensland, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Renée Gallagher
- Department of Pathology, Mater Health Services, South Brisbane, Queensland, Australia
| | - Sigrid M Swagemakers
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Steven E R Hovius
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christianne A van Nieuwenhoven
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert-Jan H Galjaard
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California-San Francisco, San Francisco, California, USA
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
41
|
Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 2018; 554:239-243. [PMID: 29420474 PMCID: PMC5808607 DOI: 10.1038/nature25461] [Citation(s) in RCA: 422] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022]
Abstract
Distant-acting tissue-specific enhancers vastly outnumber protein-coding genes in mammalian genomes, but the functional significance of this regulatory complexity remains insufficiently understood1,2. Here we show that the pervasive presence of multiple enhancers with similar activities near the same gene confers phenotypic robustness to loss-of-function mutations in individual enhancers. We used genome editing to create 23 mouse deletion lines and inter-crosses, including both single and combinatorial enhancer deletions at seven distinct loci required for limb development. Surprisingly, none of ten deletions of individual enhancers caused noticeable changes in limb morphology. In contrast, removal of pairs of limb enhancers near the same gene resulted in discernible phenotypes, indicating that enhancers function redundantly in establishing normal morphology. In a genetic background sensitized by reduced baseline expression of the target gene, even single enhancer deletions caused limb abnormalities, suggesting that functional redundancy is conferred by additive effects of enhancers on gene expression levels. A genome-wide analysis integrating epigenomic and transcriptomic data from 29 developmental mouse tissues revealed that mammalian genes are very commonly associated with multiple enhancers that have similar spatiotemporal activity. Systematic exploration of three representative developmental structures (limb, brain, heart) uncovered more than a thousand cases in which five or more enhancers with redundant activity patterns were found near the same gene. Taken together, our data indicate that enhancer redundancy is a remarkably widespread feature of mammalian genomes and provides an effective regulatory buffer preventing deleterious phenotypic consequences upon loss of individual enhancers.
Collapse
|
42
|
Farley EK, Olson KM, Levine MS. Regulatory Principles Governing Tissue Specificity of Developmental Enhancers. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 80:27-32. [PMID: 27325706 DOI: 10.1101/sqb.2015.80.027227] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcriptional enhancers are short segments of genomic DNA (50 bp to 1 kb in length) that can work over long distances (≥1 Mb) to regulate gene expression in specific cells and tissues. Genomic assays have identified on the order of 400,000 to one million putative enhancers in the human genome (e.g., ENCODE Consortium). This suggests that a typical gene is regulated by tens of enhancers, ensuring stringent regulation of gene expression in response to a variety of intrinsic and external signals. Despite the discovery of the first transcriptional enhancer more than 30 years ago, we know surprisingly little about how enhancers regulate gene expression. In particular, the relationship between primary DNA sequence and enhancer specificity remains obscure. Here we summarize recent high-throughput studies in whole embryos aimed at the systematic identification of the sequence and organizational constraints underlying enhancer function and specificity.
Collapse
Affiliation(s)
- Emma K Farley
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| | - Katrina M Olson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| | - Michael S Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
43
|
Wadapurkar RM, Vyas R. Computational analysis of next generation sequencing data and its applications in clinical oncology. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
44
|
Enhancer adoption caused by genomic insertion elicits interdigital Shh expression and syndactyly in mouse. Proc Natl Acad Sci U S A 2017; 115:1021-1026. [PMID: 29255029 PMCID: PMC5798340 DOI: 10.1073/pnas.1713339115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we reexamined an old mouse mutant named Hammer toe (Hm), which arose spontaneously almost a half century ago and exhibits a limb phenotype with webbing. We revealed that a 150-kb noncoding genomic fragment that was originally located in chromosome 14 has been inserted into a genomic region proximal to Sonic hedgehog (Shh), located in chromosome 5. This inserted fragment possesses enhancer activity to induce Shh expression in the interdigital regions in Hm, which in turn down-regulates bone morphogenetic protein signaling and eventually results in syndactyly and web formation. Since the donor fragment residing in chromosome 14 has enhancer activity to induce interdigital gene expression, the Hm mutation appears to be an archetypal case of enhancer adoption. Acquisition of new cis-regulatory elements (CREs) can cause alteration of developmental gene regulation and may introduce morphological novelty in evolution. Although structural variation in the genome generated by chromosomal rearrangement is one possible source of new CREs, only a few examples are known, except for cases of retrotransposition. In this study, we show the acquisition of novel regulatory sequences as a result of large genomic insertion in the spontaneous mouse mutation Hammer toe (Hm). Hm mice exhibit syndactyly with webbing, due to suppression of interdigital cell death in limb development. We reveal that, in the Hm genome, a 150-kb noncoding DNA fragment from chromosome 14 is inserted into the region upstream of the Sonic hedgehog (Shh) promoter in chromosome 5. Phenotyping of mouse embryos with a series of CRISPR/Cas9-aided partial deletion of the 150-kb insert clearly indicated that two different regions are necessary for the syndactyly phenotype of Hm. We found that each of the two regions contains at least one enhancer for interdigital regulation. These results show that a set of enhancers brought by the large genomic insertion elicits the interdigital Shh expression and the Hm phenotype. Transcriptome analysis indicates that ectopic expression of Shh up-regulates Chordin (Chrd) that antagonizes bone morphogenetic protein signaling in the interdigital region. Indeed, Chrd-overexpressing transgenic mice recapitulated syndactyly with webbing. Thus, the Hm mutation provides an insight into enhancer acquisition as a source of creation of novel gene regulation.
Collapse
|
45
|
Digging for known genetic mutations underlying inherited bone and cartilage characteristics and disorders in the dog and cat. Vet Comp Orthop Traumatol 2017; 29:269-76. [DOI: 10.3415/vcot-16-02-0037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
SummaryGene mapping projects for many traits in both dogs and cats have yielded new knowledge. Both researchers and the public alike have been fascinated by the inheritance of breed characteristic phenotypes and sporadic disorders. It has been proposed that selective breeding practices have on occasion generated alterations in structure that might be harmful. In this review, simply inherited disorders and characteristics affecting bone and cartilage for which a putative mutation is known are collected. A better understanding of the known inherited basis of skeletal conditions and disorders will assist veterinarians to improve their diagnoses and increase their effectiveness on advising clients on the prevention, management, prognosis and possible treatment of the conditions.
Collapse
|
46
|
Leal F, Cohn MJ. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 2017; 56. [DOI: 10.1002/dvg.23077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Francisca Leal
- Howard Hughes Medical Institute, UF Genetics Institute, University of Florida; Gainesville FL 32610
- Department of Biology; University of Florida; Gainesville FL 32610
| | - Martin J. Cohn
- Department of Biology; University of Florida; Gainesville FL 32610
- Department of Molecular Genetics and Microbiology; University of Florida; Gainesville FL 32610
| |
Collapse
|
47
|
Peluso S, Douglas A, Hill A, De Angelis C, Moore BL, Grimes G, Petrovich G, Essafi A, Hill RE. Fibroblast growth factors (FGFs) prime the limb specific Shh enhancer for chromatin changes that balance histone acetylation mediated by E26 transformation-specific (ETS) factors. eLife 2017; 6:28590. [PMID: 28949289 PMCID: PMC5659820 DOI: 10.7554/elife.28590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023] Open
Abstract
Sonic hedgehog (Shh) expression in the limb bud organizing centre called the zone of polarizing activity is regulated by the ZRS enhancer. Here, we examine in mouse and in a mouse limb-derived cell line the dynamic events that activate and restrict the spatial activity of the ZRS. Fibroblast growth factor (FGF) signalling in the distal limb primes the ZRS at early embryonic stages maintaining a poised, but inactive state broadly across the distal limb mesenchyme. The E26 transformation-specific transcription factor, ETV4, which is induced by FGF signalling and acts as a repressor of ZRS activity, interacts with the histone deacetylase HDAC2 and ensures that the poised ZRS remains transcriptionally inactive. Conversely, GABPα, an activator of the ZRS, recruits p300, which is associated with histone acetylation (H3K27ac) indicative of an active enhancer. Hence, the primed but inactive state of the ZRS is induced by FGF signalling and in combination with balanced histone modification events establishes the restricted, active enhancer responsible for patterning the limb bud during development. As an animal embryo develops, specific genes need to be switched on and off at the right time and place to ensure that the embryo’s tissues and organs form properly. Proteins called transcription factors control the activity of individual genes by binding to regions of DNA known as enhancers. Changes in the way DNA is packaged inside cells can affect the ability of transcription factors to access the enhancers, and therefore also influence when particular genes are switched on or off. Sonic hedgehog (or Shh for short) is a gene that helps to control various aspects of development including the formation of the limbs and brain. The limb forms from a structure in the embryo referred to as the limb bud. An enhancer called ZRS regulates the precise position within the limb bud where the Shh gene is active in a region designated as the “zone of polarizing activity”. Yet, it was not known how the enhancer is controlled to ensure this pattern is achieved. Peluso et al. investigated the events that lead to ZRS becoming active in mice embryos. The experiments show that the ZRS enhancer exists in three different states in cells across the limb bud: poised, active and inactive. The enhancer is poised in a broad region of the limb bud in cells that are potentially able to switch on the Shh gene. Proteins called fibroblast growth factors drive the enhancer to enter this poised state by altering the way the DNA containing the enhancer is packaged in the cell. Specific transcription factors are able to bind to the poised enhancer and it is the balance between these different transcription factors that activates the enhancer in the zone of polarizing activity. Furthermore in the region of the limb bud where the fibroblast growth factors are not present the ZRS is inactive. These findings show that fibroblast growth factors, in combination with other changes to the ZRS enhancer, restrict the area in which the enhancer is active to a particular region of the limb bud. Differences in enhancer elements are known to underlie a range of inherited characteristics and may influence whether an individual develops many common diseases. In the future, investigating how cells control the activity of enhancers may provide clues to identifying new targets for drugs to treat some of these diseases.
Collapse
Affiliation(s)
- Silvia Peluso
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Douglas
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlo De Angelis
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin L Moore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Giulia Petrovich
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelkader Essafi
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
48
|
Abstract
An enhancer named MFCS1 regulates Sonic hedgehog (Shh) expression in the posterior mesenchyme of limb buds. Several mutations in MFCS1 induce ectopic Shh expression in the anterior limb bud, and these result in preaxial polydactyly (PPD). However, the molecular basis of ectopic Shh expression remains elusive, although some mutations are known to disrupt the negative regulation of Shh expression in the anterior limb bud. Here, we analyzed the molecular mechanism of ectopic Shh expression in PPD including in a mouse mutation-hemimelic extra toes (Hx)-and in other MFCS1 mutations in different species. First, we generated transgenic mouse lines with a LacZ reporter cassette flanked with tandem repeats of 40 bp MFCS1 fragments harboring a mutation. The transgenic mouse line with the Hx-type fragment showed reporter expression exclusively in the anterior, but not in the posterior margins of limb buds. In contrast, no specific LacZ expression was observed in lines carrying the MFCS1 fragment with other mutations. Yeast one-hybrid assays revealed that the msh-like homeodomain protein, MSX1, bound specifically to the Hx sequence of MFCS1. Thus, PPD caused by mutations in MFCS1 has two major types of molecular etiology: loss of a cis-motif for negative regulation of Shh, and acquisition of a new cis-motif binding to a preexisting transcription factor, as represented by the Hx mutation.
Collapse
|
49
|
Yang X, Shen Q, Sulaiman X, Liu H, Peng M, Zhang Y. Identity-by-descent refines mapping of candidate regions for preaxial polydactyly II /III in a large Chinese pedigree. Hereditas 2017; 155:2. [PMID: 28690477 PMCID: PMC5496229 DOI: 10.1186/s41065-017-0040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022] Open
Abstract
Preaxial polydactyly (PPD) is congenital hand malformation characterized by the duplication of digit. Herein, we scan the genome-wide SNPs for a large Chinese family with PPD-II/III. We employ the refined IBD algorithm to identify the identity-by-decent (IBD) segments and compare the frequency among the patients and normal relatives. A total of 72 markers of 0.01 percentile of the permutation are identified as the peak signals. Among of them, 57markers locate on chromosome 7q36 which is associated with PPD. Further analyses refine the mapping of candidate region in chromosome 7q36 into two 380 Kb fragments within LMBR1 and SHH respectively. IBD approach is a suitable method for mapping causal gene of human disease. Target-enrichment sequencing as well as functional experiments are required to illustrate the pathogenic mechanisms for PPD in the future.
Collapse
Affiliation(s)
- Xingyan Yang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Quankuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ /CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming, China
| | | | - Hequn Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, China
| | - Minsheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ /CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, 650223 China
| | - Yaping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ /CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, 650223 China
| |
Collapse
|
50
|
Hamelin A, Begon D, Conchou F, Fusellier M, Abitbol M. Clinical characterisation of polydactyly in Maine Coon cats. J Feline Med Surg 2017; 19:382-393. [PMID: 26862149 PMCID: PMC11119636 DOI: 10.1177/1098612x16628920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Objectives Polydactyly has been reported in a number of vertebrate species, including the domestic cat. It is a common characteristic in some breeding lines of the Maine Coon. The aim of this study was to assess the limb phenotype of polydactyl cats using physical and radiographic examinations. Methods We used physical examination and radiography to characterise the polydactyly phenotype in a cohort of 70 Maine Coon cats, including 48 polydactyl cats from four different breeding lines from Europe, Canada and the USA. Results The phenotypic expression of polydactyly showed great variability, not only in digit number and conformation, but also in the structure of the carpus and tarsus. Comparison of the size of the radius in polydactyl and non-polydactyl 3-month-old kittens and adult females did not reveal any difference between polydactyl and non-polydactyl cats. Conclusions and relevance We conclude that polydactyly in Maine Coon cats is characterised by broad phenotypic diversity. Polydactyly not only affects digit number and conformation, but also carpus and tarsus conformation, with no apparent deleterious consequence on feline welfare.
Collapse
Affiliation(s)
- Alexia Hamelin
- Paris East University, National Veterinary School of Alfort, Maisons-Alfort, and Faculty of Medicine, Créteil, France
| | - Dominique Begon
- Paris East University, National Veterinary School of Alfort, Maisons-Alfort, and Faculty of Medicine, Créteil, France
- Current address: Veterinarius, Maisons-Alfort, France
| | - Fabrice Conchou
- Unit of Anatomy, Imaging and Embryology, INP, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Marion Fusellier
- National Veterinary School of Nantes, Oniris, Atlanpole, La Chantrerie, Nantes, France
| | - Marie Abitbol
- Paris East University, National Veterinary School of Alfort, Maisons-Alfort, and Faculty of Medicine, Créteil, France
- Inserm, IMRB U955-E10, Créteil, France
- French Establishment of Blood, Créteil, France
- APHP, University Hospital Henri Mondor, DHU Pepsy and Reference Centre for Neuromuscular Diseases GNMH, Créteil, France
| |
Collapse
|